Fix incorrect handling of STT_COMMON symbols in shared libraries.
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Return the symbol's name as name@version (or name@@version).
144 std::string
145 versioned_name() const;
146
147 // Return the symbol source.
148 Source
149 source() const
150 { return this->source_; }
151
152 // Return the object with which this symbol is associated.
153 Object*
154 object() const
155 {
156 gold_assert(this->source_ == FROM_OBJECT);
157 return this->u_.from_object.object;
158 }
159
160 // Return the index of the section in the input relocatable or
161 // dynamic object file.
162 unsigned int
163 shndx(bool* is_ordinary) const
164 {
165 gold_assert(this->source_ == FROM_OBJECT);
166 *is_ordinary = this->is_ordinary_shndx_;
167 return this->u_.from_object.shndx;
168 }
169
170 // Return the output data section with which this symbol is
171 // associated, if the symbol was specially defined with respect to
172 // an output data section.
173 Output_data*
174 output_data() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_DATA);
177 return this->u_.in_output_data.output_data;
178 }
179
180 // If this symbol was defined with respect to an output data
181 // section, return whether the value is an offset from end.
182 bool
183 offset_is_from_end() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_DATA);
186 return this->u_.in_output_data.offset_is_from_end;
187 }
188
189 // Return the output segment with which this symbol is associated,
190 // if the symbol was specially defined with respect to an output
191 // segment.
192 Output_segment*
193 output_segment() const
194 {
195 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
196 return this->u_.in_output_segment.output_segment;
197 }
198
199 // If this symbol was defined with respect to an output segment,
200 // return the offset base.
201 Segment_offset_base
202 offset_base() const
203 {
204 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
205 return this->u_.in_output_segment.offset_base;
206 }
207
208 // Return the symbol binding.
209 elfcpp::STB
210 binding() const
211 { return this->binding_; }
212
213 // Return the symbol type.
214 elfcpp::STT
215 type() const
216 { return this->type_; }
217
218 // Set the symbol type.
219 void
220 set_type(elfcpp::STT type)
221 { this->type_ = type; }
222
223 // Return true for function symbol.
224 bool
225 is_func() const
226 {
227 return (this->type_ == elfcpp::STT_FUNC
228 || this->type_ == elfcpp::STT_GNU_IFUNC);
229 }
230
231 // Return the symbol visibility.
232 elfcpp::STV
233 visibility() const
234 { return this->visibility_; }
235
236 // Set the visibility.
237 void
238 set_visibility(elfcpp::STV visibility)
239 { this->visibility_ = visibility; }
240
241 // Override symbol visibility.
242 void
243 override_visibility(elfcpp::STV);
244
245 // Set whether the symbol was originally a weak undef or a regular undef
246 // when resolved by a dynamic def or by a special symbol.
247 inline void
248 set_undef_binding(elfcpp::STB bind)
249 {
250 if (!this->undef_binding_set_ || this->undef_binding_weak_)
251 {
252 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
253 this->undef_binding_set_ = true;
254 }
255 }
256
257 // Return TRUE if a weak undef was resolved by a dynamic def or
258 // by a special symbol.
259 inline bool
260 is_undef_binding_weak() const
261 { return this->undef_binding_weak_; }
262
263 // Return the non-visibility part of the st_other field.
264 unsigned char
265 nonvis() const
266 { return this->nonvis_; }
267
268 // Set the non-visibility part of the st_other field.
269 void
270 set_nonvis(unsigned int nonvis)
271 { this->nonvis_ = nonvis; }
272
273 // Return whether this symbol is a forwarder. This will never be
274 // true of a symbol found in the hash table, but may be true of
275 // symbol pointers attached to object files.
276 bool
277 is_forwarder() const
278 { return this->is_forwarder_; }
279
280 // Mark this symbol as a forwarder.
281 void
282 set_forwarder()
283 { this->is_forwarder_ = true; }
284
285 // Return whether this symbol has an alias in the weak aliases table
286 // in Symbol_table.
287 bool
288 has_alias() const
289 { return this->has_alias_; }
290
291 // Mark this symbol as having an alias.
292 void
293 set_has_alias()
294 { this->has_alias_ = true; }
295
296 // Return whether this symbol needs an entry in the dynamic symbol
297 // table.
298 bool
299 needs_dynsym_entry() const
300 {
301 return (this->needs_dynsym_entry_
302 || (this->in_reg()
303 && this->in_dyn()
304 && this->is_externally_visible()));
305 }
306
307 // Mark this symbol as needing an entry in the dynamic symbol table.
308 void
309 set_needs_dynsym_entry()
310 { this->needs_dynsym_entry_ = true; }
311
312 // Return whether this symbol should be added to the dynamic symbol
313 // table.
314 bool
315 should_add_dynsym_entry(Symbol_table*) const;
316
317 // Return whether this symbol has been seen in a regular object.
318 bool
319 in_reg() const
320 { return this->in_reg_; }
321
322 // Mark this symbol as having been seen in a regular object.
323 void
324 set_in_reg()
325 { this->in_reg_ = true; }
326
327 // Return whether this symbol has been seen in a dynamic object.
328 bool
329 in_dyn() const
330 { return this->in_dyn_; }
331
332 // Mark this symbol as having been seen in a dynamic object.
333 void
334 set_in_dyn()
335 { this->in_dyn_ = true; }
336
337 // Return whether this symbol has been seen in a real ELF object.
338 // (IN_REG will return TRUE if the symbol has been seen in either
339 // a real ELF object or an object claimed by a plugin.)
340 bool
341 in_real_elf() const
342 { return this->in_real_elf_; }
343
344 // Mark this symbol as having been seen in a real ELF object.
345 void
346 set_in_real_elf()
347 { this->in_real_elf_ = true; }
348
349 // Return whether this symbol was defined in a section that was
350 // discarded from the link. This is used to control some error
351 // reporting.
352 bool
353 is_defined_in_discarded_section() const
354 { return this->is_defined_in_discarded_section_; }
355
356 // Mark this symbol as having been defined in a discarded section.
357 void
358 set_is_defined_in_discarded_section()
359 { this->is_defined_in_discarded_section_ = true; }
360
361 // Return the index of this symbol in the output file symbol table.
362 // A value of -1U means that this symbol is not going into the
363 // output file. This starts out as zero, and is set to a non-zero
364 // value by Symbol_table::finalize. It is an error to ask for the
365 // symbol table index before it has been set.
366 unsigned int
367 symtab_index() const
368 {
369 gold_assert(this->symtab_index_ != 0);
370 return this->symtab_index_;
371 }
372
373 // Set the index of the symbol in the output file symbol table.
374 void
375 set_symtab_index(unsigned int index)
376 {
377 gold_assert(index != 0);
378 this->symtab_index_ = index;
379 }
380
381 // Return whether this symbol already has an index in the output
382 // file symbol table.
383 bool
384 has_symtab_index() const
385 { return this->symtab_index_ != 0; }
386
387 // Return the index of this symbol in the dynamic symbol table. A
388 // value of -1U means that this symbol is not going into the dynamic
389 // symbol table. This starts out as zero, and is set to a non-zero
390 // during Layout::finalize. It is an error to ask for the dynamic
391 // symbol table index before it has been set.
392 unsigned int
393 dynsym_index() const
394 {
395 gold_assert(this->dynsym_index_ != 0);
396 return this->dynsym_index_;
397 }
398
399 // Set the index of the symbol in the dynamic symbol table.
400 void
401 set_dynsym_index(unsigned int index)
402 {
403 gold_assert(index != 0);
404 this->dynsym_index_ = index;
405 }
406
407 // Return whether this symbol already has an index in the dynamic
408 // symbol table.
409 bool
410 has_dynsym_index() const
411 { return this->dynsym_index_ != 0; }
412
413 // Return whether this symbol has an entry in the GOT section.
414 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
415 bool
416 has_got_offset(unsigned int got_type) const
417 { return this->got_offsets_.get_offset(got_type) != -1U; }
418
419 // Return the offset into the GOT section of this symbol.
420 unsigned int
421 got_offset(unsigned int got_type) const
422 {
423 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
424 gold_assert(got_offset != -1U);
425 return got_offset;
426 }
427
428 // Set the GOT offset of this symbol.
429 void
430 set_got_offset(unsigned int got_type, unsigned int got_offset)
431 { this->got_offsets_.set_offset(got_type, got_offset); }
432
433 // Return the GOT offset list.
434 const Got_offset_list*
435 got_offset_list() const
436 { return this->got_offsets_.get_list(); }
437
438 // Return whether this symbol has an entry in the PLT section.
439 bool
440 has_plt_offset() const
441 { return this->plt_offset_ != -1U; }
442
443 // Return the offset into the PLT section of this symbol.
444 unsigned int
445 plt_offset() const
446 {
447 gold_assert(this->has_plt_offset());
448 return this->plt_offset_;
449 }
450
451 // Set the PLT offset of this symbol.
452 void
453 set_plt_offset(unsigned int plt_offset)
454 {
455 gold_assert(plt_offset != -1U);
456 this->plt_offset_ = plt_offset;
457 }
458
459 // Return whether this dynamic symbol needs a special value in the
460 // dynamic symbol table.
461 bool
462 needs_dynsym_value() const
463 { return this->needs_dynsym_value_; }
464
465 // Set that this dynamic symbol needs a special value in the dynamic
466 // symbol table.
467 void
468 set_needs_dynsym_value()
469 {
470 gold_assert(this->object()->is_dynamic());
471 this->needs_dynsym_value_ = true;
472 }
473
474 // Return true if the final value of this symbol is known at link
475 // time.
476 bool
477 final_value_is_known() const;
478
479 // Return true if SHNDX represents a common symbol. This depends on
480 // the target.
481 static bool
482 is_common_shndx(unsigned int shndx);
483
484 // Return whether this is a defined symbol (not undefined or
485 // common).
486 bool
487 is_defined() const
488 {
489 bool is_ordinary;
490 if (this->source_ != FROM_OBJECT)
491 return this->source_ != IS_UNDEFINED;
492 unsigned int shndx = this->shndx(&is_ordinary);
493 return (is_ordinary
494 ? shndx != elfcpp::SHN_UNDEF
495 : !Symbol::is_common_shndx(shndx));
496 }
497
498 // Return true if this symbol is from a dynamic object.
499 bool
500 is_from_dynobj() const
501 {
502 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
503 }
504
505 // Return whether this is a placeholder symbol from a plugin object.
506 bool
507 is_placeholder() const
508 {
509 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
510 }
511
512 // Return whether this is an undefined symbol.
513 bool
514 is_undefined() const
515 {
516 bool is_ordinary;
517 return ((this->source_ == FROM_OBJECT
518 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
519 && is_ordinary)
520 || this->source_ == IS_UNDEFINED);
521 }
522
523 // Return whether this is a weak undefined symbol.
524 bool
525 is_weak_undefined() const
526 {
527 return (this->is_undefined()
528 && (this->binding() == elfcpp::STB_WEAK
529 || this->is_undef_binding_weak()
530 || parameters->options().weak_unresolved_symbols()));
531 }
532
533 // Return whether this is a strong undefined symbol.
534 bool
535 is_strong_undefined() const
536 {
537 return (this->is_undefined()
538 && this->binding() != elfcpp::STB_WEAK
539 && !this->is_undef_binding_weak()
540 && !parameters->options().weak_unresolved_symbols());
541 }
542
543 // Return whether this is an absolute symbol.
544 bool
545 is_absolute() const
546 {
547 bool is_ordinary;
548 return ((this->source_ == FROM_OBJECT
549 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
550 && !is_ordinary)
551 || this->source_ == IS_CONSTANT);
552 }
553
554 // Return whether this is a common symbol.
555 bool
556 is_common() const
557 {
558 if (this->source_ != FROM_OBJECT)
559 return false;
560 bool is_ordinary;
561 unsigned int shndx = this->shndx(&is_ordinary);
562 return !is_ordinary && Symbol::is_common_shndx(shndx);
563 }
564
565 // Return whether this symbol can be seen outside this object.
566 bool
567 is_externally_visible() const
568 {
569 return ((this->visibility_ == elfcpp::STV_DEFAULT
570 || this->visibility_ == elfcpp::STV_PROTECTED)
571 && !this->is_forced_local_);
572 }
573
574 // Return true if this symbol can be preempted by a definition in
575 // another link unit.
576 bool
577 is_preemptible() const
578 {
579 // It doesn't make sense to ask whether a symbol defined in
580 // another object is preemptible.
581 gold_assert(!this->is_from_dynobj());
582
583 // It doesn't make sense to ask whether an undefined symbol
584 // is preemptible.
585 gold_assert(!this->is_undefined());
586
587 // If a symbol does not have default visibility, it can not be
588 // seen outside this link unit and therefore is not preemptible.
589 if (this->visibility_ != elfcpp::STV_DEFAULT)
590 return false;
591
592 // If this symbol has been forced to be a local symbol by a
593 // version script, then it is not visible outside this link unit
594 // and is not preemptible.
595 if (this->is_forced_local_)
596 return false;
597
598 // If we are not producing a shared library, then nothing is
599 // preemptible.
600 if (!parameters->options().shared())
601 return false;
602
603 // If the symbol was named in a --dynamic-list script, it is preemptible.
604 if (parameters->options().in_dynamic_list(this->name()))
605 return true;
606
607 // If the user used -Bsymbolic, then nothing (else) is preemptible.
608 if (parameters->options().Bsymbolic())
609 return false;
610
611 // If the user used -Bsymbolic-functions, then functions are not
612 // preemptible. We explicitly check for not being STT_OBJECT,
613 // rather than for being STT_FUNC, because that is what the GNU
614 // linker does.
615 if (this->type() != elfcpp::STT_OBJECT
616 && parameters->options().Bsymbolic_functions())
617 return false;
618
619 // Otherwise the symbol is preemptible.
620 return true;
621 }
622
623 // Return true if this symbol is a function that needs a PLT entry.
624 bool
625 needs_plt_entry() const
626 {
627 // An undefined symbol from an executable does not need a PLT entry.
628 if (this->is_undefined() && !parameters->options().shared())
629 return false;
630
631 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
632 // doing a static link.
633 if (this->type() == elfcpp::STT_GNU_IFUNC)
634 return true;
635
636 // We only need a PLT entry for a function.
637 if (!this->is_func())
638 return false;
639
640 // If we're doing a static link or a -pie link, we don't create
641 // PLT entries.
642 if (parameters->doing_static_link()
643 || parameters->options().pie())
644 return false;
645
646 // We need a PLT entry if the function is defined in a dynamic
647 // object, or is undefined when building a shared object, or if it
648 // is subject to pre-emption.
649 return (this->is_from_dynobj()
650 || this->is_undefined()
651 || this->is_preemptible());
652 }
653
654 // When determining whether a reference to a symbol needs a dynamic
655 // relocation, we need to know several things about the reference.
656 // These flags may be or'ed together. 0 means that the symbol
657 // isn't referenced at all.
658 enum Reference_flags
659 {
660 // A reference to the symbol's absolute address. This includes
661 // references that cause an absolute address to be stored in the GOT.
662 ABSOLUTE_REF = 1,
663 // A reference that calculates the offset of the symbol from some
664 // anchor point, such as the PC or GOT.
665 RELATIVE_REF = 2,
666 // A TLS-related reference.
667 TLS_REF = 4,
668 // A reference that can always be treated as a function call.
669 FUNCTION_CALL = 8,
670 // When set, says that dynamic relocations are needed even if a
671 // symbol has a plt entry.
672 FUNC_DESC_ABI = 16,
673 };
674
675 // Given a direct absolute or pc-relative static relocation against
676 // the global symbol, this function returns whether a dynamic relocation
677 // is needed.
678
679 bool
680 needs_dynamic_reloc(int flags) const
681 {
682 // No dynamic relocations in a static link!
683 if (parameters->doing_static_link())
684 return false;
685
686 // A reference to an undefined symbol from an executable should be
687 // statically resolved to 0, and does not need a dynamic relocation.
688 // This matches gnu ld behavior.
689 if (this->is_undefined() && !parameters->options().shared())
690 return false;
691
692 // A reference to an absolute symbol does not need a dynamic relocation.
693 if (this->is_absolute())
694 return false;
695
696 // An absolute reference within a position-independent output file
697 // will need a dynamic relocation.
698 if ((flags & ABSOLUTE_REF)
699 && parameters->options().output_is_position_independent())
700 return true;
701
702 // A function call that can branch to a local PLT entry does not need
703 // a dynamic relocation.
704 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
705 return false;
706
707 // A reference to any PLT entry in a non-position-independent executable
708 // does not need a dynamic relocation.
709 if (!(flags & FUNC_DESC_ABI)
710 && !parameters->options().output_is_position_independent()
711 && this->has_plt_offset())
712 return false;
713
714 // A reference to a symbol defined in a dynamic object or to a
715 // symbol that is preemptible will need a dynamic relocation.
716 if (this->is_from_dynobj()
717 || this->is_undefined()
718 || this->is_preemptible())
719 return true;
720
721 // For all other cases, return FALSE.
722 return false;
723 }
724
725 // Whether we should use the PLT offset associated with a symbol for
726 // a relocation. FLAGS is a set of Reference_flags.
727
728 bool
729 use_plt_offset(int flags) const
730 {
731 // If the symbol doesn't have a PLT offset, then naturally we
732 // don't want to use it.
733 if (!this->has_plt_offset())
734 return false;
735
736 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
737 if (this->type() == elfcpp::STT_GNU_IFUNC)
738 return true;
739
740 // If we are going to generate a dynamic relocation, then we will
741 // wind up using that, so no need to use the PLT entry.
742 if (this->needs_dynamic_reloc(flags))
743 return false;
744
745 // If the symbol is from a dynamic object, we need to use the PLT
746 // entry.
747 if (this->is_from_dynobj())
748 return true;
749
750 // If we are generating a shared object, and this symbol is
751 // undefined or preemptible, we need to use the PLT entry.
752 if (parameters->options().shared()
753 && (this->is_undefined() || this->is_preemptible()))
754 return true;
755
756 // If this is a call to a weak undefined symbol, we need to use
757 // the PLT entry; the symbol may be defined by a library loaded
758 // at runtime.
759 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
760 return true;
761
762 // Otherwise we can use the regular definition.
763 return false;
764 }
765
766 // Given a direct absolute static relocation against
767 // the global symbol, where a dynamic relocation is needed, this
768 // function returns whether a relative dynamic relocation can be used.
769 // The caller must determine separately whether the static relocation
770 // is compatible with a relative relocation.
771
772 bool
773 can_use_relative_reloc(bool is_function_call) const
774 {
775 // A function call that can branch to a local PLT entry can
776 // use a RELATIVE relocation.
777 if (is_function_call && this->has_plt_offset())
778 return true;
779
780 // A reference to a symbol defined in a dynamic object or to a
781 // symbol that is preemptible can not use a RELATIVE relocation.
782 if (this->is_from_dynobj()
783 || this->is_undefined()
784 || this->is_preemptible())
785 return false;
786
787 // For all other cases, return TRUE.
788 return true;
789 }
790
791 // Return the output section where this symbol is defined. Return
792 // NULL if the symbol has an absolute value.
793 Output_section*
794 output_section() const;
795
796 // Set the symbol's output section. This is used for symbols
797 // defined in scripts. This should only be called after the symbol
798 // table has been finalized.
799 void
800 set_output_section(Output_section*);
801
802 // Set the symbol's output segment. This is used for pre-defined
803 // symbols whose segments aren't known until after layout is done
804 // (e.g., __ehdr_start).
805 void
806 set_output_segment(Output_segment*, Segment_offset_base);
807
808 // Set the symbol to undefined. This is used for pre-defined
809 // symbols whose segments aren't known until after layout is done
810 // (e.g., __ehdr_start).
811 void
812 set_undefined();
813
814 // Return whether there should be a warning for references to this
815 // symbol.
816 bool
817 has_warning() const
818 { return this->has_warning_; }
819
820 // Mark this symbol as having a warning.
821 void
822 set_has_warning()
823 { this->has_warning_ = true; }
824
825 // Return whether this symbol is defined by a COPY reloc from a
826 // dynamic object.
827 bool
828 is_copied_from_dynobj() const
829 { return this->is_copied_from_dynobj_; }
830
831 // Mark this symbol as defined by a COPY reloc.
832 void
833 set_is_copied_from_dynobj()
834 { this->is_copied_from_dynobj_ = true; }
835
836 // Return whether this symbol is forced to visibility STB_LOCAL
837 // by a "local:" entry in a version script.
838 bool
839 is_forced_local() const
840 { return this->is_forced_local_; }
841
842 // Mark this symbol as forced to STB_LOCAL visibility.
843 void
844 set_is_forced_local()
845 { this->is_forced_local_ = true; }
846
847 // Return true if this may need a COPY relocation.
848 // References from an executable object to non-function symbols
849 // defined in a dynamic object may need a COPY relocation.
850 bool
851 may_need_copy_reloc() const
852 {
853 return (parameters->options().copyreloc()
854 && this->is_from_dynobj()
855 && !this->is_func());
856 }
857
858 // Return true if this symbol was predefined by the linker.
859 bool
860 is_predefined() const
861 { return this->is_predefined_; }
862
863 // Return true if this is a C++ vtable symbol.
864 bool
865 is_cxx_vtable() const
866 { return is_prefix_of("_ZTV", this->name_); }
867
868 protected:
869 // Instances of this class should always be created at a specific
870 // size.
871 Symbol()
872 { memset(this, 0, sizeof *this); }
873
874 // Initialize the general fields.
875 void
876 init_fields(const char* name, const char* version,
877 elfcpp::STT type, elfcpp::STB binding,
878 elfcpp::STV visibility, unsigned char nonvis);
879
880 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
881 // section index, IS_ORDINARY is whether it is a normal section
882 // index rather than a special code.
883 template<int size, bool big_endian>
884 void
885 init_base_object(const char* name, const char* version, Object* object,
886 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
887 bool is_ordinary);
888
889 // Initialize fields for an Output_data.
890 void
891 init_base_output_data(const char* name, const char* version, Output_data*,
892 elfcpp::STT, elfcpp::STB, elfcpp::STV,
893 unsigned char nonvis, bool offset_is_from_end,
894 bool is_predefined);
895
896 // Initialize fields for an Output_segment.
897 void
898 init_base_output_segment(const char* name, const char* version,
899 Output_segment* os, elfcpp::STT type,
900 elfcpp::STB binding, elfcpp::STV visibility,
901 unsigned char nonvis,
902 Segment_offset_base offset_base,
903 bool is_predefined);
904
905 // Initialize fields for a constant.
906 void
907 init_base_constant(const char* name, const char* version, elfcpp::STT type,
908 elfcpp::STB binding, elfcpp::STV visibility,
909 unsigned char nonvis, bool is_predefined);
910
911 // Initialize fields for an undefined symbol.
912 void
913 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
914 elfcpp::STB binding, elfcpp::STV visibility,
915 unsigned char nonvis);
916
917 // Override existing symbol.
918 template<int size, bool big_endian>
919 void
920 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
921 bool is_ordinary, Object* object, const char* version);
922
923 // Override existing symbol with a special symbol.
924 void
925 override_base_with_special(const Symbol* from);
926
927 // Override symbol version.
928 void
929 override_version(const char* version);
930
931 // Allocate a common symbol by giving it a location in the output
932 // file.
933 void
934 allocate_base_common(Output_data*);
935
936 private:
937 Symbol(const Symbol&);
938 Symbol& operator=(const Symbol&);
939
940 // Symbol name (expected to point into a Stringpool).
941 const char* name_;
942 // Symbol version (expected to point into a Stringpool). This may
943 // be NULL.
944 const char* version_;
945
946 union
947 {
948 // This struct is used if SOURCE_ == FROM_OBJECT.
949 struct
950 {
951 // Object in which symbol is defined, or in which it was first
952 // seen.
953 Object* object;
954 // Section number in object_ in which symbol is defined.
955 unsigned int shndx;
956 } from_object;
957
958 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
959 struct
960 {
961 // Output_data in which symbol is defined. Before
962 // Layout::finalize the symbol's value is an offset within the
963 // Output_data.
964 Output_data* output_data;
965 // True if the offset is from the end, false if the offset is
966 // from the beginning.
967 bool offset_is_from_end;
968 } in_output_data;
969
970 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
971 struct
972 {
973 // Output_segment in which the symbol is defined. Before
974 // Layout::finalize the symbol's value is an offset.
975 Output_segment* output_segment;
976 // The base to use for the offset before Layout::finalize.
977 Segment_offset_base offset_base;
978 } in_output_segment;
979 } u_;
980
981 // The index of this symbol in the output file. If the symbol is
982 // not going into the output file, this value is -1U. This field
983 // starts as always holding zero. It is set to a non-zero value by
984 // Symbol_table::finalize.
985 unsigned int symtab_index_;
986
987 // The index of this symbol in the dynamic symbol table. If the
988 // symbol is not going into the dynamic symbol table, this value is
989 // -1U. This field starts as always holding zero. It is set to a
990 // non-zero value during Layout::finalize.
991 unsigned int dynsym_index_;
992
993 // The GOT section entries for this symbol. A symbol may have more
994 // than one GOT offset (e.g., when mixing modules compiled with two
995 // different TLS models), but will usually have at most one.
996 Got_offset_list got_offsets_;
997
998 // If this symbol has an entry in the PLT section, then this is the
999 // offset from the start of the PLT section. This is -1U if there
1000 // is no PLT entry.
1001 unsigned int plt_offset_;
1002
1003 // Symbol type (bits 0 to 3).
1004 elfcpp::STT type_ : 4;
1005 // Symbol binding (bits 4 to 7).
1006 elfcpp::STB binding_ : 4;
1007 // Symbol visibility (bits 8 to 9).
1008 elfcpp::STV visibility_ : 2;
1009 // Rest of symbol st_other field (bits 10 to 15).
1010 unsigned int nonvis_ : 6;
1011 // The type of symbol (bits 16 to 18).
1012 Source source_ : 3;
1013 // True if this is the default version of the symbol (bit 19).
1014 bool is_def_ : 1;
1015 // True if this symbol really forwards to another symbol. This is
1016 // used when we discover after the fact that two different entries
1017 // in the hash table really refer to the same symbol. This will
1018 // never be set for a symbol found in the hash table, but may be set
1019 // for a symbol found in the list of symbols attached to an Object.
1020 // It forwards to the symbol found in the forwarders_ map of
1021 // Symbol_table (bit 20).
1022 bool is_forwarder_ : 1;
1023 // True if the symbol has an alias in the weak_aliases table in
1024 // Symbol_table (bit 21).
1025 bool has_alias_ : 1;
1026 // True if this symbol needs to be in the dynamic symbol table (bit
1027 // 22).
1028 bool needs_dynsym_entry_ : 1;
1029 // True if we've seen this symbol in a regular object (bit 23).
1030 bool in_reg_ : 1;
1031 // True if we've seen this symbol in a dynamic object (bit 24).
1032 bool in_dyn_ : 1;
1033 // True if this is a dynamic symbol which needs a special value in
1034 // the dynamic symbol table (bit 25).
1035 bool needs_dynsym_value_ : 1;
1036 // True if there is a warning for this symbol (bit 26).
1037 bool has_warning_ : 1;
1038 // True if we are using a COPY reloc for this symbol, so that the
1039 // real definition lives in a dynamic object (bit 27).
1040 bool is_copied_from_dynobj_ : 1;
1041 // True if this symbol was forced to local visibility by a version
1042 // script (bit 28).
1043 bool is_forced_local_ : 1;
1044 // True if the field u_.from_object.shndx is an ordinary section
1045 // index, not one of the special codes from SHN_LORESERVE to
1046 // SHN_HIRESERVE (bit 29).
1047 bool is_ordinary_shndx_ : 1;
1048 // True if we've seen this symbol in a "real" ELF object (bit 30).
1049 // If the symbol has been seen in a relocatable, non-IR, object file,
1050 // it's known to be referenced from outside the IR. A reference from
1051 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1052 // mark the symbol as "visible" from outside the IR. The compiler
1053 // can use this distinction to guide its handling of COMDAT symbols.
1054 bool in_real_elf_ : 1;
1055 // True if this symbol is defined in a section which was discarded
1056 // (bit 31).
1057 bool is_defined_in_discarded_section_ : 1;
1058 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1059 bool undef_binding_set_ : 1;
1060 // True if this symbol was a weak undef resolved by a dynamic def
1061 // or by a special symbol (bit 33).
1062 bool undef_binding_weak_ : 1;
1063 // True if this symbol is a predefined linker symbol (bit 34).
1064 bool is_predefined_ : 1;
1065 };
1066
1067 // The parts of a symbol which are size specific. Using a template
1068 // derived class like this helps us use less space on a 32-bit system.
1069
1070 template<int size>
1071 class Sized_symbol : public Symbol
1072 {
1073 public:
1074 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1075 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1076
1077 Sized_symbol()
1078 { }
1079
1080 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1081 // section index, IS_ORDINARY is whether it is a normal section
1082 // index rather than a special code.
1083 template<bool big_endian>
1084 void
1085 init_object(const char* name, const char* version, Object* object,
1086 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1087 bool is_ordinary);
1088
1089 // Initialize fields for an Output_data.
1090 void
1091 init_output_data(const char* name, const char* version, Output_data*,
1092 Value_type value, Size_type symsize, elfcpp::STT,
1093 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1094 bool offset_is_from_end, bool is_predefined);
1095
1096 // Initialize fields for an Output_segment.
1097 void
1098 init_output_segment(const char* name, const char* version, Output_segment*,
1099 Value_type value, Size_type symsize, elfcpp::STT,
1100 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1101 Segment_offset_base offset_base, bool is_predefined);
1102
1103 // Initialize fields for a constant.
1104 void
1105 init_constant(const char* name, const char* version, Value_type value,
1106 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1107 unsigned char nonvis, bool is_predefined);
1108
1109 // Initialize fields for an undefined symbol.
1110 void
1111 init_undefined(const char* name, const char* version, elfcpp::STT,
1112 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1113
1114 // Override existing symbol.
1115 template<bool big_endian>
1116 void
1117 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1118 bool is_ordinary, Object* object, const char* version);
1119
1120 // Override existing symbol with a special symbol.
1121 void
1122 override_with_special(const Sized_symbol<size>*);
1123
1124 // Return the symbol's value.
1125 Value_type
1126 value() const
1127 { return this->value_; }
1128
1129 // Return the symbol's size (we can't call this 'size' because that
1130 // is a template parameter).
1131 Size_type
1132 symsize() const
1133 { return this->symsize_; }
1134
1135 // Set the symbol size. This is used when resolving common symbols.
1136 void
1137 set_symsize(Size_type symsize)
1138 { this->symsize_ = symsize; }
1139
1140 // Set the symbol value. This is called when we store the final
1141 // values of the symbols into the symbol table.
1142 void
1143 set_value(Value_type value)
1144 { this->value_ = value; }
1145
1146 // Allocate a common symbol by giving it a location in the output
1147 // file.
1148 void
1149 allocate_common(Output_data*, Value_type value);
1150
1151 private:
1152 Sized_symbol(const Sized_symbol&);
1153 Sized_symbol& operator=(const Sized_symbol&);
1154
1155 // Symbol value. Before Layout::finalize this is the offset in the
1156 // input section. This is set to the final value during
1157 // Layout::finalize.
1158 Value_type value_;
1159 // Symbol size.
1160 Size_type symsize_;
1161 };
1162
1163 // A struct describing a symbol defined by the linker, where the value
1164 // of the symbol is defined based on an output section. This is used
1165 // for symbols defined by the linker, like "_init_array_start".
1166
1167 struct Define_symbol_in_section
1168 {
1169 // The symbol name.
1170 const char* name;
1171 // The name of the output section with which this symbol should be
1172 // associated. If there is no output section with that name, the
1173 // symbol will be defined as zero.
1174 const char* output_section;
1175 // The offset of the symbol within the output section. This is an
1176 // offset from the start of the output section, unless start_at_end
1177 // is true, in which case this is an offset from the end of the
1178 // output section.
1179 uint64_t value;
1180 // The size of the symbol.
1181 uint64_t size;
1182 // The symbol type.
1183 elfcpp::STT type;
1184 // The symbol binding.
1185 elfcpp::STB binding;
1186 // The symbol visibility.
1187 elfcpp::STV visibility;
1188 // The rest of the st_other field.
1189 unsigned char nonvis;
1190 // If true, the value field is an offset from the end of the output
1191 // section.
1192 bool offset_is_from_end;
1193 // If true, this symbol is defined only if we see a reference to it.
1194 bool only_if_ref;
1195 };
1196
1197 // A struct describing a symbol defined by the linker, where the value
1198 // of the symbol is defined based on a segment. This is used for
1199 // symbols defined by the linker, like "_end". We describe the
1200 // segment with which the symbol should be associated by its
1201 // characteristics. If no segment meets these characteristics, the
1202 // symbol will be defined as zero. If there is more than one segment
1203 // which meets these characteristics, we will use the first one.
1204
1205 struct Define_symbol_in_segment
1206 {
1207 // The symbol name.
1208 const char* name;
1209 // The segment type where the symbol should be defined, typically
1210 // PT_LOAD.
1211 elfcpp::PT segment_type;
1212 // Bitmask of segment flags which must be set.
1213 elfcpp::PF segment_flags_set;
1214 // Bitmask of segment flags which must be clear.
1215 elfcpp::PF segment_flags_clear;
1216 // The offset of the symbol within the segment. The offset is
1217 // calculated from the position set by offset_base.
1218 uint64_t value;
1219 // The size of the symbol.
1220 uint64_t size;
1221 // The symbol type.
1222 elfcpp::STT type;
1223 // The symbol binding.
1224 elfcpp::STB binding;
1225 // The symbol visibility.
1226 elfcpp::STV visibility;
1227 // The rest of the st_other field.
1228 unsigned char nonvis;
1229 // The base from which we compute the offset.
1230 Symbol::Segment_offset_base offset_base;
1231 // If true, this symbol is defined only if we see a reference to it.
1232 bool only_if_ref;
1233 };
1234
1235 // Specify an object/section/offset location. Used by ODR code.
1236
1237 struct Symbol_location
1238 {
1239 // Object where the symbol is defined.
1240 Object* object;
1241 // Section-in-object where the symbol is defined.
1242 unsigned int shndx;
1243 // For relocatable objects, offset-in-section where the symbol is defined.
1244 // For dynamic objects, address where the symbol is defined.
1245 off_t offset;
1246 bool operator==(const Symbol_location& that) const
1247 {
1248 return (this->object == that.object
1249 && this->shndx == that.shndx
1250 && this->offset == that.offset);
1251 }
1252 };
1253
1254 // This class manages warnings. Warnings are a GNU extension. When
1255 // we see a section named .gnu.warning.SYM in an object file, and if
1256 // we wind using the definition of SYM from that object file, then we
1257 // will issue a warning for any relocation against SYM from a
1258 // different object file. The text of the warning is the contents of
1259 // the section. This is not precisely the definition used by the old
1260 // GNU linker; the old GNU linker treated an occurrence of
1261 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1262 // would trigger a warning on any reference. However, it was
1263 // inconsistent in that a warning in a dynamic object only triggered
1264 // if there was no definition in a regular object. This linker is
1265 // different in that we only issue a warning if we use the symbol
1266 // definition from the same object file as the warning section.
1267
1268 class Warnings
1269 {
1270 public:
1271 Warnings()
1272 : warnings_()
1273 { }
1274
1275 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1276 // of the warning.
1277 void
1278 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1279 const std::string& warning);
1280
1281 // For each symbol for which we should give a warning, make a note
1282 // on the symbol.
1283 void
1284 note_warnings(Symbol_table* symtab);
1285
1286 // Issue a warning for a reference to SYM at RELINFO's location.
1287 template<int size, bool big_endian>
1288 void
1289 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1290 size_t relnum, off_t reloffset) const;
1291
1292 private:
1293 Warnings(const Warnings&);
1294 Warnings& operator=(const Warnings&);
1295
1296 // What we need to know to get the warning text.
1297 struct Warning_location
1298 {
1299 // The object the warning is in.
1300 Object* object;
1301 // The warning text.
1302 std::string text;
1303
1304 Warning_location()
1305 : object(NULL), text()
1306 { }
1307
1308 void
1309 set(Object* o, const std::string& t)
1310 {
1311 this->object = o;
1312 this->text = t;
1313 }
1314 };
1315
1316 // A mapping from warning symbol names (canonicalized in
1317 // Symbol_table's namepool_ field) to warning information.
1318 typedef Unordered_map<const char*, Warning_location> Warning_table;
1319
1320 Warning_table warnings_;
1321 };
1322
1323 // The main linker symbol table.
1324
1325 class Symbol_table
1326 {
1327 public:
1328 // The different places where a symbol definition can come from.
1329 enum Defined
1330 {
1331 // Defined in an object file--the normal case.
1332 OBJECT,
1333 // Defined for a COPY reloc.
1334 COPY,
1335 // Defined on the command line using --defsym.
1336 DEFSYM,
1337 // Defined (so to speak) on the command line using -u.
1338 UNDEFINED,
1339 // Defined in a linker script.
1340 SCRIPT,
1341 // Predefined by the linker.
1342 PREDEFINED,
1343 // Defined by the linker during an incremental base link, but not
1344 // a predefined symbol (e.g., common, defined in script).
1345 INCREMENTAL_BASE,
1346 };
1347
1348 // The order in which we sort common symbols.
1349 enum Sort_commons_order
1350 {
1351 SORT_COMMONS_BY_SIZE_DESCENDING,
1352 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1353 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1354 };
1355
1356 // COUNT is an estimate of how many symbols will be inserted in the
1357 // symbol table. It's ok to put 0 if you don't know; a correct
1358 // guess will just save some CPU by reducing hashtable resizes.
1359 Symbol_table(unsigned int count, const Version_script_info& version_script);
1360
1361 ~Symbol_table();
1362
1363 void
1364 set_icf(Icf* icf)
1365 { this->icf_ = icf;}
1366
1367 Icf*
1368 icf() const
1369 { return this->icf_; }
1370
1371 // Returns true if ICF determined that this is a duplicate section.
1372 bool
1373 is_section_folded(Relobj* obj, unsigned int shndx) const;
1374
1375 void
1376 set_gc(Garbage_collection* gc)
1377 { this->gc_ = gc; }
1378
1379 Garbage_collection*
1380 gc() const
1381 { return this->gc_; }
1382
1383 // During garbage collection, this keeps undefined symbols.
1384 void
1385 gc_mark_undef_symbols(Layout*);
1386
1387 // This tells garbage collection that this symbol is referenced.
1388 void
1389 gc_mark_symbol(Symbol* sym);
1390
1391 // During garbage collection, this keeps sections that correspond to
1392 // symbols seen in dynamic objects.
1393 inline void
1394 gc_mark_dyn_syms(Symbol* sym);
1395
1396 // Add COUNT external symbols from the relocatable object RELOBJ to
1397 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1398 // offset in the symbol table of the first symbol, SYM_NAMES is
1399 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1400 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1401 // *DEFINED to the number of defined symbols.
1402 template<int size, bool big_endian>
1403 void
1404 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1405 const unsigned char* syms, size_t count,
1406 size_t symndx_offset, const char* sym_names,
1407 size_t sym_name_size,
1408 typename Sized_relobj_file<size, big_endian>::Symbols*,
1409 size_t* defined);
1410
1411 // Add one external symbol from the plugin object OBJ to the symbol table.
1412 // Returns a pointer to the resolved symbol in the symbol table.
1413 template<int size, bool big_endian>
1414 Symbol*
1415 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1416 const char* name, const char* ver,
1417 elfcpp::Sym<size, big_endian>* sym);
1418
1419 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1420 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1421 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1422 // symbol version data.
1423 template<int size, bool big_endian>
1424 void
1425 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1426 const unsigned char* syms, size_t count,
1427 const char* sym_names, size_t sym_name_size,
1428 const unsigned char* versym, size_t versym_size,
1429 const std::vector<const char*>*,
1430 typename Sized_relobj_file<size, big_endian>::Symbols*,
1431 size_t* defined);
1432
1433 // Add one external symbol from the incremental object OBJ to the symbol
1434 // table. Returns a pointer to the resolved symbol in the symbol table.
1435 template<int size, bool big_endian>
1436 Sized_symbol<size>*
1437 add_from_incrobj(Object* obj, const char* name,
1438 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1439
1440 // Define a special symbol based on an Output_data. It is a
1441 // multiple definition error if this symbol is already defined.
1442 Symbol*
1443 define_in_output_data(const char* name, const char* version, Defined,
1444 Output_data*, uint64_t value, uint64_t symsize,
1445 elfcpp::STT type, elfcpp::STB binding,
1446 elfcpp::STV visibility, unsigned char nonvis,
1447 bool offset_is_from_end, bool only_if_ref);
1448
1449 // Define a special symbol based on an Output_segment. It is a
1450 // multiple definition error if this symbol is already defined.
1451 Symbol*
1452 define_in_output_segment(const char* name, const char* version, Defined,
1453 Output_segment*, uint64_t value, uint64_t symsize,
1454 elfcpp::STT type, elfcpp::STB binding,
1455 elfcpp::STV visibility, unsigned char nonvis,
1456 Symbol::Segment_offset_base, bool only_if_ref);
1457
1458 // Define a special symbol with a constant value. It is a multiple
1459 // definition error if this symbol is already defined.
1460 Symbol*
1461 define_as_constant(const char* name, const char* version, Defined,
1462 uint64_t value, uint64_t symsize, elfcpp::STT type,
1463 elfcpp::STB binding, elfcpp::STV visibility,
1464 unsigned char nonvis, bool only_if_ref,
1465 bool force_override);
1466
1467 // Define a set of symbols in output sections. If ONLY_IF_REF is
1468 // true, only define them if they are referenced.
1469 void
1470 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1471 bool only_if_ref);
1472
1473 // Define a set of symbols in output segments. If ONLY_IF_REF is
1474 // true, only defined them if they are referenced.
1475 void
1476 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1477 bool only_if_ref);
1478
1479 // Define SYM using a COPY reloc. POSD is the Output_data where the
1480 // symbol should be defined--typically a .dyn.bss section. VALUE is
1481 // the offset within POSD.
1482 template<int size>
1483 void
1484 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1485 typename elfcpp::Elf_types<size>::Elf_Addr);
1486
1487 // Look up a symbol.
1488 Symbol*
1489 lookup(const char*, const char* version = NULL) const;
1490
1491 // Return the real symbol associated with the forwarder symbol FROM.
1492 Symbol*
1493 resolve_forwards(const Symbol* from) const;
1494
1495 // Return the sized version of a symbol in this table.
1496 template<int size>
1497 Sized_symbol<size>*
1498 get_sized_symbol(Symbol*) const;
1499
1500 template<int size>
1501 const Sized_symbol<size>*
1502 get_sized_symbol(const Symbol*) const;
1503
1504 // Return the count of undefined symbols seen.
1505 size_t
1506 saw_undefined() const
1507 { return this->saw_undefined_; }
1508
1509 // Allocate the common symbols
1510 void
1511 allocate_commons(Layout*, Mapfile*);
1512
1513 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1514 // of the warning.
1515 void
1516 add_warning(const char* name, Object* obj, const std::string& warning)
1517 { this->warnings_.add_warning(this, name, obj, warning); }
1518
1519 // Canonicalize a symbol name for use in the hash table.
1520 const char*
1521 canonicalize_name(const char* name)
1522 { return this->namepool_.add(name, true, NULL); }
1523
1524 // Possibly issue a warning for a reference to SYM at LOCATION which
1525 // is in OBJ.
1526 template<int size, bool big_endian>
1527 void
1528 issue_warning(const Symbol* sym,
1529 const Relocate_info<size, big_endian>* relinfo,
1530 size_t relnum, off_t reloffset) const
1531 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1532
1533 // Check candidate_odr_violations_ to find symbols with the same name
1534 // but apparently different definitions (different source-file/line-no).
1535 void
1536 detect_odr_violations(const Task*, const char* output_file_name) const;
1537
1538 // Add any undefined symbols named on the command line to the symbol
1539 // table.
1540 void
1541 add_undefined_symbols_from_command_line(Layout*);
1542
1543 // SYM is defined using a COPY reloc. Return the dynamic object
1544 // where the original definition was found.
1545 Dynobj*
1546 get_copy_source(const Symbol* sym) const;
1547
1548 // Set the dynamic symbol indexes. INDEX is the index of the first
1549 // global dynamic symbol. Pointers to the symbols are stored into
1550 // the vector. The names are stored into the Stringpool. This
1551 // returns an updated dynamic symbol index.
1552 unsigned int
1553 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1554 Stringpool*, Versions*);
1555
1556 // Finalize the symbol table after we have set the final addresses
1557 // of all the input sections. This sets the final symbol indexes,
1558 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1559 // index of the first global symbol. OFF is the file offset of the
1560 // global symbol table, DYNOFF is the offset of the globals in the
1561 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1562 // global dynamic symbol, and DYNCOUNT is the number of global
1563 // dynamic symbols. This records the parameters, and returns the
1564 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1565 // local symbols.
1566 off_t
1567 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1568 Stringpool* pool, unsigned int* plocal_symcount);
1569
1570 // Set the final file offset of the symbol table.
1571 void
1572 set_file_offset(off_t off)
1573 { this->offset_ = off; }
1574
1575 // Status code of Symbol_table::compute_final_value.
1576 enum Compute_final_value_status
1577 {
1578 // No error.
1579 CFVS_OK,
1580 // Unsupported symbol section.
1581 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1582 // No output section.
1583 CFVS_NO_OUTPUT_SECTION
1584 };
1585
1586 // Compute the final value of SYM and store status in location PSTATUS.
1587 // During relaxation, this may be called multiple times for a symbol to
1588 // compute its would-be final value in each relaxation pass.
1589
1590 template<int size>
1591 typename Sized_symbol<size>::Value_type
1592 compute_final_value(const Sized_symbol<size>* sym,
1593 Compute_final_value_status* pstatus) const;
1594
1595 // Return the index of the first global symbol.
1596 unsigned int
1597 first_global_index() const
1598 { return this->first_global_index_; }
1599
1600 // Return the total number of symbols in the symbol table.
1601 unsigned int
1602 output_count() const
1603 { return this->output_count_; }
1604
1605 // Write out the global symbols.
1606 void
1607 write_globals(const Stringpool*, const Stringpool*,
1608 Output_symtab_xindex*, Output_symtab_xindex*,
1609 Output_file*) const;
1610
1611 // Write out a section symbol. Return the updated offset.
1612 void
1613 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1614 Output_file*, off_t) const;
1615
1616 // Loop over all symbols, applying the function F to each.
1617 template<int size, typename F>
1618 void
1619 for_all_symbols(F f) const
1620 {
1621 for (Symbol_table_type::const_iterator p = this->table_.begin();
1622 p != this->table_.end();
1623 ++p)
1624 {
1625 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1626 f(sym);
1627 }
1628 }
1629
1630 // Dump statistical information to stderr.
1631 void
1632 print_stats() const;
1633
1634 // Return the version script information.
1635 const Version_script_info&
1636 version_script() const
1637 { return version_script_; }
1638
1639 private:
1640 Symbol_table(const Symbol_table&);
1641 Symbol_table& operator=(const Symbol_table&);
1642
1643 // The type of the list of common symbols.
1644 typedef std::vector<Symbol*> Commons_type;
1645
1646 // The type of the symbol hash table.
1647
1648 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1649
1650 // The hash function. The key values are Stringpool keys.
1651 struct Symbol_table_hash
1652 {
1653 inline size_t
1654 operator()(const Symbol_table_key& key) const
1655 {
1656 return key.first ^ key.second;
1657 }
1658 };
1659
1660 struct Symbol_table_eq
1661 {
1662 bool
1663 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1664 };
1665
1666 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1667 Symbol_table_eq> Symbol_table_type;
1668
1669 // A map from symbol name (as a pointer into the namepool) to all
1670 // the locations the symbols is (weakly) defined (and certain other
1671 // conditions are met). This map will be used later to detect
1672 // possible One Definition Rule (ODR) violations.
1673 struct Symbol_location_hash
1674 {
1675 size_t operator()(const Symbol_location& loc) const
1676 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1677 };
1678
1679 typedef Unordered_map<const char*,
1680 Unordered_set<Symbol_location, Symbol_location_hash> >
1681 Odr_map;
1682
1683 // Make FROM a forwarder symbol to TO.
1684 void
1685 make_forwarder(Symbol* from, Symbol* to);
1686
1687 // Add a symbol.
1688 template<int size, bool big_endian>
1689 Sized_symbol<size>*
1690 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1691 const char* version, Stringpool::Key version_key,
1692 bool def, const elfcpp::Sym<size, big_endian>& sym,
1693 unsigned int st_shndx, bool is_ordinary,
1694 unsigned int orig_st_shndx);
1695
1696 // Define a default symbol.
1697 template<int size, bool big_endian>
1698 void
1699 define_default_version(Sized_symbol<size>*, bool,
1700 Symbol_table_type::iterator);
1701
1702 // Resolve symbols.
1703 template<int size, bool big_endian>
1704 void
1705 resolve(Sized_symbol<size>* to,
1706 const elfcpp::Sym<size, big_endian>& sym,
1707 unsigned int st_shndx, bool is_ordinary,
1708 unsigned int orig_st_shndx,
1709 Object*, const char* version);
1710
1711 template<int size, bool big_endian>
1712 void
1713 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1714
1715 // Record that a symbol is forced to be local by a version script or
1716 // by visibility.
1717 void
1718 force_local(Symbol*);
1719
1720 // Adjust NAME and *NAME_KEY for wrapping.
1721 const char*
1722 wrap_symbol(const char* name, Stringpool::Key* name_key);
1723
1724 // Whether we should override a symbol, based on flags in
1725 // resolve.cc.
1726 static bool
1727 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1728 Object*, bool*, bool*);
1729
1730 // Report a problem in symbol resolution.
1731 static void
1732 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1733 Defined, Object* object);
1734
1735 // Override a symbol.
1736 template<int size, bool big_endian>
1737 void
1738 override(Sized_symbol<size>* tosym,
1739 const elfcpp::Sym<size, big_endian>& fromsym,
1740 unsigned int st_shndx, bool is_ordinary,
1741 Object* object, const char* version);
1742
1743 // Whether we should override a symbol with a special symbol which
1744 // is automatically defined by the linker.
1745 static bool
1746 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1747
1748 // Override a symbol with a special symbol.
1749 template<int size>
1750 void
1751 override_with_special(Sized_symbol<size>* tosym,
1752 const Sized_symbol<size>* fromsym);
1753
1754 // Record all weak alias sets for a dynamic object.
1755 template<int size>
1756 void
1757 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1758
1759 // Define a special symbol.
1760 template<int size, bool big_endian>
1761 Sized_symbol<size>*
1762 define_special_symbol(const char** pname, const char** pversion,
1763 bool only_if_ref, Sized_symbol<size>** poldsym,
1764 bool* resolve_oldsym);
1765
1766 // Define a symbol in an Output_data, sized version.
1767 template<int size>
1768 Sized_symbol<size>*
1769 do_define_in_output_data(const char* name, const char* version, Defined,
1770 Output_data*,
1771 typename elfcpp::Elf_types<size>::Elf_Addr value,
1772 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1773 elfcpp::STT type, elfcpp::STB binding,
1774 elfcpp::STV visibility, unsigned char nonvis,
1775 bool offset_is_from_end, bool only_if_ref);
1776
1777 // Define a symbol in an Output_segment, sized version.
1778 template<int size>
1779 Sized_symbol<size>*
1780 do_define_in_output_segment(
1781 const char* name, const char* version, Defined, Output_segment* os,
1782 typename elfcpp::Elf_types<size>::Elf_Addr value,
1783 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1784 elfcpp::STT type, elfcpp::STB binding,
1785 elfcpp::STV visibility, unsigned char nonvis,
1786 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1787
1788 // Define a symbol as a constant, sized version.
1789 template<int size>
1790 Sized_symbol<size>*
1791 do_define_as_constant(
1792 const char* name, const char* version, Defined,
1793 typename elfcpp::Elf_types<size>::Elf_Addr value,
1794 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1795 elfcpp::STT type, elfcpp::STB binding,
1796 elfcpp::STV visibility, unsigned char nonvis,
1797 bool only_if_ref, bool force_override);
1798
1799 // Add any undefined symbols named on the command line to the symbol
1800 // table, sized version.
1801 template<int size>
1802 void
1803 do_add_undefined_symbols_from_command_line(Layout*);
1804
1805 // Add one undefined symbol.
1806 template<int size>
1807 void
1808 add_undefined_symbol_from_command_line(const char* name);
1809
1810 // Types of common symbols.
1811
1812 enum Commons_section_type
1813 {
1814 COMMONS_NORMAL,
1815 COMMONS_TLS,
1816 COMMONS_SMALL,
1817 COMMONS_LARGE
1818 };
1819
1820 // Allocate the common symbols, sized version.
1821 template<int size>
1822 void
1823 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1824
1825 // Allocate the common symbols from one list.
1826 template<int size>
1827 void
1828 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1829 Mapfile*, Sort_commons_order);
1830
1831 // Returns all of the lines attached to LOC, not just the one the
1832 // instruction actually came from. This helps the ODR checker avoid
1833 // false positives.
1834 static std::vector<std::string>
1835 linenos_from_loc(const Task* task, const Symbol_location& loc);
1836
1837 // Implement detect_odr_violations.
1838 template<int size, bool big_endian>
1839 void
1840 sized_detect_odr_violations() const;
1841
1842 // Finalize symbols specialized for size.
1843 template<int size>
1844 off_t
1845 sized_finalize(off_t, Stringpool*, unsigned int*);
1846
1847 // Finalize a symbol. Return whether it should be added to the
1848 // symbol table.
1849 template<int size>
1850 bool
1851 sized_finalize_symbol(Symbol*);
1852
1853 // Add a symbol the final symtab by setting its index.
1854 template<int size>
1855 void
1856 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1857
1858 // Write globals specialized for size and endianness.
1859 template<int size, bool big_endian>
1860 void
1861 sized_write_globals(const Stringpool*, const Stringpool*,
1862 Output_symtab_xindex*, Output_symtab_xindex*,
1863 Output_file*) const;
1864
1865 // Write out a symbol to P.
1866 template<int size, bool big_endian>
1867 void
1868 sized_write_symbol(Sized_symbol<size>*,
1869 typename elfcpp::Elf_types<size>::Elf_Addr value,
1870 unsigned int shndx, elfcpp::STB,
1871 const Stringpool*, unsigned char* p) const;
1872
1873 // Possibly warn about an undefined symbol from a dynamic object.
1874 void
1875 warn_about_undefined_dynobj_symbol(Symbol*) const;
1876
1877 // Write out a section symbol, specialized for size and endianness.
1878 template<int size, bool big_endian>
1879 void
1880 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1881 Output_file*, off_t) const;
1882
1883 // The type of the list of symbols which have been forced local.
1884 typedef std::vector<Symbol*> Forced_locals;
1885
1886 // A map from symbols with COPY relocs to the dynamic objects where
1887 // they are defined.
1888 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1889
1890 // We increment this every time we see a new undefined symbol, for
1891 // use in archive groups.
1892 size_t saw_undefined_;
1893 // The index of the first global symbol in the output file.
1894 unsigned int first_global_index_;
1895 // The file offset within the output symtab section where we should
1896 // write the table.
1897 off_t offset_;
1898 // The number of global symbols we want to write out.
1899 unsigned int output_count_;
1900 // The file offset of the global dynamic symbols, or 0 if none.
1901 off_t dynamic_offset_;
1902 // The index of the first global dynamic symbol.
1903 unsigned int first_dynamic_global_index_;
1904 // The number of global dynamic symbols, or 0 if none.
1905 unsigned int dynamic_count_;
1906 // The symbol hash table.
1907 Symbol_table_type table_;
1908 // A pool of symbol names. This is used for all global symbols.
1909 // Entries in the hash table point into this pool.
1910 Stringpool namepool_;
1911 // Forwarding symbols.
1912 Unordered_map<const Symbol*, Symbol*> forwarders_;
1913 // Weak aliases. A symbol in this list points to the next alias.
1914 // The aliases point to each other in a circular list.
1915 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1916 // We don't expect there to be very many common symbols, so we keep
1917 // a list of them. When we find a common symbol we add it to this
1918 // list. It is possible that by the time we process the list the
1919 // symbol is no longer a common symbol. It may also have become a
1920 // forwarder.
1921 Commons_type commons_;
1922 // This is like the commons_ field, except that it holds TLS common
1923 // symbols.
1924 Commons_type tls_commons_;
1925 // This is for small common symbols.
1926 Commons_type small_commons_;
1927 // This is for large common symbols.
1928 Commons_type large_commons_;
1929 // A list of symbols which have been forced to be local. We don't
1930 // expect there to be very many of them, so we keep a list of them
1931 // rather than walking the whole table to find them.
1932 Forced_locals forced_locals_;
1933 // Manage symbol warnings.
1934 Warnings warnings_;
1935 // Manage potential One Definition Rule (ODR) violations.
1936 Odr_map candidate_odr_violations_;
1937
1938 // When we emit a COPY reloc for a symbol, we define it in an
1939 // Output_data. When it's time to emit version information for it,
1940 // we need to know the dynamic object in which we found the original
1941 // definition. This maps symbols with COPY relocs to the dynamic
1942 // object where they were defined.
1943 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1944 // Information parsed from the version script, if any.
1945 const Version_script_info& version_script_;
1946 Garbage_collection* gc_;
1947 Icf* icf_;
1948 };
1949
1950 // We inline get_sized_symbol for efficiency.
1951
1952 template<int size>
1953 Sized_symbol<size>*
1954 Symbol_table::get_sized_symbol(Symbol* sym) const
1955 {
1956 gold_assert(size == parameters->target().get_size());
1957 return static_cast<Sized_symbol<size>*>(sym);
1958 }
1959
1960 template<int size>
1961 const Sized_symbol<size>*
1962 Symbol_table::get_sized_symbol(const Symbol* sym) const
1963 {
1964 gold_assert(size == parameters->target().get_size());
1965 return static_cast<const Sized_symbol<size>*>(sym);
1966 }
1967
1968 } // End namespace gold.
1969
1970 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.067452 seconds and 5 git commands to generate.