2010-10-02 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 class Versions;
52 class Version_script_info;
53 class Input_objects;
54 class Output_data;
55 class Output_section;
56 class Output_segment;
57 class Output_file;
58 class Output_symtab_xindex;
59 class Garbage_collection;
60 class Icf;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return true for function symbol.
209 bool
210 is_func() const
211 {
212 return (this->type_ == elfcpp::STT_FUNC
213 || this->type_ == elfcpp::STT_GNU_IFUNC);
214 }
215
216 // Return the symbol visibility.
217 elfcpp::STV
218 visibility() const
219 { return this->visibility_; }
220
221 // Set the visibility.
222 void
223 set_visibility(elfcpp::STV visibility)
224 { this->visibility_ = visibility; }
225
226 // Override symbol visibility.
227 void
228 override_visibility(elfcpp::STV);
229
230 // Set whether the symbol was originally a weak undef or a regular undef
231 // when resolved by a dynamic def.
232 inline void
233 set_undef_binding(elfcpp::STB bind)
234 {
235 if (!this->undef_binding_set_ || this->undef_binding_weak_)
236 {
237 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
238 this->undef_binding_set_ = true;
239 }
240 }
241
242 // Return TRUE if a weak undef was resolved by a dynamic def.
243 inline bool
244 is_undef_binding_weak() const
245 { return this->undef_binding_weak_; }
246
247 // Return the non-visibility part of the st_other field.
248 unsigned char
249 nonvis() const
250 { return this->nonvis_; }
251
252 // Return whether this symbol is a forwarder. This will never be
253 // true of a symbol found in the hash table, but may be true of
254 // symbol pointers attached to object files.
255 bool
256 is_forwarder() const
257 { return this->is_forwarder_; }
258
259 // Mark this symbol as a forwarder.
260 void
261 set_forwarder()
262 { this->is_forwarder_ = true; }
263
264 // Return whether this symbol has an alias in the weak aliases table
265 // in Symbol_table.
266 bool
267 has_alias() const
268 { return this->has_alias_; }
269
270 // Mark this symbol as having an alias.
271 void
272 set_has_alias()
273 { this->has_alias_ = true; }
274
275 // Return whether this symbol needs an entry in the dynamic symbol
276 // table.
277 bool
278 needs_dynsym_entry() const
279 {
280 return (this->needs_dynsym_entry_
281 || (this->in_reg()
282 && this->in_dyn()
283 && this->is_externally_visible()));
284 }
285
286 // Mark this symbol as needing an entry in the dynamic symbol table.
287 void
288 set_needs_dynsym_entry()
289 { this->needs_dynsym_entry_ = true; }
290
291 // Return whether this symbol should be added to the dynamic symbol
292 // table.
293 bool
294 should_add_dynsym_entry(Symbol_table*) const;
295
296 // Return whether this symbol has been seen in a regular object.
297 bool
298 in_reg() const
299 { return this->in_reg_; }
300
301 // Mark this symbol as having been seen in a regular object.
302 void
303 set_in_reg()
304 { this->in_reg_ = true; }
305
306 // Return whether this symbol has been seen in a dynamic object.
307 bool
308 in_dyn() const
309 { return this->in_dyn_; }
310
311 // Mark this symbol as having been seen in a dynamic object.
312 void
313 set_in_dyn()
314 { this->in_dyn_ = true; }
315
316 // Return whether this symbol has been seen in a real ELF object.
317 // (IN_REG will return TRUE if the symbol has been seen in either
318 // a real ELF object or an object claimed by a plugin.)
319 bool
320 in_real_elf() const
321 { return this->in_real_elf_; }
322
323 // Mark this symbol as having been seen in a real ELF object.
324 void
325 set_in_real_elf()
326 { this->in_real_elf_ = true; }
327
328 // Return whether this symbol was defined in a section that was
329 // discarded from the link. This is used to control some error
330 // reporting.
331 bool
332 is_defined_in_discarded_section() const
333 { return this->is_defined_in_discarded_section_; }
334
335 // Mark this symbol as having been defined in a discarded section.
336 void
337 set_is_defined_in_discarded_section()
338 { this->is_defined_in_discarded_section_ = true; }
339
340 // Return the index of this symbol in the output file symbol table.
341 // A value of -1U means that this symbol is not going into the
342 // output file. This starts out as zero, and is set to a non-zero
343 // value by Symbol_table::finalize. It is an error to ask for the
344 // symbol table index before it has been set.
345 unsigned int
346 symtab_index() const
347 {
348 gold_assert(this->symtab_index_ != 0);
349 return this->symtab_index_;
350 }
351
352 // Set the index of the symbol in the output file symbol table.
353 void
354 set_symtab_index(unsigned int index)
355 {
356 gold_assert(index != 0);
357 this->symtab_index_ = index;
358 }
359
360 // Return whether this symbol already has an index in the output
361 // file symbol table.
362 bool
363 has_symtab_index() const
364 { return this->symtab_index_ != 0; }
365
366 // Return the index of this symbol in the dynamic symbol table. A
367 // value of -1U means that this symbol is not going into the dynamic
368 // symbol table. This starts out as zero, and is set to a non-zero
369 // during Layout::finalize. It is an error to ask for the dynamic
370 // symbol table index before it has been set.
371 unsigned int
372 dynsym_index() const
373 {
374 gold_assert(this->dynsym_index_ != 0);
375 return this->dynsym_index_;
376 }
377
378 // Set the index of the symbol in the dynamic symbol table.
379 void
380 set_dynsym_index(unsigned int index)
381 {
382 gold_assert(index != 0);
383 this->dynsym_index_ = index;
384 }
385
386 // Return whether this symbol already has an index in the dynamic
387 // symbol table.
388 bool
389 has_dynsym_index() const
390 { return this->dynsym_index_ != 0; }
391
392 // Return whether this symbol has an entry in the GOT section.
393 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
394 bool
395 has_got_offset(unsigned int got_type) const
396 { return this->got_offsets_.get_offset(got_type) != -1U; }
397
398 // Return the offset into the GOT section of this symbol.
399 unsigned int
400 got_offset(unsigned int got_type) const
401 {
402 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
403 gold_assert(got_offset != -1U);
404 return got_offset;
405 }
406
407 // Set the GOT offset of this symbol.
408 void
409 set_got_offset(unsigned int got_type, unsigned int got_offset)
410 { this->got_offsets_.set_offset(got_type, got_offset); }
411
412 // Return the GOT offset list.
413 const Got_offset_list*
414 got_offset_list() const
415 { return this->got_offsets_.get_list(); }
416
417 // Return whether this symbol has an entry in the PLT section.
418 bool
419 has_plt_offset() const
420 { return this->plt_offset_ != -1U; }
421
422 // Return the offset into the PLT section of this symbol.
423 unsigned int
424 plt_offset() const
425 {
426 gold_assert(this->has_plt_offset());
427 return this->plt_offset_;
428 }
429
430 // Set the PLT offset of this symbol.
431 void
432 set_plt_offset(unsigned int plt_offset)
433 {
434 gold_assert(plt_offset != -1U);
435 this->plt_offset_ = plt_offset;
436 }
437
438 // Return whether this dynamic symbol needs a special value in the
439 // dynamic symbol table.
440 bool
441 needs_dynsym_value() const
442 { return this->needs_dynsym_value_; }
443
444 // Set that this dynamic symbol needs a special value in the dynamic
445 // symbol table.
446 void
447 set_needs_dynsym_value()
448 {
449 gold_assert(this->object()->is_dynamic());
450 this->needs_dynsym_value_ = true;
451 }
452
453 // Return true if the final value of this symbol is known at link
454 // time.
455 bool
456 final_value_is_known() const;
457
458 // Return true if SHNDX represents a common symbol. This depends on
459 // the target.
460 static bool
461 is_common_shndx(unsigned int shndx);
462
463 // Return whether this is a defined symbol (not undefined or
464 // common).
465 bool
466 is_defined() const
467 {
468 bool is_ordinary;
469 if (this->source_ != FROM_OBJECT)
470 return this->source_ != IS_UNDEFINED;
471 unsigned int shndx = this->shndx(&is_ordinary);
472 return (is_ordinary
473 ? shndx != elfcpp::SHN_UNDEF
474 : !Symbol::is_common_shndx(shndx));
475 }
476
477 // Return true if this symbol is from a dynamic object.
478 bool
479 is_from_dynobj() const
480 {
481 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
482 }
483
484 // Return whether this is a placeholder symbol from a plugin object.
485 bool
486 is_placeholder() const
487 {
488 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
489 }
490
491 // Return whether this is an undefined symbol.
492 bool
493 is_undefined() const
494 {
495 bool is_ordinary;
496 return ((this->source_ == FROM_OBJECT
497 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
498 && is_ordinary)
499 || this->source_ == IS_UNDEFINED);
500 }
501
502 // Return whether this is a weak undefined symbol.
503 bool
504 is_weak_undefined() const
505 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
506
507 // Return whether this is an absolute symbol.
508 bool
509 is_absolute() const
510 {
511 bool is_ordinary;
512 return ((this->source_ == FROM_OBJECT
513 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
514 && !is_ordinary)
515 || this->source_ == IS_CONSTANT);
516 }
517
518 // Return whether this is a common symbol.
519 bool
520 is_common() const
521 {
522 if (this->source_ != FROM_OBJECT)
523 return false;
524 if (this->type_ == elfcpp::STT_COMMON)
525 return true;
526 bool is_ordinary;
527 unsigned int shndx = this->shndx(&is_ordinary);
528 return !is_ordinary && Symbol::is_common_shndx(shndx);
529 }
530
531 // Return whether this symbol can be seen outside this object.
532 bool
533 is_externally_visible() const
534 {
535 return (this->visibility_ == elfcpp::STV_DEFAULT
536 || this->visibility_ == elfcpp::STV_PROTECTED);
537 }
538
539 // Return true if this symbol can be preempted by a definition in
540 // another link unit.
541 bool
542 is_preemptible() const
543 {
544 // It doesn't make sense to ask whether a symbol defined in
545 // another object is preemptible.
546 gold_assert(!this->is_from_dynobj());
547
548 // It doesn't make sense to ask whether an undefined symbol
549 // is preemptible.
550 gold_assert(!this->is_undefined());
551
552 // If a symbol does not have default visibility, it can not be
553 // seen outside this link unit and therefore is not preemptible.
554 if (this->visibility_ != elfcpp::STV_DEFAULT)
555 return false;
556
557 // If this symbol has been forced to be a local symbol by a
558 // version script, then it is not visible outside this link unit
559 // and is not preemptible.
560 if (this->is_forced_local_)
561 return false;
562
563 // If we are not producing a shared library, then nothing is
564 // preemptible.
565 if (!parameters->options().shared())
566 return false;
567
568 // If the user used -Bsymbolic, then nothing is preemptible.
569 if (parameters->options().Bsymbolic())
570 return false;
571
572 // If the user used -Bsymbolic-functions, then functions are not
573 // preemptible. We explicitly check for not being STT_OBJECT,
574 // rather than for being STT_FUNC, because that is what the GNU
575 // linker does.
576 if (this->type() != elfcpp::STT_OBJECT
577 && parameters->options().Bsymbolic_functions())
578 return false;
579
580 // Otherwise the symbol is preemptible.
581 return true;
582 }
583
584 // Return true if this symbol is a function that needs a PLT entry.
585 bool
586 needs_plt_entry() const
587 {
588 // An undefined symbol from an executable does not need a PLT entry.
589 if (this->is_undefined() && !parameters->options().shared())
590 return false;
591
592 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
593 // doing a static link.
594 if (this->type() == elfcpp::STT_GNU_IFUNC)
595 return true;
596
597 // We only need a PLT entry for a function.
598 if (!this->is_func())
599 return false;
600
601 // If we're doing a static link or a -pie link, we don't create
602 // PLT entries.
603 if (parameters->doing_static_link()
604 || parameters->options().pie())
605 return false;
606
607 // We need a PLT entry if the function is defined in a dynamic
608 // object, or is undefined when building a shared object, or if it
609 // is subject to pre-emption.
610 return (this->is_from_dynobj()
611 || this->is_undefined()
612 || this->is_preemptible());
613 }
614
615 // When determining whether a reference to a symbol needs a dynamic
616 // relocation, we need to know several things about the reference.
617 // These flags may be or'ed together.
618 enum Reference_flags
619 {
620 // Reference to the symbol's absolute address.
621 ABSOLUTE_REF = 1,
622 // A non-PIC reference.
623 NON_PIC_REF = 2,
624 // A function call.
625 FUNCTION_CALL = 4
626 };
627
628 // Given a direct absolute or pc-relative static relocation against
629 // the global symbol, this function returns whether a dynamic relocation
630 // is needed.
631
632 bool
633 needs_dynamic_reloc(int flags) const
634 {
635 // No dynamic relocations in a static link!
636 if (parameters->doing_static_link())
637 return false;
638
639 // A reference to an undefined symbol from an executable should be
640 // statically resolved to 0, and does not need a dynamic relocation.
641 // This matches gnu ld behavior.
642 if (this->is_undefined() && !parameters->options().shared())
643 return false;
644
645 // A reference to an absolute symbol does not need a dynamic relocation.
646 if (this->is_absolute())
647 return false;
648
649 // An absolute reference within a position-independent output file
650 // will need a dynamic relocation.
651 if ((flags & ABSOLUTE_REF)
652 && parameters->options().output_is_position_independent())
653 return true;
654
655 // A function call that can branch to a local PLT entry does not need
656 // a dynamic relocation. A non-pic pc-relative function call in a
657 // shared library cannot use a PLT entry.
658 if ((flags & FUNCTION_CALL)
659 && this->has_plt_offset()
660 && !((flags & NON_PIC_REF)
661 && parameters->options().output_is_position_independent()))
662 return false;
663
664 // A reference to any PLT entry in a non-position-independent executable
665 // does not need a dynamic relocation.
666 if (!parameters->options().output_is_position_independent()
667 && this->has_plt_offset())
668 return false;
669
670 // A reference to a symbol defined in a dynamic object or to a
671 // symbol that is preemptible will need a dynamic relocation.
672 if (this->is_from_dynobj()
673 || this->is_undefined()
674 || this->is_preemptible())
675 return true;
676
677 // For all other cases, return FALSE.
678 return false;
679 }
680
681 // Whether we should use the PLT offset associated with a symbol for
682 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
683 // reloc--the same set of relocs for which we would pass NON_PIC_REF
684 // to the needs_dynamic_reloc function.
685
686 bool
687 use_plt_offset(bool is_non_pic_reference) const
688 {
689 // If the symbol doesn't have a PLT offset, then naturally we
690 // don't want to use it.
691 if (!this->has_plt_offset())
692 return false;
693
694 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
695 if (this->type() == elfcpp::STT_GNU_IFUNC)
696 return true;
697
698 // If we are going to generate a dynamic relocation, then we will
699 // wind up using that, so no need to use the PLT entry.
700 if (this->needs_dynamic_reloc(FUNCTION_CALL
701 | (is_non_pic_reference
702 ? NON_PIC_REF
703 : 0)))
704 return false;
705
706 // If the symbol is from a dynamic object, we need to use the PLT
707 // entry.
708 if (this->is_from_dynobj())
709 return true;
710
711 // If we are generating a shared object, and this symbol is
712 // undefined or preemptible, we need to use the PLT entry.
713 if (parameters->options().shared()
714 && (this->is_undefined() || this->is_preemptible()))
715 return true;
716
717 // If this is a weak undefined symbol, we need to use the PLT
718 // entry; the symbol may be defined by a library loaded at
719 // runtime.
720 if (this->is_weak_undefined())
721 return true;
722
723 // Otherwise we can use the regular definition.
724 return false;
725 }
726
727 // Given a direct absolute static relocation against
728 // the global symbol, where a dynamic relocation is needed, this
729 // function returns whether a relative dynamic relocation can be used.
730 // The caller must determine separately whether the static relocation
731 // is compatible with a relative relocation.
732
733 bool
734 can_use_relative_reloc(bool is_function_call) const
735 {
736 // A function call that can branch to a local PLT entry can
737 // use a RELATIVE relocation.
738 if (is_function_call && this->has_plt_offset())
739 return true;
740
741 // A reference to a symbol defined in a dynamic object or to a
742 // symbol that is preemptible can not use a RELATIVE relocaiton.
743 if (this->is_from_dynobj()
744 || this->is_undefined()
745 || this->is_preemptible())
746 return false;
747
748 // For all other cases, return TRUE.
749 return true;
750 }
751
752 // Return the output section where this symbol is defined. Return
753 // NULL if the symbol has an absolute value.
754 Output_section*
755 output_section() const;
756
757 // Set the symbol's output section. This is used for symbols
758 // defined in scripts. This should only be called after the symbol
759 // table has been finalized.
760 void
761 set_output_section(Output_section*);
762
763 // Return whether there should be a warning for references to this
764 // symbol.
765 bool
766 has_warning() const
767 { return this->has_warning_; }
768
769 // Mark this symbol as having a warning.
770 void
771 set_has_warning()
772 { this->has_warning_ = true; }
773
774 // Return whether this symbol is defined by a COPY reloc from a
775 // dynamic object.
776 bool
777 is_copied_from_dynobj() const
778 { return this->is_copied_from_dynobj_; }
779
780 // Mark this symbol as defined by a COPY reloc.
781 void
782 set_is_copied_from_dynobj()
783 { this->is_copied_from_dynobj_ = true; }
784
785 // Return whether this symbol is forced to visibility STB_LOCAL
786 // by a "local:" entry in a version script.
787 bool
788 is_forced_local() const
789 { return this->is_forced_local_; }
790
791 // Mark this symbol as forced to STB_LOCAL visibility.
792 void
793 set_is_forced_local()
794 { this->is_forced_local_ = true; }
795
796 // Return true if this may need a COPY relocation.
797 // References from an executable object to non-function symbols
798 // defined in a dynamic object may need a COPY relocation.
799 bool
800 may_need_copy_reloc() const
801 {
802 return (!parameters->options().output_is_position_independent()
803 && parameters->options().copyreloc()
804 && this->is_from_dynobj()
805 && !this->is_func());
806 }
807
808 protected:
809 // Instances of this class should always be created at a specific
810 // size.
811 Symbol()
812 { memset(this, 0, sizeof *this); }
813
814 // Initialize the general fields.
815 void
816 init_fields(const char* name, const char* version,
817 elfcpp::STT type, elfcpp::STB binding,
818 elfcpp::STV visibility, unsigned char nonvis);
819
820 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
821 // section index, IS_ORDINARY is whether it is a normal section
822 // index rather than a special code.
823 template<int size, bool big_endian>
824 void
825 init_base_object(const char* name, const char* version, Object* object,
826 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
827 bool is_ordinary);
828
829 // Initialize fields for an Output_data.
830 void
831 init_base_output_data(const char* name, const char* version, Output_data*,
832 elfcpp::STT, elfcpp::STB, elfcpp::STV,
833 unsigned char nonvis, bool offset_is_from_end);
834
835 // Initialize fields for an Output_segment.
836 void
837 init_base_output_segment(const char* name, const char* version,
838 Output_segment* os, elfcpp::STT type,
839 elfcpp::STB binding, elfcpp::STV visibility,
840 unsigned char nonvis,
841 Segment_offset_base offset_base);
842
843 // Initialize fields for a constant.
844 void
845 init_base_constant(const char* name, const char* version, elfcpp::STT type,
846 elfcpp::STB binding, elfcpp::STV visibility,
847 unsigned char nonvis);
848
849 // Initialize fields for an undefined symbol.
850 void
851 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
852 elfcpp::STB binding, elfcpp::STV visibility,
853 unsigned char nonvis);
854
855 // Override existing symbol.
856 template<int size, bool big_endian>
857 void
858 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
859 bool is_ordinary, Object* object, const char* version);
860
861 // Override existing symbol with a special symbol.
862 void
863 override_base_with_special(const Symbol* from);
864
865 // Override symbol version.
866 void
867 override_version(const char* version);
868
869 // Allocate a common symbol by giving it a location in the output
870 // file.
871 void
872 allocate_base_common(Output_data*);
873
874 private:
875 Symbol(const Symbol&);
876 Symbol& operator=(const Symbol&);
877
878 // Symbol name (expected to point into a Stringpool).
879 const char* name_;
880 // Symbol version (expected to point into a Stringpool). This may
881 // be NULL.
882 const char* version_;
883
884 union
885 {
886 // This struct is used if SOURCE_ == FROM_OBJECT.
887 struct
888 {
889 // Object in which symbol is defined, or in which it was first
890 // seen.
891 Object* object;
892 // Section number in object_ in which symbol is defined.
893 unsigned int shndx;
894 } from_object;
895
896 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
897 struct
898 {
899 // Output_data in which symbol is defined. Before
900 // Layout::finalize the symbol's value is an offset within the
901 // Output_data.
902 Output_data* output_data;
903 // True if the offset is from the end, false if the offset is
904 // from the beginning.
905 bool offset_is_from_end;
906 } in_output_data;
907
908 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
909 struct
910 {
911 // Output_segment in which the symbol is defined. Before
912 // Layout::finalize the symbol's value is an offset.
913 Output_segment* output_segment;
914 // The base to use for the offset before Layout::finalize.
915 Segment_offset_base offset_base;
916 } in_output_segment;
917 } u_;
918
919 // The index of this symbol in the output file. If the symbol is
920 // not going into the output file, this value is -1U. This field
921 // starts as always holding zero. It is set to a non-zero value by
922 // Symbol_table::finalize.
923 unsigned int symtab_index_;
924
925 // The index of this symbol in the dynamic symbol table. If the
926 // symbol is not going into the dynamic symbol table, this value is
927 // -1U. This field starts as always holding zero. It is set to a
928 // non-zero value during Layout::finalize.
929 unsigned int dynsym_index_;
930
931 // The GOT section entries for this symbol. A symbol may have more
932 // than one GOT offset (e.g., when mixing modules compiled with two
933 // different TLS models), but will usually have at most one.
934 Got_offset_list got_offsets_;
935
936 // If this symbol has an entry in the PLT section, then this is the
937 // offset from the start of the PLT section. This is -1U if there
938 // is no PLT entry.
939 unsigned int plt_offset_;
940
941 // Symbol type (bits 0 to 3).
942 elfcpp::STT type_ : 4;
943 // Symbol binding (bits 4 to 7).
944 elfcpp::STB binding_ : 4;
945 // Symbol visibility (bits 8 to 9).
946 elfcpp::STV visibility_ : 2;
947 // Rest of symbol st_other field (bits 10 to 15).
948 unsigned int nonvis_ : 6;
949 // The type of symbol (bits 16 to 18).
950 Source source_ : 3;
951 // True if this is the default version of the symbol (bit 19).
952 bool is_def_ : 1;
953 // True if this symbol really forwards to another symbol. This is
954 // used when we discover after the fact that two different entries
955 // in the hash table really refer to the same symbol. This will
956 // never be set for a symbol found in the hash table, but may be set
957 // for a symbol found in the list of symbols attached to an Object.
958 // It forwards to the symbol found in the forwarders_ map of
959 // Symbol_table (bit 20).
960 bool is_forwarder_ : 1;
961 // True if the symbol has an alias in the weak_aliases table in
962 // Symbol_table (bit 21).
963 bool has_alias_ : 1;
964 // True if this symbol needs to be in the dynamic symbol table (bit
965 // 22).
966 bool needs_dynsym_entry_ : 1;
967 // True if we've seen this symbol in a regular object (bit 23).
968 bool in_reg_ : 1;
969 // True if we've seen this symbol in a dynamic object (bit 24).
970 bool in_dyn_ : 1;
971 // True if this is a dynamic symbol which needs a special value in
972 // the dynamic symbol table (bit 25).
973 bool needs_dynsym_value_ : 1;
974 // True if there is a warning for this symbol (bit 26).
975 bool has_warning_ : 1;
976 // True if we are using a COPY reloc for this symbol, so that the
977 // real definition lives in a dynamic object (bit 27).
978 bool is_copied_from_dynobj_ : 1;
979 // True if this symbol was forced to local visibility by a version
980 // script (bit 28).
981 bool is_forced_local_ : 1;
982 // True if the field u_.from_object.shndx is an ordinary section
983 // index, not one of the special codes from SHN_LORESERVE to
984 // SHN_HIRESERVE (bit 29).
985 bool is_ordinary_shndx_ : 1;
986 // True if we've seen this symbol in a real ELF object (bit 30).
987 bool in_real_elf_ : 1;
988 // True if this symbol is defined in a section which was discarded
989 // (bit 31).
990 bool is_defined_in_discarded_section_ : 1;
991 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
992 bool undef_binding_set_ : 1;
993 // True if this symbol was a weak undef resolved by a dynamic def
994 // (bit 33).
995 bool undef_binding_weak_ : 1;
996 };
997
998 // The parts of a symbol which are size specific. Using a template
999 // derived class like this helps us use less space on a 32-bit system.
1000
1001 template<int size>
1002 class Sized_symbol : public Symbol
1003 {
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1006 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1007
1008 Sized_symbol()
1009 { }
1010
1011 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1012 // section index, IS_ORDINARY is whether it is a normal section
1013 // index rather than a special code.
1014 template<bool big_endian>
1015 void
1016 init_object(const char* name, const char* version, Object* object,
1017 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1018 bool is_ordinary);
1019
1020 // Initialize fields for an Output_data.
1021 void
1022 init_output_data(const char* name, const char* version, Output_data*,
1023 Value_type value, Size_type symsize, elfcpp::STT,
1024 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1025 bool offset_is_from_end);
1026
1027 // Initialize fields for an Output_segment.
1028 void
1029 init_output_segment(const char* name, const char* version, Output_segment*,
1030 Value_type value, Size_type symsize, elfcpp::STT,
1031 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1032 Segment_offset_base offset_base);
1033
1034 // Initialize fields for a constant.
1035 void
1036 init_constant(const char* name, const char* version, Value_type value,
1037 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1038 unsigned char nonvis);
1039
1040 // Initialize fields for an undefined symbol.
1041 void
1042 init_undefined(const char* name, const char* version, elfcpp::STT,
1043 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1044
1045 // Override existing symbol.
1046 template<bool big_endian>
1047 void
1048 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1049 bool is_ordinary, Object* object, const char* version);
1050
1051 // Override existing symbol with a special symbol.
1052 void
1053 override_with_special(const Sized_symbol<size>*);
1054
1055 // Return the symbol's value.
1056 Value_type
1057 value() const
1058 { return this->value_; }
1059
1060 // Return the symbol's size (we can't call this 'size' because that
1061 // is a template parameter).
1062 Size_type
1063 symsize() const
1064 { return this->symsize_; }
1065
1066 // Set the symbol size. This is used when resolving common symbols.
1067 void
1068 set_symsize(Size_type symsize)
1069 { this->symsize_ = symsize; }
1070
1071 // Set the symbol value. This is called when we store the final
1072 // values of the symbols into the symbol table.
1073 void
1074 set_value(Value_type value)
1075 { this->value_ = value; }
1076
1077 // Allocate a common symbol by giving it a location in the output
1078 // file.
1079 void
1080 allocate_common(Output_data*, Value_type value);
1081
1082 private:
1083 Sized_symbol(const Sized_symbol&);
1084 Sized_symbol& operator=(const Sized_symbol&);
1085
1086 // Symbol value. Before Layout::finalize this is the offset in the
1087 // input section. This is set to the final value during
1088 // Layout::finalize.
1089 Value_type value_;
1090 // Symbol size.
1091 Size_type symsize_;
1092 };
1093
1094 // A struct describing a symbol defined by the linker, where the value
1095 // of the symbol is defined based on an output section. This is used
1096 // for symbols defined by the linker, like "_init_array_start".
1097
1098 struct Define_symbol_in_section
1099 {
1100 // The symbol name.
1101 const char* name;
1102 // The name of the output section with which this symbol should be
1103 // associated. If there is no output section with that name, the
1104 // symbol will be defined as zero.
1105 const char* output_section;
1106 // The offset of the symbol within the output section. This is an
1107 // offset from the start of the output section, unless start_at_end
1108 // is true, in which case this is an offset from the end of the
1109 // output section.
1110 uint64_t value;
1111 // The size of the symbol.
1112 uint64_t size;
1113 // The symbol type.
1114 elfcpp::STT type;
1115 // The symbol binding.
1116 elfcpp::STB binding;
1117 // The symbol visibility.
1118 elfcpp::STV visibility;
1119 // The rest of the st_other field.
1120 unsigned char nonvis;
1121 // If true, the value field is an offset from the end of the output
1122 // section.
1123 bool offset_is_from_end;
1124 // If true, this symbol is defined only if we see a reference to it.
1125 bool only_if_ref;
1126 };
1127
1128 // A struct describing a symbol defined by the linker, where the value
1129 // of the symbol is defined based on a segment. This is used for
1130 // symbols defined by the linker, like "_end". We describe the
1131 // segment with which the symbol should be associated by its
1132 // characteristics. If no segment meets these characteristics, the
1133 // symbol will be defined as zero. If there is more than one segment
1134 // which meets these characteristics, we will use the first one.
1135
1136 struct Define_symbol_in_segment
1137 {
1138 // The symbol name.
1139 const char* name;
1140 // The segment type where the symbol should be defined, typically
1141 // PT_LOAD.
1142 elfcpp::PT segment_type;
1143 // Bitmask of segment flags which must be set.
1144 elfcpp::PF segment_flags_set;
1145 // Bitmask of segment flags which must be clear.
1146 elfcpp::PF segment_flags_clear;
1147 // The offset of the symbol within the segment. The offset is
1148 // calculated from the position set by offset_base.
1149 uint64_t value;
1150 // The size of the symbol.
1151 uint64_t size;
1152 // The symbol type.
1153 elfcpp::STT type;
1154 // The symbol binding.
1155 elfcpp::STB binding;
1156 // The symbol visibility.
1157 elfcpp::STV visibility;
1158 // The rest of the st_other field.
1159 unsigned char nonvis;
1160 // The base from which we compute the offset.
1161 Symbol::Segment_offset_base offset_base;
1162 // If true, this symbol is defined only if we see a reference to it.
1163 bool only_if_ref;
1164 };
1165
1166 // This class manages warnings. Warnings are a GNU extension. When
1167 // we see a section named .gnu.warning.SYM in an object file, and if
1168 // we wind using the definition of SYM from that object file, then we
1169 // will issue a warning for any relocation against SYM from a
1170 // different object file. The text of the warning is the contents of
1171 // the section. This is not precisely the definition used by the old
1172 // GNU linker; the old GNU linker treated an occurrence of
1173 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1174 // would trigger a warning on any reference. However, it was
1175 // inconsistent in that a warning in a dynamic object only triggered
1176 // if there was no definition in a regular object. This linker is
1177 // different in that we only issue a warning if we use the symbol
1178 // definition from the same object file as the warning section.
1179
1180 class Warnings
1181 {
1182 public:
1183 Warnings()
1184 : warnings_()
1185 { }
1186
1187 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1188 // of the warning.
1189 void
1190 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1191 const std::string& warning);
1192
1193 // For each symbol for which we should give a warning, make a note
1194 // on the symbol.
1195 void
1196 note_warnings(Symbol_table* symtab);
1197
1198 // Issue a warning for a reference to SYM at RELINFO's location.
1199 template<int size, bool big_endian>
1200 void
1201 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1202 size_t relnum, off_t reloffset) const;
1203
1204 private:
1205 Warnings(const Warnings&);
1206 Warnings& operator=(const Warnings&);
1207
1208 // What we need to know to get the warning text.
1209 struct Warning_location
1210 {
1211 // The object the warning is in.
1212 Object* object;
1213 // The warning text.
1214 std::string text;
1215
1216 Warning_location()
1217 : object(NULL), text()
1218 { }
1219
1220 void
1221 set(Object* o, const std::string& t)
1222 {
1223 this->object = o;
1224 this->text = t;
1225 }
1226 };
1227
1228 // A mapping from warning symbol names (canonicalized in
1229 // Symbol_table's namepool_ field) to warning information.
1230 typedef Unordered_map<const char*, Warning_location> Warning_table;
1231
1232 Warning_table warnings_;
1233 };
1234
1235 // The main linker symbol table.
1236
1237 class Symbol_table
1238 {
1239 public:
1240 // The different places where a symbol definition can come from.
1241 enum Defined
1242 {
1243 // Defined in an object file--the normal case.
1244 OBJECT,
1245 // Defined for a COPY reloc.
1246 COPY,
1247 // Defined on the command line using --defsym.
1248 DEFSYM,
1249 // Defined (so to speak) on the command line using -u.
1250 UNDEFINED,
1251 // Defined in a linker script.
1252 SCRIPT,
1253 // Predefined by the linker.
1254 PREDEFINED,
1255 };
1256
1257 // The order in which we sort common symbols.
1258 enum Sort_commons_order
1259 {
1260 SORT_COMMONS_BY_SIZE_DESCENDING,
1261 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1262 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1263 };
1264
1265 // COUNT is an estimate of how many symbosl will be inserted in the
1266 // symbol table. It's ok to put 0 if you don't know; a correct
1267 // guess will just save some CPU by reducing hashtable resizes.
1268 Symbol_table(unsigned int count, const Version_script_info& version_script);
1269
1270 ~Symbol_table();
1271
1272 void
1273 set_icf(Icf* icf)
1274 { this->icf_ = icf;}
1275
1276 Icf*
1277 icf() const
1278 { return this->icf_; }
1279
1280 // Returns true if ICF determined that this is a duplicate section.
1281 bool
1282 is_section_folded(Object* obj, unsigned int shndx) const;
1283
1284 void
1285 set_gc(Garbage_collection* gc)
1286 { this->gc_ = gc; }
1287
1288 Garbage_collection*
1289 gc() const
1290 { return this->gc_; }
1291
1292 // During garbage collection, this keeps undefined symbols.
1293 void
1294 gc_mark_undef_symbols(Layout*);
1295
1296 // During garbage collection, this ensures externally visible symbols
1297 // are not treated as garbage while building shared objects.
1298 void
1299 gc_mark_symbol_for_shlib(Symbol* sym);
1300
1301 // During garbage collection, this keeps sections that correspond to
1302 // symbols seen in dynamic objects.
1303 inline void
1304 gc_mark_dyn_syms(Symbol* sym);
1305
1306 // Add COUNT external symbols from the relocatable object RELOBJ to
1307 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1308 // offset in the symbol table of the first symbol, SYM_NAMES is
1309 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1310 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1311 // *DEFINED to the number of defined symbols.
1312 template<int size, bool big_endian>
1313 void
1314 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1315 const unsigned char* syms, size_t count,
1316 size_t symndx_offset, const char* sym_names,
1317 size_t sym_name_size,
1318 typename Sized_relobj<size, big_endian>::Symbols*,
1319 size_t* defined);
1320
1321 // Add one external symbol from the plugin object OBJ to the symbol table.
1322 // Returns a pointer to the resolved symbol in the symbol table.
1323 template<int size, bool big_endian>
1324 Symbol*
1325 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1326 const char* name, const char* ver,
1327 elfcpp::Sym<size, big_endian>* sym);
1328
1329 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1330 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1331 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1332 // symbol version data.
1333 template<int size, bool big_endian>
1334 void
1335 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1336 const unsigned char* syms, size_t count,
1337 const char* sym_names, size_t sym_name_size,
1338 const unsigned char* versym, size_t versym_size,
1339 const std::vector<const char*>*,
1340 typename Sized_relobj<size, big_endian>::Symbols*,
1341 size_t* defined);
1342
1343 // Define a special symbol based on an Output_data. It is a
1344 // multiple definition error if this symbol is already defined.
1345 Symbol*
1346 define_in_output_data(const char* name, const char* version, Defined,
1347 Output_data*, uint64_t value, uint64_t symsize,
1348 elfcpp::STT type, elfcpp::STB binding,
1349 elfcpp::STV visibility, unsigned char nonvis,
1350 bool offset_is_from_end, bool only_if_ref);
1351
1352 // Define a special symbol based on an Output_segment. It is a
1353 // multiple definition error if this symbol is already defined.
1354 Symbol*
1355 define_in_output_segment(const char* name, const char* version, Defined,
1356 Output_segment*, uint64_t value, uint64_t symsize,
1357 elfcpp::STT type, elfcpp::STB binding,
1358 elfcpp::STV visibility, unsigned char nonvis,
1359 Symbol::Segment_offset_base, bool only_if_ref);
1360
1361 // Define a special symbol with a constant value. It is a multiple
1362 // definition error if this symbol is already defined.
1363 Symbol*
1364 define_as_constant(const char* name, const char* version, Defined,
1365 uint64_t value, uint64_t symsize, elfcpp::STT type,
1366 elfcpp::STB binding, elfcpp::STV visibility,
1367 unsigned char nonvis, bool only_if_ref,
1368 bool force_override);
1369
1370 // Define a set of symbols in output sections. If ONLY_IF_REF is
1371 // true, only define them if they are referenced.
1372 void
1373 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1374 bool only_if_ref);
1375
1376 // Define a set of symbols in output segments. If ONLY_IF_REF is
1377 // true, only defined them if they are referenced.
1378 void
1379 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1380 bool only_if_ref);
1381
1382 // Define SYM using a COPY reloc. POSD is the Output_data where the
1383 // symbol should be defined--typically a .dyn.bss section. VALUE is
1384 // the offset within POSD.
1385 template<int size>
1386 void
1387 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1388 typename elfcpp::Elf_types<size>::Elf_Addr);
1389
1390 // Look up a symbol.
1391 Symbol*
1392 lookup(const char*, const char* version = NULL) const;
1393
1394 // Return the real symbol associated with the forwarder symbol FROM.
1395 Symbol*
1396 resolve_forwards(const Symbol* from) const;
1397
1398 // Return the sized version of a symbol in this table.
1399 template<int size>
1400 Sized_symbol<size>*
1401 get_sized_symbol(Symbol*) const;
1402
1403 template<int size>
1404 const Sized_symbol<size>*
1405 get_sized_symbol(const Symbol*) const;
1406
1407 // Return the count of undefined symbols seen.
1408 size_t
1409 saw_undefined() const
1410 { return this->saw_undefined_; }
1411
1412 // Allocate the common symbols
1413 void
1414 allocate_commons(Layout*, Mapfile*);
1415
1416 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1417 // of the warning.
1418 void
1419 add_warning(const char* name, Object* obj, const std::string& warning)
1420 { this->warnings_.add_warning(this, name, obj, warning); }
1421
1422 // Canonicalize a symbol name for use in the hash table.
1423 const char*
1424 canonicalize_name(const char* name)
1425 { return this->namepool_.add(name, true, NULL); }
1426
1427 // Possibly issue a warning for a reference to SYM at LOCATION which
1428 // is in OBJ.
1429 template<int size, bool big_endian>
1430 void
1431 issue_warning(const Symbol* sym,
1432 const Relocate_info<size, big_endian>* relinfo,
1433 size_t relnum, off_t reloffset) const
1434 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1435
1436 // Check candidate_odr_violations_ to find symbols with the same name
1437 // but apparently different definitions (different source-file/line-no).
1438 void
1439 detect_odr_violations(const Task*, const char* output_file_name) const;
1440
1441 // Add any undefined symbols named on the command line to the symbol
1442 // table.
1443 void
1444 add_undefined_symbols_from_command_line(Layout*);
1445
1446 // SYM is defined using a COPY reloc. Return the dynamic object
1447 // where the original definition was found.
1448 Dynobj*
1449 get_copy_source(const Symbol* sym) const;
1450
1451 // Set the dynamic symbol indexes. INDEX is the index of the first
1452 // global dynamic symbol. Pointers to the symbols are stored into
1453 // the vector. The names are stored into the Stringpool. This
1454 // returns an updated dynamic symbol index.
1455 unsigned int
1456 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1457 Stringpool*, Versions*);
1458
1459 // Finalize the symbol table after we have set the final addresses
1460 // of all the input sections. This sets the final symbol indexes,
1461 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1462 // index of the first global symbol. OFF is the file offset of the
1463 // global symbol table, DYNOFF is the offset of the globals in the
1464 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1465 // global dynamic symbol, and DYNCOUNT is the number of global
1466 // dynamic symbols. This records the parameters, and returns the
1467 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1468 // local symbols.
1469 off_t
1470 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1471 Stringpool* pool, unsigned int* plocal_symcount);
1472
1473 // Status code of Symbol_table::compute_final_value.
1474 enum Compute_final_value_status
1475 {
1476 // No error.
1477 CFVS_OK,
1478 // Unspported symbol section.
1479 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1480 // No output section.
1481 CFVS_NO_OUTPUT_SECTION
1482 };
1483
1484 // Compute the final value of SYM and store status in location PSTATUS.
1485 // During relaxation, this may be called multiple times for a symbol to
1486 // compute its would-be final value in each relaxation pass.
1487
1488 template<int size>
1489 typename Sized_symbol<size>::Value_type
1490 compute_final_value(const Sized_symbol<size>* sym,
1491 Compute_final_value_status* pstatus) const;
1492
1493 // Return the index of the first global symbol.
1494 unsigned int
1495 first_global_index() const
1496 { return this->first_global_index_; }
1497
1498 // Return the total number of symbols in the symbol table.
1499 unsigned int
1500 output_count() const
1501 { return this->output_count_; }
1502
1503 // Write out the global symbols.
1504 void
1505 write_globals(const Stringpool*, const Stringpool*,
1506 Output_symtab_xindex*, Output_symtab_xindex*,
1507 Output_file*) const;
1508
1509 // Write out a section symbol. Return the updated offset.
1510 void
1511 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1512 Output_file*, off_t) const;
1513
1514 // Loop over all symbols, applying the function F to each.
1515 template<int size, typename F>
1516 void
1517 for_all_symbols(F f) const
1518 {
1519 for (Symbol_table_type::const_iterator p = this->table_.begin();
1520 p != this->table_.end();
1521 ++p)
1522 {
1523 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1524 f(sym);
1525 }
1526 }
1527
1528 // Dump statistical information to stderr.
1529 void
1530 print_stats() const;
1531
1532 // Return the version script information.
1533 const Version_script_info&
1534 version_script() const
1535 { return version_script_; }
1536
1537 private:
1538 Symbol_table(const Symbol_table&);
1539 Symbol_table& operator=(const Symbol_table&);
1540
1541 // The type of the list of common symbols.
1542 typedef std::vector<Symbol*> Commons_type;
1543
1544 // The type of the symbol hash table.
1545
1546 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1547
1548 // The hash function. The key values are Stringpool keys.
1549 struct Symbol_table_hash
1550 {
1551 inline size_t
1552 operator()(const Symbol_table_key& key) const
1553 {
1554 return key.first ^ key.second;
1555 }
1556 };
1557
1558 struct Symbol_table_eq
1559 {
1560 bool
1561 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1562 };
1563
1564 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1565 Symbol_table_eq> Symbol_table_type;
1566
1567 // Make FROM a forwarder symbol to TO.
1568 void
1569 make_forwarder(Symbol* from, Symbol* to);
1570
1571 // Add a symbol.
1572 template<int size, bool big_endian>
1573 Sized_symbol<size>*
1574 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1575 const char* version, Stringpool::Key version_key,
1576 bool def, const elfcpp::Sym<size, big_endian>& sym,
1577 unsigned int st_shndx, bool is_ordinary,
1578 unsigned int orig_st_shndx);
1579
1580 // Define a default symbol.
1581 template<int size, bool big_endian>
1582 void
1583 define_default_version(Sized_symbol<size>*, bool,
1584 Symbol_table_type::iterator);
1585
1586 // Resolve symbols.
1587 template<int size, bool big_endian>
1588 void
1589 resolve(Sized_symbol<size>* to,
1590 const elfcpp::Sym<size, big_endian>& sym,
1591 unsigned int st_shndx, bool is_ordinary,
1592 unsigned int orig_st_shndx,
1593 Object*, const char* version);
1594
1595 template<int size, bool big_endian>
1596 void
1597 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1598
1599 // Record that a symbol is forced to be local by a version script or
1600 // by visibility.
1601 void
1602 force_local(Symbol*);
1603
1604 // Adjust NAME and *NAME_KEY for wrapping.
1605 const char*
1606 wrap_symbol(const char* name, Stringpool::Key* name_key);
1607
1608 // Whether we should override a symbol, based on flags in
1609 // resolve.cc.
1610 static bool
1611 should_override(const Symbol*, unsigned int, Defined, Object*, bool*, bool*);
1612
1613 // Report a problem in symbol resolution.
1614 static void
1615 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1616 Defined, Object* object);
1617
1618 // Override a symbol.
1619 template<int size, bool big_endian>
1620 void
1621 override(Sized_symbol<size>* tosym,
1622 const elfcpp::Sym<size, big_endian>& fromsym,
1623 unsigned int st_shndx, bool is_ordinary,
1624 Object* object, const char* version);
1625
1626 // Whether we should override a symbol with a special symbol which
1627 // is automatically defined by the linker.
1628 static bool
1629 should_override_with_special(const Symbol*, Defined);
1630
1631 // Override a symbol with a special symbol.
1632 template<int size>
1633 void
1634 override_with_special(Sized_symbol<size>* tosym,
1635 const Sized_symbol<size>* fromsym);
1636
1637 // Record all weak alias sets for a dynamic object.
1638 template<int size>
1639 void
1640 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1641
1642 // Define a special symbol.
1643 template<int size, bool big_endian>
1644 Sized_symbol<size>*
1645 define_special_symbol(const char** pname, const char** pversion,
1646 bool only_if_ref, Sized_symbol<size>** poldsym,
1647 bool* resolve_oldsym);
1648
1649 // Define a symbol in an Output_data, sized version.
1650 template<int size>
1651 Sized_symbol<size>*
1652 do_define_in_output_data(const char* name, const char* version, Defined,
1653 Output_data*,
1654 typename elfcpp::Elf_types<size>::Elf_Addr value,
1655 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1656 elfcpp::STT type, elfcpp::STB binding,
1657 elfcpp::STV visibility, unsigned char nonvis,
1658 bool offset_is_from_end, bool only_if_ref);
1659
1660 // Define a symbol in an Output_segment, sized version.
1661 template<int size>
1662 Sized_symbol<size>*
1663 do_define_in_output_segment(
1664 const char* name, const char* version, Defined, Output_segment* os,
1665 typename elfcpp::Elf_types<size>::Elf_Addr value,
1666 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1667 elfcpp::STT type, elfcpp::STB binding,
1668 elfcpp::STV visibility, unsigned char nonvis,
1669 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1670
1671 // Define a symbol as a constant, sized version.
1672 template<int size>
1673 Sized_symbol<size>*
1674 do_define_as_constant(
1675 const char* name, const char* version, Defined,
1676 typename elfcpp::Elf_types<size>::Elf_Addr value,
1677 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1678 elfcpp::STT type, elfcpp::STB binding,
1679 elfcpp::STV visibility, unsigned char nonvis,
1680 bool only_if_ref, bool force_override);
1681
1682 // Add any undefined symbols named on the command line to the symbol
1683 // table, sized version.
1684 template<int size>
1685 void
1686 do_add_undefined_symbols_from_command_line(Layout*);
1687
1688 // Add one undefined symbol.
1689 template<int size>
1690 void
1691 add_undefined_symbol_from_command_line(const char* name);
1692
1693 // Types of common symbols.
1694
1695 enum Commons_section_type
1696 {
1697 COMMONS_NORMAL,
1698 COMMONS_TLS,
1699 COMMONS_SMALL,
1700 COMMONS_LARGE
1701 };
1702
1703 // Allocate the common symbols, sized version.
1704 template<int size>
1705 void
1706 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1707
1708 // Allocate the common symbols from one list.
1709 template<int size>
1710 void
1711 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1712 Mapfile*, Sort_commons_order);
1713
1714 // Implement detect_odr_violations.
1715 template<int size, bool big_endian>
1716 void
1717 sized_detect_odr_violations() const;
1718
1719 // Finalize symbols specialized for size.
1720 template<int size>
1721 off_t
1722 sized_finalize(off_t, Stringpool*, unsigned int*);
1723
1724 // Finalize a symbol. Return whether it should be added to the
1725 // symbol table.
1726 template<int size>
1727 bool
1728 sized_finalize_symbol(Symbol*);
1729
1730 // Add a symbol the final symtab by setting its index.
1731 template<int size>
1732 void
1733 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1734
1735 // Write globals specialized for size and endianness.
1736 template<int size, bool big_endian>
1737 void
1738 sized_write_globals(const Stringpool*, const Stringpool*,
1739 Output_symtab_xindex*, Output_symtab_xindex*,
1740 Output_file*) const;
1741
1742 // Write out a symbol to P.
1743 template<int size, bool big_endian>
1744 void
1745 sized_write_symbol(Sized_symbol<size>*,
1746 typename elfcpp::Elf_types<size>::Elf_Addr value,
1747 unsigned int shndx, elfcpp::STB,
1748 const Stringpool*, unsigned char* p) const;
1749
1750 // Possibly warn about an undefined symbol from a dynamic object.
1751 void
1752 warn_about_undefined_dynobj_symbol(Symbol*) const;
1753
1754 // Write out a section symbol, specialized for size and endianness.
1755 template<int size, bool big_endian>
1756 void
1757 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1758 Output_file*, off_t) const;
1759
1760 // The type of the list of symbols which have been forced local.
1761 typedef std::vector<Symbol*> Forced_locals;
1762
1763 // A map from symbols with COPY relocs to the dynamic objects where
1764 // they are defined.
1765 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1766
1767 // A map from symbol name (as a pointer into the namepool) to all
1768 // the locations the symbols is (weakly) defined (and certain other
1769 // conditions are met). This map will be used later to detect
1770 // possible One Definition Rule (ODR) violations.
1771 struct Symbol_location
1772 {
1773 Object* object; // Object where the symbol is defined.
1774 unsigned int shndx; // Section-in-object where the symbol is defined.
1775 off_t offset; // Offset-in-section where the symbol is defined.
1776 bool operator==(const Symbol_location& that) const
1777 {
1778 return (this->object == that.object
1779 && this->shndx == that.shndx
1780 && this->offset == that.offset);
1781 }
1782 };
1783
1784 struct Symbol_location_hash
1785 {
1786 size_t operator()(const Symbol_location& loc) const
1787 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1788 };
1789
1790 typedef Unordered_map<const char*,
1791 Unordered_set<Symbol_location, Symbol_location_hash> >
1792 Odr_map;
1793
1794 // We increment this every time we see a new undefined symbol, for
1795 // use in archive groups.
1796 size_t saw_undefined_;
1797 // The index of the first global symbol in the output file.
1798 unsigned int first_global_index_;
1799 // The file offset within the output symtab section where we should
1800 // write the table.
1801 off_t offset_;
1802 // The number of global symbols we want to write out.
1803 unsigned int output_count_;
1804 // The file offset of the global dynamic symbols, or 0 if none.
1805 off_t dynamic_offset_;
1806 // The index of the first global dynamic symbol.
1807 unsigned int first_dynamic_global_index_;
1808 // The number of global dynamic symbols, or 0 if none.
1809 unsigned int dynamic_count_;
1810 // The symbol hash table.
1811 Symbol_table_type table_;
1812 // A pool of symbol names. This is used for all global symbols.
1813 // Entries in the hash table point into this pool.
1814 Stringpool namepool_;
1815 // Forwarding symbols.
1816 Unordered_map<const Symbol*, Symbol*> forwarders_;
1817 // Weak aliases. A symbol in this list points to the next alias.
1818 // The aliases point to each other in a circular list.
1819 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1820 // We don't expect there to be very many common symbols, so we keep
1821 // a list of them. When we find a common symbol we add it to this
1822 // list. It is possible that by the time we process the list the
1823 // symbol is no longer a common symbol. It may also have become a
1824 // forwarder.
1825 Commons_type commons_;
1826 // This is like the commons_ field, except that it holds TLS common
1827 // symbols.
1828 Commons_type tls_commons_;
1829 // This is for small common symbols.
1830 Commons_type small_commons_;
1831 // This is for large common symbols.
1832 Commons_type large_commons_;
1833 // A list of symbols which have been forced to be local. We don't
1834 // expect there to be very many of them, so we keep a list of them
1835 // rather than walking the whole table to find them.
1836 Forced_locals forced_locals_;
1837 // Manage symbol warnings.
1838 Warnings warnings_;
1839 // Manage potential One Definition Rule (ODR) violations.
1840 Odr_map candidate_odr_violations_;
1841
1842 // When we emit a COPY reloc for a symbol, we define it in an
1843 // Output_data. When it's time to emit version information for it,
1844 // we need to know the dynamic object in which we found the original
1845 // definition. This maps symbols with COPY relocs to the dynamic
1846 // object where they were defined.
1847 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1848 // Information parsed from the version script, if any.
1849 const Version_script_info& version_script_;
1850 Garbage_collection* gc_;
1851 Icf* icf_;
1852 };
1853
1854 // We inline get_sized_symbol for efficiency.
1855
1856 template<int size>
1857 Sized_symbol<size>*
1858 Symbol_table::get_sized_symbol(Symbol* sym) const
1859 {
1860 gold_assert(size == parameters->target().get_size());
1861 return static_cast<Sized_symbol<size>*>(sym);
1862 }
1863
1864 template<int size>
1865 const Sized_symbol<size>*
1866 Symbol_table::get_sized_symbol(const Symbol* sym) const
1867 {
1868 gold_assert(size == parameters->target().get_size());
1869 return static_cast<const Sized_symbol<size>*>(sym);
1870 }
1871
1872 } // End namespace gold.
1873
1874 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.067231 seconds and 5 git commands to generate.