* symtab.h: Check for GOLD_SYMTAB_H before header includes. Remove
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 class Versions;
52 class Version_script_info;
53 class Input_objects;
54 class Output_data;
55 class Output_section;
56 class Output_segment;
57 class Output_file;
58 class Output_symtab_xindex;
59 class Garbage_collection;
60 class Icf;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return the symbol visibility.
209 elfcpp::STV
210 visibility() const
211 { return this->visibility_; }
212
213 // Set the visibility.
214 void
215 set_visibility(elfcpp::STV visibility)
216 { this->visibility_ = visibility; }
217
218 // Override symbol visibility.
219 void
220 override_visibility(elfcpp::STV);
221
222 // Return the non-visibility part of the st_other field.
223 unsigned char
224 nonvis() const
225 { return this->nonvis_; }
226
227 // Return whether this symbol is a forwarder. This will never be
228 // true of a symbol found in the hash table, but may be true of
229 // symbol pointers attached to object files.
230 bool
231 is_forwarder() const
232 { return this->is_forwarder_; }
233
234 // Mark this symbol as a forwarder.
235 void
236 set_forwarder()
237 { this->is_forwarder_ = true; }
238
239 // Return whether this symbol has an alias in the weak aliases table
240 // in Symbol_table.
241 bool
242 has_alias() const
243 { return this->has_alias_; }
244
245 // Mark this symbol as having an alias.
246 void
247 set_has_alias()
248 { this->has_alias_ = true; }
249
250 // Return whether this symbol needs an entry in the dynamic symbol
251 // table.
252 bool
253 needs_dynsym_entry() const
254 {
255 return (this->needs_dynsym_entry_
256 || (this->in_reg() && this->in_dyn()));
257 }
258
259 // Mark this symbol as needing an entry in the dynamic symbol table.
260 void
261 set_needs_dynsym_entry()
262 { this->needs_dynsym_entry_ = true; }
263
264 // Return whether this symbol should be added to the dynamic symbol
265 // table.
266 bool
267 should_add_dynsym_entry() const;
268
269 // Return whether this symbol has been seen in a regular object.
270 bool
271 in_reg() const
272 { return this->in_reg_; }
273
274 // Mark this symbol as having been seen in a regular object.
275 void
276 set_in_reg()
277 { this->in_reg_ = true; }
278
279 // Return whether this symbol has been seen in a dynamic object.
280 bool
281 in_dyn() const
282 { return this->in_dyn_; }
283
284 // Mark this symbol as having been seen in a dynamic object.
285 void
286 set_in_dyn()
287 { this->in_dyn_ = true; }
288
289 // Return whether this symbol has been seen in a real ELF object.
290 // (IN_REG will return TRUE if the symbol has been seen in either
291 // a real ELF object or an object claimed by a plugin.)
292 bool
293 in_real_elf() const
294 { return this->in_real_elf_; }
295
296 // Mark this symbol as having been seen in a real ELF object.
297 void
298 set_in_real_elf()
299 { this->in_real_elf_ = true; }
300
301 // Return the index of this symbol in the output file symbol table.
302 // A value of -1U means that this symbol is not going into the
303 // output file. This starts out as zero, and is set to a non-zero
304 // value by Symbol_table::finalize. It is an error to ask for the
305 // symbol table index before it has been set.
306 unsigned int
307 symtab_index() const
308 {
309 gold_assert(this->symtab_index_ != 0);
310 return this->symtab_index_;
311 }
312
313 // Set the index of the symbol in the output file symbol table.
314 void
315 set_symtab_index(unsigned int index)
316 {
317 gold_assert(index != 0);
318 this->symtab_index_ = index;
319 }
320
321 // Return whether this symbol already has an index in the output
322 // file symbol table.
323 bool
324 has_symtab_index() const
325 { return this->symtab_index_ != 0; }
326
327 // Return the index of this symbol in the dynamic symbol table. A
328 // value of -1U means that this symbol is not going into the dynamic
329 // symbol table. This starts out as zero, and is set to a non-zero
330 // during Layout::finalize. It is an error to ask for the dynamic
331 // symbol table index before it has been set.
332 unsigned int
333 dynsym_index() const
334 {
335 gold_assert(this->dynsym_index_ != 0);
336 return this->dynsym_index_;
337 }
338
339 // Set the index of the symbol in the dynamic symbol table.
340 void
341 set_dynsym_index(unsigned int index)
342 {
343 gold_assert(index != 0);
344 this->dynsym_index_ = index;
345 }
346
347 // Return whether this symbol already has an index in the dynamic
348 // symbol table.
349 bool
350 has_dynsym_index() const
351 { return this->dynsym_index_ != 0; }
352
353 // Return whether this symbol has an entry in the GOT section.
354 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
355 bool
356 has_got_offset(unsigned int got_type) const
357 { return this->got_offsets_.get_offset(got_type) != -1U; }
358
359 // Return the offset into the GOT section of this symbol.
360 unsigned int
361 got_offset(unsigned int got_type) const
362 {
363 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
364 gold_assert(got_offset != -1U);
365 return got_offset;
366 }
367
368 // Set the GOT offset of this symbol.
369 void
370 set_got_offset(unsigned int got_type, unsigned int got_offset)
371 { this->got_offsets_.set_offset(got_type, got_offset); }
372
373 // Return whether this symbol has an entry in the PLT section.
374 bool
375 has_plt_offset() const
376 { return this->has_plt_offset_; }
377
378 // Return the offset into the PLT section of this symbol.
379 unsigned int
380 plt_offset() const
381 {
382 gold_assert(this->has_plt_offset());
383 return this->plt_offset_;
384 }
385
386 // Set the PLT offset of this symbol.
387 void
388 set_plt_offset(unsigned int plt_offset)
389 {
390 this->has_plt_offset_ = true;
391 this->plt_offset_ = plt_offset;
392 }
393
394 // Return whether this dynamic symbol needs a special value in the
395 // dynamic symbol table.
396 bool
397 needs_dynsym_value() const
398 { return this->needs_dynsym_value_; }
399
400 // Set that this dynamic symbol needs a special value in the dynamic
401 // symbol table.
402 void
403 set_needs_dynsym_value()
404 {
405 gold_assert(this->object()->is_dynamic());
406 this->needs_dynsym_value_ = true;
407 }
408
409 // Return true if the final value of this symbol is known at link
410 // time.
411 bool
412 final_value_is_known() const;
413
414 // Return true if SHNDX represents a common symbol. This depends on
415 // the target.
416 static bool
417 is_common_shndx(unsigned int shndx);
418
419 // Return whether this is a defined symbol (not undefined or
420 // common).
421 bool
422 is_defined() const
423 {
424 bool is_ordinary;
425 if (this->source_ != FROM_OBJECT)
426 return this->source_ != IS_UNDEFINED;
427 unsigned int shndx = this->shndx(&is_ordinary);
428 return (is_ordinary
429 ? shndx != elfcpp::SHN_UNDEF
430 : !Symbol::is_common_shndx(shndx));
431 }
432
433 // Return true if this symbol is from a dynamic object.
434 bool
435 is_from_dynobj() const
436 {
437 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
438 }
439
440 // Return whether this is an undefined symbol.
441 bool
442 is_undefined() const
443 {
444 bool is_ordinary;
445 return ((this->source_ == FROM_OBJECT
446 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
447 && is_ordinary)
448 || this->source_ == IS_UNDEFINED);
449 }
450
451 // Return whether this is a weak undefined symbol.
452 bool
453 is_weak_undefined() const
454 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
455
456 // Return whether this is an absolute symbol.
457 bool
458 is_absolute() const
459 {
460 bool is_ordinary;
461 return ((this->source_ == FROM_OBJECT
462 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
463 && !is_ordinary)
464 || this->source_ == IS_CONSTANT);
465 }
466
467 // Return whether this is a common symbol.
468 bool
469 is_common() const
470 {
471 if (this->type_ == elfcpp::STT_COMMON)
472 return true;
473 if (this->source_ != FROM_OBJECT)
474 return false;
475 bool is_ordinary;
476 unsigned int shndx = this->shndx(&is_ordinary);
477 return !is_ordinary && Symbol::is_common_shndx(shndx);
478 }
479
480 // Return whether this symbol can be seen outside this object.
481 bool
482 is_externally_visible() const
483 {
484 return (this->visibility_ == elfcpp::STV_DEFAULT
485 || this->visibility_ == elfcpp::STV_PROTECTED);
486 }
487
488 // Return true if this symbol can be preempted by a definition in
489 // another link unit.
490 bool
491 is_preemptible() const
492 {
493 // It doesn't make sense to ask whether a symbol defined in
494 // another object is preemptible.
495 gold_assert(!this->is_from_dynobj());
496
497 // It doesn't make sense to ask whether an undefined symbol
498 // is preemptible.
499 gold_assert(!this->is_undefined());
500
501 // If a symbol does not have default visibility, it can not be
502 // seen outside this link unit and therefore is not preemptible.
503 if (this->visibility_ != elfcpp::STV_DEFAULT)
504 return false;
505
506 // If this symbol has been forced to be a local symbol by a
507 // version script, then it is not visible outside this link unit
508 // and is not preemptible.
509 if (this->is_forced_local_)
510 return false;
511
512 // If we are not producing a shared library, then nothing is
513 // preemptible.
514 if (!parameters->options().shared())
515 return false;
516
517 // If the user used -Bsymbolic, then nothing is preemptible.
518 if (parameters->options().Bsymbolic())
519 return false;
520
521 // If the user used -Bsymbolic-functions, then functions are not
522 // preemptible. We explicitly check for not being STT_OBJECT,
523 // rather than for being STT_FUNC, because that is what the GNU
524 // linker does.
525 if (this->type() != elfcpp::STT_OBJECT
526 && parameters->options().Bsymbolic_functions())
527 return false;
528
529 // Otherwise the symbol is preemptible.
530 return true;
531 }
532
533 // Return true if this symbol is a function that needs a PLT entry.
534 // If the symbol is defined in a dynamic object or if it is subject
535 // to pre-emption, we need to make a PLT entry. If we're doing a
536 // static link, we don't create PLT entries.
537 bool
538 needs_plt_entry() const
539 {
540 // An undefined symbol from an executable does not need a PLT entry.
541 if (this->is_undefined() && !parameters->options().shared())
542 return false;
543
544 return (!parameters->doing_static_link()
545 && this->type() == elfcpp::STT_FUNC
546 && (this->is_from_dynobj()
547 || this->is_undefined()
548 || this->is_preemptible()));
549 }
550
551 // When determining whether a reference to a symbol needs a dynamic
552 // relocation, we need to know several things about the reference.
553 // These flags may be or'ed together.
554 enum Reference_flags
555 {
556 // Reference to the symbol's absolute address.
557 ABSOLUTE_REF = 1,
558 // A non-PIC reference.
559 NON_PIC_REF = 2,
560 // A function call.
561 FUNCTION_CALL = 4
562 };
563
564 // Given a direct absolute or pc-relative static relocation against
565 // the global symbol, this function returns whether a dynamic relocation
566 // is needed.
567
568 bool
569 needs_dynamic_reloc(int flags) const
570 {
571 // No dynamic relocations in a static link!
572 if (parameters->doing_static_link())
573 return false;
574
575 // A reference to an undefined symbol from an executable should be
576 // statically resolved to 0, and does not need a dynamic relocation.
577 // This matches gnu ld behavior.
578 if (this->is_undefined() && !parameters->options().shared())
579 return false;
580
581 // A reference to an absolute symbol does not need a dynamic relocation.
582 if (this->is_absolute())
583 return false;
584
585 // An absolute reference within a position-independent output file
586 // will need a dynamic relocation.
587 if ((flags & ABSOLUTE_REF)
588 && parameters->options().output_is_position_independent())
589 return true;
590
591 // A function call that can branch to a local PLT entry does not need
592 // a dynamic relocation. A non-pic pc-relative function call in a
593 // shared library cannot use a PLT entry.
594 if ((flags & FUNCTION_CALL)
595 && this->has_plt_offset()
596 && !((flags & NON_PIC_REF) && parameters->options().shared()))
597 return false;
598
599 // A reference to any PLT entry in a non-position-independent executable
600 // does not need a dynamic relocation.
601 if (!parameters->options().output_is_position_independent()
602 && this->has_plt_offset())
603 return false;
604
605 // A reference to a symbol defined in a dynamic object or to a
606 // symbol that is preemptible will need a dynamic relocation.
607 if (this->is_from_dynobj()
608 || this->is_undefined()
609 || this->is_preemptible())
610 return true;
611
612 // For all other cases, return FALSE.
613 return false;
614 }
615
616 // Whether we should use the PLT offset associated with a symbol for
617 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
618 // reloc--the same set of relocs for which we would pass NON_PIC_REF
619 // to the needs_dynamic_reloc function.
620
621 bool
622 use_plt_offset(bool is_non_pic_reference) const
623 {
624 // If the symbol doesn't have a PLT offset, then naturally we
625 // don't want to use it.
626 if (!this->has_plt_offset())
627 return false;
628
629 // If we are going to generate a dynamic relocation, then we will
630 // wind up using that, so no need to use the PLT entry.
631 if (this->needs_dynamic_reloc(FUNCTION_CALL
632 | (is_non_pic_reference
633 ? NON_PIC_REF
634 : 0)))
635 return false;
636
637 // If the symbol is from a dynamic object, we need to use the PLT
638 // entry.
639 if (this->is_from_dynobj())
640 return true;
641
642 // If we are generating a shared object, and this symbol is
643 // undefined or preemptible, we need to use the PLT entry.
644 if (parameters->options().shared()
645 && (this->is_undefined() || this->is_preemptible()))
646 return true;
647
648 // If this is a weak undefined symbol, we need to use the PLT
649 // entry; the symbol may be defined by a library loaded at
650 // runtime.
651 if (this->is_weak_undefined())
652 return true;
653
654 // Otherwise we can use the regular definition.
655 return false;
656 }
657
658 // Given a direct absolute static relocation against
659 // the global symbol, where a dynamic relocation is needed, this
660 // function returns whether a relative dynamic relocation can be used.
661 // The caller must determine separately whether the static relocation
662 // is compatible with a relative relocation.
663
664 bool
665 can_use_relative_reloc(bool is_function_call) const
666 {
667 // A function call that can branch to a local PLT entry can
668 // use a RELATIVE relocation.
669 if (is_function_call && this->has_plt_offset())
670 return true;
671
672 // A reference to a symbol defined in a dynamic object or to a
673 // symbol that is preemptible can not use a RELATIVE relocaiton.
674 if (this->is_from_dynobj()
675 || this->is_undefined()
676 || this->is_preemptible())
677 return false;
678
679 // For all other cases, return TRUE.
680 return true;
681 }
682
683 // Return the output section where this symbol is defined. Return
684 // NULL if the symbol has an absolute value.
685 Output_section*
686 output_section() const;
687
688 // Set the symbol's output section. This is used for symbols
689 // defined in scripts. This should only be called after the symbol
690 // table has been finalized.
691 void
692 set_output_section(Output_section*);
693
694 // Return whether there should be a warning for references to this
695 // symbol.
696 bool
697 has_warning() const
698 { return this->has_warning_; }
699
700 // Mark this symbol as having a warning.
701 void
702 set_has_warning()
703 { this->has_warning_ = true; }
704
705 // Return whether this symbol is defined by a COPY reloc from a
706 // dynamic object.
707 bool
708 is_copied_from_dynobj() const
709 { return this->is_copied_from_dynobj_; }
710
711 // Mark this symbol as defined by a COPY reloc.
712 void
713 set_is_copied_from_dynobj()
714 { this->is_copied_from_dynobj_ = true; }
715
716 // Return whether this symbol is forced to visibility STB_LOCAL
717 // by a "local:" entry in a version script.
718 bool
719 is_forced_local() const
720 { return this->is_forced_local_; }
721
722 // Mark this symbol as forced to STB_LOCAL visibility.
723 void
724 set_is_forced_local()
725 { this->is_forced_local_ = true; }
726
727 // Return true if this may need a COPY relocation.
728 // References from an executable object to non-function symbols
729 // defined in a dynamic object may need a COPY relocation.
730 bool
731 may_need_copy_reloc() const
732 {
733 return (!parameters->options().shared()
734 && parameters->options().copyreloc()
735 && this->is_from_dynobj()
736 && this->type() != elfcpp::STT_FUNC);
737 }
738
739 protected:
740 // Instances of this class should always be created at a specific
741 // size.
742 Symbol()
743 { memset(this, 0, sizeof *this); }
744
745 // Initialize the general fields.
746 void
747 init_fields(const char* name, const char* version,
748 elfcpp::STT type, elfcpp::STB binding,
749 elfcpp::STV visibility, unsigned char nonvis);
750
751 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
752 // section index, IS_ORDINARY is whether it is a normal section
753 // index rather than a special code.
754 template<int size, bool big_endian>
755 void
756 init_base_object(const char *name, const char* version, Object* object,
757 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
758 bool is_ordinary);
759
760 // Initialize fields for an Output_data.
761 void
762 init_base_output_data(const char* name, const char* version, Output_data*,
763 elfcpp::STT, elfcpp::STB, elfcpp::STV,
764 unsigned char nonvis, bool offset_is_from_end);
765
766 // Initialize fields for an Output_segment.
767 void
768 init_base_output_segment(const char* name, const char* version,
769 Output_segment* os, elfcpp::STT type,
770 elfcpp::STB binding, elfcpp::STV visibility,
771 unsigned char nonvis,
772 Segment_offset_base offset_base);
773
774 // Initialize fields for a constant.
775 void
776 init_base_constant(const char* name, const char* version, elfcpp::STT type,
777 elfcpp::STB binding, elfcpp::STV visibility,
778 unsigned char nonvis);
779
780 // Initialize fields for an undefined symbol.
781 void
782 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
783 elfcpp::STB binding, elfcpp::STV visibility,
784 unsigned char nonvis);
785
786 // Override existing symbol.
787 template<int size, bool big_endian>
788 void
789 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
790 bool is_ordinary, Object* object, const char* version);
791
792 // Override existing symbol with a special symbol.
793 void
794 override_base_with_special(const Symbol* from);
795
796 // Override symbol version.
797 void
798 override_version(const char* version);
799
800 // Allocate a common symbol by giving it a location in the output
801 // file.
802 void
803 allocate_base_common(Output_data*);
804
805 private:
806 Symbol(const Symbol&);
807 Symbol& operator=(const Symbol&);
808
809 // Symbol name (expected to point into a Stringpool).
810 const char* name_;
811 // Symbol version (expected to point into a Stringpool). This may
812 // be NULL.
813 const char* version_;
814
815 union
816 {
817 // This struct is used if SOURCE_ == FROM_OBJECT.
818 struct
819 {
820 // Object in which symbol is defined, or in which it was first
821 // seen.
822 Object* object;
823 // Section number in object_ in which symbol is defined.
824 unsigned int shndx;
825 } from_object;
826
827 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
828 struct
829 {
830 // Output_data in which symbol is defined. Before
831 // Layout::finalize the symbol's value is an offset within the
832 // Output_data.
833 Output_data* output_data;
834 // True if the offset is from the end, false if the offset is
835 // from the beginning.
836 bool offset_is_from_end;
837 } in_output_data;
838
839 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
840 struct
841 {
842 // Output_segment in which the symbol is defined. Before
843 // Layout::finalize the symbol's value is an offset.
844 Output_segment* output_segment;
845 // The base to use for the offset before Layout::finalize.
846 Segment_offset_base offset_base;
847 } in_output_segment;
848 } u_;
849
850 // The index of this symbol in the output file. If the symbol is
851 // not going into the output file, this value is -1U. This field
852 // starts as always holding zero. It is set to a non-zero value by
853 // Symbol_table::finalize.
854 unsigned int symtab_index_;
855
856 // The index of this symbol in the dynamic symbol table. If the
857 // symbol is not going into the dynamic symbol table, this value is
858 // -1U. This field starts as always holding zero. It is set to a
859 // non-zero value during Layout::finalize.
860 unsigned int dynsym_index_;
861
862 // If this symbol has an entry in the GOT section (has_got_offset_
863 // is true), this holds the offset from the start of the GOT section.
864 // A symbol may have more than one GOT offset (e.g., when mixing
865 // modules compiled with two different TLS models), but will usually
866 // have at most one.
867 Got_offset_list got_offsets_;
868
869 // If this symbol has an entry in the PLT section (has_plt_offset_
870 // is true), then this is the offset from the start of the PLT
871 // section.
872 unsigned int plt_offset_;
873
874 // Symbol type (bits 0 to 3).
875 elfcpp::STT type_ : 4;
876 // Symbol binding (bits 4 to 7).
877 elfcpp::STB binding_ : 4;
878 // Symbol visibility (bits 8 to 9).
879 elfcpp::STV visibility_ : 2;
880 // Rest of symbol st_other field (bits 10 to 15).
881 unsigned int nonvis_ : 6;
882 // The type of symbol (bits 16 to 18).
883 Source source_ : 3;
884 // True if this symbol always requires special target-specific
885 // handling (bit 19).
886 bool is_target_special_ : 1;
887 // True if this is the default version of the symbol (bit 20).
888 bool is_def_ : 1;
889 // True if this symbol really forwards to another symbol. This is
890 // used when we discover after the fact that two different entries
891 // in the hash table really refer to the same symbol. This will
892 // never be set for a symbol found in the hash table, but may be set
893 // for a symbol found in the list of symbols attached to an Object.
894 // It forwards to the symbol found in the forwarders_ map of
895 // Symbol_table (bit 21).
896 bool is_forwarder_ : 1;
897 // True if the symbol has an alias in the weak_aliases table in
898 // Symbol_table (bit 22).
899 bool has_alias_ : 1;
900 // True if this symbol needs to be in the dynamic symbol table (bit
901 // 23).
902 bool needs_dynsym_entry_ : 1;
903 // True if we've seen this symbol in a regular object (bit 24).
904 bool in_reg_ : 1;
905 // True if we've seen this symbol in a dynamic object (bit 25).
906 bool in_dyn_ : 1;
907 // True if the symbol has an entry in the PLT section (bit 26).
908 bool has_plt_offset_ : 1;
909 // True if this is a dynamic symbol which needs a special value in
910 // the dynamic symbol table (bit 27).
911 bool needs_dynsym_value_ : 1;
912 // True if there is a warning for this symbol (bit 28).
913 bool has_warning_ : 1;
914 // True if we are using a COPY reloc for this symbol, so that the
915 // real definition lives in a dynamic object (bit 29).
916 bool is_copied_from_dynobj_ : 1;
917 // True if this symbol was forced to local visibility by a version
918 // script (bit 30).
919 bool is_forced_local_ : 1;
920 // True if the field u_.from_object.shndx is an ordinary section
921 // index, not one of the special codes from SHN_LORESERVE to
922 // SHN_HIRESERVE (bit 31).
923 bool is_ordinary_shndx_ : 1;
924 // True if we've seen this symbol in a real ELF object.
925 bool in_real_elf_ : 1;
926 };
927
928 // The parts of a symbol which are size specific. Using a template
929 // derived class like this helps us use less space on a 32-bit system.
930
931 template<int size>
932 class Sized_symbol : public Symbol
933 {
934 public:
935 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
936 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
937
938 Sized_symbol()
939 { }
940
941 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
942 // section index, IS_ORDINARY is whether it is a normal section
943 // index rather than a special code.
944 template<bool big_endian>
945 void
946 init_object(const char *name, const char* version, Object* object,
947 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
948 bool is_ordinary);
949
950 // Initialize fields for an Output_data.
951 void
952 init_output_data(const char* name, const char* version, Output_data*,
953 Value_type value, Size_type symsize, elfcpp::STT,
954 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
955 bool offset_is_from_end);
956
957 // Initialize fields for an Output_segment.
958 void
959 init_output_segment(const char* name, const char* version, Output_segment*,
960 Value_type value, Size_type symsize, elfcpp::STT,
961 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
962 Segment_offset_base offset_base);
963
964 // Initialize fields for a constant.
965 void
966 init_constant(const char* name, const char* version, Value_type value,
967 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
968 unsigned char nonvis);
969
970 // Initialize fields for an undefined symbol.
971 void
972 init_undefined(const char* name, const char* version, elfcpp::STT,
973 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
974
975 // Override existing symbol.
976 template<bool big_endian>
977 void
978 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
979 bool is_ordinary, Object* object, const char* version);
980
981 // Override existing symbol with a special symbol.
982 void
983 override_with_special(const Sized_symbol<size>*);
984
985 // Return the symbol's value.
986 Value_type
987 value() const
988 { return this->value_; }
989
990 // Return the symbol's size (we can't call this 'size' because that
991 // is a template parameter).
992 Size_type
993 symsize() const
994 { return this->symsize_; }
995
996 // Set the symbol size. This is used when resolving common symbols.
997 void
998 set_symsize(Size_type symsize)
999 { this->symsize_ = symsize; }
1000
1001 // Set the symbol value. This is called when we store the final
1002 // values of the symbols into the symbol table.
1003 void
1004 set_value(Value_type value)
1005 { this->value_ = value; }
1006
1007 // Allocate a common symbol by giving it a location in the output
1008 // file.
1009 void
1010 allocate_common(Output_data*, Value_type value);
1011
1012 private:
1013 Sized_symbol(const Sized_symbol&);
1014 Sized_symbol& operator=(const Sized_symbol&);
1015
1016 // Symbol value. Before Layout::finalize this is the offset in the
1017 // input section. This is set to the final value during
1018 // Layout::finalize.
1019 Value_type value_;
1020 // Symbol size.
1021 Size_type symsize_;
1022 };
1023
1024 // A struct describing a symbol defined by the linker, where the value
1025 // of the symbol is defined based on an output section. This is used
1026 // for symbols defined by the linker, like "_init_array_start".
1027
1028 struct Define_symbol_in_section
1029 {
1030 // The symbol name.
1031 const char* name;
1032 // The name of the output section with which this symbol should be
1033 // associated. If there is no output section with that name, the
1034 // symbol will be defined as zero.
1035 const char* output_section;
1036 // The offset of the symbol within the output section. This is an
1037 // offset from the start of the output section, unless start_at_end
1038 // is true, in which case this is an offset from the end of the
1039 // output section.
1040 uint64_t value;
1041 // The size of the symbol.
1042 uint64_t size;
1043 // The symbol type.
1044 elfcpp::STT type;
1045 // The symbol binding.
1046 elfcpp::STB binding;
1047 // The symbol visibility.
1048 elfcpp::STV visibility;
1049 // The rest of the st_other field.
1050 unsigned char nonvis;
1051 // If true, the value field is an offset from the end of the output
1052 // section.
1053 bool offset_is_from_end;
1054 // If true, this symbol is defined only if we see a reference to it.
1055 bool only_if_ref;
1056 };
1057
1058 // A struct describing a symbol defined by the linker, where the value
1059 // of the symbol is defined based on a segment. This is used for
1060 // symbols defined by the linker, like "_end". We describe the
1061 // segment with which the symbol should be associated by its
1062 // characteristics. If no segment meets these characteristics, the
1063 // symbol will be defined as zero. If there is more than one segment
1064 // which meets these characteristics, we will use the first one.
1065
1066 struct Define_symbol_in_segment
1067 {
1068 // The symbol name.
1069 const char* name;
1070 // The segment type where the symbol should be defined, typically
1071 // PT_LOAD.
1072 elfcpp::PT segment_type;
1073 // Bitmask of segment flags which must be set.
1074 elfcpp::PF segment_flags_set;
1075 // Bitmask of segment flags which must be clear.
1076 elfcpp::PF segment_flags_clear;
1077 // The offset of the symbol within the segment. The offset is
1078 // calculated from the position set by offset_base.
1079 uint64_t value;
1080 // The size of the symbol.
1081 uint64_t size;
1082 // The symbol type.
1083 elfcpp::STT type;
1084 // The symbol binding.
1085 elfcpp::STB binding;
1086 // The symbol visibility.
1087 elfcpp::STV visibility;
1088 // The rest of the st_other field.
1089 unsigned char nonvis;
1090 // The base from which we compute the offset.
1091 Symbol::Segment_offset_base offset_base;
1092 // If true, this symbol is defined only if we see a reference to it.
1093 bool only_if_ref;
1094 };
1095
1096 // This class manages warnings. Warnings are a GNU extension. When
1097 // we see a section named .gnu.warning.SYM in an object file, and if
1098 // we wind using the definition of SYM from that object file, then we
1099 // will issue a warning for any relocation against SYM from a
1100 // different object file. The text of the warning is the contents of
1101 // the section. This is not precisely the definition used by the old
1102 // GNU linker; the old GNU linker treated an occurrence of
1103 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1104 // would trigger a warning on any reference. However, it was
1105 // inconsistent in that a warning in a dynamic object only triggered
1106 // if there was no definition in a regular object. This linker is
1107 // different in that we only issue a warning if we use the symbol
1108 // definition from the same object file as the warning section.
1109
1110 class Warnings
1111 {
1112 public:
1113 Warnings()
1114 : warnings_()
1115 { }
1116
1117 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1118 // of the warning.
1119 void
1120 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1121 const std::string& warning);
1122
1123 // For each symbol for which we should give a warning, make a note
1124 // on the symbol.
1125 void
1126 note_warnings(Symbol_table* symtab);
1127
1128 // Issue a warning for a reference to SYM at RELINFO's location.
1129 template<int size, bool big_endian>
1130 void
1131 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1132 size_t relnum, off_t reloffset) const;
1133
1134 private:
1135 Warnings(const Warnings&);
1136 Warnings& operator=(const Warnings&);
1137
1138 // What we need to know to get the warning text.
1139 struct Warning_location
1140 {
1141 // The object the warning is in.
1142 Object* object;
1143 // The warning text.
1144 std::string text;
1145
1146 Warning_location()
1147 : object(NULL), text()
1148 { }
1149
1150 void
1151 set(Object* o, const std::string& t)
1152 {
1153 this->object = o;
1154 this->text = t;
1155 }
1156 };
1157
1158 // A mapping from warning symbol names (canonicalized in
1159 // Symbol_table's namepool_ field) to warning information.
1160 typedef Unordered_map<const char*, Warning_location> Warning_table;
1161
1162 Warning_table warnings_;
1163 };
1164
1165 // The main linker symbol table.
1166
1167 class Symbol_table
1168 {
1169 public:
1170 // COUNT is an estimate of how many symbosl will be inserted in the
1171 // symbol table. It's ok to put 0 if you don't know; a correct
1172 // guess will just save some CPU by reducing hashtable resizes.
1173 Symbol_table(unsigned int count, const Version_script_info& version_script);
1174
1175 ~Symbol_table();
1176
1177 void
1178 set_icf(Icf* icf)
1179 { this->icf_ = icf;}
1180
1181 Icf*
1182 icf() const
1183 { return this->icf_; }
1184
1185 // Returns true if ICF determined that this is a duplicate section.
1186 bool
1187 is_section_folded(Object* obj, unsigned int shndx) const;
1188
1189 void
1190 set_gc(Garbage_collection* gc)
1191 { this->gc_ = gc; }
1192
1193 Garbage_collection*
1194 gc() const
1195 { return this->gc_; }
1196
1197 // During garbage collection, this keeps undefined symbols.
1198 void
1199 gc_mark_undef_symbols();
1200
1201 // During garbage collection, this ensures externally visible symbols
1202 // are not treated as garbage while building shared objects.
1203 void
1204 gc_mark_symbol_for_shlib(Symbol* sym);
1205
1206 // During garbage collection, this keeps sections that correspond to
1207 // symbols seen in dynamic objects.
1208 inline void
1209 gc_mark_dyn_syms(Symbol* sym);
1210
1211 // Add COUNT external symbols from the relocatable object RELOBJ to
1212 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1213 // offset in the symbol table of the first symbol, SYM_NAMES is
1214 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1215 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1216 // *DEFINED to the number of defined symbols.
1217 template<int size, bool big_endian>
1218 void
1219 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1220 const unsigned char* syms, size_t count,
1221 size_t symndx_offset, const char* sym_names,
1222 size_t sym_name_size,
1223 typename Sized_relobj<size, big_endian>::Symbols*,
1224 size_t* defined);
1225
1226 // Add one external symbol from the plugin object OBJ to the symbol table.
1227 // Returns a pointer to the resolved symbol in the symbol table.
1228 template<int size, bool big_endian>
1229 Symbol*
1230 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1231 const char* name, const char* ver,
1232 elfcpp::Sym<size, big_endian>* sym);
1233
1234 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1235 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1236 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1237 // symbol version data.
1238 template<int size, bool big_endian>
1239 void
1240 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1241 const unsigned char* syms, size_t count,
1242 const char* sym_names, size_t sym_name_size,
1243 const unsigned char* versym, size_t versym_size,
1244 const std::vector<const char*>*,
1245 typename Sized_relobj<size, big_endian>::Symbols*,
1246 size_t* defined);
1247
1248 // Define a special symbol based on an Output_data. It is a
1249 // multiple definition error if this symbol is already defined.
1250 Symbol*
1251 define_in_output_data(const char* name, const char* version,
1252 Output_data*, uint64_t value, uint64_t symsize,
1253 elfcpp::STT type, elfcpp::STB binding,
1254 elfcpp::STV visibility, unsigned char nonvis,
1255 bool offset_is_from_end, bool only_if_ref);
1256
1257 // Define a special symbol based on an Output_segment. It is a
1258 // multiple definition error if this symbol is already defined.
1259 Symbol*
1260 define_in_output_segment(const char* name, const char* version,
1261 Output_segment*, uint64_t value, uint64_t symsize,
1262 elfcpp::STT type, elfcpp::STB binding,
1263 elfcpp::STV visibility, unsigned char nonvis,
1264 Symbol::Segment_offset_base, bool only_if_ref);
1265
1266 // Define a special symbol with a constant value. It is a multiple
1267 // definition error if this symbol is already defined.
1268 Symbol*
1269 define_as_constant(const char* name, const char* version,
1270 uint64_t value, uint64_t symsize, elfcpp::STT type,
1271 elfcpp::STB binding, elfcpp::STV visibility,
1272 unsigned char nonvis, bool only_if_ref,
1273 bool force_override);
1274
1275 // Define a set of symbols in output sections. If ONLY_IF_REF is
1276 // true, only define them if they are referenced.
1277 void
1278 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1279 bool only_if_ref);
1280
1281 // Define a set of symbols in output segments. If ONLY_IF_REF is
1282 // true, only defined them if they are referenced.
1283 void
1284 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1285 bool only_if_ref);
1286
1287 // Define SYM using a COPY reloc. POSD is the Output_data where the
1288 // symbol should be defined--typically a .dyn.bss section. VALUE is
1289 // the offset within POSD.
1290 template<int size>
1291 void
1292 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1293 typename elfcpp::Elf_types<size>::Elf_Addr);
1294
1295 // Look up a symbol.
1296 Symbol*
1297 lookup(const char*, const char* version = NULL) const;
1298
1299 // Return the real symbol associated with the forwarder symbol FROM.
1300 Symbol*
1301 resolve_forwards(const Symbol* from) const;
1302
1303 // Return the sized version of a symbol in this table.
1304 template<int size>
1305 Sized_symbol<size>*
1306 get_sized_symbol(Symbol*) const;
1307
1308 template<int size>
1309 const Sized_symbol<size>*
1310 get_sized_symbol(const Symbol*) const;
1311
1312 // Return the count of undefined symbols seen.
1313 int
1314 saw_undefined() const
1315 { return this->saw_undefined_; }
1316
1317 // Allocate the common symbols
1318 void
1319 allocate_commons(Layout*, Mapfile*);
1320
1321 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1322 // of the warning.
1323 void
1324 add_warning(const char* name, Object* obj, const std::string& warning)
1325 { this->warnings_.add_warning(this, name, obj, warning); }
1326
1327 // Canonicalize a symbol name for use in the hash table.
1328 const char*
1329 canonicalize_name(const char* name)
1330 { return this->namepool_.add(name, true, NULL); }
1331
1332 // Possibly issue a warning for a reference to SYM at LOCATION which
1333 // is in OBJ.
1334 template<int size, bool big_endian>
1335 void
1336 issue_warning(const Symbol* sym,
1337 const Relocate_info<size, big_endian>* relinfo,
1338 size_t relnum, off_t reloffset) const
1339 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1340
1341 // Check candidate_odr_violations_ to find symbols with the same name
1342 // but apparently different definitions (different source-file/line-no).
1343 void
1344 detect_odr_violations(const Task*, const char* output_file_name) const;
1345
1346 // Add any undefined symbols named on the command line to the symbol
1347 // table.
1348 void
1349 add_undefined_symbols_from_command_line();
1350
1351 // SYM is defined using a COPY reloc. Return the dynamic object
1352 // where the original definition was found.
1353 Dynobj*
1354 get_copy_source(const Symbol* sym) const;
1355
1356 // Set the dynamic symbol indexes. INDEX is the index of the first
1357 // global dynamic symbol. Pointers to the symbols are stored into
1358 // the vector. The names are stored into the Stringpool. This
1359 // returns an updated dynamic symbol index.
1360 unsigned int
1361 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1362 Stringpool*, Versions*);
1363
1364 // Finalize the symbol table after we have set the final addresses
1365 // of all the input sections. This sets the final symbol indexes,
1366 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1367 // index of the first global symbol. OFF is the file offset of the
1368 // global symbol table, DYNOFF is the offset of the globals in the
1369 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1370 // global dynamic symbol, and DYNCOUNT is the number of global
1371 // dynamic symbols. This records the parameters, and returns the
1372 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1373 // local symbols.
1374 off_t
1375 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1376 Stringpool* pool, unsigned int *plocal_symcount);
1377
1378 // Status code of Symbol_table::compute_final_value.
1379 enum Compute_final_value_status
1380 {
1381 // No error.
1382 CFVS_OK,
1383 // Unspported symbol section.
1384 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1385 // No output section.
1386 CFVS_NO_OUTPUT_SECTION
1387 };
1388
1389 // Compute the final value of SYM and store status in location PSTATUS.
1390 // During relaxation, this may be called multiple times for a symbol to
1391 // compute its would-be final value in each relaxation pass.
1392
1393 template<int size>
1394 typename Sized_symbol<size>::Value_type
1395 compute_final_value(const Sized_symbol<size>* sym,
1396 Compute_final_value_status* pstatus) const;
1397
1398 // Write out the global symbols.
1399 void
1400 write_globals(const Stringpool*, const Stringpool*,
1401 Output_symtab_xindex*, Output_symtab_xindex*,
1402 Output_file*) const;
1403
1404 // Write out a section symbol. Return the updated offset.
1405 void
1406 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1407 Output_file*, off_t) const;
1408
1409 // Dump statistical information to stderr.
1410 void
1411 print_stats() const;
1412
1413 // Return the version script information.
1414 const Version_script_info&
1415 version_script() const
1416 { return version_script_; }
1417
1418 private:
1419 Symbol_table(const Symbol_table&);
1420 Symbol_table& operator=(const Symbol_table&);
1421
1422 // The type of the list of common symbols.
1423 typedef std::vector<Symbol*> Commons_type;
1424
1425 // The type of the symbol hash table.
1426
1427 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1428
1429 struct Symbol_table_hash
1430 {
1431 size_t
1432 operator()(const Symbol_table_key&) const;
1433 };
1434
1435 struct Symbol_table_eq
1436 {
1437 bool
1438 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1439 };
1440
1441 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1442 Symbol_table_eq> Symbol_table_type;
1443
1444 // Make FROM a forwarder symbol to TO.
1445 void
1446 make_forwarder(Symbol* from, Symbol* to);
1447
1448 // Add a symbol.
1449 template<int size, bool big_endian>
1450 Sized_symbol<size>*
1451 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1452 const char *version, Stringpool::Key version_key,
1453 bool def, const elfcpp::Sym<size, big_endian>& sym,
1454 unsigned int st_shndx, bool is_ordinary,
1455 unsigned int orig_st_shndx);
1456
1457 // Define a default symbol.
1458 template<int size, bool big_endian>
1459 void
1460 define_default_version(Sized_symbol<size>*, bool,
1461 Symbol_table_type::iterator);
1462
1463 // Resolve symbols.
1464 template<int size, bool big_endian>
1465 void
1466 resolve(Sized_symbol<size>* to,
1467 const elfcpp::Sym<size, big_endian>& sym,
1468 unsigned int st_shndx, bool is_ordinary,
1469 unsigned int orig_st_shndx,
1470 Object*, const char* version);
1471
1472 template<int size, bool big_endian>
1473 void
1474 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1475
1476 // Record that a symbol is forced to be local by a version script or
1477 // by visibility.
1478 void
1479 force_local(Symbol*);
1480
1481 // Adjust NAME and *NAME_KEY for wrapping.
1482 const char*
1483 wrap_symbol(const char* name, Stringpool::Key* name_key);
1484
1485 // Whether we should override a symbol, based on flags in
1486 // resolve.cc.
1487 static bool
1488 should_override(const Symbol*, unsigned int, Object*, bool*);
1489
1490 // Override a symbol.
1491 template<int size, bool big_endian>
1492 void
1493 override(Sized_symbol<size>* tosym,
1494 const elfcpp::Sym<size, big_endian>& fromsym,
1495 unsigned int st_shndx, bool is_ordinary,
1496 Object* object, const char* version);
1497
1498 // Whether we should override a symbol with a special symbol which
1499 // is automatically defined by the linker.
1500 static bool
1501 should_override_with_special(const Symbol*);
1502
1503 // Override a symbol with a special symbol.
1504 template<int size>
1505 void
1506 override_with_special(Sized_symbol<size>* tosym,
1507 const Sized_symbol<size>* fromsym);
1508
1509 // Record all weak alias sets for a dynamic object.
1510 template<int size>
1511 void
1512 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1513
1514 // Define a special symbol.
1515 template<int size, bool big_endian>
1516 Sized_symbol<size>*
1517 define_special_symbol(const char** pname, const char** pversion,
1518 bool only_if_ref, Sized_symbol<size>** poldsym,
1519 bool* resolve_oldsym);
1520
1521 // Define a symbol in an Output_data, sized version.
1522 template<int size>
1523 Sized_symbol<size>*
1524 do_define_in_output_data(const char* name, const char* version, Output_data*,
1525 typename elfcpp::Elf_types<size>::Elf_Addr value,
1526 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1527 elfcpp::STT type, elfcpp::STB binding,
1528 elfcpp::STV visibility, unsigned char nonvis,
1529 bool offset_is_from_end, bool only_if_ref);
1530
1531 // Define a symbol in an Output_segment, sized version.
1532 template<int size>
1533 Sized_symbol<size>*
1534 do_define_in_output_segment(
1535 const char* name, const char* version, Output_segment* os,
1536 typename elfcpp::Elf_types<size>::Elf_Addr value,
1537 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1538 elfcpp::STT type, elfcpp::STB binding,
1539 elfcpp::STV visibility, unsigned char nonvis,
1540 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1541
1542 // Define a symbol as a constant, sized version.
1543 template<int size>
1544 Sized_symbol<size>*
1545 do_define_as_constant(
1546 const char* name, const char* version,
1547 typename elfcpp::Elf_types<size>::Elf_Addr value,
1548 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1549 elfcpp::STT type, elfcpp::STB binding,
1550 elfcpp::STV visibility, unsigned char nonvis,
1551 bool only_if_ref, bool force_override);
1552
1553 // Add any undefined symbols named on the command line to the symbol
1554 // table, sized version.
1555 template<int size>
1556 void
1557 do_add_undefined_symbols_from_command_line();
1558
1559 // Types of common symbols.
1560
1561 enum Commons_section_type
1562 {
1563 COMMONS_NORMAL,
1564 COMMONS_TLS,
1565 COMMONS_SMALL,
1566 COMMONS_LARGE
1567 };
1568
1569 // Allocate the common symbols, sized version.
1570 template<int size>
1571 void
1572 do_allocate_commons(Layout*, Mapfile*);
1573
1574 // Allocate the common symbols from one list.
1575 template<int size>
1576 void
1577 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1578 Mapfile*);
1579
1580 // Implement detect_odr_violations.
1581 template<int size, bool big_endian>
1582 void
1583 sized_detect_odr_violations() const;
1584
1585 // Finalize symbols specialized for size.
1586 template<int size>
1587 off_t
1588 sized_finalize(off_t, Stringpool*, unsigned int*);
1589
1590 // Finalize a symbol. Return whether it should be added to the
1591 // symbol table.
1592 template<int size>
1593 bool
1594 sized_finalize_symbol(Symbol*);
1595
1596 // Add a symbol the final symtab by setting its index.
1597 template<int size>
1598 void
1599 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1600
1601 // Write globals specialized for size and endianness.
1602 template<int size, bool big_endian>
1603 void
1604 sized_write_globals(const Stringpool*, const Stringpool*,
1605 Output_symtab_xindex*, Output_symtab_xindex*,
1606 Output_file*) const;
1607
1608 // Write out a symbol to P.
1609 template<int size, bool big_endian>
1610 void
1611 sized_write_symbol(Sized_symbol<size>*,
1612 typename elfcpp::Elf_types<size>::Elf_Addr value,
1613 unsigned int shndx,
1614 const Stringpool*, unsigned char* p) const;
1615
1616 // Possibly warn about an undefined symbol from a dynamic object.
1617 void
1618 warn_about_undefined_dynobj_symbol(Symbol*) const;
1619
1620 // Write out a section symbol, specialized for size and endianness.
1621 template<int size, bool big_endian>
1622 void
1623 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1624 Output_file*, off_t) const;
1625
1626 // The type of the list of symbols which have been forced local.
1627 typedef std::vector<Symbol*> Forced_locals;
1628
1629 // A map from symbols with COPY relocs to the dynamic objects where
1630 // they are defined.
1631 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1632
1633 // A map from symbol name (as a pointer into the namepool) to all
1634 // the locations the symbols is (weakly) defined (and certain other
1635 // conditions are met). This map will be used later to detect
1636 // possible One Definition Rule (ODR) violations.
1637 struct Symbol_location
1638 {
1639 Object* object; // Object where the symbol is defined.
1640 unsigned int shndx; // Section-in-object where the symbol is defined.
1641 off_t offset; // Offset-in-section where the symbol is defined.
1642 bool operator==(const Symbol_location& that) const
1643 {
1644 return (this->object == that.object
1645 && this->shndx == that.shndx
1646 && this->offset == that.offset);
1647 }
1648 };
1649
1650 struct Symbol_location_hash
1651 {
1652 size_t operator()(const Symbol_location& loc) const
1653 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1654 };
1655
1656 typedef Unordered_map<const char*,
1657 Unordered_set<Symbol_location, Symbol_location_hash> >
1658 Odr_map;
1659
1660 // We increment this every time we see a new undefined symbol, for
1661 // use in archive groups.
1662 int saw_undefined_;
1663 // The index of the first global symbol in the output file.
1664 unsigned int first_global_index_;
1665 // The file offset within the output symtab section where we should
1666 // write the table.
1667 off_t offset_;
1668 // The number of global symbols we want to write out.
1669 unsigned int output_count_;
1670 // The file offset of the global dynamic symbols, or 0 if none.
1671 off_t dynamic_offset_;
1672 // The index of the first global dynamic symbol.
1673 unsigned int first_dynamic_global_index_;
1674 // The number of global dynamic symbols, or 0 if none.
1675 unsigned int dynamic_count_;
1676 // The symbol hash table.
1677 Symbol_table_type table_;
1678 // A pool of symbol names. This is used for all global symbols.
1679 // Entries in the hash table point into this pool.
1680 Stringpool namepool_;
1681 // Forwarding symbols.
1682 Unordered_map<const Symbol*, Symbol*> forwarders_;
1683 // Weak aliases. A symbol in this list points to the next alias.
1684 // The aliases point to each other in a circular list.
1685 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1686 // We don't expect there to be very many common symbols, so we keep
1687 // a list of them. When we find a common symbol we add it to this
1688 // list. It is possible that by the time we process the list the
1689 // symbol is no longer a common symbol. It may also have become a
1690 // forwarder.
1691 Commons_type commons_;
1692 // This is like the commons_ field, except that it holds TLS common
1693 // symbols.
1694 Commons_type tls_commons_;
1695 // This is for small common symbols.
1696 Commons_type small_commons_;
1697 // This is for large common symbols.
1698 Commons_type large_commons_;
1699 // A list of symbols which have been forced to be local. We don't
1700 // expect there to be very many of them, so we keep a list of them
1701 // rather than walking the whole table to find them.
1702 Forced_locals forced_locals_;
1703 // Manage symbol warnings.
1704 Warnings warnings_;
1705 // Manage potential One Definition Rule (ODR) violations.
1706 Odr_map candidate_odr_violations_;
1707
1708 // When we emit a COPY reloc for a symbol, we define it in an
1709 // Output_data. When it's time to emit version information for it,
1710 // we need to know the dynamic object in which we found the original
1711 // definition. This maps symbols with COPY relocs to the dynamic
1712 // object where they were defined.
1713 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1714 // Information parsed from the version script, if any.
1715 const Version_script_info& version_script_;
1716 Garbage_collection* gc_;
1717 Icf* icf_;
1718 };
1719
1720 // We inline get_sized_symbol for efficiency.
1721
1722 template<int size>
1723 Sized_symbol<size>*
1724 Symbol_table::get_sized_symbol(Symbol* sym) const
1725 {
1726 gold_assert(size == parameters->target().get_size());
1727 return static_cast<Sized_symbol<size>*>(sym);
1728 }
1729
1730 template<int size>
1731 const Sized_symbol<size>*
1732 Symbol_table::get_sized_symbol(const Symbol* sym) const
1733 {
1734 gold_assert(size == parameters->target().get_size());
1735 return static_cast<const Sized_symbol<size>*>(sym);
1736 }
1737
1738 } // End namespace gold.
1739
1740 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.07482 seconds and 5 git commands to generate.