* object.cc (Sized_relobj::do_layout): Defer layout for reloc sections.
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 class Versions;
52 class Version_script_info;
53 class Input_objects;
54 class Output_data;
55 class Output_section;
56 class Output_segment;
57 class Output_file;
58 class Output_symtab_xindex;
59 class Garbage_collection;
60 class Icf;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return true for function symbol.
209 bool
210 is_func() const
211 {
212 return (this->type_ == elfcpp::STT_FUNC
213 || this->type_ == elfcpp::STT_GNU_IFUNC);
214 }
215
216 // Return the symbol visibility.
217 elfcpp::STV
218 visibility() const
219 { return this->visibility_; }
220
221 // Set the visibility.
222 void
223 set_visibility(elfcpp::STV visibility)
224 { this->visibility_ = visibility; }
225
226 // Override symbol visibility.
227 void
228 override_visibility(elfcpp::STV);
229
230 // Return the non-visibility part of the st_other field.
231 unsigned char
232 nonvis() const
233 { return this->nonvis_; }
234
235 // Return whether this symbol is a forwarder. This will never be
236 // true of a symbol found in the hash table, but may be true of
237 // symbol pointers attached to object files.
238 bool
239 is_forwarder() const
240 { return this->is_forwarder_; }
241
242 // Mark this symbol as a forwarder.
243 void
244 set_forwarder()
245 { this->is_forwarder_ = true; }
246
247 // Return whether this symbol has an alias in the weak aliases table
248 // in Symbol_table.
249 bool
250 has_alias() const
251 { return this->has_alias_; }
252
253 // Mark this symbol as having an alias.
254 void
255 set_has_alias()
256 { this->has_alias_ = true; }
257
258 // Return whether this symbol needs an entry in the dynamic symbol
259 // table.
260 bool
261 needs_dynsym_entry() const
262 {
263 return (this->needs_dynsym_entry_
264 || (this->in_reg()
265 && this->in_dyn()
266 && this->is_externally_visible()));
267 }
268
269 // Mark this symbol as needing an entry in the dynamic symbol table.
270 void
271 set_needs_dynsym_entry()
272 { this->needs_dynsym_entry_ = true; }
273
274 // Return whether this symbol should be added to the dynamic symbol
275 // table.
276 bool
277 should_add_dynsym_entry(Symbol_table*) const;
278
279 // Return whether this symbol has been seen in a regular object.
280 bool
281 in_reg() const
282 { return this->in_reg_; }
283
284 // Mark this symbol as having been seen in a regular object.
285 void
286 set_in_reg()
287 { this->in_reg_ = true; }
288
289 // Return whether this symbol has been seen in a dynamic object.
290 bool
291 in_dyn() const
292 { return this->in_dyn_; }
293
294 // Mark this symbol as having been seen in a dynamic object.
295 void
296 set_in_dyn()
297 { this->in_dyn_ = true; }
298
299 // Return whether this symbol has been seen in a real ELF object.
300 // (IN_REG will return TRUE if the symbol has been seen in either
301 // a real ELF object or an object claimed by a plugin.)
302 bool
303 in_real_elf() const
304 { return this->in_real_elf_; }
305
306 // Mark this symbol as having been seen in a real ELF object.
307 void
308 set_in_real_elf()
309 { this->in_real_elf_ = true; }
310
311 // Return whether this symbol was defined in a section that was
312 // discarded from the link. This is used to control some error
313 // reporting.
314 bool
315 is_defined_in_discarded_section() const
316 { return this->is_defined_in_discarded_section_; }
317
318 // Mark this symbol as having been defined in a discarded section.
319 void
320 set_is_defined_in_discarded_section()
321 { this->is_defined_in_discarded_section_ = true; }
322
323 // Return the index of this symbol in the output file symbol table.
324 // A value of -1U means that this symbol is not going into the
325 // output file. This starts out as zero, and is set to a non-zero
326 // value by Symbol_table::finalize. It is an error to ask for the
327 // symbol table index before it has been set.
328 unsigned int
329 symtab_index() const
330 {
331 gold_assert(this->symtab_index_ != 0);
332 return this->symtab_index_;
333 }
334
335 // Set the index of the symbol in the output file symbol table.
336 void
337 set_symtab_index(unsigned int index)
338 {
339 gold_assert(index != 0);
340 this->symtab_index_ = index;
341 }
342
343 // Return whether this symbol already has an index in the output
344 // file symbol table.
345 bool
346 has_symtab_index() const
347 { return this->symtab_index_ != 0; }
348
349 // Return the index of this symbol in the dynamic symbol table. A
350 // value of -1U means that this symbol is not going into the dynamic
351 // symbol table. This starts out as zero, and is set to a non-zero
352 // during Layout::finalize. It is an error to ask for the dynamic
353 // symbol table index before it has been set.
354 unsigned int
355 dynsym_index() const
356 {
357 gold_assert(this->dynsym_index_ != 0);
358 return this->dynsym_index_;
359 }
360
361 // Set the index of the symbol in the dynamic symbol table.
362 void
363 set_dynsym_index(unsigned int index)
364 {
365 gold_assert(index != 0);
366 this->dynsym_index_ = index;
367 }
368
369 // Return whether this symbol already has an index in the dynamic
370 // symbol table.
371 bool
372 has_dynsym_index() const
373 { return this->dynsym_index_ != 0; }
374
375 // Return whether this symbol has an entry in the GOT section.
376 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
377 bool
378 has_got_offset(unsigned int got_type) const
379 { return this->got_offsets_.get_offset(got_type) != -1U; }
380
381 // Return the offset into the GOT section of this symbol.
382 unsigned int
383 got_offset(unsigned int got_type) const
384 {
385 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
386 gold_assert(got_offset != -1U);
387 return got_offset;
388 }
389
390 // Set the GOT offset of this symbol.
391 void
392 set_got_offset(unsigned int got_type, unsigned int got_offset)
393 { this->got_offsets_.set_offset(got_type, got_offset); }
394
395 // Return whether this symbol has an entry in the PLT section.
396 bool
397 has_plt_offset() const
398 { return this->plt_offset_ != -1U; }
399
400 // Return the offset into the PLT section of this symbol.
401 unsigned int
402 plt_offset() const
403 {
404 gold_assert(this->has_plt_offset());
405 return this->plt_offset_;
406 }
407
408 // Set the PLT offset of this symbol.
409 void
410 set_plt_offset(unsigned int plt_offset)
411 {
412 gold_assert(plt_offset != -1U);
413 this->plt_offset_ = plt_offset;
414 }
415
416 // Return whether this dynamic symbol needs a special value in the
417 // dynamic symbol table.
418 bool
419 needs_dynsym_value() const
420 { return this->needs_dynsym_value_; }
421
422 // Set that this dynamic symbol needs a special value in the dynamic
423 // symbol table.
424 void
425 set_needs_dynsym_value()
426 {
427 gold_assert(this->object()->is_dynamic());
428 this->needs_dynsym_value_ = true;
429 }
430
431 // Return true if the final value of this symbol is known at link
432 // time.
433 bool
434 final_value_is_known() const;
435
436 // Return true if SHNDX represents a common symbol. This depends on
437 // the target.
438 static bool
439 is_common_shndx(unsigned int shndx);
440
441 // Return whether this is a defined symbol (not undefined or
442 // common).
443 bool
444 is_defined() const
445 {
446 bool is_ordinary;
447 if (this->source_ != FROM_OBJECT)
448 return this->source_ != IS_UNDEFINED;
449 unsigned int shndx = this->shndx(&is_ordinary);
450 return (is_ordinary
451 ? shndx != elfcpp::SHN_UNDEF
452 : !Symbol::is_common_shndx(shndx));
453 }
454
455 // Return true if this symbol is from a dynamic object.
456 bool
457 is_from_dynobj() const
458 {
459 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
460 }
461
462 // Return whether this is a placeholder symbol from a plugin object.
463 bool
464 is_placeholder() const
465 {
466 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
467 }
468
469 // Return whether this is an undefined symbol.
470 bool
471 is_undefined() const
472 {
473 bool is_ordinary;
474 return ((this->source_ == FROM_OBJECT
475 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
476 && is_ordinary)
477 || this->source_ == IS_UNDEFINED);
478 }
479
480 // Return whether this is a weak undefined symbol.
481 bool
482 is_weak_undefined() const
483 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
484
485 // Return whether this is an absolute symbol.
486 bool
487 is_absolute() const
488 {
489 bool is_ordinary;
490 return ((this->source_ == FROM_OBJECT
491 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
492 && !is_ordinary)
493 || this->source_ == IS_CONSTANT);
494 }
495
496 // Return whether this is a common symbol.
497 bool
498 is_common() const
499 {
500 if (this->source_ != FROM_OBJECT)
501 return false;
502 if (this->type_ == elfcpp::STT_COMMON)
503 return true;
504 bool is_ordinary;
505 unsigned int shndx = this->shndx(&is_ordinary);
506 return !is_ordinary && Symbol::is_common_shndx(shndx);
507 }
508
509 // Return whether this symbol can be seen outside this object.
510 bool
511 is_externally_visible() const
512 {
513 return (this->visibility_ == elfcpp::STV_DEFAULT
514 || this->visibility_ == elfcpp::STV_PROTECTED);
515 }
516
517 // Return true if this symbol can be preempted by a definition in
518 // another link unit.
519 bool
520 is_preemptible() const
521 {
522 // It doesn't make sense to ask whether a symbol defined in
523 // another object is preemptible.
524 gold_assert(!this->is_from_dynobj());
525
526 // It doesn't make sense to ask whether an undefined symbol
527 // is preemptible.
528 gold_assert(!this->is_undefined());
529
530 // If a symbol does not have default visibility, it can not be
531 // seen outside this link unit and therefore is not preemptible.
532 if (this->visibility_ != elfcpp::STV_DEFAULT)
533 return false;
534
535 // If this symbol has been forced to be a local symbol by a
536 // version script, then it is not visible outside this link unit
537 // and is not preemptible.
538 if (this->is_forced_local_)
539 return false;
540
541 // If we are not producing a shared library, then nothing is
542 // preemptible.
543 if (!parameters->options().shared())
544 return false;
545
546 // If the user used -Bsymbolic, then nothing is preemptible.
547 if (parameters->options().Bsymbolic())
548 return false;
549
550 // If the user used -Bsymbolic-functions, then functions are not
551 // preemptible. We explicitly check for not being STT_OBJECT,
552 // rather than for being STT_FUNC, because that is what the GNU
553 // linker does.
554 if (this->type() != elfcpp::STT_OBJECT
555 && parameters->options().Bsymbolic_functions())
556 return false;
557
558 // Otherwise the symbol is preemptible.
559 return true;
560 }
561
562 // Return true if this symbol is a function that needs a PLT entry.
563 // If the symbol is defined in a dynamic object or if it is subject
564 // to pre-emption, we need to make a PLT entry. If we're doing a
565 // static link or a -pie link, we don't create PLT entries.
566 bool
567 needs_plt_entry() const
568 {
569 // An undefined symbol from an executable does not need a PLT entry.
570 if (this->is_undefined() && !parameters->options().shared())
571 return false;
572
573 return (!parameters->doing_static_link()
574 && !parameters->options().pie()
575 && this->is_func()
576 && (this->is_from_dynobj()
577 || this->is_undefined()
578 || this->is_preemptible()));
579 }
580
581 // When determining whether a reference to a symbol needs a dynamic
582 // relocation, we need to know several things about the reference.
583 // These flags may be or'ed together.
584 enum Reference_flags
585 {
586 // Reference to the symbol's absolute address.
587 ABSOLUTE_REF = 1,
588 // A non-PIC reference.
589 NON_PIC_REF = 2,
590 // A function call.
591 FUNCTION_CALL = 4
592 };
593
594 // Given a direct absolute or pc-relative static relocation against
595 // the global symbol, this function returns whether a dynamic relocation
596 // is needed.
597
598 bool
599 needs_dynamic_reloc(int flags) const
600 {
601 // No dynamic relocations in a static link!
602 if (parameters->doing_static_link())
603 return false;
604
605 // A reference to an undefined symbol from an executable should be
606 // statically resolved to 0, and does not need a dynamic relocation.
607 // This matches gnu ld behavior.
608 if (this->is_undefined() && !parameters->options().shared())
609 return false;
610
611 // A reference to an absolute symbol does not need a dynamic relocation.
612 if (this->is_absolute())
613 return false;
614
615 // An absolute reference within a position-independent output file
616 // will need a dynamic relocation.
617 if ((flags & ABSOLUTE_REF)
618 && parameters->options().output_is_position_independent())
619 return true;
620
621 // A function call that can branch to a local PLT entry does not need
622 // a dynamic relocation. A non-pic pc-relative function call in a
623 // shared library cannot use a PLT entry.
624 if ((flags & FUNCTION_CALL)
625 && this->has_plt_offset()
626 && !((flags & NON_PIC_REF) && parameters->options().shared()))
627 return false;
628
629 // A reference to any PLT entry in a non-position-independent executable
630 // does not need a dynamic relocation.
631 if (!parameters->options().output_is_position_independent()
632 && this->has_plt_offset())
633 return false;
634
635 // A reference to a symbol defined in a dynamic object or to a
636 // symbol that is preemptible will need a dynamic relocation.
637 if (this->is_from_dynobj()
638 || this->is_undefined()
639 || this->is_preemptible())
640 return true;
641
642 // For all other cases, return FALSE.
643 return false;
644 }
645
646 // Whether we should use the PLT offset associated with a symbol for
647 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
648 // reloc--the same set of relocs for which we would pass NON_PIC_REF
649 // to the needs_dynamic_reloc function.
650
651 bool
652 use_plt_offset(bool is_non_pic_reference) const
653 {
654 // If the symbol doesn't have a PLT offset, then naturally we
655 // don't want to use it.
656 if (!this->has_plt_offset())
657 return false;
658
659 // If we are going to generate a dynamic relocation, then we will
660 // wind up using that, so no need to use the PLT entry.
661 if (this->needs_dynamic_reloc(FUNCTION_CALL
662 | (is_non_pic_reference
663 ? NON_PIC_REF
664 : 0)))
665 return false;
666
667 // If the symbol is from a dynamic object, we need to use the PLT
668 // entry.
669 if (this->is_from_dynobj())
670 return true;
671
672 // If we are generating a shared object, and this symbol is
673 // undefined or preemptible, we need to use the PLT entry.
674 if (parameters->options().shared()
675 && (this->is_undefined() || this->is_preemptible()))
676 return true;
677
678 // If this is a weak undefined symbol, we need to use the PLT
679 // entry; the symbol may be defined by a library loaded at
680 // runtime.
681 if (this->is_weak_undefined())
682 return true;
683
684 // Otherwise we can use the regular definition.
685 return false;
686 }
687
688 // Given a direct absolute static relocation against
689 // the global symbol, where a dynamic relocation is needed, this
690 // function returns whether a relative dynamic relocation can be used.
691 // The caller must determine separately whether the static relocation
692 // is compatible with a relative relocation.
693
694 bool
695 can_use_relative_reloc(bool is_function_call) const
696 {
697 // A function call that can branch to a local PLT entry can
698 // use a RELATIVE relocation.
699 if (is_function_call && this->has_plt_offset())
700 return true;
701
702 // A reference to a symbol defined in a dynamic object or to a
703 // symbol that is preemptible can not use a RELATIVE relocaiton.
704 if (this->is_from_dynobj()
705 || this->is_undefined()
706 || this->is_preemptible())
707 return false;
708
709 // For all other cases, return TRUE.
710 return true;
711 }
712
713 // Return the output section where this symbol is defined. Return
714 // NULL if the symbol has an absolute value.
715 Output_section*
716 output_section() const;
717
718 // Set the symbol's output section. This is used for symbols
719 // defined in scripts. This should only be called after the symbol
720 // table has been finalized.
721 void
722 set_output_section(Output_section*);
723
724 // Return whether there should be a warning for references to this
725 // symbol.
726 bool
727 has_warning() const
728 { return this->has_warning_; }
729
730 // Mark this symbol as having a warning.
731 void
732 set_has_warning()
733 { this->has_warning_ = true; }
734
735 // Return whether this symbol is defined by a COPY reloc from a
736 // dynamic object.
737 bool
738 is_copied_from_dynobj() const
739 { return this->is_copied_from_dynobj_; }
740
741 // Mark this symbol as defined by a COPY reloc.
742 void
743 set_is_copied_from_dynobj()
744 { this->is_copied_from_dynobj_ = true; }
745
746 // Return whether this symbol is forced to visibility STB_LOCAL
747 // by a "local:" entry in a version script.
748 bool
749 is_forced_local() const
750 { return this->is_forced_local_; }
751
752 // Mark this symbol as forced to STB_LOCAL visibility.
753 void
754 set_is_forced_local()
755 { this->is_forced_local_ = true; }
756
757 // Return true if this may need a COPY relocation.
758 // References from an executable object to non-function symbols
759 // defined in a dynamic object may need a COPY relocation.
760 bool
761 may_need_copy_reloc() const
762 {
763 return (!parameters->options().shared()
764 && parameters->options().copyreloc()
765 && this->is_from_dynobj()
766 && !this->is_func());
767 }
768
769 protected:
770 // Instances of this class should always be created at a specific
771 // size.
772 Symbol()
773 { memset(this, 0, sizeof *this); }
774
775 // Initialize the general fields.
776 void
777 init_fields(const char* name, const char* version,
778 elfcpp::STT type, elfcpp::STB binding,
779 elfcpp::STV visibility, unsigned char nonvis);
780
781 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
782 // section index, IS_ORDINARY is whether it is a normal section
783 // index rather than a special code.
784 template<int size, bool big_endian>
785 void
786 init_base_object(const char *name, const char* version, Object* object,
787 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
788 bool is_ordinary);
789
790 // Initialize fields for an Output_data.
791 void
792 init_base_output_data(const char* name, const char* version, Output_data*,
793 elfcpp::STT, elfcpp::STB, elfcpp::STV,
794 unsigned char nonvis, bool offset_is_from_end);
795
796 // Initialize fields for an Output_segment.
797 void
798 init_base_output_segment(const char* name, const char* version,
799 Output_segment* os, elfcpp::STT type,
800 elfcpp::STB binding, elfcpp::STV visibility,
801 unsigned char nonvis,
802 Segment_offset_base offset_base);
803
804 // Initialize fields for a constant.
805 void
806 init_base_constant(const char* name, const char* version, elfcpp::STT type,
807 elfcpp::STB binding, elfcpp::STV visibility,
808 unsigned char nonvis);
809
810 // Initialize fields for an undefined symbol.
811 void
812 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
813 elfcpp::STB binding, elfcpp::STV visibility,
814 unsigned char nonvis);
815
816 // Override existing symbol.
817 template<int size, bool big_endian>
818 void
819 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
820 bool is_ordinary, Object* object, const char* version);
821
822 // Override existing symbol with a special symbol.
823 void
824 override_base_with_special(const Symbol* from);
825
826 // Override symbol version.
827 void
828 override_version(const char* version);
829
830 // Allocate a common symbol by giving it a location in the output
831 // file.
832 void
833 allocate_base_common(Output_data*);
834
835 private:
836 Symbol(const Symbol&);
837 Symbol& operator=(const Symbol&);
838
839 // Symbol name (expected to point into a Stringpool).
840 const char* name_;
841 // Symbol version (expected to point into a Stringpool). This may
842 // be NULL.
843 const char* version_;
844
845 union
846 {
847 // This struct is used if SOURCE_ == FROM_OBJECT.
848 struct
849 {
850 // Object in which symbol is defined, or in which it was first
851 // seen.
852 Object* object;
853 // Section number in object_ in which symbol is defined.
854 unsigned int shndx;
855 } from_object;
856
857 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
858 struct
859 {
860 // Output_data in which symbol is defined. Before
861 // Layout::finalize the symbol's value is an offset within the
862 // Output_data.
863 Output_data* output_data;
864 // True if the offset is from the end, false if the offset is
865 // from the beginning.
866 bool offset_is_from_end;
867 } in_output_data;
868
869 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
870 struct
871 {
872 // Output_segment in which the symbol is defined. Before
873 // Layout::finalize the symbol's value is an offset.
874 Output_segment* output_segment;
875 // The base to use for the offset before Layout::finalize.
876 Segment_offset_base offset_base;
877 } in_output_segment;
878 } u_;
879
880 // The index of this symbol in the output file. If the symbol is
881 // not going into the output file, this value is -1U. This field
882 // starts as always holding zero. It is set to a non-zero value by
883 // Symbol_table::finalize.
884 unsigned int symtab_index_;
885
886 // The index of this symbol in the dynamic symbol table. If the
887 // symbol is not going into the dynamic symbol table, this value is
888 // -1U. This field starts as always holding zero. It is set to a
889 // non-zero value during Layout::finalize.
890 unsigned int dynsym_index_;
891
892 // The GOT section entries for this symbol. A symbol may have more
893 // than one GOT offset (e.g., when mixing modules compiled with two
894 // different TLS models), but will usually have at most one.
895 Got_offset_list got_offsets_;
896
897 // If this symbol has an entry in the PLT section, then this is the
898 // offset from the start of the PLT section. This is -1U if there
899 // is no PLT entry.
900 unsigned int plt_offset_;
901
902 // Symbol type (bits 0 to 3).
903 elfcpp::STT type_ : 4;
904 // Symbol binding (bits 4 to 7).
905 elfcpp::STB binding_ : 4;
906 // Symbol visibility (bits 8 to 9).
907 elfcpp::STV visibility_ : 2;
908 // Rest of symbol st_other field (bits 10 to 15).
909 unsigned int nonvis_ : 6;
910 // The type of symbol (bits 16 to 18).
911 Source source_ : 3;
912 // True if this is the default version of the symbol (bit 19).
913 bool is_def_ : 1;
914 // True if this symbol really forwards to another symbol. This is
915 // used when we discover after the fact that two different entries
916 // in the hash table really refer to the same symbol. This will
917 // never be set for a symbol found in the hash table, but may be set
918 // for a symbol found in the list of symbols attached to an Object.
919 // It forwards to the symbol found in the forwarders_ map of
920 // Symbol_table (bit 20).
921 bool is_forwarder_ : 1;
922 // True if the symbol has an alias in the weak_aliases table in
923 // Symbol_table (bit 21).
924 bool has_alias_ : 1;
925 // True if this symbol needs to be in the dynamic symbol table (bit
926 // 22).
927 bool needs_dynsym_entry_ : 1;
928 // True if we've seen this symbol in a regular object (bit 23).
929 bool in_reg_ : 1;
930 // True if we've seen this symbol in a dynamic object (bit 24).
931 bool in_dyn_ : 1;
932 // True if this is a dynamic symbol which needs a special value in
933 // the dynamic symbol table (bit 25).
934 bool needs_dynsym_value_ : 1;
935 // True if there is a warning for this symbol (bit 26).
936 bool has_warning_ : 1;
937 // True if we are using a COPY reloc for this symbol, so that the
938 // real definition lives in a dynamic object (bit 27).
939 bool is_copied_from_dynobj_ : 1;
940 // True if this symbol was forced to local visibility by a version
941 // script (bit 28).
942 bool is_forced_local_ : 1;
943 // True if the field u_.from_object.shndx is an ordinary section
944 // index, not one of the special codes from SHN_LORESERVE to
945 // SHN_HIRESERVE (bit 29).
946 bool is_ordinary_shndx_ : 1;
947 // True if we've seen this symbol in a real ELF object (bit 30).
948 bool in_real_elf_ : 1;
949 // True if this symbol is defined in a section which was discarded
950 // (bit 31).
951 bool is_defined_in_discarded_section_ : 1;
952 };
953
954 // The parts of a symbol which are size specific. Using a template
955 // derived class like this helps us use less space on a 32-bit system.
956
957 template<int size>
958 class Sized_symbol : public Symbol
959 {
960 public:
961 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
962 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
963
964 Sized_symbol()
965 { }
966
967 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
968 // section index, IS_ORDINARY is whether it is a normal section
969 // index rather than a special code.
970 template<bool big_endian>
971 void
972 init_object(const char *name, const char* version, Object* object,
973 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
974 bool is_ordinary);
975
976 // Initialize fields for an Output_data.
977 void
978 init_output_data(const char* name, const char* version, Output_data*,
979 Value_type value, Size_type symsize, elfcpp::STT,
980 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
981 bool offset_is_from_end);
982
983 // Initialize fields for an Output_segment.
984 void
985 init_output_segment(const char* name, const char* version, Output_segment*,
986 Value_type value, Size_type symsize, elfcpp::STT,
987 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
988 Segment_offset_base offset_base);
989
990 // Initialize fields for a constant.
991 void
992 init_constant(const char* name, const char* version, Value_type value,
993 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
994 unsigned char nonvis);
995
996 // Initialize fields for an undefined symbol.
997 void
998 init_undefined(const char* name, const char* version, elfcpp::STT,
999 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1000
1001 // Override existing symbol.
1002 template<bool big_endian>
1003 void
1004 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1005 bool is_ordinary, Object* object, const char* version);
1006
1007 // Override existing symbol with a special symbol.
1008 void
1009 override_with_special(const Sized_symbol<size>*);
1010
1011 // Return the symbol's value.
1012 Value_type
1013 value() const
1014 { return this->value_; }
1015
1016 // Return the symbol's size (we can't call this 'size' because that
1017 // is a template parameter).
1018 Size_type
1019 symsize() const
1020 { return this->symsize_; }
1021
1022 // Set the symbol size. This is used when resolving common symbols.
1023 void
1024 set_symsize(Size_type symsize)
1025 { this->symsize_ = symsize; }
1026
1027 // Set the symbol value. This is called when we store the final
1028 // values of the symbols into the symbol table.
1029 void
1030 set_value(Value_type value)
1031 { this->value_ = value; }
1032
1033 // Allocate a common symbol by giving it a location in the output
1034 // file.
1035 void
1036 allocate_common(Output_data*, Value_type value);
1037
1038 private:
1039 Sized_symbol(const Sized_symbol&);
1040 Sized_symbol& operator=(const Sized_symbol&);
1041
1042 // Symbol value. Before Layout::finalize this is the offset in the
1043 // input section. This is set to the final value during
1044 // Layout::finalize.
1045 Value_type value_;
1046 // Symbol size.
1047 Size_type symsize_;
1048 };
1049
1050 // A struct describing a symbol defined by the linker, where the value
1051 // of the symbol is defined based on an output section. This is used
1052 // for symbols defined by the linker, like "_init_array_start".
1053
1054 struct Define_symbol_in_section
1055 {
1056 // The symbol name.
1057 const char* name;
1058 // The name of the output section with which this symbol should be
1059 // associated. If there is no output section with that name, the
1060 // symbol will be defined as zero.
1061 const char* output_section;
1062 // The offset of the symbol within the output section. This is an
1063 // offset from the start of the output section, unless start_at_end
1064 // is true, in which case this is an offset from the end of the
1065 // output section.
1066 uint64_t value;
1067 // The size of the symbol.
1068 uint64_t size;
1069 // The symbol type.
1070 elfcpp::STT type;
1071 // The symbol binding.
1072 elfcpp::STB binding;
1073 // The symbol visibility.
1074 elfcpp::STV visibility;
1075 // The rest of the st_other field.
1076 unsigned char nonvis;
1077 // If true, the value field is an offset from the end of the output
1078 // section.
1079 bool offset_is_from_end;
1080 // If true, this symbol is defined only if we see a reference to it.
1081 bool only_if_ref;
1082 };
1083
1084 // A struct describing a symbol defined by the linker, where the value
1085 // of the symbol is defined based on a segment. This is used for
1086 // symbols defined by the linker, like "_end". We describe the
1087 // segment with which the symbol should be associated by its
1088 // characteristics. If no segment meets these characteristics, the
1089 // symbol will be defined as zero. If there is more than one segment
1090 // which meets these characteristics, we will use the first one.
1091
1092 struct Define_symbol_in_segment
1093 {
1094 // The symbol name.
1095 const char* name;
1096 // The segment type where the symbol should be defined, typically
1097 // PT_LOAD.
1098 elfcpp::PT segment_type;
1099 // Bitmask of segment flags which must be set.
1100 elfcpp::PF segment_flags_set;
1101 // Bitmask of segment flags which must be clear.
1102 elfcpp::PF segment_flags_clear;
1103 // The offset of the symbol within the segment. The offset is
1104 // calculated from the position set by offset_base.
1105 uint64_t value;
1106 // The size of the symbol.
1107 uint64_t size;
1108 // The symbol type.
1109 elfcpp::STT type;
1110 // The symbol binding.
1111 elfcpp::STB binding;
1112 // The symbol visibility.
1113 elfcpp::STV visibility;
1114 // The rest of the st_other field.
1115 unsigned char nonvis;
1116 // The base from which we compute the offset.
1117 Symbol::Segment_offset_base offset_base;
1118 // If true, this symbol is defined only if we see a reference to it.
1119 bool only_if_ref;
1120 };
1121
1122 // This class manages warnings. Warnings are a GNU extension. When
1123 // we see a section named .gnu.warning.SYM in an object file, and if
1124 // we wind using the definition of SYM from that object file, then we
1125 // will issue a warning for any relocation against SYM from a
1126 // different object file. The text of the warning is the contents of
1127 // the section. This is not precisely the definition used by the old
1128 // GNU linker; the old GNU linker treated an occurrence of
1129 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1130 // would trigger a warning on any reference. However, it was
1131 // inconsistent in that a warning in a dynamic object only triggered
1132 // if there was no definition in a regular object. This linker is
1133 // different in that we only issue a warning if we use the symbol
1134 // definition from the same object file as the warning section.
1135
1136 class Warnings
1137 {
1138 public:
1139 Warnings()
1140 : warnings_()
1141 { }
1142
1143 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1144 // of the warning.
1145 void
1146 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1147 const std::string& warning);
1148
1149 // For each symbol for which we should give a warning, make a note
1150 // on the symbol.
1151 void
1152 note_warnings(Symbol_table* symtab);
1153
1154 // Issue a warning for a reference to SYM at RELINFO's location.
1155 template<int size, bool big_endian>
1156 void
1157 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1158 size_t relnum, off_t reloffset) const;
1159
1160 private:
1161 Warnings(const Warnings&);
1162 Warnings& operator=(const Warnings&);
1163
1164 // What we need to know to get the warning text.
1165 struct Warning_location
1166 {
1167 // The object the warning is in.
1168 Object* object;
1169 // The warning text.
1170 std::string text;
1171
1172 Warning_location()
1173 : object(NULL), text()
1174 { }
1175
1176 void
1177 set(Object* o, const std::string& t)
1178 {
1179 this->object = o;
1180 this->text = t;
1181 }
1182 };
1183
1184 // A mapping from warning symbol names (canonicalized in
1185 // Symbol_table's namepool_ field) to warning information.
1186 typedef Unordered_map<const char*, Warning_location> Warning_table;
1187
1188 Warning_table warnings_;
1189 };
1190
1191 // The main linker symbol table.
1192
1193 class Symbol_table
1194 {
1195 public:
1196 // The different places where a symbol definition can come from.
1197 enum Defined
1198 {
1199 // Defined in an object file--the normal case.
1200 OBJECT,
1201 // Defined for a COPY reloc.
1202 COPY,
1203 // Defined on the command line using --defsym.
1204 DEFSYM,
1205 // Defined (so to speak) on the command line using -u.
1206 UNDEFINED,
1207 // Defined in a linker script.
1208 SCRIPT,
1209 // Predefined by the linker.
1210 PREDEFINED,
1211 };
1212
1213 // The order in which we sort common symbols.
1214 enum Sort_commons_order
1215 {
1216 SORT_COMMONS_BY_SIZE_DESCENDING,
1217 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1218 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1219 };
1220
1221 // COUNT is an estimate of how many symbosl will be inserted in the
1222 // symbol table. It's ok to put 0 if you don't know; a correct
1223 // guess will just save some CPU by reducing hashtable resizes.
1224 Symbol_table(unsigned int count, const Version_script_info& version_script);
1225
1226 ~Symbol_table();
1227
1228 void
1229 set_icf(Icf* icf)
1230 { this->icf_ = icf;}
1231
1232 Icf*
1233 icf() const
1234 { return this->icf_; }
1235
1236 // Returns true if ICF determined that this is a duplicate section.
1237 bool
1238 is_section_folded(Object* obj, unsigned int shndx) const;
1239
1240 void
1241 set_gc(Garbage_collection* gc)
1242 { this->gc_ = gc; }
1243
1244 Garbage_collection*
1245 gc() const
1246 { return this->gc_; }
1247
1248 // During garbage collection, this keeps undefined symbols.
1249 void
1250 gc_mark_undef_symbols();
1251
1252 // During garbage collection, this ensures externally visible symbols
1253 // are not treated as garbage while building shared objects.
1254 void
1255 gc_mark_symbol_for_shlib(Symbol* sym);
1256
1257 // During garbage collection, this keeps sections that correspond to
1258 // symbols seen in dynamic objects.
1259 inline void
1260 gc_mark_dyn_syms(Symbol* sym);
1261
1262 // Add COUNT external symbols from the relocatable object RELOBJ to
1263 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1264 // offset in the symbol table of the first symbol, SYM_NAMES is
1265 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1266 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1267 // *DEFINED to the number of defined symbols.
1268 template<int size, bool big_endian>
1269 void
1270 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1271 const unsigned char* syms, size_t count,
1272 size_t symndx_offset, const char* sym_names,
1273 size_t sym_name_size,
1274 typename Sized_relobj<size, big_endian>::Symbols*,
1275 size_t* defined);
1276
1277 // Add one external symbol from the plugin object OBJ to the symbol table.
1278 // Returns a pointer to the resolved symbol in the symbol table.
1279 template<int size, bool big_endian>
1280 Symbol*
1281 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1282 const char* name, const char* ver,
1283 elfcpp::Sym<size, big_endian>* sym);
1284
1285 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1286 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1287 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1288 // symbol version data.
1289 template<int size, bool big_endian>
1290 void
1291 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1292 const unsigned char* syms, size_t count,
1293 const char* sym_names, size_t sym_name_size,
1294 const unsigned char* versym, size_t versym_size,
1295 const std::vector<const char*>*,
1296 typename Sized_relobj<size, big_endian>::Symbols*,
1297 size_t* defined);
1298
1299 // Define a special symbol based on an Output_data. It is a
1300 // multiple definition error if this symbol is already defined.
1301 Symbol*
1302 define_in_output_data(const char* name, const char* version, Defined,
1303 Output_data*, uint64_t value, uint64_t symsize,
1304 elfcpp::STT type, elfcpp::STB binding,
1305 elfcpp::STV visibility, unsigned char nonvis,
1306 bool offset_is_from_end, bool only_if_ref);
1307
1308 // Define a special symbol based on an Output_segment. It is a
1309 // multiple definition error if this symbol is already defined.
1310 Symbol*
1311 define_in_output_segment(const char* name, const char* version, Defined,
1312 Output_segment*, uint64_t value, uint64_t symsize,
1313 elfcpp::STT type, elfcpp::STB binding,
1314 elfcpp::STV visibility, unsigned char nonvis,
1315 Symbol::Segment_offset_base, bool only_if_ref);
1316
1317 // Define a special symbol with a constant value. It is a multiple
1318 // definition error if this symbol is already defined.
1319 Symbol*
1320 define_as_constant(const char* name, const char* version, Defined,
1321 uint64_t value, uint64_t symsize, elfcpp::STT type,
1322 elfcpp::STB binding, elfcpp::STV visibility,
1323 unsigned char nonvis, bool only_if_ref,
1324 bool force_override);
1325
1326 // Define a set of symbols in output sections. If ONLY_IF_REF is
1327 // true, only define them if they are referenced.
1328 void
1329 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1330 bool only_if_ref);
1331
1332 // Define a set of symbols in output segments. If ONLY_IF_REF is
1333 // true, only defined them if they are referenced.
1334 void
1335 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1336 bool only_if_ref);
1337
1338 // Define SYM using a COPY reloc. POSD is the Output_data where the
1339 // symbol should be defined--typically a .dyn.bss section. VALUE is
1340 // the offset within POSD.
1341 template<int size>
1342 void
1343 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1344 typename elfcpp::Elf_types<size>::Elf_Addr);
1345
1346 // Look up a symbol.
1347 Symbol*
1348 lookup(const char*, const char* version = NULL) const;
1349
1350 // Return the real symbol associated with the forwarder symbol FROM.
1351 Symbol*
1352 resolve_forwards(const Symbol* from) const;
1353
1354 // Return the sized version of a symbol in this table.
1355 template<int size>
1356 Sized_symbol<size>*
1357 get_sized_symbol(Symbol*) const;
1358
1359 template<int size>
1360 const Sized_symbol<size>*
1361 get_sized_symbol(const Symbol*) const;
1362
1363 // Return the count of undefined symbols seen.
1364 size_t
1365 saw_undefined() const
1366 { return this->saw_undefined_; }
1367
1368 // Allocate the common symbols
1369 void
1370 allocate_commons(Layout*, Mapfile*);
1371
1372 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1373 // of the warning.
1374 void
1375 add_warning(const char* name, Object* obj, const std::string& warning)
1376 { this->warnings_.add_warning(this, name, obj, warning); }
1377
1378 // Canonicalize a symbol name for use in the hash table.
1379 const char*
1380 canonicalize_name(const char* name)
1381 { return this->namepool_.add(name, true, NULL); }
1382
1383 // Possibly issue a warning for a reference to SYM at LOCATION which
1384 // is in OBJ.
1385 template<int size, bool big_endian>
1386 void
1387 issue_warning(const Symbol* sym,
1388 const Relocate_info<size, big_endian>* relinfo,
1389 size_t relnum, off_t reloffset) const
1390 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1391
1392 // Check candidate_odr_violations_ to find symbols with the same name
1393 // but apparently different definitions (different source-file/line-no).
1394 void
1395 detect_odr_violations(const Task*, const char* output_file_name) const;
1396
1397 // Add any undefined symbols named on the command line to the symbol
1398 // table.
1399 void
1400 add_undefined_symbols_from_command_line();
1401
1402 // SYM is defined using a COPY reloc. Return the dynamic object
1403 // where the original definition was found.
1404 Dynobj*
1405 get_copy_source(const Symbol* sym) const;
1406
1407 // Set the dynamic symbol indexes. INDEX is the index of the first
1408 // global dynamic symbol. Pointers to the symbols are stored into
1409 // the vector. The names are stored into the Stringpool. This
1410 // returns an updated dynamic symbol index.
1411 unsigned int
1412 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1413 Stringpool*, Versions*);
1414
1415 // Finalize the symbol table after we have set the final addresses
1416 // of all the input sections. This sets the final symbol indexes,
1417 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1418 // index of the first global symbol. OFF is the file offset of the
1419 // global symbol table, DYNOFF is the offset of the globals in the
1420 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1421 // global dynamic symbol, and DYNCOUNT is the number of global
1422 // dynamic symbols. This records the parameters, and returns the
1423 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1424 // local symbols.
1425 off_t
1426 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1427 Stringpool* pool, unsigned int *plocal_symcount);
1428
1429 // Status code of Symbol_table::compute_final_value.
1430 enum Compute_final_value_status
1431 {
1432 // No error.
1433 CFVS_OK,
1434 // Unspported symbol section.
1435 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1436 // No output section.
1437 CFVS_NO_OUTPUT_SECTION
1438 };
1439
1440 // Compute the final value of SYM and store status in location PSTATUS.
1441 // During relaxation, this may be called multiple times for a symbol to
1442 // compute its would-be final value in each relaxation pass.
1443
1444 template<int size>
1445 typename Sized_symbol<size>::Value_type
1446 compute_final_value(const Sized_symbol<size>* sym,
1447 Compute_final_value_status* pstatus) const;
1448
1449 // Write out the global symbols.
1450 void
1451 write_globals(const Stringpool*, const Stringpool*,
1452 Output_symtab_xindex*, Output_symtab_xindex*,
1453 Output_file*) const;
1454
1455 // Write out a section symbol. Return the updated offset.
1456 void
1457 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1458 Output_file*, off_t) const;
1459
1460 // Dump statistical information to stderr.
1461 void
1462 print_stats() const;
1463
1464 // Return the version script information.
1465 const Version_script_info&
1466 version_script() const
1467 { return version_script_; }
1468
1469 private:
1470 Symbol_table(const Symbol_table&);
1471 Symbol_table& operator=(const Symbol_table&);
1472
1473 // The type of the list of common symbols.
1474 typedef std::vector<Symbol*> Commons_type;
1475
1476 // The type of the symbol hash table.
1477
1478 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1479
1480 struct Symbol_table_hash
1481 {
1482 size_t
1483 operator()(const Symbol_table_key&) const;
1484 };
1485
1486 struct Symbol_table_eq
1487 {
1488 bool
1489 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1490 };
1491
1492 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1493 Symbol_table_eq> Symbol_table_type;
1494
1495 // Make FROM a forwarder symbol to TO.
1496 void
1497 make_forwarder(Symbol* from, Symbol* to);
1498
1499 // Add a symbol.
1500 template<int size, bool big_endian>
1501 Sized_symbol<size>*
1502 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1503 const char *version, Stringpool::Key version_key,
1504 bool def, const elfcpp::Sym<size, big_endian>& sym,
1505 unsigned int st_shndx, bool is_ordinary,
1506 unsigned int orig_st_shndx);
1507
1508 // Define a default symbol.
1509 template<int size, bool big_endian>
1510 void
1511 define_default_version(Sized_symbol<size>*, bool,
1512 Symbol_table_type::iterator);
1513
1514 // Resolve symbols.
1515 template<int size, bool big_endian>
1516 void
1517 resolve(Sized_symbol<size>* to,
1518 const elfcpp::Sym<size, big_endian>& sym,
1519 unsigned int st_shndx, bool is_ordinary,
1520 unsigned int orig_st_shndx,
1521 Object*, const char* version);
1522
1523 template<int size, bool big_endian>
1524 void
1525 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1526
1527 // Record that a symbol is forced to be local by a version script or
1528 // by visibility.
1529 void
1530 force_local(Symbol*);
1531
1532 // Adjust NAME and *NAME_KEY for wrapping.
1533 const char*
1534 wrap_symbol(const char* name, Stringpool::Key* name_key);
1535
1536 // Whether we should override a symbol, based on flags in
1537 // resolve.cc.
1538 static bool
1539 should_override(const Symbol*, unsigned int, Defined, Object*, bool*);
1540
1541 // Report a problem in symbol resolution.
1542 static void
1543 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1544 Defined, Object* object);
1545
1546 // Override a symbol.
1547 template<int size, bool big_endian>
1548 void
1549 override(Sized_symbol<size>* tosym,
1550 const elfcpp::Sym<size, big_endian>& fromsym,
1551 unsigned int st_shndx, bool is_ordinary,
1552 Object* object, const char* version);
1553
1554 // Whether we should override a symbol with a special symbol which
1555 // is automatically defined by the linker.
1556 static bool
1557 should_override_with_special(const Symbol*, Defined);
1558
1559 // Override a symbol with a special symbol.
1560 template<int size>
1561 void
1562 override_with_special(Sized_symbol<size>* tosym,
1563 const Sized_symbol<size>* fromsym);
1564
1565 // Record all weak alias sets for a dynamic object.
1566 template<int size>
1567 void
1568 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1569
1570 // Define a special symbol.
1571 template<int size, bool big_endian>
1572 Sized_symbol<size>*
1573 define_special_symbol(const char** pname, const char** pversion,
1574 bool only_if_ref, Sized_symbol<size>** poldsym,
1575 bool* resolve_oldsym);
1576
1577 // Define a symbol in an Output_data, sized version.
1578 template<int size>
1579 Sized_symbol<size>*
1580 do_define_in_output_data(const char* name, const char* version, Defined,
1581 Output_data*,
1582 typename elfcpp::Elf_types<size>::Elf_Addr value,
1583 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1584 elfcpp::STT type, elfcpp::STB binding,
1585 elfcpp::STV visibility, unsigned char nonvis,
1586 bool offset_is_from_end, bool only_if_ref);
1587
1588 // Define a symbol in an Output_segment, sized version.
1589 template<int size>
1590 Sized_symbol<size>*
1591 do_define_in_output_segment(
1592 const char* name, const char* version, Defined, Output_segment* os,
1593 typename elfcpp::Elf_types<size>::Elf_Addr value,
1594 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1595 elfcpp::STT type, elfcpp::STB binding,
1596 elfcpp::STV visibility, unsigned char nonvis,
1597 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1598
1599 // Define a symbol as a constant, sized version.
1600 template<int size>
1601 Sized_symbol<size>*
1602 do_define_as_constant(
1603 const char* name, const char* version, Defined,
1604 typename elfcpp::Elf_types<size>::Elf_Addr value,
1605 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1606 elfcpp::STT type, elfcpp::STB binding,
1607 elfcpp::STV visibility, unsigned char nonvis,
1608 bool only_if_ref, bool force_override);
1609
1610 // Add any undefined symbols named on the command line to the symbol
1611 // table, sized version.
1612 template<int size>
1613 void
1614 do_add_undefined_symbols_from_command_line();
1615
1616 // Types of common symbols.
1617
1618 enum Commons_section_type
1619 {
1620 COMMONS_NORMAL,
1621 COMMONS_TLS,
1622 COMMONS_SMALL,
1623 COMMONS_LARGE
1624 };
1625
1626 // Allocate the common symbols, sized version.
1627 template<int size>
1628 void
1629 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1630
1631 // Allocate the common symbols from one list.
1632 template<int size>
1633 void
1634 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1635 Mapfile*, Sort_commons_order);
1636
1637 // Implement detect_odr_violations.
1638 template<int size, bool big_endian>
1639 void
1640 sized_detect_odr_violations() const;
1641
1642 // Finalize symbols specialized for size.
1643 template<int size>
1644 off_t
1645 sized_finalize(off_t, Stringpool*, unsigned int*);
1646
1647 // Finalize a symbol. Return whether it should be added to the
1648 // symbol table.
1649 template<int size>
1650 bool
1651 sized_finalize_symbol(Symbol*);
1652
1653 // Add a symbol the final symtab by setting its index.
1654 template<int size>
1655 void
1656 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1657
1658 // Write globals specialized for size and endianness.
1659 template<int size, bool big_endian>
1660 void
1661 sized_write_globals(const Stringpool*, const Stringpool*,
1662 Output_symtab_xindex*, Output_symtab_xindex*,
1663 Output_file*) const;
1664
1665 // Write out a symbol to P.
1666 template<int size, bool big_endian>
1667 void
1668 sized_write_symbol(Sized_symbol<size>*,
1669 typename elfcpp::Elf_types<size>::Elf_Addr value,
1670 unsigned int shndx,
1671 const Stringpool*, unsigned char* p) const;
1672
1673 // Possibly warn about an undefined symbol from a dynamic object.
1674 void
1675 warn_about_undefined_dynobj_symbol(Symbol*) const;
1676
1677 // Write out a section symbol, specialized for size and endianness.
1678 template<int size, bool big_endian>
1679 void
1680 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1681 Output_file*, off_t) const;
1682
1683 // The type of the list of symbols which have been forced local.
1684 typedef std::vector<Symbol*> Forced_locals;
1685
1686 // A map from symbols with COPY relocs to the dynamic objects where
1687 // they are defined.
1688 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1689
1690 // A map from symbol name (as a pointer into the namepool) to all
1691 // the locations the symbols is (weakly) defined (and certain other
1692 // conditions are met). This map will be used later to detect
1693 // possible One Definition Rule (ODR) violations.
1694 struct Symbol_location
1695 {
1696 Object* object; // Object where the symbol is defined.
1697 unsigned int shndx; // Section-in-object where the symbol is defined.
1698 off_t offset; // Offset-in-section where the symbol is defined.
1699 bool operator==(const Symbol_location& that) const
1700 {
1701 return (this->object == that.object
1702 && this->shndx == that.shndx
1703 && this->offset == that.offset);
1704 }
1705 };
1706
1707 struct Symbol_location_hash
1708 {
1709 size_t operator()(const Symbol_location& loc) const
1710 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1711 };
1712
1713 typedef Unordered_map<const char*,
1714 Unordered_set<Symbol_location, Symbol_location_hash> >
1715 Odr_map;
1716
1717 // We increment this every time we see a new undefined symbol, for
1718 // use in archive groups.
1719 size_t saw_undefined_;
1720 // The index of the first global symbol in the output file.
1721 unsigned int first_global_index_;
1722 // The file offset within the output symtab section where we should
1723 // write the table.
1724 off_t offset_;
1725 // The number of global symbols we want to write out.
1726 unsigned int output_count_;
1727 // The file offset of the global dynamic symbols, or 0 if none.
1728 off_t dynamic_offset_;
1729 // The index of the first global dynamic symbol.
1730 unsigned int first_dynamic_global_index_;
1731 // The number of global dynamic symbols, or 0 if none.
1732 unsigned int dynamic_count_;
1733 // The symbol hash table.
1734 Symbol_table_type table_;
1735 // A pool of symbol names. This is used for all global symbols.
1736 // Entries in the hash table point into this pool.
1737 Stringpool namepool_;
1738 // Forwarding symbols.
1739 Unordered_map<const Symbol*, Symbol*> forwarders_;
1740 // Weak aliases. A symbol in this list points to the next alias.
1741 // The aliases point to each other in a circular list.
1742 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1743 // We don't expect there to be very many common symbols, so we keep
1744 // a list of them. When we find a common symbol we add it to this
1745 // list. It is possible that by the time we process the list the
1746 // symbol is no longer a common symbol. It may also have become a
1747 // forwarder.
1748 Commons_type commons_;
1749 // This is like the commons_ field, except that it holds TLS common
1750 // symbols.
1751 Commons_type tls_commons_;
1752 // This is for small common symbols.
1753 Commons_type small_commons_;
1754 // This is for large common symbols.
1755 Commons_type large_commons_;
1756 // A list of symbols which have been forced to be local. We don't
1757 // expect there to be very many of them, so we keep a list of them
1758 // rather than walking the whole table to find them.
1759 Forced_locals forced_locals_;
1760 // Manage symbol warnings.
1761 Warnings warnings_;
1762 // Manage potential One Definition Rule (ODR) violations.
1763 Odr_map candidate_odr_violations_;
1764
1765 // When we emit a COPY reloc for a symbol, we define it in an
1766 // Output_data. When it's time to emit version information for it,
1767 // we need to know the dynamic object in which we found the original
1768 // definition. This maps symbols with COPY relocs to the dynamic
1769 // object where they were defined.
1770 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1771 // Information parsed from the version script, if any.
1772 const Version_script_info& version_script_;
1773 Garbage_collection* gc_;
1774 Icf* icf_;
1775 };
1776
1777 // We inline get_sized_symbol for efficiency.
1778
1779 template<int size>
1780 Sized_symbol<size>*
1781 Symbol_table::get_sized_symbol(Symbol* sym) const
1782 {
1783 gold_assert(size == parameters->target().get_size());
1784 return static_cast<Sized_symbol<size>*>(sym);
1785 }
1786
1787 template<int size>
1788 const Sized_symbol<size>*
1789 Symbol_table::get_sized_symbol(const Symbol* sym) const
1790 {
1791 gold_assert(size == parameters->target().get_size());
1792 return static_cast<const Sized_symbol<size>*>(sym);
1793 }
1794
1795 } // End namespace gold.
1796
1797 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.067745 seconds and 5 git commands to generate.