Fix handling of __ehdr_start when it cannot be defined.
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Return the symbol's name as name@version (or name@@version).
144 std::string
145 versioned_name() const;
146
147 // Return the symbol source.
148 Source
149 source() const
150 { return this->source_; }
151
152 // Return the object with which this symbol is associated.
153 Object*
154 object() const
155 {
156 gold_assert(this->source_ == FROM_OBJECT);
157 return this->u_.from_object.object;
158 }
159
160 // Return the index of the section in the input relocatable or
161 // dynamic object file.
162 unsigned int
163 shndx(bool* is_ordinary) const
164 {
165 gold_assert(this->source_ == FROM_OBJECT);
166 *is_ordinary = this->is_ordinary_shndx_;
167 return this->u_.from_object.shndx;
168 }
169
170 // Return the output data section with which this symbol is
171 // associated, if the symbol was specially defined with respect to
172 // an output data section.
173 Output_data*
174 output_data() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_DATA);
177 return this->u_.in_output_data.output_data;
178 }
179
180 // If this symbol was defined with respect to an output data
181 // section, return whether the value is an offset from end.
182 bool
183 offset_is_from_end() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_DATA);
186 return this->u_.in_output_data.offset_is_from_end;
187 }
188
189 // Return the output segment with which this symbol is associated,
190 // if the symbol was specially defined with respect to an output
191 // segment.
192 Output_segment*
193 output_segment() const
194 {
195 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
196 return this->u_.in_output_segment.output_segment;
197 }
198
199 // If this symbol was defined with respect to an output segment,
200 // return the offset base.
201 Segment_offset_base
202 offset_base() const
203 {
204 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
205 return this->u_.in_output_segment.offset_base;
206 }
207
208 // Return the symbol binding.
209 elfcpp::STB
210 binding() const
211 { return this->binding_; }
212
213 // Return the symbol type.
214 elfcpp::STT
215 type() const
216 { return this->type_; }
217
218 // Return true for function symbol.
219 bool
220 is_func() const
221 {
222 return (this->type_ == elfcpp::STT_FUNC
223 || this->type_ == elfcpp::STT_GNU_IFUNC);
224 }
225
226 // Return the symbol visibility.
227 elfcpp::STV
228 visibility() const
229 { return this->visibility_; }
230
231 // Set the visibility.
232 void
233 set_visibility(elfcpp::STV visibility)
234 { this->visibility_ = visibility; }
235
236 // Override symbol visibility.
237 void
238 override_visibility(elfcpp::STV);
239
240 // Set whether the symbol was originally a weak undef or a regular undef
241 // when resolved by a dynamic def or by a special symbol.
242 inline void
243 set_undef_binding(elfcpp::STB bind)
244 {
245 if (!this->undef_binding_set_ || this->undef_binding_weak_)
246 {
247 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
248 this->undef_binding_set_ = true;
249 }
250 }
251
252 // Return TRUE if a weak undef was resolved by a dynamic def or
253 // by a special symbol.
254 inline bool
255 is_undef_binding_weak() const
256 { return this->undef_binding_weak_; }
257
258 // Return the non-visibility part of the st_other field.
259 unsigned char
260 nonvis() const
261 { return this->nonvis_; }
262
263 // Set the non-visibility part of the st_other field.
264 void
265 set_nonvis(unsigned int nonvis)
266 { this->nonvis_ = nonvis; }
267
268 // Return whether this symbol is a forwarder. This will never be
269 // true of a symbol found in the hash table, but may be true of
270 // symbol pointers attached to object files.
271 bool
272 is_forwarder() const
273 { return this->is_forwarder_; }
274
275 // Mark this symbol as a forwarder.
276 void
277 set_forwarder()
278 { this->is_forwarder_ = true; }
279
280 // Return whether this symbol has an alias in the weak aliases table
281 // in Symbol_table.
282 bool
283 has_alias() const
284 { return this->has_alias_; }
285
286 // Mark this symbol as having an alias.
287 void
288 set_has_alias()
289 { this->has_alias_ = true; }
290
291 // Return whether this symbol needs an entry in the dynamic symbol
292 // table.
293 bool
294 needs_dynsym_entry() const
295 {
296 return (this->needs_dynsym_entry_
297 || (this->in_reg()
298 && this->in_dyn()
299 && this->is_externally_visible()));
300 }
301
302 // Mark this symbol as needing an entry in the dynamic symbol table.
303 void
304 set_needs_dynsym_entry()
305 { this->needs_dynsym_entry_ = true; }
306
307 // Return whether this symbol should be added to the dynamic symbol
308 // table.
309 bool
310 should_add_dynsym_entry(Symbol_table*) const;
311
312 // Return whether this symbol has been seen in a regular object.
313 bool
314 in_reg() const
315 { return this->in_reg_; }
316
317 // Mark this symbol as having been seen in a regular object.
318 void
319 set_in_reg()
320 { this->in_reg_ = true; }
321
322 // Return whether this symbol has been seen in a dynamic object.
323 bool
324 in_dyn() const
325 { return this->in_dyn_; }
326
327 // Mark this symbol as having been seen in a dynamic object.
328 void
329 set_in_dyn()
330 { this->in_dyn_ = true; }
331
332 // Return whether this symbol has been seen in a real ELF object.
333 // (IN_REG will return TRUE if the symbol has been seen in either
334 // a real ELF object or an object claimed by a plugin.)
335 bool
336 in_real_elf() const
337 { return this->in_real_elf_; }
338
339 // Mark this symbol as having been seen in a real ELF object.
340 void
341 set_in_real_elf()
342 { this->in_real_elf_ = true; }
343
344 // Return whether this symbol was defined in a section that was
345 // discarded from the link. This is used to control some error
346 // reporting.
347 bool
348 is_defined_in_discarded_section() const
349 { return this->is_defined_in_discarded_section_; }
350
351 // Mark this symbol as having been defined in a discarded section.
352 void
353 set_is_defined_in_discarded_section()
354 { this->is_defined_in_discarded_section_ = true; }
355
356 // Return the index of this symbol in the output file symbol table.
357 // A value of -1U means that this symbol is not going into the
358 // output file. This starts out as zero, and is set to a non-zero
359 // value by Symbol_table::finalize. It is an error to ask for the
360 // symbol table index before it has been set.
361 unsigned int
362 symtab_index() const
363 {
364 gold_assert(this->symtab_index_ != 0);
365 return this->symtab_index_;
366 }
367
368 // Set the index of the symbol in the output file symbol table.
369 void
370 set_symtab_index(unsigned int index)
371 {
372 gold_assert(index != 0);
373 this->symtab_index_ = index;
374 }
375
376 // Return whether this symbol already has an index in the output
377 // file symbol table.
378 bool
379 has_symtab_index() const
380 { return this->symtab_index_ != 0; }
381
382 // Return the index of this symbol in the dynamic symbol table. A
383 // value of -1U means that this symbol is not going into the dynamic
384 // symbol table. This starts out as zero, and is set to a non-zero
385 // during Layout::finalize. It is an error to ask for the dynamic
386 // symbol table index before it has been set.
387 unsigned int
388 dynsym_index() const
389 {
390 gold_assert(this->dynsym_index_ != 0);
391 return this->dynsym_index_;
392 }
393
394 // Set the index of the symbol in the dynamic symbol table.
395 void
396 set_dynsym_index(unsigned int index)
397 {
398 gold_assert(index != 0);
399 this->dynsym_index_ = index;
400 }
401
402 // Return whether this symbol already has an index in the dynamic
403 // symbol table.
404 bool
405 has_dynsym_index() const
406 { return this->dynsym_index_ != 0; }
407
408 // Return whether this symbol has an entry in the GOT section.
409 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
410 bool
411 has_got_offset(unsigned int got_type) const
412 { return this->got_offsets_.get_offset(got_type) != -1U; }
413
414 // Return the offset into the GOT section of this symbol.
415 unsigned int
416 got_offset(unsigned int got_type) const
417 {
418 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
419 gold_assert(got_offset != -1U);
420 return got_offset;
421 }
422
423 // Set the GOT offset of this symbol.
424 void
425 set_got_offset(unsigned int got_type, unsigned int got_offset)
426 { this->got_offsets_.set_offset(got_type, got_offset); }
427
428 // Return the GOT offset list.
429 const Got_offset_list*
430 got_offset_list() const
431 { return this->got_offsets_.get_list(); }
432
433 // Return whether this symbol has an entry in the PLT section.
434 bool
435 has_plt_offset() const
436 { return this->plt_offset_ != -1U; }
437
438 // Return the offset into the PLT section of this symbol.
439 unsigned int
440 plt_offset() const
441 {
442 gold_assert(this->has_plt_offset());
443 return this->plt_offset_;
444 }
445
446 // Set the PLT offset of this symbol.
447 void
448 set_plt_offset(unsigned int plt_offset)
449 {
450 gold_assert(plt_offset != -1U);
451 this->plt_offset_ = plt_offset;
452 }
453
454 // Return whether this dynamic symbol needs a special value in the
455 // dynamic symbol table.
456 bool
457 needs_dynsym_value() const
458 { return this->needs_dynsym_value_; }
459
460 // Set that this dynamic symbol needs a special value in the dynamic
461 // symbol table.
462 void
463 set_needs_dynsym_value()
464 {
465 gold_assert(this->object()->is_dynamic());
466 this->needs_dynsym_value_ = true;
467 }
468
469 // Return true if the final value of this symbol is known at link
470 // time.
471 bool
472 final_value_is_known() const;
473
474 // Return true if SHNDX represents a common symbol. This depends on
475 // the target.
476 static bool
477 is_common_shndx(unsigned int shndx);
478
479 // Return whether this is a defined symbol (not undefined or
480 // common).
481 bool
482 is_defined() const
483 {
484 bool is_ordinary;
485 if (this->source_ != FROM_OBJECT)
486 return this->source_ != IS_UNDEFINED;
487 unsigned int shndx = this->shndx(&is_ordinary);
488 return (is_ordinary
489 ? shndx != elfcpp::SHN_UNDEF
490 : !Symbol::is_common_shndx(shndx));
491 }
492
493 // Return true if this symbol is from a dynamic object.
494 bool
495 is_from_dynobj() const
496 {
497 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
498 }
499
500 // Return whether this is a placeholder symbol from a plugin object.
501 bool
502 is_placeholder() const
503 {
504 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
505 }
506
507 // Return whether this is an undefined symbol.
508 bool
509 is_undefined() const
510 {
511 bool is_ordinary;
512 return ((this->source_ == FROM_OBJECT
513 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
514 && is_ordinary)
515 || this->source_ == IS_UNDEFINED);
516 }
517
518 // Return whether this is a weak undefined symbol.
519 bool
520 is_weak_undefined() const
521 {
522 return (this->is_undefined()
523 && (this->binding() == elfcpp::STB_WEAK
524 || this->is_undef_binding_weak()));
525 }
526
527 // Return whether this is a strong undefined symbol.
528 bool
529 is_strong_undefined() const
530 {
531 return (this->is_undefined()
532 && this->binding() != elfcpp::STB_WEAK
533 && !this->is_undef_binding_weak());
534 }
535
536 // Return whether this is an absolute symbol.
537 bool
538 is_absolute() const
539 {
540 bool is_ordinary;
541 return ((this->source_ == FROM_OBJECT
542 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
543 && !is_ordinary)
544 || this->source_ == IS_CONSTANT);
545 }
546
547 // Return whether this is a common symbol.
548 bool
549 is_common() const
550 {
551 if (this->source_ != FROM_OBJECT)
552 return false;
553 if (this->type_ == elfcpp::STT_COMMON)
554 return true;
555 bool is_ordinary;
556 unsigned int shndx = this->shndx(&is_ordinary);
557 return !is_ordinary && Symbol::is_common_shndx(shndx);
558 }
559
560 // Return whether this symbol can be seen outside this object.
561 bool
562 is_externally_visible() const
563 {
564 return ((this->visibility_ == elfcpp::STV_DEFAULT
565 || this->visibility_ == elfcpp::STV_PROTECTED)
566 && !this->is_forced_local_);
567 }
568
569 // Return true if this symbol can be preempted by a definition in
570 // another link unit.
571 bool
572 is_preemptible() const
573 {
574 // It doesn't make sense to ask whether a symbol defined in
575 // another object is preemptible.
576 gold_assert(!this->is_from_dynobj());
577
578 // It doesn't make sense to ask whether an undefined symbol
579 // is preemptible.
580 gold_assert(!this->is_undefined());
581
582 // If a symbol does not have default visibility, it can not be
583 // seen outside this link unit and therefore is not preemptible.
584 if (this->visibility_ != elfcpp::STV_DEFAULT)
585 return false;
586
587 // If this symbol has been forced to be a local symbol by a
588 // version script, then it is not visible outside this link unit
589 // and is not preemptible.
590 if (this->is_forced_local_)
591 return false;
592
593 // If we are not producing a shared library, then nothing is
594 // preemptible.
595 if (!parameters->options().shared())
596 return false;
597
598 // If the symbol was named in a --dynamic-list script, it is preemptible.
599 if (parameters->options().in_dynamic_list(this->name()))
600 return true;
601
602 // If the user used -Bsymbolic or provided a --dynamic-list script,
603 // then nothing (else) is preemptible.
604 if (parameters->options().Bsymbolic()
605 || parameters->options().have_dynamic_list())
606 return false;
607
608 // If the user used -Bsymbolic-functions, then functions are not
609 // preemptible. We explicitly check for not being STT_OBJECT,
610 // rather than for being STT_FUNC, because that is what the GNU
611 // linker does.
612 if (this->type() != elfcpp::STT_OBJECT
613 && parameters->options().Bsymbolic_functions())
614 return false;
615
616 // Otherwise the symbol is preemptible.
617 return true;
618 }
619
620 // Return true if this symbol is a function that needs a PLT entry.
621 bool
622 needs_plt_entry() const
623 {
624 // An undefined symbol from an executable does not need a PLT entry.
625 if (this->is_undefined() && !parameters->options().shared())
626 return false;
627
628 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
629 // doing a static link.
630 if (this->type() == elfcpp::STT_GNU_IFUNC)
631 return true;
632
633 // We only need a PLT entry for a function.
634 if (!this->is_func())
635 return false;
636
637 // If we're doing a static link or a -pie link, we don't create
638 // PLT entries.
639 if (parameters->doing_static_link()
640 || parameters->options().pie())
641 return false;
642
643 // We need a PLT entry if the function is defined in a dynamic
644 // object, or is undefined when building a shared object, or if it
645 // is subject to pre-emption.
646 return (this->is_from_dynobj()
647 || this->is_undefined()
648 || this->is_preemptible());
649 }
650
651 // When determining whether a reference to a symbol needs a dynamic
652 // relocation, we need to know several things about the reference.
653 // These flags may be or'ed together. 0 means that the symbol
654 // isn't referenced at all.
655 enum Reference_flags
656 {
657 // A reference to the symbol's absolute address. This includes
658 // references that cause an absolute address to be stored in the GOT.
659 ABSOLUTE_REF = 1,
660 // A reference that calculates the offset of the symbol from some
661 // anchor point, such as the PC or GOT.
662 RELATIVE_REF = 2,
663 // A TLS-related reference.
664 TLS_REF = 4,
665 // A reference that can always be treated as a function call.
666 FUNCTION_CALL = 8,
667 // When set, says that dynamic relocations are needed even if a
668 // symbol has a plt entry.
669 FUNC_DESC_ABI = 16,
670 };
671
672 // Given a direct absolute or pc-relative static relocation against
673 // the global symbol, this function returns whether a dynamic relocation
674 // is needed.
675
676 bool
677 needs_dynamic_reloc(int flags) const
678 {
679 // No dynamic relocations in a static link!
680 if (parameters->doing_static_link())
681 return false;
682
683 // A reference to an undefined symbol from an executable should be
684 // statically resolved to 0, and does not need a dynamic relocation.
685 // This matches gnu ld behavior.
686 if (this->is_undefined() && !parameters->options().shared())
687 return false;
688
689 // A reference to an absolute symbol does not need a dynamic relocation.
690 if (this->is_absolute())
691 return false;
692
693 // An absolute reference within a position-independent output file
694 // will need a dynamic relocation.
695 if ((flags & ABSOLUTE_REF)
696 && parameters->options().output_is_position_independent())
697 return true;
698
699 // A function call that can branch to a local PLT entry does not need
700 // a dynamic relocation.
701 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
702 return false;
703
704 // A reference to any PLT entry in a non-position-independent executable
705 // does not need a dynamic relocation.
706 if (!(flags & FUNC_DESC_ABI)
707 && !parameters->options().output_is_position_independent()
708 && this->has_plt_offset())
709 return false;
710
711 // A reference to a symbol defined in a dynamic object or to a
712 // symbol that is preemptible will need a dynamic relocation.
713 if (this->is_from_dynobj()
714 || this->is_undefined()
715 || this->is_preemptible())
716 return true;
717
718 // For all other cases, return FALSE.
719 return false;
720 }
721
722 // Whether we should use the PLT offset associated with a symbol for
723 // a relocation. FLAGS is a set of Reference_flags.
724
725 bool
726 use_plt_offset(int flags) const
727 {
728 // If the symbol doesn't have a PLT offset, then naturally we
729 // don't want to use it.
730 if (!this->has_plt_offset())
731 return false;
732
733 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
734 if (this->type() == elfcpp::STT_GNU_IFUNC)
735 return true;
736
737 // If we are going to generate a dynamic relocation, then we will
738 // wind up using that, so no need to use the PLT entry.
739 if (this->needs_dynamic_reloc(flags))
740 return false;
741
742 // If the symbol is from a dynamic object, we need to use the PLT
743 // entry.
744 if (this->is_from_dynobj())
745 return true;
746
747 // If we are generating a shared object, and this symbol is
748 // undefined or preemptible, we need to use the PLT entry.
749 if (parameters->options().shared()
750 && (this->is_undefined() || this->is_preemptible()))
751 return true;
752
753 // If this is a call to a weak undefined symbol, we need to use
754 // the PLT entry; the symbol may be defined by a library loaded
755 // at runtime.
756 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
757 return true;
758
759 // Otherwise we can use the regular definition.
760 return false;
761 }
762
763 // Given a direct absolute static relocation against
764 // the global symbol, where a dynamic relocation is needed, this
765 // function returns whether a relative dynamic relocation can be used.
766 // The caller must determine separately whether the static relocation
767 // is compatible with a relative relocation.
768
769 bool
770 can_use_relative_reloc(bool is_function_call) const
771 {
772 // A function call that can branch to a local PLT entry can
773 // use a RELATIVE relocation.
774 if (is_function_call && this->has_plt_offset())
775 return true;
776
777 // A reference to a symbol defined in a dynamic object or to a
778 // symbol that is preemptible can not use a RELATIVE relocation.
779 if (this->is_from_dynobj()
780 || this->is_undefined()
781 || this->is_preemptible())
782 return false;
783
784 // For all other cases, return TRUE.
785 return true;
786 }
787
788 // Return the output section where this symbol is defined. Return
789 // NULL if the symbol has an absolute value.
790 Output_section*
791 output_section() const;
792
793 // Set the symbol's output section. This is used for symbols
794 // defined in scripts. This should only be called after the symbol
795 // table has been finalized.
796 void
797 set_output_section(Output_section*);
798
799 // Set the symbol's output segment. This is used for pre-defined
800 // symbols whose segments aren't known until after layout is done
801 // (e.g., __ehdr_start).
802 void
803 set_output_segment(Output_segment*, Segment_offset_base);
804
805 // Set the symbol to undefined. This is used for pre-defined
806 // symbols whose segments aren't known until after layout is done
807 // (e.g., __ehdr_start).
808 void
809 set_undefined();
810
811 // Return whether there should be a warning for references to this
812 // symbol.
813 bool
814 has_warning() const
815 { return this->has_warning_; }
816
817 // Mark this symbol as having a warning.
818 void
819 set_has_warning()
820 { this->has_warning_ = true; }
821
822 // Return whether this symbol is defined by a COPY reloc from a
823 // dynamic object.
824 bool
825 is_copied_from_dynobj() const
826 { return this->is_copied_from_dynobj_; }
827
828 // Mark this symbol as defined by a COPY reloc.
829 void
830 set_is_copied_from_dynobj()
831 { this->is_copied_from_dynobj_ = true; }
832
833 // Return whether this symbol is forced to visibility STB_LOCAL
834 // by a "local:" entry in a version script.
835 bool
836 is_forced_local() const
837 { return this->is_forced_local_; }
838
839 // Mark this symbol as forced to STB_LOCAL visibility.
840 void
841 set_is_forced_local()
842 { this->is_forced_local_ = true; }
843
844 // Return true if this may need a COPY relocation.
845 // References from an executable object to non-function symbols
846 // defined in a dynamic object may need a COPY relocation.
847 bool
848 may_need_copy_reloc() const
849 {
850 return (!parameters->options().output_is_position_independent()
851 && parameters->options().copyreloc()
852 && this->is_from_dynobj()
853 && !this->is_func());
854 }
855
856 // Return true if this symbol was predefined by the linker.
857 bool
858 is_predefined() const
859 { return this->is_predefined_; }
860
861 // Return true if this is a C++ vtable symbol.
862 bool
863 is_cxx_vtable() const
864 { return is_prefix_of("_ZTV", this->name_); }
865
866 protected:
867 // Instances of this class should always be created at a specific
868 // size.
869 Symbol()
870 { memset(this, 0, sizeof *this); }
871
872 // Initialize the general fields.
873 void
874 init_fields(const char* name, const char* version,
875 elfcpp::STT type, elfcpp::STB binding,
876 elfcpp::STV visibility, unsigned char nonvis);
877
878 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
879 // section index, IS_ORDINARY is whether it is a normal section
880 // index rather than a special code.
881 template<int size, bool big_endian>
882 void
883 init_base_object(const char* name, const char* version, Object* object,
884 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
885 bool is_ordinary);
886
887 // Initialize fields for an Output_data.
888 void
889 init_base_output_data(const char* name, const char* version, Output_data*,
890 elfcpp::STT, elfcpp::STB, elfcpp::STV,
891 unsigned char nonvis, bool offset_is_from_end,
892 bool is_predefined);
893
894 // Initialize fields for an Output_segment.
895 void
896 init_base_output_segment(const char* name, const char* version,
897 Output_segment* os, elfcpp::STT type,
898 elfcpp::STB binding, elfcpp::STV visibility,
899 unsigned char nonvis,
900 Segment_offset_base offset_base,
901 bool is_predefined);
902
903 // Initialize fields for a constant.
904 void
905 init_base_constant(const char* name, const char* version, elfcpp::STT type,
906 elfcpp::STB binding, elfcpp::STV visibility,
907 unsigned char nonvis, bool is_predefined);
908
909 // Initialize fields for an undefined symbol.
910 void
911 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
912 elfcpp::STB binding, elfcpp::STV visibility,
913 unsigned char nonvis);
914
915 // Override existing symbol.
916 template<int size, bool big_endian>
917 void
918 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
919 bool is_ordinary, Object* object, const char* version);
920
921 // Override existing symbol with a special symbol.
922 void
923 override_base_with_special(const Symbol* from);
924
925 // Override symbol version.
926 void
927 override_version(const char* version);
928
929 // Allocate a common symbol by giving it a location in the output
930 // file.
931 void
932 allocate_base_common(Output_data*);
933
934 private:
935 Symbol(const Symbol&);
936 Symbol& operator=(const Symbol&);
937
938 // Symbol name (expected to point into a Stringpool).
939 const char* name_;
940 // Symbol version (expected to point into a Stringpool). This may
941 // be NULL.
942 const char* version_;
943
944 union
945 {
946 // This struct is used if SOURCE_ == FROM_OBJECT.
947 struct
948 {
949 // Object in which symbol is defined, or in which it was first
950 // seen.
951 Object* object;
952 // Section number in object_ in which symbol is defined.
953 unsigned int shndx;
954 } from_object;
955
956 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
957 struct
958 {
959 // Output_data in which symbol is defined. Before
960 // Layout::finalize the symbol's value is an offset within the
961 // Output_data.
962 Output_data* output_data;
963 // True if the offset is from the end, false if the offset is
964 // from the beginning.
965 bool offset_is_from_end;
966 } in_output_data;
967
968 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
969 struct
970 {
971 // Output_segment in which the symbol is defined. Before
972 // Layout::finalize the symbol's value is an offset.
973 Output_segment* output_segment;
974 // The base to use for the offset before Layout::finalize.
975 Segment_offset_base offset_base;
976 } in_output_segment;
977 } u_;
978
979 // The index of this symbol in the output file. If the symbol is
980 // not going into the output file, this value is -1U. This field
981 // starts as always holding zero. It is set to a non-zero value by
982 // Symbol_table::finalize.
983 unsigned int symtab_index_;
984
985 // The index of this symbol in the dynamic symbol table. If the
986 // symbol is not going into the dynamic symbol table, this value is
987 // -1U. This field starts as always holding zero. It is set to a
988 // non-zero value during Layout::finalize.
989 unsigned int dynsym_index_;
990
991 // The GOT section entries for this symbol. A symbol may have more
992 // than one GOT offset (e.g., when mixing modules compiled with two
993 // different TLS models), but will usually have at most one.
994 Got_offset_list got_offsets_;
995
996 // If this symbol has an entry in the PLT section, then this is the
997 // offset from the start of the PLT section. This is -1U if there
998 // is no PLT entry.
999 unsigned int plt_offset_;
1000
1001 // Symbol type (bits 0 to 3).
1002 elfcpp::STT type_ : 4;
1003 // Symbol binding (bits 4 to 7).
1004 elfcpp::STB binding_ : 4;
1005 // Symbol visibility (bits 8 to 9).
1006 elfcpp::STV visibility_ : 2;
1007 // Rest of symbol st_other field (bits 10 to 15).
1008 unsigned int nonvis_ : 6;
1009 // The type of symbol (bits 16 to 18).
1010 Source source_ : 3;
1011 // True if this is the default version of the symbol (bit 19).
1012 bool is_def_ : 1;
1013 // True if this symbol really forwards to another symbol. This is
1014 // used when we discover after the fact that two different entries
1015 // in the hash table really refer to the same symbol. This will
1016 // never be set for a symbol found in the hash table, but may be set
1017 // for a symbol found in the list of symbols attached to an Object.
1018 // It forwards to the symbol found in the forwarders_ map of
1019 // Symbol_table (bit 20).
1020 bool is_forwarder_ : 1;
1021 // True if the symbol has an alias in the weak_aliases table in
1022 // Symbol_table (bit 21).
1023 bool has_alias_ : 1;
1024 // True if this symbol needs to be in the dynamic symbol table (bit
1025 // 22).
1026 bool needs_dynsym_entry_ : 1;
1027 // True if we've seen this symbol in a regular object (bit 23).
1028 bool in_reg_ : 1;
1029 // True if we've seen this symbol in a dynamic object (bit 24).
1030 bool in_dyn_ : 1;
1031 // True if this is a dynamic symbol which needs a special value in
1032 // the dynamic symbol table (bit 25).
1033 bool needs_dynsym_value_ : 1;
1034 // True if there is a warning for this symbol (bit 26).
1035 bool has_warning_ : 1;
1036 // True if we are using a COPY reloc for this symbol, so that the
1037 // real definition lives in a dynamic object (bit 27).
1038 bool is_copied_from_dynobj_ : 1;
1039 // True if this symbol was forced to local visibility by a version
1040 // script (bit 28).
1041 bool is_forced_local_ : 1;
1042 // True if the field u_.from_object.shndx is an ordinary section
1043 // index, not one of the special codes from SHN_LORESERVE to
1044 // SHN_HIRESERVE (bit 29).
1045 bool is_ordinary_shndx_ : 1;
1046 // True if we've seen this symbol in a "real" ELF object (bit 30).
1047 // If the symbol has been seen in a relocatable, non-IR, object file,
1048 // it's known to be referenced from outside the IR. A reference from
1049 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1050 // mark the symbol as "visible" from outside the IR. The compiler
1051 // can use this distinction to guide its handling of COMDAT symbols.
1052 bool in_real_elf_ : 1;
1053 // True if this symbol is defined in a section which was discarded
1054 // (bit 31).
1055 bool is_defined_in_discarded_section_ : 1;
1056 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1057 bool undef_binding_set_ : 1;
1058 // True if this symbol was a weak undef resolved by a dynamic def
1059 // or by a special symbol (bit 33).
1060 bool undef_binding_weak_ : 1;
1061 // True if this symbol is a predefined linker symbol (bit 34).
1062 bool is_predefined_ : 1;
1063 };
1064
1065 // The parts of a symbol which are size specific. Using a template
1066 // derived class like this helps us use less space on a 32-bit system.
1067
1068 template<int size>
1069 class Sized_symbol : public Symbol
1070 {
1071 public:
1072 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1073 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1074
1075 Sized_symbol()
1076 { }
1077
1078 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1079 // section index, IS_ORDINARY is whether it is a normal section
1080 // index rather than a special code.
1081 template<bool big_endian>
1082 void
1083 init_object(const char* name, const char* version, Object* object,
1084 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1085 bool is_ordinary);
1086
1087 // Initialize fields for an Output_data.
1088 void
1089 init_output_data(const char* name, const char* version, Output_data*,
1090 Value_type value, Size_type symsize, elfcpp::STT,
1091 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1092 bool offset_is_from_end, bool is_predefined);
1093
1094 // Initialize fields for an Output_segment.
1095 void
1096 init_output_segment(const char* name, const char* version, Output_segment*,
1097 Value_type value, Size_type symsize, elfcpp::STT,
1098 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1099 Segment_offset_base offset_base, bool is_predefined);
1100
1101 // Initialize fields for a constant.
1102 void
1103 init_constant(const char* name, const char* version, Value_type value,
1104 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1105 unsigned char nonvis, bool is_predefined);
1106
1107 // Initialize fields for an undefined symbol.
1108 void
1109 init_undefined(const char* name, const char* version, elfcpp::STT,
1110 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1111
1112 // Override existing symbol.
1113 template<bool big_endian>
1114 void
1115 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1116 bool is_ordinary, Object* object, const char* version);
1117
1118 // Override existing symbol with a special symbol.
1119 void
1120 override_with_special(const Sized_symbol<size>*);
1121
1122 // Return the symbol's value.
1123 Value_type
1124 value() const
1125 { return this->value_; }
1126
1127 // Return the symbol's size (we can't call this 'size' because that
1128 // is a template parameter).
1129 Size_type
1130 symsize() const
1131 { return this->symsize_; }
1132
1133 // Set the symbol size. This is used when resolving common symbols.
1134 void
1135 set_symsize(Size_type symsize)
1136 { this->symsize_ = symsize; }
1137
1138 // Set the symbol value. This is called when we store the final
1139 // values of the symbols into the symbol table.
1140 void
1141 set_value(Value_type value)
1142 { this->value_ = value; }
1143
1144 // Allocate a common symbol by giving it a location in the output
1145 // file.
1146 void
1147 allocate_common(Output_data*, Value_type value);
1148
1149 private:
1150 Sized_symbol(const Sized_symbol&);
1151 Sized_symbol& operator=(const Sized_symbol&);
1152
1153 // Symbol value. Before Layout::finalize this is the offset in the
1154 // input section. This is set to the final value during
1155 // Layout::finalize.
1156 Value_type value_;
1157 // Symbol size.
1158 Size_type symsize_;
1159 };
1160
1161 // A struct describing a symbol defined by the linker, where the value
1162 // of the symbol is defined based on an output section. This is used
1163 // for symbols defined by the linker, like "_init_array_start".
1164
1165 struct Define_symbol_in_section
1166 {
1167 // The symbol name.
1168 const char* name;
1169 // The name of the output section with which this symbol should be
1170 // associated. If there is no output section with that name, the
1171 // symbol will be defined as zero.
1172 const char* output_section;
1173 // The offset of the symbol within the output section. This is an
1174 // offset from the start of the output section, unless start_at_end
1175 // is true, in which case this is an offset from the end of the
1176 // output section.
1177 uint64_t value;
1178 // The size of the symbol.
1179 uint64_t size;
1180 // The symbol type.
1181 elfcpp::STT type;
1182 // The symbol binding.
1183 elfcpp::STB binding;
1184 // The symbol visibility.
1185 elfcpp::STV visibility;
1186 // The rest of the st_other field.
1187 unsigned char nonvis;
1188 // If true, the value field is an offset from the end of the output
1189 // section.
1190 bool offset_is_from_end;
1191 // If true, this symbol is defined only if we see a reference to it.
1192 bool only_if_ref;
1193 };
1194
1195 // A struct describing a symbol defined by the linker, where the value
1196 // of the symbol is defined based on a segment. This is used for
1197 // symbols defined by the linker, like "_end". We describe the
1198 // segment with which the symbol should be associated by its
1199 // characteristics. If no segment meets these characteristics, the
1200 // symbol will be defined as zero. If there is more than one segment
1201 // which meets these characteristics, we will use the first one.
1202
1203 struct Define_symbol_in_segment
1204 {
1205 // The symbol name.
1206 const char* name;
1207 // The segment type where the symbol should be defined, typically
1208 // PT_LOAD.
1209 elfcpp::PT segment_type;
1210 // Bitmask of segment flags which must be set.
1211 elfcpp::PF segment_flags_set;
1212 // Bitmask of segment flags which must be clear.
1213 elfcpp::PF segment_flags_clear;
1214 // The offset of the symbol within the segment. The offset is
1215 // calculated from the position set by offset_base.
1216 uint64_t value;
1217 // The size of the symbol.
1218 uint64_t size;
1219 // The symbol type.
1220 elfcpp::STT type;
1221 // The symbol binding.
1222 elfcpp::STB binding;
1223 // The symbol visibility.
1224 elfcpp::STV visibility;
1225 // The rest of the st_other field.
1226 unsigned char nonvis;
1227 // The base from which we compute the offset.
1228 Symbol::Segment_offset_base offset_base;
1229 // If true, this symbol is defined only if we see a reference to it.
1230 bool only_if_ref;
1231 };
1232
1233 // Specify an object/section/offset location. Used by ODR code.
1234
1235 struct Symbol_location
1236 {
1237 // Object where the symbol is defined.
1238 Object* object;
1239 // Section-in-object where the symbol is defined.
1240 unsigned int shndx;
1241 // For relocatable objects, offset-in-section where the symbol is defined.
1242 // For dynamic objects, address where the symbol is defined.
1243 off_t offset;
1244 bool operator==(const Symbol_location& that) const
1245 {
1246 return (this->object == that.object
1247 && this->shndx == that.shndx
1248 && this->offset == that.offset);
1249 }
1250 };
1251
1252 // This class manages warnings. Warnings are a GNU extension. When
1253 // we see a section named .gnu.warning.SYM in an object file, and if
1254 // we wind using the definition of SYM from that object file, then we
1255 // will issue a warning for any relocation against SYM from a
1256 // different object file. The text of the warning is the contents of
1257 // the section. This is not precisely the definition used by the old
1258 // GNU linker; the old GNU linker treated an occurrence of
1259 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1260 // would trigger a warning on any reference. However, it was
1261 // inconsistent in that a warning in a dynamic object only triggered
1262 // if there was no definition in a regular object. This linker is
1263 // different in that we only issue a warning if we use the symbol
1264 // definition from the same object file as the warning section.
1265
1266 class Warnings
1267 {
1268 public:
1269 Warnings()
1270 : warnings_()
1271 { }
1272
1273 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1274 // of the warning.
1275 void
1276 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1277 const std::string& warning);
1278
1279 // For each symbol for which we should give a warning, make a note
1280 // on the symbol.
1281 void
1282 note_warnings(Symbol_table* symtab);
1283
1284 // Issue a warning for a reference to SYM at RELINFO's location.
1285 template<int size, bool big_endian>
1286 void
1287 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1288 size_t relnum, off_t reloffset) const;
1289
1290 private:
1291 Warnings(const Warnings&);
1292 Warnings& operator=(const Warnings&);
1293
1294 // What we need to know to get the warning text.
1295 struct Warning_location
1296 {
1297 // The object the warning is in.
1298 Object* object;
1299 // The warning text.
1300 std::string text;
1301
1302 Warning_location()
1303 : object(NULL), text()
1304 { }
1305
1306 void
1307 set(Object* o, const std::string& t)
1308 {
1309 this->object = o;
1310 this->text = t;
1311 }
1312 };
1313
1314 // A mapping from warning symbol names (canonicalized in
1315 // Symbol_table's namepool_ field) to warning information.
1316 typedef Unordered_map<const char*, Warning_location> Warning_table;
1317
1318 Warning_table warnings_;
1319 };
1320
1321 // The main linker symbol table.
1322
1323 class Symbol_table
1324 {
1325 public:
1326 // The different places where a symbol definition can come from.
1327 enum Defined
1328 {
1329 // Defined in an object file--the normal case.
1330 OBJECT,
1331 // Defined for a COPY reloc.
1332 COPY,
1333 // Defined on the command line using --defsym.
1334 DEFSYM,
1335 // Defined (so to speak) on the command line using -u.
1336 UNDEFINED,
1337 // Defined in a linker script.
1338 SCRIPT,
1339 // Predefined by the linker.
1340 PREDEFINED,
1341 // Defined by the linker during an incremental base link, but not
1342 // a predefined symbol (e.g., common, defined in script).
1343 INCREMENTAL_BASE,
1344 };
1345
1346 // The order in which we sort common symbols.
1347 enum Sort_commons_order
1348 {
1349 SORT_COMMONS_BY_SIZE_DESCENDING,
1350 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1351 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1352 };
1353
1354 // COUNT is an estimate of how many symbols will be inserted in the
1355 // symbol table. It's ok to put 0 if you don't know; a correct
1356 // guess will just save some CPU by reducing hashtable resizes.
1357 Symbol_table(unsigned int count, const Version_script_info& version_script);
1358
1359 ~Symbol_table();
1360
1361 void
1362 set_icf(Icf* icf)
1363 { this->icf_ = icf;}
1364
1365 Icf*
1366 icf() const
1367 { return this->icf_; }
1368
1369 // Returns true if ICF determined that this is a duplicate section.
1370 bool
1371 is_section_folded(Object* obj, unsigned int shndx) const;
1372
1373 void
1374 set_gc(Garbage_collection* gc)
1375 { this->gc_ = gc; }
1376
1377 Garbage_collection*
1378 gc() const
1379 { return this->gc_; }
1380
1381 // During garbage collection, this keeps undefined symbols.
1382 void
1383 gc_mark_undef_symbols(Layout*);
1384
1385 // This tells garbage collection that this symbol is referenced.
1386 void
1387 gc_mark_symbol(Symbol* sym);
1388
1389 // During garbage collection, this keeps sections that correspond to
1390 // symbols seen in dynamic objects.
1391 inline void
1392 gc_mark_dyn_syms(Symbol* sym);
1393
1394 // Add COUNT external symbols from the relocatable object RELOBJ to
1395 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1396 // offset in the symbol table of the first symbol, SYM_NAMES is
1397 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1398 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1399 // *DEFINED to the number of defined symbols.
1400 template<int size, bool big_endian>
1401 void
1402 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1403 const unsigned char* syms, size_t count,
1404 size_t symndx_offset, const char* sym_names,
1405 size_t sym_name_size,
1406 typename Sized_relobj_file<size, big_endian>::Symbols*,
1407 size_t* defined);
1408
1409 // Add one external symbol from the plugin object OBJ to the symbol table.
1410 // Returns a pointer to the resolved symbol in the symbol table.
1411 template<int size, bool big_endian>
1412 Symbol*
1413 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1414 const char* name, const char* ver,
1415 elfcpp::Sym<size, big_endian>* sym);
1416
1417 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1418 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1419 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1420 // symbol version data.
1421 template<int size, bool big_endian>
1422 void
1423 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1424 const unsigned char* syms, size_t count,
1425 const char* sym_names, size_t sym_name_size,
1426 const unsigned char* versym, size_t versym_size,
1427 const std::vector<const char*>*,
1428 typename Sized_relobj_file<size, big_endian>::Symbols*,
1429 size_t* defined);
1430
1431 // Add one external symbol from the incremental object OBJ to the symbol
1432 // table. Returns a pointer to the resolved symbol in the symbol table.
1433 template<int size, bool big_endian>
1434 Sized_symbol<size>*
1435 add_from_incrobj(Object* obj, const char* name,
1436 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1437
1438 // Define a special symbol based on an Output_data. It is a
1439 // multiple definition error if this symbol is already defined.
1440 Symbol*
1441 define_in_output_data(const char* name, const char* version, Defined,
1442 Output_data*, uint64_t value, uint64_t symsize,
1443 elfcpp::STT type, elfcpp::STB binding,
1444 elfcpp::STV visibility, unsigned char nonvis,
1445 bool offset_is_from_end, bool only_if_ref);
1446
1447 // Define a special symbol based on an Output_segment. It is a
1448 // multiple definition error if this symbol is already defined.
1449 Symbol*
1450 define_in_output_segment(const char* name, const char* version, Defined,
1451 Output_segment*, uint64_t value, uint64_t symsize,
1452 elfcpp::STT type, elfcpp::STB binding,
1453 elfcpp::STV visibility, unsigned char nonvis,
1454 Symbol::Segment_offset_base, bool only_if_ref);
1455
1456 // Define a special symbol with a constant value. It is a multiple
1457 // definition error if this symbol is already defined.
1458 Symbol*
1459 define_as_constant(const char* name, const char* version, Defined,
1460 uint64_t value, uint64_t symsize, elfcpp::STT type,
1461 elfcpp::STB binding, elfcpp::STV visibility,
1462 unsigned char nonvis, bool only_if_ref,
1463 bool force_override);
1464
1465 // Define a set of symbols in output sections. If ONLY_IF_REF is
1466 // true, only define them if they are referenced.
1467 void
1468 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1469 bool only_if_ref);
1470
1471 // Define a set of symbols in output segments. If ONLY_IF_REF is
1472 // true, only defined them if they are referenced.
1473 void
1474 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1475 bool only_if_ref);
1476
1477 // Define SYM using a COPY reloc. POSD is the Output_data where the
1478 // symbol should be defined--typically a .dyn.bss section. VALUE is
1479 // the offset within POSD.
1480 template<int size>
1481 void
1482 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1483 typename elfcpp::Elf_types<size>::Elf_Addr);
1484
1485 // Look up a symbol.
1486 Symbol*
1487 lookup(const char*, const char* version = NULL) const;
1488
1489 // Return the real symbol associated with the forwarder symbol FROM.
1490 Symbol*
1491 resolve_forwards(const Symbol* from) const;
1492
1493 // Return the sized version of a symbol in this table.
1494 template<int size>
1495 Sized_symbol<size>*
1496 get_sized_symbol(Symbol*) const;
1497
1498 template<int size>
1499 const Sized_symbol<size>*
1500 get_sized_symbol(const Symbol*) const;
1501
1502 // Return the count of undefined symbols seen.
1503 size_t
1504 saw_undefined() const
1505 { return this->saw_undefined_; }
1506
1507 // Allocate the common symbols
1508 void
1509 allocate_commons(Layout*, Mapfile*);
1510
1511 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1512 // of the warning.
1513 void
1514 add_warning(const char* name, Object* obj, const std::string& warning)
1515 { this->warnings_.add_warning(this, name, obj, warning); }
1516
1517 // Canonicalize a symbol name for use in the hash table.
1518 const char*
1519 canonicalize_name(const char* name)
1520 { return this->namepool_.add(name, true, NULL); }
1521
1522 // Possibly issue a warning for a reference to SYM at LOCATION which
1523 // is in OBJ.
1524 template<int size, bool big_endian>
1525 void
1526 issue_warning(const Symbol* sym,
1527 const Relocate_info<size, big_endian>* relinfo,
1528 size_t relnum, off_t reloffset) const
1529 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1530
1531 // Check candidate_odr_violations_ to find symbols with the same name
1532 // but apparently different definitions (different source-file/line-no).
1533 void
1534 detect_odr_violations(const Task*, const char* output_file_name) const;
1535
1536 // Add any undefined symbols named on the command line to the symbol
1537 // table.
1538 void
1539 add_undefined_symbols_from_command_line(Layout*);
1540
1541 // SYM is defined using a COPY reloc. Return the dynamic object
1542 // where the original definition was found.
1543 Dynobj*
1544 get_copy_source(const Symbol* sym) const;
1545
1546 // Set the dynamic symbol indexes. INDEX is the index of the first
1547 // global dynamic symbol. Pointers to the symbols are stored into
1548 // the vector. The names are stored into the Stringpool. This
1549 // returns an updated dynamic symbol index.
1550 unsigned int
1551 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1552 Stringpool*, Versions*);
1553
1554 // Finalize the symbol table after we have set the final addresses
1555 // of all the input sections. This sets the final symbol indexes,
1556 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1557 // index of the first global symbol. OFF is the file offset of the
1558 // global symbol table, DYNOFF is the offset of the globals in the
1559 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1560 // global dynamic symbol, and DYNCOUNT is the number of global
1561 // dynamic symbols. This records the parameters, and returns the
1562 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1563 // local symbols.
1564 off_t
1565 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1566 Stringpool* pool, unsigned int* plocal_symcount);
1567
1568 // Set the final file offset of the symbol table.
1569 void
1570 set_file_offset(off_t off)
1571 { this->offset_ = off; }
1572
1573 // Status code of Symbol_table::compute_final_value.
1574 enum Compute_final_value_status
1575 {
1576 // No error.
1577 CFVS_OK,
1578 // Unsupported symbol section.
1579 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1580 // No output section.
1581 CFVS_NO_OUTPUT_SECTION
1582 };
1583
1584 // Compute the final value of SYM and store status in location PSTATUS.
1585 // During relaxation, this may be called multiple times for a symbol to
1586 // compute its would-be final value in each relaxation pass.
1587
1588 template<int size>
1589 typename Sized_symbol<size>::Value_type
1590 compute_final_value(const Sized_symbol<size>* sym,
1591 Compute_final_value_status* pstatus) const;
1592
1593 // Return the index of the first global symbol.
1594 unsigned int
1595 first_global_index() const
1596 { return this->first_global_index_; }
1597
1598 // Return the total number of symbols in the symbol table.
1599 unsigned int
1600 output_count() const
1601 { return this->output_count_; }
1602
1603 // Write out the global symbols.
1604 void
1605 write_globals(const Stringpool*, const Stringpool*,
1606 Output_symtab_xindex*, Output_symtab_xindex*,
1607 Output_file*) const;
1608
1609 // Write out a section symbol. Return the updated offset.
1610 void
1611 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1612 Output_file*, off_t) const;
1613
1614 // Loop over all symbols, applying the function F to each.
1615 template<int size, typename F>
1616 void
1617 for_all_symbols(F f) const
1618 {
1619 for (Symbol_table_type::const_iterator p = this->table_.begin();
1620 p != this->table_.end();
1621 ++p)
1622 {
1623 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1624 f(sym);
1625 }
1626 }
1627
1628 // Dump statistical information to stderr.
1629 void
1630 print_stats() const;
1631
1632 // Return the version script information.
1633 const Version_script_info&
1634 version_script() const
1635 { return version_script_; }
1636
1637 private:
1638 Symbol_table(const Symbol_table&);
1639 Symbol_table& operator=(const Symbol_table&);
1640
1641 // The type of the list of common symbols.
1642 typedef std::vector<Symbol*> Commons_type;
1643
1644 // The type of the symbol hash table.
1645
1646 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1647
1648 // The hash function. The key values are Stringpool keys.
1649 struct Symbol_table_hash
1650 {
1651 inline size_t
1652 operator()(const Symbol_table_key& key) const
1653 {
1654 return key.first ^ key.second;
1655 }
1656 };
1657
1658 struct Symbol_table_eq
1659 {
1660 bool
1661 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1662 };
1663
1664 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1665 Symbol_table_eq> Symbol_table_type;
1666
1667 // A map from symbol name (as a pointer into the namepool) to all
1668 // the locations the symbols is (weakly) defined (and certain other
1669 // conditions are met). This map will be used later to detect
1670 // possible One Definition Rule (ODR) violations.
1671 struct Symbol_location_hash
1672 {
1673 size_t operator()(const Symbol_location& loc) const
1674 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1675 };
1676
1677 typedef Unordered_map<const char*,
1678 Unordered_set<Symbol_location, Symbol_location_hash> >
1679 Odr_map;
1680
1681 // Make FROM a forwarder symbol to TO.
1682 void
1683 make_forwarder(Symbol* from, Symbol* to);
1684
1685 // Add a symbol.
1686 template<int size, bool big_endian>
1687 Sized_symbol<size>*
1688 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1689 const char* version, Stringpool::Key version_key,
1690 bool def, const elfcpp::Sym<size, big_endian>& sym,
1691 unsigned int st_shndx, bool is_ordinary,
1692 unsigned int orig_st_shndx);
1693
1694 // Define a default symbol.
1695 template<int size, bool big_endian>
1696 void
1697 define_default_version(Sized_symbol<size>*, bool,
1698 Symbol_table_type::iterator);
1699
1700 // Resolve symbols.
1701 template<int size, bool big_endian>
1702 void
1703 resolve(Sized_symbol<size>* to,
1704 const elfcpp::Sym<size, big_endian>& sym,
1705 unsigned int st_shndx, bool is_ordinary,
1706 unsigned int orig_st_shndx,
1707 Object*, const char* version);
1708
1709 template<int size, bool big_endian>
1710 void
1711 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1712
1713 // Record that a symbol is forced to be local by a version script or
1714 // by visibility.
1715 void
1716 force_local(Symbol*);
1717
1718 // Adjust NAME and *NAME_KEY for wrapping.
1719 const char*
1720 wrap_symbol(const char* name, Stringpool::Key* name_key);
1721
1722 // Whether we should override a symbol, based on flags in
1723 // resolve.cc.
1724 static bool
1725 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1726 Object*, bool*, bool*);
1727
1728 // Report a problem in symbol resolution.
1729 static void
1730 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1731 Defined, Object* object);
1732
1733 // Override a symbol.
1734 template<int size, bool big_endian>
1735 void
1736 override(Sized_symbol<size>* tosym,
1737 const elfcpp::Sym<size, big_endian>& fromsym,
1738 unsigned int st_shndx, bool is_ordinary,
1739 Object* object, const char* version);
1740
1741 // Whether we should override a symbol with a special symbol which
1742 // is automatically defined by the linker.
1743 static bool
1744 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1745
1746 // Override a symbol with a special symbol.
1747 template<int size>
1748 void
1749 override_with_special(Sized_symbol<size>* tosym,
1750 const Sized_symbol<size>* fromsym);
1751
1752 // Record all weak alias sets for a dynamic object.
1753 template<int size>
1754 void
1755 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1756
1757 // Define a special symbol.
1758 template<int size, bool big_endian>
1759 Sized_symbol<size>*
1760 define_special_symbol(const char** pname, const char** pversion,
1761 bool only_if_ref, Sized_symbol<size>** poldsym,
1762 bool* resolve_oldsym);
1763
1764 // Define a symbol in an Output_data, sized version.
1765 template<int size>
1766 Sized_symbol<size>*
1767 do_define_in_output_data(const char* name, const char* version, Defined,
1768 Output_data*,
1769 typename elfcpp::Elf_types<size>::Elf_Addr value,
1770 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1771 elfcpp::STT type, elfcpp::STB binding,
1772 elfcpp::STV visibility, unsigned char nonvis,
1773 bool offset_is_from_end, bool only_if_ref);
1774
1775 // Define a symbol in an Output_segment, sized version.
1776 template<int size>
1777 Sized_symbol<size>*
1778 do_define_in_output_segment(
1779 const char* name, const char* version, Defined, Output_segment* os,
1780 typename elfcpp::Elf_types<size>::Elf_Addr value,
1781 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1782 elfcpp::STT type, elfcpp::STB binding,
1783 elfcpp::STV visibility, unsigned char nonvis,
1784 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1785
1786 // Define a symbol as a constant, sized version.
1787 template<int size>
1788 Sized_symbol<size>*
1789 do_define_as_constant(
1790 const char* name, const char* version, Defined,
1791 typename elfcpp::Elf_types<size>::Elf_Addr value,
1792 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1793 elfcpp::STT type, elfcpp::STB binding,
1794 elfcpp::STV visibility, unsigned char nonvis,
1795 bool only_if_ref, bool force_override);
1796
1797 // Add any undefined symbols named on the command line to the symbol
1798 // table, sized version.
1799 template<int size>
1800 void
1801 do_add_undefined_symbols_from_command_line(Layout*);
1802
1803 // Add one undefined symbol.
1804 template<int size>
1805 void
1806 add_undefined_symbol_from_command_line(const char* name);
1807
1808 // Types of common symbols.
1809
1810 enum Commons_section_type
1811 {
1812 COMMONS_NORMAL,
1813 COMMONS_TLS,
1814 COMMONS_SMALL,
1815 COMMONS_LARGE
1816 };
1817
1818 // Allocate the common symbols, sized version.
1819 template<int size>
1820 void
1821 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1822
1823 // Allocate the common symbols from one list.
1824 template<int size>
1825 void
1826 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1827 Mapfile*, Sort_commons_order);
1828
1829 // Returns all of the lines attached to LOC, not just the one the
1830 // instruction actually came from. This helps the ODR checker avoid
1831 // false positives.
1832 static std::vector<std::string>
1833 linenos_from_loc(const Task* task, const Symbol_location& loc);
1834
1835 // Implement detect_odr_violations.
1836 template<int size, bool big_endian>
1837 void
1838 sized_detect_odr_violations() const;
1839
1840 // Finalize symbols specialized for size.
1841 template<int size>
1842 off_t
1843 sized_finalize(off_t, Stringpool*, unsigned int*);
1844
1845 // Finalize a symbol. Return whether it should be added to the
1846 // symbol table.
1847 template<int size>
1848 bool
1849 sized_finalize_symbol(Symbol*);
1850
1851 // Add a symbol the final symtab by setting its index.
1852 template<int size>
1853 void
1854 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1855
1856 // Write globals specialized for size and endianness.
1857 template<int size, bool big_endian>
1858 void
1859 sized_write_globals(const Stringpool*, const Stringpool*,
1860 Output_symtab_xindex*, Output_symtab_xindex*,
1861 Output_file*) const;
1862
1863 // Write out a symbol to P.
1864 template<int size, bool big_endian>
1865 void
1866 sized_write_symbol(Sized_symbol<size>*,
1867 typename elfcpp::Elf_types<size>::Elf_Addr value,
1868 unsigned int shndx, elfcpp::STB,
1869 const Stringpool*, unsigned char* p) const;
1870
1871 // Possibly warn about an undefined symbol from a dynamic object.
1872 void
1873 warn_about_undefined_dynobj_symbol(Symbol*) const;
1874
1875 // Write out a section symbol, specialized for size and endianness.
1876 template<int size, bool big_endian>
1877 void
1878 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1879 Output_file*, off_t) const;
1880
1881 // The type of the list of symbols which have been forced local.
1882 typedef std::vector<Symbol*> Forced_locals;
1883
1884 // A map from symbols with COPY relocs to the dynamic objects where
1885 // they are defined.
1886 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1887
1888 // We increment this every time we see a new undefined symbol, for
1889 // use in archive groups.
1890 size_t saw_undefined_;
1891 // The index of the first global symbol in the output file.
1892 unsigned int first_global_index_;
1893 // The file offset within the output symtab section where we should
1894 // write the table.
1895 off_t offset_;
1896 // The number of global symbols we want to write out.
1897 unsigned int output_count_;
1898 // The file offset of the global dynamic symbols, or 0 if none.
1899 off_t dynamic_offset_;
1900 // The index of the first global dynamic symbol.
1901 unsigned int first_dynamic_global_index_;
1902 // The number of global dynamic symbols, or 0 if none.
1903 unsigned int dynamic_count_;
1904 // The symbol hash table.
1905 Symbol_table_type table_;
1906 // A pool of symbol names. This is used for all global symbols.
1907 // Entries in the hash table point into this pool.
1908 Stringpool namepool_;
1909 // Forwarding symbols.
1910 Unordered_map<const Symbol*, Symbol*> forwarders_;
1911 // Weak aliases. A symbol in this list points to the next alias.
1912 // The aliases point to each other in a circular list.
1913 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1914 // We don't expect there to be very many common symbols, so we keep
1915 // a list of them. When we find a common symbol we add it to this
1916 // list. It is possible that by the time we process the list the
1917 // symbol is no longer a common symbol. It may also have become a
1918 // forwarder.
1919 Commons_type commons_;
1920 // This is like the commons_ field, except that it holds TLS common
1921 // symbols.
1922 Commons_type tls_commons_;
1923 // This is for small common symbols.
1924 Commons_type small_commons_;
1925 // This is for large common symbols.
1926 Commons_type large_commons_;
1927 // A list of symbols which have been forced to be local. We don't
1928 // expect there to be very many of them, so we keep a list of them
1929 // rather than walking the whole table to find them.
1930 Forced_locals forced_locals_;
1931 // Manage symbol warnings.
1932 Warnings warnings_;
1933 // Manage potential One Definition Rule (ODR) violations.
1934 Odr_map candidate_odr_violations_;
1935
1936 // When we emit a COPY reloc for a symbol, we define it in an
1937 // Output_data. When it's time to emit version information for it,
1938 // we need to know the dynamic object in which we found the original
1939 // definition. This maps symbols with COPY relocs to the dynamic
1940 // object where they were defined.
1941 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1942 // Information parsed from the version script, if any.
1943 const Version_script_info& version_script_;
1944 Garbage_collection* gc_;
1945 Icf* icf_;
1946 };
1947
1948 // We inline get_sized_symbol for efficiency.
1949
1950 template<int size>
1951 Sized_symbol<size>*
1952 Symbol_table::get_sized_symbol(Symbol* sym) const
1953 {
1954 gold_assert(size == parameters->target().get_size());
1955 return static_cast<Sized_symbol<size>*>(sym);
1956 }
1957
1958 template<int size>
1959 const Sized_symbol<size>*
1960 Symbol_table::get_sized_symbol(const Symbol* sym) const
1961 {
1962 gold_assert(size == parameters->target().get_size());
1963 return static_cast<const Sized_symbol<size>*>(sym);
1964 }
1965
1966 } // End namespace gold.
1967
1968 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.104991 seconds and 5 git commands to generate.