With -pie and x86, the linker complains if it sees a PC-relative relocation
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Return the symbol's name as name@version (or name@@version).
144 std::string
145 versioned_name() const;
146
147 // Return the symbol source.
148 Source
149 source() const
150 { return this->source_; }
151
152 // Return the object with which this symbol is associated.
153 Object*
154 object() const
155 {
156 gold_assert(this->source_ == FROM_OBJECT);
157 return this->u_.from_object.object;
158 }
159
160 // Return the index of the section in the input relocatable or
161 // dynamic object file.
162 unsigned int
163 shndx(bool* is_ordinary) const
164 {
165 gold_assert(this->source_ == FROM_OBJECT);
166 *is_ordinary = this->is_ordinary_shndx_;
167 return this->u_.from_object.shndx;
168 }
169
170 // Return the output data section with which this symbol is
171 // associated, if the symbol was specially defined with respect to
172 // an output data section.
173 Output_data*
174 output_data() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_DATA);
177 return this->u_.in_output_data.output_data;
178 }
179
180 // If this symbol was defined with respect to an output data
181 // section, return whether the value is an offset from end.
182 bool
183 offset_is_from_end() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_DATA);
186 return this->u_.in_output_data.offset_is_from_end;
187 }
188
189 // Return the output segment with which this symbol is associated,
190 // if the symbol was specially defined with respect to an output
191 // segment.
192 Output_segment*
193 output_segment() const
194 {
195 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
196 return this->u_.in_output_segment.output_segment;
197 }
198
199 // If this symbol was defined with respect to an output segment,
200 // return the offset base.
201 Segment_offset_base
202 offset_base() const
203 {
204 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
205 return this->u_.in_output_segment.offset_base;
206 }
207
208 // Return the symbol binding.
209 elfcpp::STB
210 binding() const
211 { return this->binding_; }
212
213 // Return the symbol type.
214 elfcpp::STT
215 type() const
216 { return this->type_; }
217
218 // Return true for function symbol.
219 bool
220 is_func() const
221 {
222 return (this->type_ == elfcpp::STT_FUNC
223 || this->type_ == elfcpp::STT_GNU_IFUNC);
224 }
225
226 // Return the symbol visibility.
227 elfcpp::STV
228 visibility() const
229 { return this->visibility_; }
230
231 // Set the visibility.
232 void
233 set_visibility(elfcpp::STV visibility)
234 { this->visibility_ = visibility; }
235
236 // Override symbol visibility.
237 void
238 override_visibility(elfcpp::STV);
239
240 // Set whether the symbol was originally a weak undef or a regular undef
241 // when resolved by a dynamic def or by a special symbol.
242 inline void
243 set_undef_binding(elfcpp::STB bind)
244 {
245 if (!this->undef_binding_set_ || this->undef_binding_weak_)
246 {
247 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
248 this->undef_binding_set_ = true;
249 }
250 }
251
252 // Return TRUE if a weak undef was resolved by a dynamic def or
253 // by a special symbol.
254 inline bool
255 is_undef_binding_weak() const
256 { return this->undef_binding_weak_; }
257
258 // Return the non-visibility part of the st_other field.
259 unsigned char
260 nonvis() const
261 { return this->nonvis_; }
262
263 // Set the non-visibility part of the st_other field.
264 void
265 set_nonvis(unsigned int nonvis)
266 { this->nonvis_ = nonvis; }
267
268 // Return whether this symbol is a forwarder. This will never be
269 // true of a symbol found in the hash table, but may be true of
270 // symbol pointers attached to object files.
271 bool
272 is_forwarder() const
273 { return this->is_forwarder_; }
274
275 // Mark this symbol as a forwarder.
276 void
277 set_forwarder()
278 { this->is_forwarder_ = true; }
279
280 // Return whether this symbol has an alias in the weak aliases table
281 // in Symbol_table.
282 bool
283 has_alias() const
284 { return this->has_alias_; }
285
286 // Mark this symbol as having an alias.
287 void
288 set_has_alias()
289 { this->has_alias_ = true; }
290
291 // Return whether this symbol needs an entry in the dynamic symbol
292 // table.
293 bool
294 needs_dynsym_entry() const
295 {
296 return (this->needs_dynsym_entry_
297 || (this->in_reg()
298 && this->in_dyn()
299 && this->is_externally_visible()));
300 }
301
302 // Mark this symbol as needing an entry in the dynamic symbol table.
303 void
304 set_needs_dynsym_entry()
305 { this->needs_dynsym_entry_ = true; }
306
307 // Return whether this symbol should be added to the dynamic symbol
308 // table.
309 bool
310 should_add_dynsym_entry(Symbol_table*) const;
311
312 // Return whether this symbol has been seen in a regular object.
313 bool
314 in_reg() const
315 { return this->in_reg_; }
316
317 // Mark this symbol as having been seen in a regular object.
318 void
319 set_in_reg()
320 { this->in_reg_ = true; }
321
322 // Return whether this symbol has been seen in a dynamic object.
323 bool
324 in_dyn() const
325 { return this->in_dyn_; }
326
327 // Mark this symbol as having been seen in a dynamic object.
328 void
329 set_in_dyn()
330 { this->in_dyn_ = true; }
331
332 // Return whether this symbol has been seen in a real ELF object.
333 // (IN_REG will return TRUE if the symbol has been seen in either
334 // a real ELF object or an object claimed by a plugin.)
335 bool
336 in_real_elf() const
337 { return this->in_real_elf_; }
338
339 // Mark this symbol as having been seen in a real ELF object.
340 void
341 set_in_real_elf()
342 { this->in_real_elf_ = true; }
343
344 // Return whether this symbol was defined in a section that was
345 // discarded from the link. This is used to control some error
346 // reporting.
347 bool
348 is_defined_in_discarded_section() const
349 { return this->is_defined_in_discarded_section_; }
350
351 // Mark this symbol as having been defined in a discarded section.
352 void
353 set_is_defined_in_discarded_section()
354 { this->is_defined_in_discarded_section_ = true; }
355
356 // Return the index of this symbol in the output file symbol table.
357 // A value of -1U means that this symbol is not going into the
358 // output file. This starts out as zero, and is set to a non-zero
359 // value by Symbol_table::finalize. It is an error to ask for the
360 // symbol table index before it has been set.
361 unsigned int
362 symtab_index() const
363 {
364 gold_assert(this->symtab_index_ != 0);
365 return this->symtab_index_;
366 }
367
368 // Set the index of the symbol in the output file symbol table.
369 void
370 set_symtab_index(unsigned int index)
371 {
372 gold_assert(index != 0);
373 this->symtab_index_ = index;
374 }
375
376 // Return whether this symbol already has an index in the output
377 // file symbol table.
378 bool
379 has_symtab_index() const
380 { return this->symtab_index_ != 0; }
381
382 // Return the index of this symbol in the dynamic symbol table. A
383 // value of -1U means that this symbol is not going into the dynamic
384 // symbol table. This starts out as zero, and is set to a non-zero
385 // during Layout::finalize. It is an error to ask for the dynamic
386 // symbol table index before it has been set.
387 unsigned int
388 dynsym_index() const
389 {
390 gold_assert(this->dynsym_index_ != 0);
391 return this->dynsym_index_;
392 }
393
394 // Set the index of the symbol in the dynamic symbol table.
395 void
396 set_dynsym_index(unsigned int index)
397 {
398 gold_assert(index != 0);
399 this->dynsym_index_ = index;
400 }
401
402 // Return whether this symbol already has an index in the dynamic
403 // symbol table.
404 bool
405 has_dynsym_index() const
406 { return this->dynsym_index_ != 0; }
407
408 // Return whether this symbol has an entry in the GOT section.
409 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
410 bool
411 has_got_offset(unsigned int got_type) const
412 { return this->got_offsets_.get_offset(got_type) != -1U; }
413
414 // Return the offset into the GOT section of this symbol.
415 unsigned int
416 got_offset(unsigned int got_type) const
417 {
418 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
419 gold_assert(got_offset != -1U);
420 return got_offset;
421 }
422
423 // Set the GOT offset of this symbol.
424 void
425 set_got_offset(unsigned int got_type, unsigned int got_offset)
426 { this->got_offsets_.set_offset(got_type, got_offset); }
427
428 // Return the GOT offset list.
429 const Got_offset_list*
430 got_offset_list() const
431 { return this->got_offsets_.get_list(); }
432
433 // Return whether this symbol has an entry in the PLT section.
434 bool
435 has_plt_offset() const
436 { return this->plt_offset_ != -1U; }
437
438 // Return the offset into the PLT section of this symbol.
439 unsigned int
440 plt_offset() const
441 {
442 gold_assert(this->has_plt_offset());
443 return this->plt_offset_;
444 }
445
446 // Set the PLT offset of this symbol.
447 void
448 set_plt_offset(unsigned int plt_offset)
449 {
450 gold_assert(plt_offset != -1U);
451 this->plt_offset_ = plt_offset;
452 }
453
454 // Return whether this dynamic symbol needs a special value in the
455 // dynamic symbol table.
456 bool
457 needs_dynsym_value() const
458 { return this->needs_dynsym_value_; }
459
460 // Set that this dynamic symbol needs a special value in the dynamic
461 // symbol table.
462 void
463 set_needs_dynsym_value()
464 {
465 gold_assert(this->object()->is_dynamic());
466 this->needs_dynsym_value_ = true;
467 }
468
469 // Return true if the final value of this symbol is known at link
470 // time.
471 bool
472 final_value_is_known() const;
473
474 // Return true if SHNDX represents a common symbol. This depends on
475 // the target.
476 static bool
477 is_common_shndx(unsigned int shndx);
478
479 // Return whether this is a defined symbol (not undefined or
480 // common).
481 bool
482 is_defined() const
483 {
484 bool is_ordinary;
485 if (this->source_ != FROM_OBJECT)
486 return this->source_ != IS_UNDEFINED;
487 unsigned int shndx = this->shndx(&is_ordinary);
488 return (is_ordinary
489 ? shndx != elfcpp::SHN_UNDEF
490 : !Symbol::is_common_shndx(shndx));
491 }
492
493 // Return true if this symbol is from a dynamic object.
494 bool
495 is_from_dynobj() const
496 {
497 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
498 }
499
500 // Return whether this is a placeholder symbol from a plugin object.
501 bool
502 is_placeholder() const
503 {
504 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
505 }
506
507 // Return whether this is an undefined symbol.
508 bool
509 is_undefined() const
510 {
511 bool is_ordinary;
512 return ((this->source_ == FROM_OBJECT
513 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
514 && is_ordinary)
515 || this->source_ == IS_UNDEFINED);
516 }
517
518 // Return whether this is a weak undefined symbol.
519 bool
520 is_weak_undefined() const
521 {
522 return (this->is_undefined()
523 && (this->binding() == elfcpp::STB_WEAK
524 || this->is_undef_binding_weak()));
525 }
526
527 // Return whether this is a strong undefined symbol.
528 bool
529 is_strong_undefined() const
530 {
531 return (this->is_undefined()
532 && this->binding() != elfcpp::STB_WEAK
533 && !this->is_undef_binding_weak());
534 }
535
536 // Return whether this is an absolute symbol.
537 bool
538 is_absolute() const
539 {
540 bool is_ordinary;
541 return ((this->source_ == FROM_OBJECT
542 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
543 && !is_ordinary)
544 || this->source_ == IS_CONSTANT);
545 }
546
547 // Return whether this is a common symbol.
548 bool
549 is_common() const
550 {
551 if (this->source_ != FROM_OBJECT)
552 return false;
553 if (this->type_ == elfcpp::STT_COMMON)
554 return true;
555 bool is_ordinary;
556 unsigned int shndx = this->shndx(&is_ordinary);
557 return !is_ordinary && Symbol::is_common_shndx(shndx);
558 }
559
560 // Return whether this symbol can be seen outside this object.
561 bool
562 is_externally_visible() const
563 {
564 return ((this->visibility_ == elfcpp::STV_DEFAULT
565 || this->visibility_ == elfcpp::STV_PROTECTED)
566 && !this->is_forced_local_);
567 }
568
569 // Return true if this symbol can be preempted by a definition in
570 // another link unit.
571 bool
572 is_preemptible() const
573 {
574 // It doesn't make sense to ask whether a symbol defined in
575 // another object is preemptible.
576 gold_assert(!this->is_from_dynobj());
577
578 // It doesn't make sense to ask whether an undefined symbol
579 // is preemptible.
580 gold_assert(!this->is_undefined());
581
582 // If a symbol does not have default visibility, it can not be
583 // seen outside this link unit and therefore is not preemptible.
584 if (this->visibility_ != elfcpp::STV_DEFAULT)
585 return false;
586
587 // If this symbol has been forced to be a local symbol by a
588 // version script, then it is not visible outside this link unit
589 // and is not preemptible.
590 if (this->is_forced_local_)
591 return false;
592
593 // If we are not producing a shared library, then nothing is
594 // preemptible.
595 if (!parameters->options().shared())
596 return false;
597
598 // If the symbol was named in a --dynamic-list script, it is preemptible.
599 if (parameters->options().in_dynamic_list(this->name()))
600 return true;
601
602 // If the user used -Bsymbolic or provided a --dynamic-list script,
603 // then nothing (else) is preemptible.
604 if (parameters->options().Bsymbolic()
605 || parameters->options().have_dynamic_list())
606 return false;
607
608 // If the user used -Bsymbolic-functions, then functions are not
609 // preemptible. We explicitly check for not being STT_OBJECT,
610 // rather than for being STT_FUNC, because that is what the GNU
611 // linker does.
612 if (this->type() != elfcpp::STT_OBJECT
613 && parameters->options().Bsymbolic_functions())
614 return false;
615
616 // Otherwise the symbol is preemptible.
617 return true;
618 }
619
620 // Return true if this symbol is a function that needs a PLT entry.
621 bool
622 needs_plt_entry() const
623 {
624 // An undefined symbol from an executable does not need a PLT entry.
625 if (this->is_undefined() && !parameters->options().shared())
626 return false;
627
628 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
629 // doing a static link.
630 if (this->type() == elfcpp::STT_GNU_IFUNC)
631 return true;
632
633 // We only need a PLT entry for a function.
634 if (!this->is_func())
635 return false;
636
637 // If we're doing a static link or a -pie link, we don't create
638 // PLT entries.
639 if (parameters->doing_static_link()
640 || parameters->options().pie())
641 return false;
642
643 // We need a PLT entry if the function is defined in a dynamic
644 // object, or is undefined when building a shared object, or if it
645 // is subject to pre-emption.
646 return (this->is_from_dynobj()
647 || this->is_undefined()
648 || this->is_preemptible());
649 }
650
651 // When determining whether a reference to a symbol needs a dynamic
652 // relocation, we need to know several things about the reference.
653 // These flags may be or'ed together. 0 means that the symbol
654 // isn't referenced at all.
655 enum Reference_flags
656 {
657 // A reference to the symbol's absolute address. This includes
658 // references that cause an absolute address to be stored in the GOT.
659 ABSOLUTE_REF = 1,
660 // A reference that calculates the offset of the symbol from some
661 // anchor point, such as the PC or GOT.
662 RELATIVE_REF = 2,
663 // A TLS-related reference.
664 TLS_REF = 4,
665 // A reference that can always be treated as a function call.
666 FUNCTION_CALL = 8,
667 // When set, says that dynamic relocations are needed even if a
668 // symbol has a plt entry.
669 FUNC_DESC_ABI = 16,
670 };
671
672 // Given a direct absolute or pc-relative static relocation against
673 // the global symbol, this function returns whether a dynamic relocation
674 // is needed.
675
676 bool
677 needs_dynamic_reloc(int flags) const
678 {
679 // No dynamic relocations in a static link!
680 if (parameters->doing_static_link())
681 return false;
682
683 // A reference to an undefined symbol from an executable should be
684 // statically resolved to 0, and does not need a dynamic relocation.
685 // This matches gnu ld behavior.
686 if (this->is_undefined() && !parameters->options().shared())
687 return false;
688
689 // A reference to an absolute symbol does not need a dynamic relocation.
690 if (this->is_absolute())
691 return false;
692
693 // An absolute reference within a position-independent output file
694 // will need a dynamic relocation.
695 if ((flags & ABSOLUTE_REF)
696 && parameters->options().output_is_position_independent())
697 return true;
698
699 // A function call that can branch to a local PLT entry does not need
700 // a dynamic relocation.
701 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
702 return false;
703
704 // A reference to any PLT entry in a non-position-independent executable
705 // does not need a dynamic relocation.
706 if (!(flags & FUNC_DESC_ABI)
707 && !parameters->options().output_is_position_independent()
708 && this->has_plt_offset())
709 return false;
710
711 // A reference to a symbol defined in a dynamic object or to a
712 // symbol that is preemptible will need a dynamic relocation.
713 if (this->is_from_dynobj()
714 || this->is_undefined()
715 || this->is_preemptible())
716 return true;
717
718 // For all other cases, return FALSE.
719 return false;
720 }
721
722 // Whether we should use the PLT offset associated with a symbol for
723 // a relocation. FLAGS is a set of Reference_flags.
724
725 bool
726 use_plt_offset(int flags) const
727 {
728 // If the symbol doesn't have a PLT offset, then naturally we
729 // don't want to use it.
730 if (!this->has_plt_offset())
731 return false;
732
733 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
734 if (this->type() == elfcpp::STT_GNU_IFUNC)
735 return true;
736
737 // If we are going to generate a dynamic relocation, then we will
738 // wind up using that, so no need to use the PLT entry.
739 if (this->needs_dynamic_reloc(flags))
740 return false;
741
742 // If the symbol is from a dynamic object, we need to use the PLT
743 // entry.
744 if (this->is_from_dynobj())
745 return true;
746
747 // If we are generating a shared object, and this symbol is
748 // undefined or preemptible, we need to use the PLT entry.
749 if (parameters->options().shared()
750 && (this->is_undefined() || this->is_preemptible()))
751 return true;
752
753 // If this is a call to a weak undefined symbol, we need to use
754 // the PLT entry; the symbol may be defined by a library loaded
755 // at runtime.
756 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
757 return true;
758
759 // Otherwise we can use the regular definition.
760 return false;
761 }
762
763 // Given a direct absolute static relocation against
764 // the global symbol, where a dynamic relocation is needed, this
765 // function returns whether a relative dynamic relocation can be used.
766 // The caller must determine separately whether the static relocation
767 // is compatible with a relative relocation.
768
769 bool
770 can_use_relative_reloc(bool is_function_call) const
771 {
772 // A function call that can branch to a local PLT entry can
773 // use a RELATIVE relocation.
774 if (is_function_call && this->has_plt_offset())
775 return true;
776
777 // A reference to a symbol defined in a dynamic object or to a
778 // symbol that is preemptible can not use a RELATIVE relocation.
779 if (this->is_from_dynobj()
780 || this->is_undefined()
781 || this->is_preemptible())
782 return false;
783
784 // For all other cases, return TRUE.
785 return true;
786 }
787
788 // Return the output section where this symbol is defined. Return
789 // NULL if the symbol has an absolute value.
790 Output_section*
791 output_section() const;
792
793 // Set the symbol's output section. This is used for symbols
794 // defined in scripts. This should only be called after the symbol
795 // table has been finalized.
796 void
797 set_output_section(Output_section*);
798
799 // Set the symbol's output segment. This is used for pre-defined
800 // symbols whose segments aren't known until after layout is done
801 // (e.g., __ehdr_start).
802 void
803 set_output_segment(Output_segment*, Segment_offset_base);
804
805 // Set the symbol to undefined. This is used for pre-defined
806 // symbols whose segments aren't known until after layout is done
807 // (e.g., __ehdr_start).
808 void
809 set_undefined();
810
811 // Return whether there should be a warning for references to this
812 // symbol.
813 bool
814 has_warning() const
815 { return this->has_warning_; }
816
817 // Mark this symbol as having a warning.
818 void
819 set_has_warning()
820 { this->has_warning_ = true; }
821
822 // Return whether this symbol is defined by a COPY reloc from a
823 // dynamic object.
824 bool
825 is_copied_from_dynobj() const
826 { return this->is_copied_from_dynobj_; }
827
828 // Mark this symbol as defined by a COPY reloc.
829 void
830 set_is_copied_from_dynobj()
831 { this->is_copied_from_dynobj_ = true; }
832
833 // Return whether this symbol is forced to visibility STB_LOCAL
834 // by a "local:" entry in a version script.
835 bool
836 is_forced_local() const
837 { return this->is_forced_local_; }
838
839 // Mark this symbol as forced to STB_LOCAL visibility.
840 void
841 set_is_forced_local()
842 { this->is_forced_local_ = true; }
843
844 // Return true if this may need a COPY relocation.
845 // References from an executable object to non-function symbols
846 // defined in a dynamic object may need a COPY relocation.
847 bool
848 may_need_copy_reloc() const
849 {
850 return (parameters->options().copyreloc()
851 && this->is_from_dynobj()
852 && !this->is_func());
853 }
854
855 // Return true if this symbol was predefined by the linker.
856 bool
857 is_predefined() const
858 { return this->is_predefined_; }
859
860 // Return true if this is a C++ vtable symbol.
861 bool
862 is_cxx_vtable() const
863 { return is_prefix_of("_ZTV", this->name_); }
864
865 protected:
866 // Instances of this class should always be created at a specific
867 // size.
868 Symbol()
869 { memset(this, 0, sizeof *this); }
870
871 // Initialize the general fields.
872 void
873 init_fields(const char* name, const char* version,
874 elfcpp::STT type, elfcpp::STB binding,
875 elfcpp::STV visibility, unsigned char nonvis);
876
877 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
878 // section index, IS_ORDINARY is whether it is a normal section
879 // index rather than a special code.
880 template<int size, bool big_endian>
881 void
882 init_base_object(const char* name, const char* version, Object* object,
883 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
884 bool is_ordinary);
885
886 // Initialize fields for an Output_data.
887 void
888 init_base_output_data(const char* name, const char* version, Output_data*,
889 elfcpp::STT, elfcpp::STB, elfcpp::STV,
890 unsigned char nonvis, bool offset_is_from_end,
891 bool is_predefined);
892
893 // Initialize fields for an Output_segment.
894 void
895 init_base_output_segment(const char* name, const char* version,
896 Output_segment* os, elfcpp::STT type,
897 elfcpp::STB binding, elfcpp::STV visibility,
898 unsigned char nonvis,
899 Segment_offset_base offset_base,
900 bool is_predefined);
901
902 // Initialize fields for a constant.
903 void
904 init_base_constant(const char* name, const char* version, elfcpp::STT type,
905 elfcpp::STB binding, elfcpp::STV visibility,
906 unsigned char nonvis, bool is_predefined);
907
908 // Initialize fields for an undefined symbol.
909 void
910 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
911 elfcpp::STB binding, elfcpp::STV visibility,
912 unsigned char nonvis);
913
914 // Override existing symbol.
915 template<int size, bool big_endian>
916 void
917 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
918 bool is_ordinary, Object* object, const char* version);
919
920 // Override existing symbol with a special symbol.
921 void
922 override_base_with_special(const Symbol* from);
923
924 // Override symbol version.
925 void
926 override_version(const char* version);
927
928 // Allocate a common symbol by giving it a location in the output
929 // file.
930 void
931 allocate_base_common(Output_data*);
932
933 private:
934 Symbol(const Symbol&);
935 Symbol& operator=(const Symbol&);
936
937 // Symbol name (expected to point into a Stringpool).
938 const char* name_;
939 // Symbol version (expected to point into a Stringpool). This may
940 // be NULL.
941 const char* version_;
942
943 union
944 {
945 // This struct is used if SOURCE_ == FROM_OBJECT.
946 struct
947 {
948 // Object in which symbol is defined, or in which it was first
949 // seen.
950 Object* object;
951 // Section number in object_ in which symbol is defined.
952 unsigned int shndx;
953 } from_object;
954
955 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
956 struct
957 {
958 // Output_data in which symbol is defined. Before
959 // Layout::finalize the symbol's value is an offset within the
960 // Output_data.
961 Output_data* output_data;
962 // True if the offset is from the end, false if the offset is
963 // from the beginning.
964 bool offset_is_from_end;
965 } in_output_data;
966
967 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
968 struct
969 {
970 // Output_segment in which the symbol is defined. Before
971 // Layout::finalize the symbol's value is an offset.
972 Output_segment* output_segment;
973 // The base to use for the offset before Layout::finalize.
974 Segment_offset_base offset_base;
975 } in_output_segment;
976 } u_;
977
978 // The index of this symbol in the output file. If the symbol is
979 // not going into the output file, this value is -1U. This field
980 // starts as always holding zero. It is set to a non-zero value by
981 // Symbol_table::finalize.
982 unsigned int symtab_index_;
983
984 // The index of this symbol in the dynamic symbol table. If the
985 // symbol is not going into the dynamic symbol table, this value is
986 // -1U. This field starts as always holding zero. It is set to a
987 // non-zero value during Layout::finalize.
988 unsigned int dynsym_index_;
989
990 // The GOT section entries for this symbol. A symbol may have more
991 // than one GOT offset (e.g., when mixing modules compiled with two
992 // different TLS models), but will usually have at most one.
993 Got_offset_list got_offsets_;
994
995 // If this symbol has an entry in the PLT section, then this is the
996 // offset from the start of the PLT section. This is -1U if there
997 // is no PLT entry.
998 unsigned int plt_offset_;
999
1000 // Symbol type (bits 0 to 3).
1001 elfcpp::STT type_ : 4;
1002 // Symbol binding (bits 4 to 7).
1003 elfcpp::STB binding_ : 4;
1004 // Symbol visibility (bits 8 to 9).
1005 elfcpp::STV visibility_ : 2;
1006 // Rest of symbol st_other field (bits 10 to 15).
1007 unsigned int nonvis_ : 6;
1008 // The type of symbol (bits 16 to 18).
1009 Source source_ : 3;
1010 // True if this is the default version of the symbol (bit 19).
1011 bool is_def_ : 1;
1012 // True if this symbol really forwards to another symbol. This is
1013 // used when we discover after the fact that two different entries
1014 // in the hash table really refer to the same symbol. This will
1015 // never be set for a symbol found in the hash table, but may be set
1016 // for a symbol found in the list of symbols attached to an Object.
1017 // It forwards to the symbol found in the forwarders_ map of
1018 // Symbol_table (bit 20).
1019 bool is_forwarder_ : 1;
1020 // True if the symbol has an alias in the weak_aliases table in
1021 // Symbol_table (bit 21).
1022 bool has_alias_ : 1;
1023 // True if this symbol needs to be in the dynamic symbol table (bit
1024 // 22).
1025 bool needs_dynsym_entry_ : 1;
1026 // True if we've seen this symbol in a regular object (bit 23).
1027 bool in_reg_ : 1;
1028 // True if we've seen this symbol in a dynamic object (bit 24).
1029 bool in_dyn_ : 1;
1030 // True if this is a dynamic symbol which needs a special value in
1031 // the dynamic symbol table (bit 25).
1032 bool needs_dynsym_value_ : 1;
1033 // True if there is a warning for this symbol (bit 26).
1034 bool has_warning_ : 1;
1035 // True if we are using a COPY reloc for this symbol, so that the
1036 // real definition lives in a dynamic object (bit 27).
1037 bool is_copied_from_dynobj_ : 1;
1038 // True if this symbol was forced to local visibility by a version
1039 // script (bit 28).
1040 bool is_forced_local_ : 1;
1041 // True if the field u_.from_object.shndx is an ordinary section
1042 // index, not one of the special codes from SHN_LORESERVE to
1043 // SHN_HIRESERVE (bit 29).
1044 bool is_ordinary_shndx_ : 1;
1045 // True if we've seen this symbol in a "real" ELF object (bit 30).
1046 // If the symbol has been seen in a relocatable, non-IR, object file,
1047 // it's known to be referenced from outside the IR. A reference from
1048 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1049 // mark the symbol as "visible" from outside the IR. The compiler
1050 // can use this distinction to guide its handling of COMDAT symbols.
1051 bool in_real_elf_ : 1;
1052 // True if this symbol is defined in a section which was discarded
1053 // (bit 31).
1054 bool is_defined_in_discarded_section_ : 1;
1055 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1056 bool undef_binding_set_ : 1;
1057 // True if this symbol was a weak undef resolved by a dynamic def
1058 // or by a special symbol (bit 33).
1059 bool undef_binding_weak_ : 1;
1060 // True if this symbol is a predefined linker symbol (bit 34).
1061 bool is_predefined_ : 1;
1062 };
1063
1064 // The parts of a symbol which are size specific. Using a template
1065 // derived class like this helps us use less space on a 32-bit system.
1066
1067 template<int size>
1068 class Sized_symbol : public Symbol
1069 {
1070 public:
1071 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1072 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1073
1074 Sized_symbol()
1075 { }
1076
1077 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1078 // section index, IS_ORDINARY is whether it is a normal section
1079 // index rather than a special code.
1080 template<bool big_endian>
1081 void
1082 init_object(const char* name, const char* version, Object* object,
1083 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1084 bool is_ordinary);
1085
1086 // Initialize fields for an Output_data.
1087 void
1088 init_output_data(const char* name, const char* version, Output_data*,
1089 Value_type value, Size_type symsize, elfcpp::STT,
1090 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1091 bool offset_is_from_end, bool is_predefined);
1092
1093 // Initialize fields for an Output_segment.
1094 void
1095 init_output_segment(const char* name, const char* version, Output_segment*,
1096 Value_type value, Size_type symsize, elfcpp::STT,
1097 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1098 Segment_offset_base offset_base, bool is_predefined);
1099
1100 // Initialize fields for a constant.
1101 void
1102 init_constant(const char* name, const char* version, Value_type value,
1103 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1104 unsigned char nonvis, bool is_predefined);
1105
1106 // Initialize fields for an undefined symbol.
1107 void
1108 init_undefined(const char* name, const char* version, elfcpp::STT,
1109 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1110
1111 // Override existing symbol.
1112 template<bool big_endian>
1113 void
1114 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1115 bool is_ordinary, Object* object, const char* version);
1116
1117 // Override existing symbol with a special symbol.
1118 void
1119 override_with_special(const Sized_symbol<size>*);
1120
1121 // Return the symbol's value.
1122 Value_type
1123 value() const
1124 { return this->value_; }
1125
1126 // Return the symbol's size (we can't call this 'size' because that
1127 // is a template parameter).
1128 Size_type
1129 symsize() const
1130 { return this->symsize_; }
1131
1132 // Set the symbol size. This is used when resolving common symbols.
1133 void
1134 set_symsize(Size_type symsize)
1135 { this->symsize_ = symsize; }
1136
1137 // Set the symbol value. This is called when we store the final
1138 // values of the symbols into the symbol table.
1139 void
1140 set_value(Value_type value)
1141 { this->value_ = value; }
1142
1143 // Allocate a common symbol by giving it a location in the output
1144 // file.
1145 void
1146 allocate_common(Output_data*, Value_type value);
1147
1148 private:
1149 Sized_symbol(const Sized_symbol&);
1150 Sized_symbol& operator=(const Sized_symbol&);
1151
1152 // Symbol value. Before Layout::finalize this is the offset in the
1153 // input section. This is set to the final value during
1154 // Layout::finalize.
1155 Value_type value_;
1156 // Symbol size.
1157 Size_type symsize_;
1158 };
1159
1160 // A struct describing a symbol defined by the linker, where the value
1161 // of the symbol is defined based on an output section. This is used
1162 // for symbols defined by the linker, like "_init_array_start".
1163
1164 struct Define_symbol_in_section
1165 {
1166 // The symbol name.
1167 const char* name;
1168 // The name of the output section with which this symbol should be
1169 // associated. If there is no output section with that name, the
1170 // symbol will be defined as zero.
1171 const char* output_section;
1172 // The offset of the symbol within the output section. This is an
1173 // offset from the start of the output section, unless start_at_end
1174 // is true, in which case this is an offset from the end of the
1175 // output section.
1176 uint64_t value;
1177 // The size of the symbol.
1178 uint64_t size;
1179 // The symbol type.
1180 elfcpp::STT type;
1181 // The symbol binding.
1182 elfcpp::STB binding;
1183 // The symbol visibility.
1184 elfcpp::STV visibility;
1185 // The rest of the st_other field.
1186 unsigned char nonvis;
1187 // If true, the value field is an offset from the end of the output
1188 // section.
1189 bool offset_is_from_end;
1190 // If true, this symbol is defined only if we see a reference to it.
1191 bool only_if_ref;
1192 };
1193
1194 // A struct describing a symbol defined by the linker, where the value
1195 // of the symbol is defined based on a segment. This is used for
1196 // symbols defined by the linker, like "_end". We describe the
1197 // segment with which the symbol should be associated by its
1198 // characteristics. If no segment meets these characteristics, the
1199 // symbol will be defined as zero. If there is more than one segment
1200 // which meets these characteristics, we will use the first one.
1201
1202 struct Define_symbol_in_segment
1203 {
1204 // The symbol name.
1205 const char* name;
1206 // The segment type where the symbol should be defined, typically
1207 // PT_LOAD.
1208 elfcpp::PT segment_type;
1209 // Bitmask of segment flags which must be set.
1210 elfcpp::PF segment_flags_set;
1211 // Bitmask of segment flags which must be clear.
1212 elfcpp::PF segment_flags_clear;
1213 // The offset of the symbol within the segment. The offset is
1214 // calculated from the position set by offset_base.
1215 uint64_t value;
1216 // The size of the symbol.
1217 uint64_t size;
1218 // The symbol type.
1219 elfcpp::STT type;
1220 // The symbol binding.
1221 elfcpp::STB binding;
1222 // The symbol visibility.
1223 elfcpp::STV visibility;
1224 // The rest of the st_other field.
1225 unsigned char nonvis;
1226 // The base from which we compute the offset.
1227 Symbol::Segment_offset_base offset_base;
1228 // If true, this symbol is defined only if we see a reference to it.
1229 bool only_if_ref;
1230 };
1231
1232 // Specify an object/section/offset location. Used by ODR code.
1233
1234 struct Symbol_location
1235 {
1236 // Object where the symbol is defined.
1237 Object* object;
1238 // Section-in-object where the symbol is defined.
1239 unsigned int shndx;
1240 // For relocatable objects, offset-in-section where the symbol is defined.
1241 // For dynamic objects, address where the symbol is defined.
1242 off_t offset;
1243 bool operator==(const Symbol_location& that) const
1244 {
1245 return (this->object == that.object
1246 && this->shndx == that.shndx
1247 && this->offset == that.offset);
1248 }
1249 };
1250
1251 // This class manages warnings. Warnings are a GNU extension. When
1252 // we see a section named .gnu.warning.SYM in an object file, and if
1253 // we wind using the definition of SYM from that object file, then we
1254 // will issue a warning for any relocation against SYM from a
1255 // different object file. The text of the warning is the contents of
1256 // the section. This is not precisely the definition used by the old
1257 // GNU linker; the old GNU linker treated an occurrence of
1258 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1259 // would trigger a warning on any reference. However, it was
1260 // inconsistent in that a warning in a dynamic object only triggered
1261 // if there was no definition in a regular object. This linker is
1262 // different in that we only issue a warning if we use the symbol
1263 // definition from the same object file as the warning section.
1264
1265 class Warnings
1266 {
1267 public:
1268 Warnings()
1269 : warnings_()
1270 { }
1271
1272 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1273 // of the warning.
1274 void
1275 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1276 const std::string& warning);
1277
1278 // For each symbol for which we should give a warning, make a note
1279 // on the symbol.
1280 void
1281 note_warnings(Symbol_table* symtab);
1282
1283 // Issue a warning for a reference to SYM at RELINFO's location.
1284 template<int size, bool big_endian>
1285 void
1286 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1287 size_t relnum, off_t reloffset) const;
1288
1289 private:
1290 Warnings(const Warnings&);
1291 Warnings& operator=(const Warnings&);
1292
1293 // What we need to know to get the warning text.
1294 struct Warning_location
1295 {
1296 // The object the warning is in.
1297 Object* object;
1298 // The warning text.
1299 std::string text;
1300
1301 Warning_location()
1302 : object(NULL), text()
1303 { }
1304
1305 void
1306 set(Object* o, const std::string& t)
1307 {
1308 this->object = o;
1309 this->text = t;
1310 }
1311 };
1312
1313 // A mapping from warning symbol names (canonicalized in
1314 // Symbol_table's namepool_ field) to warning information.
1315 typedef Unordered_map<const char*, Warning_location> Warning_table;
1316
1317 Warning_table warnings_;
1318 };
1319
1320 // The main linker symbol table.
1321
1322 class Symbol_table
1323 {
1324 public:
1325 // The different places where a symbol definition can come from.
1326 enum Defined
1327 {
1328 // Defined in an object file--the normal case.
1329 OBJECT,
1330 // Defined for a COPY reloc.
1331 COPY,
1332 // Defined on the command line using --defsym.
1333 DEFSYM,
1334 // Defined (so to speak) on the command line using -u.
1335 UNDEFINED,
1336 // Defined in a linker script.
1337 SCRIPT,
1338 // Predefined by the linker.
1339 PREDEFINED,
1340 // Defined by the linker during an incremental base link, but not
1341 // a predefined symbol (e.g., common, defined in script).
1342 INCREMENTAL_BASE,
1343 };
1344
1345 // The order in which we sort common symbols.
1346 enum Sort_commons_order
1347 {
1348 SORT_COMMONS_BY_SIZE_DESCENDING,
1349 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1350 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1351 };
1352
1353 // COUNT is an estimate of how many symbols will be inserted in the
1354 // symbol table. It's ok to put 0 if you don't know; a correct
1355 // guess will just save some CPU by reducing hashtable resizes.
1356 Symbol_table(unsigned int count, const Version_script_info& version_script);
1357
1358 ~Symbol_table();
1359
1360 void
1361 set_icf(Icf* icf)
1362 { this->icf_ = icf;}
1363
1364 Icf*
1365 icf() const
1366 { return this->icf_; }
1367
1368 // Returns true if ICF determined that this is a duplicate section.
1369 bool
1370 is_section_folded(Object* obj, unsigned int shndx) const;
1371
1372 void
1373 set_gc(Garbage_collection* gc)
1374 { this->gc_ = gc; }
1375
1376 Garbage_collection*
1377 gc() const
1378 { return this->gc_; }
1379
1380 // During garbage collection, this keeps undefined symbols.
1381 void
1382 gc_mark_undef_symbols(Layout*);
1383
1384 // This tells garbage collection that this symbol is referenced.
1385 void
1386 gc_mark_symbol(Symbol* sym);
1387
1388 // During garbage collection, this keeps sections that correspond to
1389 // symbols seen in dynamic objects.
1390 inline void
1391 gc_mark_dyn_syms(Symbol* sym);
1392
1393 // Add COUNT external symbols from the relocatable object RELOBJ to
1394 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1395 // offset in the symbol table of the first symbol, SYM_NAMES is
1396 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1397 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1398 // *DEFINED to the number of defined symbols.
1399 template<int size, bool big_endian>
1400 void
1401 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1402 const unsigned char* syms, size_t count,
1403 size_t symndx_offset, const char* sym_names,
1404 size_t sym_name_size,
1405 typename Sized_relobj_file<size, big_endian>::Symbols*,
1406 size_t* defined);
1407
1408 // Add one external symbol from the plugin object OBJ to the symbol table.
1409 // Returns a pointer to the resolved symbol in the symbol table.
1410 template<int size, bool big_endian>
1411 Symbol*
1412 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1413 const char* name, const char* ver,
1414 elfcpp::Sym<size, big_endian>* sym);
1415
1416 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1417 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1418 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1419 // symbol version data.
1420 template<int size, bool big_endian>
1421 void
1422 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1423 const unsigned char* syms, size_t count,
1424 const char* sym_names, size_t sym_name_size,
1425 const unsigned char* versym, size_t versym_size,
1426 const std::vector<const char*>*,
1427 typename Sized_relobj_file<size, big_endian>::Symbols*,
1428 size_t* defined);
1429
1430 // Add one external symbol from the incremental object OBJ to the symbol
1431 // table. Returns a pointer to the resolved symbol in the symbol table.
1432 template<int size, bool big_endian>
1433 Sized_symbol<size>*
1434 add_from_incrobj(Object* obj, const char* name,
1435 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1436
1437 // Define a special symbol based on an Output_data. It is a
1438 // multiple definition error if this symbol is already defined.
1439 Symbol*
1440 define_in_output_data(const char* name, const char* version, Defined,
1441 Output_data*, uint64_t value, uint64_t symsize,
1442 elfcpp::STT type, elfcpp::STB binding,
1443 elfcpp::STV visibility, unsigned char nonvis,
1444 bool offset_is_from_end, bool only_if_ref);
1445
1446 // Define a special symbol based on an Output_segment. It is a
1447 // multiple definition error if this symbol is already defined.
1448 Symbol*
1449 define_in_output_segment(const char* name, const char* version, Defined,
1450 Output_segment*, uint64_t value, uint64_t symsize,
1451 elfcpp::STT type, elfcpp::STB binding,
1452 elfcpp::STV visibility, unsigned char nonvis,
1453 Symbol::Segment_offset_base, bool only_if_ref);
1454
1455 // Define a special symbol with a constant value. It is a multiple
1456 // definition error if this symbol is already defined.
1457 Symbol*
1458 define_as_constant(const char* name, const char* version, Defined,
1459 uint64_t value, uint64_t symsize, elfcpp::STT type,
1460 elfcpp::STB binding, elfcpp::STV visibility,
1461 unsigned char nonvis, bool only_if_ref,
1462 bool force_override);
1463
1464 // Define a set of symbols in output sections. If ONLY_IF_REF is
1465 // true, only define them if they are referenced.
1466 void
1467 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1468 bool only_if_ref);
1469
1470 // Define a set of symbols in output segments. If ONLY_IF_REF is
1471 // true, only defined them if they are referenced.
1472 void
1473 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1474 bool only_if_ref);
1475
1476 // Define SYM using a COPY reloc. POSD is the Output_data where the
1477 // symbol should be defined--typically a .dyn.bss section. VALUE is
1478 // the offset within POSD.
1479 template<int size>
1480 void
1481 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1482 typename elfcpp::Elf_types<size>::Elf_Addr);
1483
1484 // Look up a symbol.
1485 Symbol*
1486 lookup(const char*, const char* version = NULL) const;
1487
1488 // Return the real symbol associated with the forwarder symbol FROM.
1489 Symbol*
1490 resolve_forwards(const Symbol* from) const;
1491
1492 // Return the sized version of a symbol in this table.
1493 template<int size>
1494 Sized_symbol<size>*
1495 get_sized_symbol(Symbol*) const;
1496
1497 template<int size>
1498 const Sized_symbol<size>*
1499 get_sized_symbol(const Symbol*) const;
1500
1501 // Return the count of undefined symbols seen.
1502 size_t
1503 saw_undefined() const
1504 { return this->saw_undefined_; }
1505
1506 // Allocate the common symbols
1507 void
1508 allocate_commons(Layout*, Mapfile*);
1509
1510 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1511 // of the warning.
1512 void
1513 add_warning(const char* name, Object* obj, const std::string& warning)
1514 { this->warnings_.add_warning(this, name, obj, warning); }
1515
1516 // Canonicalize a symbol name for use in the hash table.
1517 const char*
1518 canonicalize_name(const char* name)
1519 { return this->namepool_.add(name, true, NULL); }
1520
1521 // Possibly issue a warning for a reference to SYM at LOCATION which
1522 // is in OBJ.
1523 template<int size, bool big_endian>
1524 void
1525 issue_warning(const Symbol* sym,
1526 const Relocate_info<size, big_endian>* relinfo,
1527 size_t relnum, off_t reloffset) const
1528 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1529
1530 // Check candidate_odr_violations_ to find symbols with the same name
1531 // but apparently different definitions (different source-file/line-no).
1532 void
1533 detect_odr_violations(const Task*, const char* output_file_name) const;
1534
1535 // Add any undefined symbols named on the command line to the symbol
1536 // table.
1537 void
1538 add_undefined_symbols_from_command_line(Layout*);
1539
1540 // SYM is defined using a COPY reloc. Return the dynamic object
1541 // where the original definition was found.
1542 Dynobj*
1543 get_copy_source(const Symbol* sym) const;
1544
1545 // Set the dynamic symbol indexes. INDEX is the index of the first
1546 // global dynamic symbol. Pointers to the symbols are stored into
1547 // the vector. The names are stored into the Stringpool. This
1548 // returns an updated dynamic symbol index.
1549 unsigned int
1550 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1551 Stringpool*, Versions*);
1552
1553 // Finalize the symbol table after we have set the final addresses
1554 // of all the input sections. This sets the final symbol indexes,
1555 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1556 // index of the first global symbol. OFF is the file offset of the
1557 // global symbol table, DYNOFF is the offset of the globals in the
1558 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1559 // global dynamic symbol, and DYNCOUNT is the number of global
1560 // dynamic symbols. This records the parameters, and returns the
1561 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1562 // local symbols.
1563 off_t
1564 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1565 Stringpool* pool, unsigned int* plocal_symcount);
1566
1567 // Set the final file offset of the symbol table.
1568 void
1569 set_file_offset(off_t off)
1570 { this->offset_ = off; }
1571
1572 // Status code of Symbol_table::compute_final_value.
1573 enum Compute_final_value_status
1574 {
1575 // No error.
1576 CFVS_OK,
1577 // Unsupported symbol section.
1578 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1579 // No output section.
1580 CFVS_NO_OUTPUT_SECTION
1581 };
1582
1583 // Compute the final value of SYM and store status in location PSTATUS.
1584 // During relaxation, this may be called multiple times for a symbol to
1585 // compute its would-be final value in each relaxation pass.
1586
1587 template<int size>
1588 typename Sized_symbol<size>::Value_type
1589 compute_final_value(const Sized_symbol<size>* sym,
1590 Compute_final_value_status* pstatus) const;
1591
1592 // Return the index of the first global symbol.
1593 unsigned int
1594 first_global_index() const
1595 { return this->first_global_index_; }
1596
1597 // Return the total number of symbols in the symbol table.
1598 unsigned int
1599 output_count() const
1600 { return this->output_count_; }
1601
1602 // Write out the global symbols.
1603 void
1604 write_globals(const Stringpool*, const Stringpool*,
1605 Output_symtab_xindex*, Output_symtab_xindex*,
1606 Output_file*) const;
1607
1608 // Write out a section symbol. Return the updated offset.
1609 void
1610 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1611 Output_file*, off_t) const;
1612
1613 // Loop over all symbols, applying the function F to each.
1614 template<int size, typename F>
1615 void
1616 for_all_symbols(F f) const
1617 {
1618 for (Symbol_table_type::const_iterator p = this->table_.begin();
1619 p != this->table_.end();
1620 ++p)
1621 {
1622 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1623 f(sym);
1624 }
1625 }
1626
1627 // Dump statistical information to stderr.
1628 void
1629 print_stats() const;
1630
1631 // Return the version script information.
1632 const Version_script_info&
1633 version_script() const
1634 { return version_script_; }
1635
1636 private:
1637 Symbol_table(const Symbol_table&);
1638 Symbol_table& operator=(const Symbol_table&);
1639
1640 // The type of the list of common symbols.
1641 typedef std::vector<Symbol*> Commons_type;
1642
1643 // The type of the symbol hash table.
1644
1645 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1646
1647 // The hash function. The key values are Stringpool keys.
1648 struct Symbol_table_hash
1649 {
1650 inline size_t
1651 operator()(const Symbol_table_key& key) const
1652 {
1653 return key.first ^ key.second;
1654 }
1655 };
1656
1657 struct Symbol_table_eq
1658 {
1659 bool
1660 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1661 };
1662
1663 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1664 Symbol_table_eq> Symbol_table_type;
1665
1666 // A map from symbol name (as a pointer into the namepool) to all
1667 // the locations the symbols is (weakly) defined (and certain other
1668 // conditions are met). This map will be used later to detect
1669 // possible One Definition Rule (ODR) violations.
1670 struct Symbol_location_hash
1671 {
1672 size_t operator()(const Symbol_location& loc) const
1673 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1674 };
1675
1676 typedef Unordered_map<const char*,
1677 Unordered_set<Symbol_location, Symbol_location_hash> >
1678 Odr_map;
1679
1680 // Make FROM a forwarder symbol to TO.
1681 void
1682 make_forwarder(Symbol* from, Symbol* to);
1683
1684 // Add a symbol.
1685 template<int size, bool big_endian>
1686 Sized_symbol<size>*
1687 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1688 const char* version, Stringpool::Key version_key,
1689 bool def, const elfcpp::Sym<size, big_endian>& sym,
1690 unsigned int st_shndx, bool is_ordinary,
1691 unsigned int orig_st_shndx);
1692
1693 // Define a default symbol.
1694 template<int size, bool big_endian>
1695 void
1696 define_default_version(Sized_symbol<size>*, bool,
1697 Symbol_table_type::iterator);
1698
1699 // Resolve symbols.
1700 template<int size, bool big_endian>
1701 void
1702 resolve(Sized_symbol<size>* to,
1703 const elfcpp::Sym<size, big_endian>& sym,
1704 unsigned int st_shndx, bool is_ordinary,
1705 unsigned int orig_st_shndx,
1706 Object*, const char* version);
1707
1708 template<int size, bool big_endian>
1709 void
1710 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1711
1712 // Record that a symbol is forced to be local by a version script or
1713 // by visibility.
1714 void
1715 force_local(Symbol*);
1716
1717 // Adjust NAME and *NAME_KEY for wrapping.
1718 const char*
1719 wrap_symbol(const char* name, Stringpool::Key* name_key);
1720
1721 // Whether we should override a symbol, based on flags in
1722 // resolve.cc.
1723 static bool
1724 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1725 Object*, bool*, bool*);
1726
1727 // Report a problem in symbol resolution.
1728 static void
1729 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1730 Defined, Object* object);
1731
1732 // Override a symbol.
1733 template<int size, bool big_endian>
1734 void
1735 override(Sized_symbol<size>* tosym,
1736 const elfcpp::Sym<size, big_endian>& fromsym,
1737 unsigned int st_shndx, bool is_ordinary,
1738 Object* object, const char* version);
1739
1740 // Whether we should override a symbol with a special symbol which
1741 // is automatically defined by the linker.
1742 static bool
1743 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1744
1745 // Override a symbol with a special symbol.
1746 template<int size>
1747 void
1748 override_with_special(Sized_symbol<size>* tosym,
1749 const Sized_symbol<size>* fromsym);
1750
1751 // Record all weak alias sets for a dynamic object.
1752 template<int size>
1753 void
1754 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1755
1756 // Define a special symbol.
1757 template<int size, bool big_endian>
1758 Sized_symbol<size>*
1759 define_special_symbol(const char** pname, const char** pversion,
1760 bool only_if_ref, Sized_symbol<size>** poldsym,
1761 bool* resolve_oldsym);
1762
1763 // Define a symbol in an Output_data, sized version.
1764 template<int size>
1765 Sized_symbol<size>*
1766 do_define_in_output_data(const char* name, const char* version, Defined,
1767 Output_data*,
1768 typename elfcpp::Elf_types<size>::Elf_Addr value,
1769 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1770 elfcpp::STT type, elfcpp::STB binding,
1771 elfcpp::STV visibility, unsigned char nonvis,
1772 bool offset_is_from_end, bool only_if_ref);
1773
1774 // Define a symbol in an Output_segment, sized version.
1775 template<int size>
1776 Sized_symbol<size>*
1777 do_define_in_output_segment(
1778 const char* name, const char* version, Defined, Output_segment* os,
1779 typename elfcpp::Elf_types<size>::Elf_Addr value,
1780 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1781 elfcpp::STT type, elfcpp::STB binding,
1782 elfcpp::STV visibility, unsigned char nonvis,
1783 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1784
1785 // Define a symbol as a constant, sized version.
1786 template<int size>
1787 Sized_symbol<size>*
1788 do_define_as_constant(
1789 const char* name, const char* version, Defined,
1790 typename elfcpp::Elf_types<size>::Elf_Addr value,
1791 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1792 elfcpp::STT type, elfcpp::STB binding,
1793 elfcpp::STV visibility, unsigned char nonvis,
1794 bool only_if_ref, bool force_override);
1795
1796 // Add any undefined symbols named on the command line to the symbol
1797 // table, sized version.
1798 template<int size>
1799 void
1800 do_add_undefined_symbols_from_command_line(Layout*);
1801
1802 // Add one undefined symbol.
1803 template<int size>
1804 void
1805 add_undefined_symbol_from_command_line(const char* name);
1806
1807 // Types of common symbols.
1808
1809 enum Commons_section_type
1810 {
1811 COMMONS_NORMAL,
1812 COMMONS_TLS,
1813 COMMONS_SMALL,
1814 COMMONS_LARGE
1815 };
1816
1817 // Allocate the common symbols, sized version.
1818 template<int size>
1819 void
1820 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1821
1822 // Allocate the common symbols from one list.
1823 template<int size>
1824 void
1825 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1826 Mapfile*, Sort_commons_order);
1827
1828 // Returns all of the lines attached to LOC, not just the one the
1829 // instruction actually came from. This helps the ODR checker avoid
1830 // false positives.
1831 static std::vector<std::string>
1832 linenos_from_loc(const Task* task, const Symbol_location& loc);
1833
1834 // Implement detect_odr_violations.
1835 template<int size, bool big_endian>
1836 void
1837 sized_detect_odr_violations() const;
1838
1839 // Finalize symbols specialized for size.
1840 template<int size>
1841 off_t
1842 sized_finalize(off_t, Stringpool*, unsigned int*);
1843
1844 // Finalize a symbol. Return whether it should be added to the
1845 // symbol table.
1846 template<int size>
1847 bool
1848 sized_finalize_symbol(Symbol*);
1849
1850 // Add a symbol the final symtab by setting its index.
1851 template<int size>
1852 void
1853 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1854
1855 // Write globals specialized for size and endianness.
1856 template<int size, bool big_endian>
1857 void
1858 sized_write_globals(const Stringpool*, const Stringpool*,
1859 Output_symtab_xindex*, Output_symtab_xindex*,
1860 Output_file*) const;
1861
1862 // Write out a symbol to P.
1863 template<int size, bool big_endian>
1864 void
1865 sized_write_symbol(Sized_symbol<size>*,
1866 typename elfcpp::Elf_types<size>::Elf_Addr value,
1867 unsigned int shndx, elfcpp::STB,
1868 const Stringpool*, unsigned char* p) const;
1869
1870 // Possibly warn about an undefined symbol from a dynamic object.
1871 void
1872 warn_about_undefined_dynobj_symbol(Symbol*) const;
1873
1874 // Write out a section symbol, specialized for size and endianness.
1875 template<int size, bool big_endian>
1876 void
1877 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1878 Output_file*, off_t) const;
1879
1880 // The type of the list of symbols which have been forced local.
1881 typedef std::vector<Symbol*> Forced_locals;
1882
1883 // A map from symbols with COPY relocs to the dynamic objects where
1884 // they are defined.
1885 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1886
1887 // We increment this every time we see a new undefined symbol, for
1888 // use in archive groups.
1889 size_t saw_undefined_;
1890 // The index of the first global symbol in the output file.
1891 unsigned int first_global_index_;
1892 // The file offset within the output symtab section where we should
1893 // write the table.
1894 off_t offset_;
1895 // The number of global symbols we want to write out.
1896 unsigned int output_count_;
1897 // The file offset of the global dynamic symbols, or 0 if none.
1898 off_t dynamic_offset_;
1899 // The index of the first global dynamic symbol.
1900 unsigned int first_dynamic_global_index_;
1901 // The number of global dynamic symbols, or 0 if none.
1902 unsigned int dynamic_count_;
1903 // The symbol hash table.
1904 Symbol_table_type table_;
1905 // A pool of symbol names. This is used for all global symbols.
1906 // Entries in the hash table point into this pool.
1907 Stringpool namepool_;
1908 // Forwarding symbols.
1909 Unordered_map<const Symbol*, Symbol*> forwarders_;
1910 // Weak aliases. A symbol in this list points to the next alias.
1911 // The aliases point to each other in a circular list.
1912 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1913 // We don't expect there to be very many common symbols, so we keep
1914 // a list of them. When we find a common symbol we add it to this
1915 // list. It is possible that by the time we process the list the
1916 // symbol is no longer a common symbol. It may also have become a
1917 // forwarder.
1918 Commons_type commons_;
1919 // This is like the commons_ field, except that it holds TLS common
1920 // symbols.
1921 Commons_type tls_commons_;
1922 // This is for small common symbols.
1923 Commons_type small_commons_;
1924 // This is for large common symbols.
1925 Commons_type large_commons_;
1926 // A list of symbols which have been forced to be local. We don't
1927 // expect there to be very many of them, so we keep a list of them
1928 // rather than walking the whole table to find them.
1929 Forced_locals forced_locals_;
1930 // Manage symbol warnings.
1931 Warnings warnings_;
1932 // Manage potential One Definition Rule (ODR) violations.
1933 Odr_map candidate_odr_violations_;
1934
1935 // When we emit a COPY reloc for a symbol, we define it in an
1936 // Output_data. When it's time to emit version information for it,
1937 // we need to know the dynamic object in which we found the original
1938 // definition. This maps symbols with COPY relocs to the dynamic
1939 // object where they were defined.
1940 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1941 // Information parsed from the version script, if any.
1942 const Version_script_info& version_script_;
1943 Garbage_collection* gc_;
1944 Icf* icf_;
1945 };
1946
1947 // We inline get_sized_symbol for efficiency.
1948
1949 template<int size>
1950 Sized_symbol<size>*
1951 Symbol_table::get_sized_symbol(Symbol* sym) const
1952 {
1953 gold_assert(size == parameters->target().get_size());
1954 return static_cast<Sized_symbol<size>*>(sym);
1955 }
1956
1957 template<int size>
1958 const Sized_symbol<size>*
1959 Symbol_table::get_sized_symbol(const Symbol* sym) const
1960 {
1961 gold_assert(size == parameters->target().get_size());
1962 return static_cast<const Sized_symbol<size>*>(sym);
1963 }
1964
1965 } // End namespace gold.
1966
1967 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.109648 seconds and 5 git commands to generate.