PR gold/13245
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class to big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 // Return whether this version is the default for this symbol name
125 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
126 // meaningful for versioned symbols.
127 bool
128 is_default() const
129 {
130 gold_assert(this->version_ != NULL);
131 return this->is_def_;
132 }
133
134 // Set that this version is the default for this symbol name.
135 void
136 set_is_default()
137 { this->is_def_ = true; }
138
139 // Return the symbol's name as name@version (or name@@version).
140 std::string
141 versioned_name() const;
142
143 // Return the symbol source.
144 Source
145 source() const
146 { return this->source_; }
147
148 // Return the object with which this symbol is associated.
149 Object*
150 object() const
151 {
152 gold_assert(this->source_ == FROM_OBJECT);
153 return this->u_.from_object.object;
154 }
155
156 // Return the index of the section in the input relocatable or
157 // dynamic object file.
158 unsigned int
159 shndx(bool* is_ordinary) const
160 {
161 gold_assert(this->source_ == FROM_OBJECT);
162 *is_ordinary = this->is_ordinary_shndx_;
163 return this->u_.from_object.shndx;
164 }
165
166 // Return the output data section with which this symbol is
167 // associated, if the symbol was specially defined with respect to
168 // an output data section.
169 Output_data*
170 output_data() const
171 {
172 gold_assert(this->source_ == IN_OUTPUT_DATA);
173 return this->u_.in_output_data.output_data;
174 }
175
176 // If this symbol was defined with respect to an output data
177 // section, return whether the value is an offset from end.
178 bool
179 offset_is_from_end() const
180 {
181 gold_assert(this->source_ == IN_OUTPUT_DATA);
182 return this->u_.in_output_data.offset_is_from_end;
183 }
184
185 // Return the output segment with which this symbol is associated,
186 // if the symbol was specially defined with respect to an output
187 // segment.
188 Output_segment*
189 output_segment() const
190 {
191 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
192 return this->u_.in_output_segment.output_segment;
193 }
194
195 // If this symbol was defined with respect to an output segment,
196 // return the offset base.
197 Segment_offset_base
198 offset_base() const
199 {
200 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201 return this->u_.in_output_segment.offset_base;
202 }
203
204 // Return the symbol binding.
205 elfcpp::STB
206 binding() const
207 { return this->binding_; }
208
209 // Return the symbol type.
210 elfcpp::STT
211 type() const
212 { return this->type_; }
213
214 // Return true for function symbol.
215 bool
216 is_func() const
217 {
218 return (this->type_ == elfcpp::STT_FUNC
219 || this->type_ == elfcpp::STT_GNU_IFUNC);
220 }
221
222 // Return the symbol visibility.
223 elfcpp::STV
224 visibility() const
225 { return this->visibility_; }
226
227 // Set the visibility.
228 void
229 set_visibility(elfcpp::STV visibility)
230 { this->visibility_ = visibility; }
231
232 // Override symbol visibility.
233 void
234 override_visibility(elfcpp::STV);
235
236 // Set whether the symbol was originally a weak undef or a regular undef
237 // when resolved by a dynamic def.
238 inline void
239 set_undef_binding(elfcpp::STB bind)
240 {
241 if (!this->undef_binding_set_ || this->undef_binding_weak_)
242 {
243 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
244 this->undef_binding_set_ = true;
245 }
246 }
247
248 // Return TRUE if a weak undef was resolved by a dynamic def.
249 inline bool
250 is_undef_binding_weak() const
251 { return this->undef_binding_weak_; }
252
253 // Return the non-visibility part of the st_other field.
254 unsigned char
255 nonvis() const
256 { return this->nonvis_; }
257
258 // Return whether this symbol is a forwarder. This will never be
259 // true of a symbol found in the hash table, but may be true of
260 // symbol pointers attached to object files.
261 bool
262 is_forwarder() const
263 { return this->is_forwarder_; }
264
265 // Mark this symbol as a forwarder.
266 void
267 set_forwarder()
268 { this->is_forwarder_ = true; }
269
270 // Return whether this symbol has an alias in the weak aliases table
271 // in Symbol_table.
272 bool
273 has_alias() const
274 { return this->has_alias_; }
275
276 // Mark this symbol as having an alias.
277 void
278 set_has_alias()
279 { this->has_alias_ = true; }
280
281 // Return whether this symbol needs an entry in the dynamic symbol
282 // table.
283 bool
284 needs_dynsym_entry() const
285 {
286 return (this->needs_dynsym_entry_
287 || (this->in_reg()
288 && this->in_dyn()
289 && this->is_externally_visible()));
290 }
291
292 // Mark this symbol as needing an entry in the dynamic symbol table.
293 void
294 set_needs_dynsym_entry()
295 { this->needs_dynsym_entry_ = true; }
296
297 // Return whether this symbol should be added to the dynamic symbol
298 // table.
299 bool
300 should_add_dynsym_entry(Symbol_table*) const;
301
302 // Return whether this symbol has been seen in a regular object.
303 bool
304 in_reg() const
305 { return this->in_reg_; }
306
307 // Mark this symbol as having been seen in a regular object.
308 void
309 set_in_reg()
310 { this->in_reg_ = true; }
311
312 // Return whether this symbol has been seen in a dynamic object.
313 bool
314 in_dyn() const
315 { return this->in_dyn_; }
316
317 // Mark this symbol as having been seen in a dynamic object.
318 void
319 set_in_dyn()
320 { this->in_dyn_ = true; }
321
322 // Return whether this symbol has been seen in a real ELF object.
323 // (IN_REG will return TRUE if the symbol has been seen in either
324 // a real ELF object or an object claimed by a plugin.)
325 bool
326 in_real_elf() const
327 { return this->in_real_elf_; }
328
329 // Mark this symbol as having been seen in a real ELF object.
330 void
331 set_in_real_elf()
332 { this->in_real_elf_ = true; }
333
334 // Return whether this symbol was defined in a section that was
335 // discarded from the link. This is used to control some error
336 // reporting.
337 bool
338 is_defined_in_discarded_section() const
339 { return this->is_defined_in_discarded_section_; }
340
341 // Mark this symbol as having been defined in a discarded section.
342 void
343 set_is_defined_in_discarded_section()
344 { this->is_defined_in_discarded_section_ = true; }
345
346 // Return the index of this symbol in the output file symbol table.
347 // A value of -1U means that this symbol is not going into the
348 // output file. This starts out as zero, and is set to a non-zero
349 // value by Symbol_table::finalize. It is an error to ask for the
350 // symbol table index before it has been set.
351 unsigned int
352 symtab_index() const
353 {
354 gold_assert(this->symtab_index_ != 0);
355 return this->symtab_index_;
356 }
357
358 // Set the index of the symbol in the output file symbol table.
359 void
360 set_symtab_index(unsigned int index)
361 {
362 gold_assert(index != 0);
363 this->symtab_index_ = index;
364 }
365
366 // Return whether this symbol already has an index in the output
367 // file symbol table.
368 bool
369 has_symtab_index() const
370 { return this->symtab_index_ != 0; }
371
372 // Return the index of this symbol in the dynamic symbol table. A
373 // value of -1U means that this symbol is not going into the dynamic
374 // symbol table. This starts out as zero, and is set to a non-zero
375 // during Layout::finalize. It is an error to ask for the dynamic
376 // symbol table index before it has been set.
377 unsigned int
378 dynsym_index() const
379 {
380 gold_assert(this->dynsym_index_ != 0);
381 return this->dynsym_index_;
382 }
383
384 // Set the index of the symbol in the dynamic symbol table.
385 void
386 set_dynsym_index(unsigned int index)
387 {
388 gold_assert(index != 0);
389 this->dynsym_index_ = index;
390 }
391
392 // Return whether this symbol already has an index in the dynamic
393 // symbol table.
394 bool
395 has_dynsym_index() const
396 { return this->dynsym_index_ != 0; }
397
398 // Return whether this symbol has an entry in the GOT section.
399 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
400 bool
401 has_got_offset(unsigned int got_type) const
402 { return this->got_offsets_.get_offset(got_type) != -1U; }
403
404 // Return the offset into the GOT section of this symbol.
405 unsigned int
406 got_offset(unsigned int got_type) const
407 {
408 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
409 gold_assert(got_offset != -1U);
410 return got_offset;
411 }
412
413 // Set the GOT offset of this symbol.
414 void
415 set_got_offset(unsigned int got_type, unsigned int got_offset)
416 { this->got_offsets_.set_offset(got_type, got_offset); }
417
418 // Return the GOT offset list.
419 const Got_offset_list*
420 got_offset_list() const
421 { return this->got_offsets_.get_list(); }
422
423 // Return whether this symbol has an entry in the PLT section.
424 bool
425 has_plt_offset() const
426 { return this->plt_offset_ != -1U; }
427
428 // Return the offset into the PLT section of this symbol.
429 unsigned int
430 plt_offset() const
431 {
432 gold_assert(this->has_plt_offset());
433 return this->plt_offset_;
434 }
435
436 // Set the PLT offset of this symbol.
437 void
438 set_plt_offset(unsigned int plt_offset)
439 {
440 gold_assert(plt_offset != -1U);
441 this->plt_offset_ = plt_offset;
442 }
443
444 // Return whether this dynamic symbol needs a special value in the
445 // dynamic symbol table.
446 bool
447 needs_dynsym_value() const
448 { return this->needs_dynsym_value_; }
449
450 // Set that this dynamic symbol needs a special value in the dynamic
451 // symbol table.
452 void
453 set_needs_dynsym_value()
454 {
455 gold_assert(this->object()->is_dynamic());
456 this->needs_dynsym_value_ = true;
457 }
458
459 // Return true if the final value of this symbol is known at link
460 // time.
461 bool
462 final_value_is_known() const;
463
464 // Return true if SHNDX represents a common symbol. This depends on
465 // the target.
466 static bool
467 is_common_shndx(unsigned int shndx);
468
469 // Return whether this is a defined symbol (not undefined or
470 // common).
471 bool
472 is_defined() const
473 {
474 bool is_ordinary;
475 if (this->source_ != FROM_OBJECT)
476 return this->source_ != IS_UNDEFINED;
477 unsigned int shndx = this->shndx(&is_ordinary);
478 return (is_ordinary
479 ? shndx != elfcpp::SHN_UNDEF
480 : !Symbol::is_common_shndx(shndx));
481 }
482
483 // Return true if this symbol is from a dynamic object.
484 bool
485 is_from_dynobj() const
486 {
487 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
488 }
489
490 // Return whether this is a placeholder symbol from a plugin object.
491 bool
492 is_placeholder() const
493 {
494 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
495 }
496
497 // Return whether this is an undefined symbol.
498 bool
499 is_undefined() const
500 {
501 bool is_ordinary;
502 return ((this->source_ == FROM_OBJECT
503 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
504 && is_ordinary)
505 || this->source_ == IS_UNDEFINED);
506 }
507
508 // Return whether this is a weak undefined symbol.
509 bool
510 is_weak_undefined() const
511 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
512
513 // Return whether this is an absolute symbol.
514 bool
515 is_absolute() const
516 {
517 bool is_ordinary;
518 return ((this->source_ == FROM_OBJECT
519 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
520 && !is_ordinary)
521 || this->source_ == IS_CONSTANT);
522 }
523
524 // Return whether this is a common symbol.
525 bool
526 is_common() const
527 {
528 if (this->source_ != FROM_OBJECT)
529 return false;
530 if (this->type_ == elfcpp::STT_COMMON)
531 return true;
532 bool is_ordinary;
533 unsigned int shndx = this->shndx(&is_ordinary);
534 return !is_ordinary && Symbol::is_common_shndx(shndx);
535 }
536
537 // Return whether this symbol can be seen outside this object.
538 bool
539 is_externally_visible() const
540 {
541 return ((this->visibility_ == elfcpp::STV_DEFAULT
542 || this->visibility_ == elfcpp::STV_PROTECTED)
543 && !this->is_forced_local_);
544 }
545
546 // Return true if this symbol can be preempted by a definition in
547 // another link unit.
548 bool
549 is_preemptible() const
550 {
551 // It doesn't make sense to ask whether a symbol defined in
552 // another object is preemptible.
553 gold_assert(!this->is_from_dynobj());
554
555 // It doesn't make sense to ask whether an undefined symbol
556 // is preemptible.
557 gold_assert(!this->is_undefined());
558
559 // If a symbol does not have default visibility, it can not be
560 // seen outside this link unit and therefore is not preemptible.
561 if (this->visibility_ != elfcpp::STV_DEFAULT)
562 return false;
563
564 // If this symbol has been forced to be a local symbol by a
565 // version script, then it is not visible outside this link unit
566 // and is not preemptible.
567 if (this->is_forced_local_)
568 return false;
569
570 // If we are not producing a shared library, then nothing is
571 // preemptible.
572 if (!parameters->options().shared())
573 return false;
574
575 // If the user used -Bsymbolic, then nothing is preemptible.
576 if (parameters->options().Bsymbolic())
577 return false;
578
579 // If the user used -Bsymbolic-functions, then functions are not
580 // preemptible. We explicitly check for not being STT_OBJECT,
581 // rather than for being STT_FUNC, because that is what the GNU
582 // linker does.
583 if (this->type() != elfcpp::STT_OBJECT
584 && parameters->options().Bsymbolic_functions())
585 return false;
586
587 // Otherwise the symbol is preemptible.
588 return true;
589 }
590
591 // Return true if this symbol is a function that needs a PLT entry.
592 bool
593 needs_plt_entry() const
594 {
595 // An undefined symbol from an executable does not need a PLT entry.
596 if (this->is_undefined() && !parameters->options().shared())
597 return false;
598
599 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
600 // doing a static link.
601 if (this->type() == elfcpp::STT_GNU_IFUNC)
602 return true;
603
604 // We only need a PLT entry for a function.
605 if (!this->is_func())
606 return false;
607
608 // If we're doing a static link or a -pie link, we don't create
609 // PLT entries.
610 if (parameters->doing_static_link()
611 || parameters->options().pie())
612 return false;
613
614 // We need a PLT entry if the function is defined in a dynamic
615 // object, or is undefined when building a shared object, or if it
616 // is subject to pre-emption.
617 return (this->is_from_dynobj()
618 || this->is_undefined()
619 || this->is_preemptible());
620 }
621
622 // When determining whether a reference to a symbol needs a dynamic
623 // relocation, we need to know several things about the reference.
624 // These flags may be or'ed together. 0 means that the symbol
625 // isn't referenced at all.
626 enum Reference_flags
627 {
628 // A reference to the symbol's absolute address. This includes
629 // references that cause an absolute address to be stored in the GOT.
630 ABSOLUTE_REF = 1,
631 // A reference that calculates the offset of the symbol from some
632 // anchor point, such as the PC or GOT.
633 RELATIVE_REF = 2,
634 // A TLS-related reference.
635 TLS_REF = 4,
636 // A reference that can always be treated as a function call.
637 FUNCTION_CALL = 8
638 };
639
640 // Given a direct absolute or pc-relative static relocation against
641 // the global symbol, this function returns whether a dynamic relocation
642 // is needed.
643
644 bool
645 needs_dynamic_reloc(int flags) const
646 {
647 // No dynamic relocations in a static link!
648 if (parameters->doing_static_link())
649 return false;
650
651 // A reference to an undefined symbol from an executable should be
652 // statically resolved to 0, and does not need a dynamic relocation.
653 // This matches gnu ld behavior.
654 if (this->is_undefined() && !parameters->options().shared())
655 return false;
656
657 // A reference to an absolute symbol does not need a dynamic relocation.
658 if (this->is_absolute())
659 return false;
660
661 // An absolute reference within a position-independent output file
662 // will need a dynamic relocation.
663 if ((flags & ABSOLUTE_REF)
664 && parameters->options().output_is_position_independent())
665 return true;
666
667 // A function call that can branch to a local PLT entry does not need
668 // a dynamic relocation.
669 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
670 return false;
671
672 // A reference to any PLT entry in a non-position-independent executable
673 // does not need a dynamic relocation.
674 if (!parameters->options().output_is_position_independent()
675 && this->has_plt_offset())
676 return false;
677
678 // A reference to a symbol defined in a dynamic object or to a
679 // symbol that is preemptible will need a dynamic relocation.
680 if (this->is_from_dynobj()
681 || this->is_undefined()
682 || this->is_preemptible())
683 return true;
684
685 // For all other cases, return FALSE.
686 return false;
687 }
688
689 // Whether we should use the PLT offset associated with a symbol for
690 // a relocation. FLAGS is a set of Reference_flags.
691
692 bool
693 use_plt_offset(int flags) const
694 {
695 // If the symbol doesn't have a PLT offset, then naturally we
696 // don't want to use it.
697 if (!this->has_plt_offset())
698 return false;
699
700 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
701 if (this->type() == elfcpp::STT_GNU_IFUNC)
702 return true;
703
704 // If we are going to generate a dynamic relocation, then we will
705 // wind up using that, so no need to use the PLT entry.
706 if (this->needs_dynamic_reloc(flags))
707 return false;
708
709 // If the symbol is from a dynamic object, we need to use the PLT
710 // entry.
711 if (this->is_from_dynobj())
712 return true;
713
714 // If we are generating a shared object, and this symbol is
715 // undefined or preemptible, we need to use the PLT entry.
716 if (parameters->options().shared()
717 && (this->is_undefined() || this->is_preemptible()))
718 return true;
719
720 // If this is a call to a weak undefined symbol, we need to use
721 // the PLT entry; the symbol may be defined by a library loaded
722 // at runtime.
723 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
724 return true;
725
726 // Otherwise we can use the regular definition.
727 return false;
728 }
729
730 // Given a direct absolute static relocation against
731 // the global symbol, where a dynamic relocation is needed, this
732 // function returns whether a relative dynamic relocation can be used.
733 // The caller must determine separately whether the static relocation
734 // is compatible with a relative relocation.
735
736 bool
737 can_use_relative_reloc(bool is_function_call) const
738 {
739 // A function call that can branch to a local PLT entry can
740 // use a RELATIVE relocation.
741 if (is_function_call && this->has_plt_offset())
742 return true;
743
744 // A reference to a symbol defined in a dynamic object or to a
745 // symbol that is preemptible can not use a RELATIVE relocation.
746 if (this->is_from_dynobj()
747 || this->is_undefined()
748 || this->is_preemptible())
749 return false;
750
751 // For all other cases, return TRUE.
752 return true;
753 }
754
755 // Return the output section where this symbol is defined. Return
756 // NULL if the symbol has an absolute value.
757 Output_section*
758 output_section() const;
759
760 // Set the symbol's output section. This is used for symbols
761 // defined in scripts. This should only be called after the symbol
762 // table has been finalized.
763 void
764 set_output_section(Output_section*);
765
766 // Return whether there should be a warning for references to this
767 // symbol.
768 bool
769 has_warning() const
770 { return this->has_warning_; }
771
772 // Mark this symbol as having a warning.
773 void
774 set_has_warning()
775 { this->has_warning_ = true; }
776
777 // Return whether this symbol is defined by a COPY reloc from a
778 // dynamic object.
779 bool
780 is_copied_from_dynobj() const
781 { return this->is_copied_from_dynobj_; }
782
783 // Mark this symbol as defined by a COPY reloc.
784 void
785 set_is_copied_from_dynobj()
786 { this->is_copied_from_dynobj_ = true; }
787
788 // Return whether this symbol is forced to visibility STB_LOCAL
789 // by a "local:" entry in a version script.
790 bool
791 is_forced_local() const
792 { return this->is_forced_local_; }
793
794 // Mark this symbol as forced to STB_LOCAL visibility.
795 void
796 set_is_forced_local()
797 { this->is_forced_local_ = true; }
798
799 // Return true if this may need a COPY relocation.
800 // References from an executable object to non-function symbols
801 // defined in a dynamic object may need a COPY relocation.
802 bool
803 may_need_copy_reloc() const
804 {
805 return (!parameters->options().output_is_position_independent()
806 && parameters->options().copyreloc()
807 && this->is_from_dynobj()
808 && !this->is_func());
809 }
810
811 // Return true if this symbol was predefined by the linker.
812 bool
813 is_predefined() const
814 { return this->is_predefined_; }
815
816 protected:
817 // Instances of this class should always be created at a specific
818 // size.
819 Symbol()
820 { memset(this, 0, sizeof *this); }
821
822 // Initialize the general fields.
823 void
824 init_fields(const char* name, const char* version,
825 elfcpp::STT type, elfcpp::STB binding,
826 elfcpp::STV visibility, unsigned char nonvis);
827
828 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
829 // section index, IS_ORDINARY is whether it is a normal section
830 // index rather than a special code.
831 template<int size, bool big_endian>
832 void
833 init_base_object(const char* name, const char* version, Object* object,
834 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
835 bool is_ordinary);
836
837 // Initialize fields for an Output_data.
838 void
839 init_base_output_data(const char* name, const char* version, Output_data*,
840 elfcpp::STT, elfcpp::STB, elfcpp::STV,
841 unsigned char nonvis, bool offset_is_from_end,
842 bool is_predefined);
843
844 // Initialize fields for an Output_segment.
845 void
846 init_base_output_segment(const char* name, const char* version,
847 Output_segment* os, elfcpp::STT type,
848 elfcpp::STB binding, elfcpp::STV visibility,
849 unsigned char nonvis,
850 Segment_offset_base offset_base,
851 bool is_predefined);
852
853 // Initialize fields for a constant.
854 void
855 init_base_constant(const char* name, const char* version, elfcpp::STT type,
856 elfcpp::STB binding, elfcpp::STV visibility,
857 unsigned char nonvis, bool is_predefined);
858
859 // Initialize fields for an undefined symbol.
860 void
861 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
862 elfcpp::STB binding, elfcpp::STV visibility,
863 unsigned char nonvis);
864
865 // Override existing symbol.
866 template<int size, bool big_endian>
867 void
868 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
869 bool is_ordinary, Object* object, const char* version);
870
871 // Override existing symbol with a special symbol.
872 void
873 override_base_with_special(const Symbol* from);
874
875 // Override symbol version.
876 void
877 override_version(const char* version);
878
879 // Allocate a common symbol by giving it a location in the output
880 // file.
881 void
882 allocate_base_common(Output_data*);
883
884 private:
885 Symbol(const Symbol&);
886 Symbol& operator=(const Symbol&);
887
888 // Symbol name (expected to point into a Stringpool).
889 const char* name_;
890 // Symbol version (expected to point into a Stringpool). This may
891 // be NULL.
892 const char* version_;
893
894 union
895 {
896 // This struct is used if SOURCE_ == FROM_OBJECT.
897 struct
898 {
899 // Object in which symbol is defined, or in which it was first
900 // seen.
901 Object* object;
902 // Section number in object_ in which symbol is defined.
903 unsigned int shndx;
904 } from_object;
905
906 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
907 struct
908 {
909 // Output_data in which symbol is defined. Before
910 // Layout::finalize the symbol's value is an offset within the
911 // Output_data.
912 Output_data* output_data;
913 // True if the offset is from the end, false if the offset is
914 // from the beginning.
915 bool offset_is_from_end;
916 } in_output_data;
917
918 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
919 struct
920 {
921 // Output_segment in which the symbol is defined. Before
922 // Layout::finalize the symbol's value is an offset.
923 Output_segment* output_segment;
924 // The base to use for the offset before Layout::finalize.
925 Segment_offset_base offset_base;
926 } in_output_segment;
927 } u_;
928
929 // The index of this symbol in the output file. If the symbol is
930 // not going into the output file, this value is -1U. This field
931 // starts as always holding zero. It is set to a non-zero value by
932 // Symbol_table::finalize.
933 unsigned int symtab_index_;
934
935 // The index of this symbol in the dynamic symbol table. If the
936 // symbol is not going into the dynamic symbol table, this value is
937 // -1U. This field starts as always holding zero. It is set to a
938 // non-zero value during Layout::finalize.
939 unsigned int dynsym_index_;
940
941 // The GOT section entries for this symbol. A symbol may have more
942 // than one GOT offset (e.g., when mixing modules compiled with two
943 // different TLS models), but will usually have at most one.
944 Got_offset_list got_offsets_;
945
946 // If this symbol has an entry in the PLT section, then this is the
947 // offset from the start of the PLT section. This is -1U if there
948 // is no PLT entry.
949 unsigned int plt_offset_;
950
951 // Symbol type (bits 0 to 3).
952 elfcpp::STT type_ : 4;
953 // Symbol binding (bits 4 to 7).
954 elfcpp::STB binding_ : 4;
955 // Symbol visibility (bits 8 to 9).
956 elfcpp::STV visibility_ : 2;
957 // Rest of symbol st_other field (bits 10 to 15).
958 unsigned int nonvis_ : 6;
959 // The type of symbol (bits 16 to 18).
960 Source source_ : 3;
961 // True if this is the default version of the symbol (bit 19).
962 bool is_def_ : 1;
963 // True if this symbol really forwards to another symbol. This is
964 // used when we discover after the fact that two different entries
965 // in the hash table really refer to the same symbol. This will
966 // never be set for a symbol found in the hash table, but may be set
967 // for a symbol found in the list of symbols attached to an Object.
968 // It forwards to the symbol found in the forwarders_ map of
969 // Symbol_table (bit 20).
970 bool is_forwarder_ : 1;
971 // True if the symbol has an alias in the weak_aliases table in
972 // Symbol_table (bit 21).
973 bool has_alias_ : 1;
974 // True if this symbol needs to be in the dynamic symbol table (bit
975 // 22).
976 bool needs_dynsym_entry_ : 1;
977 // True if we've seen this symbol in a regular object (bit 23).
978 bool in_reg_ : 1;
979 // True if we've seen this symbol in a dynamic object (bit 24).
980 bool in_dyn_ : 1;
981 // True if this is a dynamic symbol which needs a special value in
982 // the dynamic symbol table (bit 25).
983 bool needs_dynsym_value_ : 1;
984 // True if there is a warning for this symbol (bit 26).
985 bool has_warning_ : 1;
986 // True if we are using a COPY reloc for this symbol, so that the
987 // real definition lives in a dynamic object (bit 27).
988 bool is_copied_from_dynobj_ : 1;
989 // True if this symbol was forced to local visibility by a version
990 // script (bit 28).
991 bool is_forced_local_ : 1;
992 // True if the field u_.from_object.shndx is an ordinary section
993 // index, not one of the special codes from SHN_LORESERVE to
994 // SHN_HIRESERVE (bit 29).
995 bool is_ordinary_shndx_ : 1;
996 // True if we've seen this symbol in a "real" ELF object (bit 30).
997 // If the symbol has been seen in a relocatable, non-IR, object file,
998 // it's known to be referenced from outside the IR. A reference from
999 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1000 // mark the symbol as "visible" from outside the IR. The compiler
1001 // can use this distinction to guide its handling of COMDAT symbols.
1002 bool in_real_elf_ : 1;
1003 // True if this symbol is defined in a section which was discarded
1004 // (bit 31).
1005 bool is_defined_in_discarded_section_ : 1;
1006 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1007 bool undef_binding_set_ : 1;
1008 // True if this symbol was a weak undef resolved by a dynamic def
1009 // (bit 33).
1010 bool undef_binding_weak_ : 1;
1011 // True if this symbol is a predefined linker symbol (bit 34).
1012 bool is_predefined_ : 1;
1013 };
1014
1015 // The parts of a symbol which are size specific. Using a template
1016 // derived class like this helps us use less space on a 32-bit system.
1017
1018 template<int size>
1019 class Sized_symbol : public Symbol
1020 {
1021 public:
1022 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1023 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1024
1025 Sized_symbol()
1026 { }
1027
1028 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1029 // section index, IS_ORDINARY is whether it is a normal section
1030 // index rather than a special code.
1031 template<bool big_endian>
1032 void
1033 init_object(const char* name, const char* version, Object* object,
1034 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1035 bool is_ordinary);
1036
1037 // Initialize fields for an Output_data.
1038 void
1039 init_output_data(const char* name, const char* version, Output_data*,
1040 Value_type value, Size_type symsize, elfcpp::STT,
1041 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1042 bool offset_is_from_end, bool is_predefined);
1043
1044 // Initialize fields for an Output_segment.
1045 void
1046 init_output_segment(const char* name, const char* version, Output_segment*,
1047 Value_type value, Size_type symsize, elfcpp::STT,
1048 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1049 Segment_offset_base offset_base, bool is_predefined);
1050
1051 // Initialize fields for a constant.
1052 void
1053 init_constant(const char* name, const char* version, Value_type value,
1054 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1055 unsigned char nonvis, bool is_predefined);
1056
1057 // Initialize fields for an undefined symbol.
1058 void
1059 init_undefined(const char* name, const char* version, elfcpp::STT,
1060 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1061
1062 // Override existing symbol.
1063 template<bool big_endian>
1064 void
1065 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1066 bool is_ordinary, Object* object, const char* version);
1067
1068 // Override existing symbol with a special symbol.
1069 void
1070 override_with_special(const Sized_symbol<size>*);
1071
1072 // Return the symbol's value.
1073 Value_type
1074 value() const
1075 { return this->value_; }
1076
1077 // Return the symbol's size (we can't call this 'size' because that
1078 // is a template parameter).
1079 Size_type
1080 symsize() const
1081 { return this->symsize_; }
1082
1083 // Set the symbol size. This is used when resolving common symbols.
1084 void
1085 set_symsize(Size_type symsize)
1086 { this->symsize_ = symsize; }
1087
1088 // Set the symbol value. This is called when we store the final
1089 // values of the symbols into the symbol table.
1090 void
1091 set_value(Value_type value)
1092 { this->value_ = value; }
1093
1094 // Allocate a common symbol by giving it a location in the output
1095 // file.
1096 void
1097 allocate_common(Output_data*, Value_type value);
1098
1099 private:
1100 Sized_symbol(const Sized_symbol&);
1101 Sized_symbol& operator=(const Sized_symbol&);
1102
1103 // Symbol value. Before Layout::finalize this is the offset in the
1104 // input section. This is set to the final value during
1105 // Layout::finalize.
1106 Value_type value_;
1107 // Symbol size.
1108 Size_type symsize_;
1109 };
1110
1111 // A struct describing a symbol defined by the linker, where the value
1112 // of the symbol is defined based on an output section. This is used
1113 // for symbols defined by the linker, like "_init_array_start".
1114
1115 struct Define_symbol_in_section
1116 {
1117 // The symbol name.
1118 const char* name;
1119 // The name of the output section with which this symbol should be
1120 // associated. If there is no output section with that name, the
1121 // symbol will be defined as zero.
1122 const char* output_section;
1123 // The offset of the symbol within the output section. This is an
1124 // offset from the start of the output section, unless start_at_end
1125 // is true, in which case this is an offset from the end of the
1126 // output section.
1127 uint64_t value;
1128 // The size of the symbol.
1129 uint64_t size;
1130 // The symbol type.
1131 elfcpp::STT type;
1132 // The symbol binding.
1133 elfcpp::STB binding;
1134 // The symbol visibility.
1135 elfcpp::STV visibility;
1136 // The rest of the st_other field.
1137 unsigned char nonvis;
1138 // If true, the value field is an offset from the end of the output
1139 // section.
1140 bool offset_is_from_end;
1141 // If true, this symbol is defined only if we see a reference to it.
1142 bool only_if_ref;
1143 };
1144
1145 // A struct describing a symbol defined by the linker, where the value
1146 // of the symbol is defined based on a segment. This is used for
1147 // symbols defined by the linker, like "_end". We describe the
1148 // segment with which the symbol should be associated by its
1149 // characteristics. If no segment meets these characteristics, the
1150 // symbol will be defined as zero. If there is more than one segment
1151 // which meets these characteristics, we will use the first one.
1152
1153 struct Define_symbol_in_segment
1154 {
1155 // The symbol name.
1156 const char* name;
1157 // The segment type where the symbol should be defined, typically
1158 // PT_LOAD.
1159 elfcpp::PT segment_type;
1160 // Bitmask of segment flags which must be set.
1161 elfcpp::PF segment_flags_set;
1162 // Bitmask of segment flags which must be clear.
1163 elfcpp::PF segment_flags_clear;
1164 // The offset of the symbol within the segment. The offset is
1165 // calculated from the position set by offset_base.
1166 uint64_t value;
1167 // The size of the symbol.
1168 uint64_t size;
1169 // The symbol type.
1170 elfcpp::STT type;
1171 // The symbol binding.
1172 elfcpp::STB binding;
1173 // The symbol visibility.
1174 elfcpp::STV visibility;
1175 // The rest of the st_other field.
1176 unsigned char nonvis;
1177 // The base from which we compute the offset.
1178 Symbol::Segment_offset_base offset_base;
1179 // If true, this symbol is defined only if we see a reference to it.
1180 bool only_if_ref;
1181 };
1182
1183 // This class manages warnings. Warnings are a GNU extension. When
1184 // we see a section named .gnu.warning.SYM in an object file, and if
1185 // we wind using the definition of SYM from that object file, then we
1186 // will issue a warning for any relocation against SYM from a
1187 // different object file. The text of the warning is the contents of
1188 // the section. This is not precisely the definition used by the old
1189 // GNU linker; the old GNU linker treated an occurrence of
1190 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1191 // would trigger a warning on any reference. However, it was
1192 // inconsistent in that a warning in a dynamic object only triggered
1193 // if there was no definition in a regular object. This linker is
1194 // different in that we only issue a warning if we use the symbol
1195 // definition from the same object file as the warning section.
1196
1197 class Warnings
1198 {
1199 public:
1200 Warnings()
1201 : warnings_()
1202 { }
1203
1204 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1205 // of the warning.
1206 void
1207 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1208 const std::string& warning);
1209
1210 // For each symbol for which we should give a warning, make a note
1211 // on the symbol.
1212 void
1213 note_warnings(Symbol_table* symtab);
1214
1215 // Issue a warning for a reference to SYM at RELINFO's location.
1216 template<int size, bool big_endian>
1217 void
1218 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1219 size_t relnum, off_t reloffset) const;
1220
1221 private:
1222 Warnings(const Warnings&);
1223 Warnings& operator=(const Warnings&);
1224
1225 // What we need to know to get the warning text.
1226 struct Warning_location
1227 {
1228 // The object the warning is in.
1229 Object* object;
1230 // The warning text.
1231 std::string text;
1232
1233 Warning_location()
1234 : object(NULL), text()
1235 { }
1236
1237 void
1238 set(Object* o, const std::string& t)
1239 {
1240 this->object = o;
1241 this->text = t;
1242 }
1243 };
1244
1245 // A mapping from warning symbol names (canonicalized in
1246 // Symbol_table's namepool_ field) to warning information.
1247 typedef Unordered_map<const char*, Warning_location> Warning_table;
1248
1249 Warning_table warnings_;
1250 };
1251
1252 // The main linker symbol table.
1253
1254 class Symbol_table
1255 {
1256 public:
1257 // The different places where a symbol definition can come from.
1258 enum Defined
1259 {
1260 // Defined in an object file--the normal case.
1261 OBJECT,
1262 // Defined for a COPY reloc.
1263 COPY,
1264 // Defined on the command line using --defsym.
1265 DEFSYM,
1266 // Defined (so to speak) on the command line using -u.
1267 UNDEFINED,
1268 // Defined in a linker script.
1269 SCRIPT,
1270 // Predefined by the linker.
1271 PREDEFINED,
1272 // Defined by the linker during an incremental base link, but not
1273 // a predefined symbol (e.g., common, defined in script).
1274 INCREMENTAL_BASE,
1275 };
1276
1277 // The order in which we sort common symbols.
1278 enum Sort_commons_order
1279 {
1280 SORT_COMMONS_BY_SIZE_DESCENDING,
1281 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1282 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1283 };
1284
1285 // COUNT is an estimate of how many symbols will be inserted in the
1286 // symbol table. It's ok to put 0 if you don't know; a correct
1287 // guess will just save some CPU by reducing hashtable resizes.
1288 Symbol_table(unsigned int count, const Version_script_info& version_script);
1289
1290 ~Symbol_table();
1291
1292 void
1293 set_icf(Icf* icf)
1294 { this->icf_ = icf;}
1295
1296 Icf*
1297 icf() const
1298 { return this->icf_; }
1299
1300 // Returns true if ICF determined that this is a duplicate section.
1301 bool
1302 is_section_folded(Object* obj, unsigned int shndx) const;
1303
1304 void
1305 set_gc(Garbage_collection* gc)
1306 { this->gc_ = gc; }
1307
1308 Garbage_collection*
1309 gc() const
1310 { return this->gc_; }
1311
1312 // During garbage collection, this keeps undefined symbols.
1313 void
1314 gc_mark_undef_symbols(Layout*);
1315
1316 // During garbage collection, this ensures externally visible symbols
1317 // are not treated as garbage while building shared objects.
1318 void
1319 gc_mark_symbol_for_shlib(Symbol* sym);
1320
1321 // During garbage collection, this keeps sections that correspond to
1322 // symbols seen in dynamic objects.
1323 inline void
1324 gc_mark_dyn_syms(Symbol* sym);
1325
1326 // Add COUNT external symbols from the relocatable object RELOBJ to
1327 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1328 // offset in the symbol table of the first symbol, SYM_NAMES is
1329 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1330 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1331 // *DEFINED to the number of defined symbols.
1332 template<int size, bool big_endian>
1333 void
1334 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1335 const unsigned char* syms, size_t count,
1336 size_t symndx_offset, const char* sym_names,
1337 size_t sym_name_size,
1338 typename Sized_relobj_file<size, big_endian>::Symbols*,
1339 size_t* defined);
1340
1341 // Add one external symbol from the plugin object OBJ to the symbol table.
1342 // Returns a pointer to the resolved symbol in the symbol table.
1343 template<int size, bool big_endian>
1344 Symbol*
1345 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1346 const char* name, const char* ver,
1347 elfcpp::Sym<size, big_endian>* sym);
1348
1349 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1350 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1351 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1352 // symbol version data.
1353 template<int size, bool big_endian>
1354 void
1355 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1356 const unsigned char* syms, size_t count,
1357 const char* sym_names, size_t sym_name_size,
1358 const unsigned char* versym, size_t versym_size,
1359 const std::vector<const char*>*,
1360 typename Sized_relobj_file<size, big_endian>::Symbols*,
1361 size_t* defined);
1362
1363 // Add one external symbol from the incremental object OBJ to the symbol
1364 // table. Returns a pointer to the resolved symbol in the symbol table.
1365 template<int size, bool big_endian>
1366 Sized_symbol<size>*
1367 add_from_incrobj(Object* obj, const char* name,
1368 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1369
1370 // Define a special symbol based on an Output_data. It is a
1371 // multiple definition error if this symbol is already defined.
1372 Symbol*
1373 define_in_output_data(const char* name, const char* version, Defined,
1374 Output_data*, uint64_t value, uint64_t symsize,
1375 elfcpp::STT type, elfcpp::STB binding,
1376 elfcpp::STV visibility, unsigned char nonvis,
1377 bool offset_is_from_end, bool only_if_ref);
1378
1379 // Define a special symbol based on an Output_segment. It is a
1380 // multiple definition error if this symbol is already defined.
1381 Symbol*
1382 define_in_output_segment(const char* name, const char* version, Defined,
1383 Output_segment*, uint64_t value, uint64_t symsize,
1384 elfcpp::STT type, elfcpp::STB binding,
1385 elfcpp::STV visibility, unsigned char nonvis,
1386 Symbol::Segment_offset_base, bool only_if_ref);
1387
1388 // Define a special symbol with a constant value. It is a multiple
1389 // definition error if this symbol is already defined.
1390 Symbol*
1391 define_as_constant(const char* name, const char* version, Defined,
1392 uint64_t value, uint64_t symsize, elfcpp::STT type,
1393 elfcpp::STB binding, elfcpp::STV visibility,
1394 unsigned char nonvis, bool only_if_ref,
1395 bool force_override);
1396
1397 // Define a set of symbols in output sections. If ONLY_IF_REF is
1398 // true, only define them if they are referenced.
1399 void
1400 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1401 bool only_if_ref);
1402
1403 // Define a set of symbols in output segments. If ONLY_IF_REF is
1404 // true, only defined them if they are referenced.
1405 void
1406 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1407 bool only_if_ref);
1408
1409 // Define SYM using a COPY reloc. POSD is the Output_data where the
1410 // symbol should be defined--typically a .dyn.bss section. VALUE is
1411 // the offset within POSD.
1412 template<int size>
1413 void
1414 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1415 typename elfcpp::Elf_types<size>::Elf_Addr);
1416
1417 // Look up a symbol.
1418 Symbol*
1419 lookup(const char*, const char* version = NULL) const;
1420
1421 // Return the real symbol associated with the forwarder symbol FROM.
1422 Symbol*
1423 resolve_forwards(const Symbol* from) const;
1424
1425 // Return the sized version of a symbol in this table.
1426 template<int size>
1427 Sized_symbol<size>*
1428 get_sized_symbol(Symbol*) const;
1429
1430 template<int size>
1431 const Sized_symbol<size>*
1432 get_sized_symbol(const Symbol*) const;
1433
1434 // Return the count of undefined symbols seen.
1435 size_t
1436 saw_undefined() const
1437 { return this->saw_undefined_; }
1438
1439 // Allocate the common symbols
1440 void
1441 allocate_commons(Layout*, Mapfile*);
1442
1443 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1444 // of the warning.
1445 void
1446 add_warning(const char* name, Object* obj, const std::string& warning)
1447 { this->warnings_.add_warning(this, name, obj, warning); }
1448
1449 // Canonicalize a symbol name for use in the hash table.
1450 const char*
1451 canonicalize_name(const char* name)
1452 { return this->namepool_.add(name, true, NULL); }
1453
1454 // Possibly issue a warning for a reference to SYM at LOCATION which
1455 // is in OBJ.
1456 template<int size, bool big_endian>
1457 void
1458 issue_warning(const Symbol* sym,
1459 const Relocate_info<size, big_endian>* relinfo,
1460 size_t relnum, off_t reloffset) const
1461 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1462
1463 // Check candidate_odr_violations_ to find symbols with the same name
1464 // but apparently different definitions (different source-file/line-no).
1465 void
1466 detect_odr_violations(const Task*, const char* output_file_name) const;
1467
1468 // Add any undefined symbols named on the command line to the symbol
1469 // table.
1470 void
1471 add_undefined_symbols_from_command_line(Layout*);
1472
1473 // SYM is defined using a COPY reloc. Return the dynamic object
1474 // where the original definition was found.
1475 Dynobj*
1476 get_copy_source(const Symbol* sym) const;
1477
1478 // Set the dynamic symbol indexes. INDEX is the index of the first
1479 // global dynamic symbol. Pointers to the symbols are stored into
1480 // the vector. The names are stored into the Stringpool. This
1481 // returns an updated dynamic symbol index.
1482 unsigned int
1483 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1484 Stringpool*, Versions*);
1485
1486 // Finalize the symbol table after we have set the final addresses
1487 // of all the input sections. This sets the final symbol indexes,
1488 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1489 // index of the first global symbol. OFF is the file offset of the
1490 // global symbol table, DYNOFF is the offset of the globals in the
1491 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1492 // global dynamic symbol, and DYNCOUNT is the number of global
1493 // dynamic symbols. This records the parameters, and returns the
1494 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1495 // local symbols.
1496 off_t
1497 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1498 Stringpool* pool, unsigned int* plocal_symcount);
1499
1500 // Set the final file offset of the symbol table.
1501 void
1502 set_file_offset(off_t off)
1503 { this->offset_ = off; }
1504
1505 // Status code of Symbol_table::compute_final_value.
1506 enum Compute_final_value_status
1507 {
1508 // No error.
1509 CFVS_OK,
1510 // Unsupported symbol section.
1511 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1512 // No output section.
1513 CFVS_NO_OUTPUT_SECTION
1514 };
1515
1516 // Compute the final value of SYM and store status in location PSTATUS.
1517 // During relaxation, this may be called multiple times for a symbol to
1518 // compute its would-be final value in each relaxation pass.
1519
1520 template<int size>
1521 typename Sized_symbol<size>::Value_type
1522 compute_final_value(const Sized_symbol<size>* sym,
1523 Compute_final_value_status* pstatus) const;
1524
1525 // Return the index of the first global symbol.
1526 unsigned int
1527 first_global_index() const
1528 { return this->first_global_index_; }
1529
1530 // Return the total number of symbols in the symbol table.
1531 unsigned int
1532 output_count() const
1533 { return this->output_count_; }
1534
1535 // Write out the global symbols.
1536 void
1537 write_globals(const Stringpool*, const Stringpool*,
1538 Output_symtab_xindex*, Output_symtab_xindex*,
1539 Output_file*) const;
1540
1541 // Write out a section symbol. Return the updated offset.
1542 void
1543 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1544 Output_file*, off_t) const;
1545
1546 // Loop over all symbols, applying the function F to each.
1547 template<int size, typename F>
1548 void
1549 for_all_symbols(F f) const
1550 {
1551 for (Symbol_table_type::const_iterator p = this->table_.begin();
1552 p != this->table_.end();
1553 ++p)
1554 {
1555 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1556 f(sym);
1557 }
1558 }
1559
1560 // Dump statistical information to stderr.
1561 void
1562 print_stats() const;
1563
1564 // Return the version script information.
1565 const Version_script_info&
1566 version_script() const
1567 { return version_script_; }
1568
1569 private:
1570 Symbol_table(const Symbol_table&);
1571 Symbol_table& operator=(const Symbol_table&);
1572
1573 // The type of the list of common symbols.
1574 typedef std::vector<Symbol*> Commons_type;
1575
1576 // The type of the symbol hash table.
1577
1578 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1579
1580 // The hash function. The key values are Stringpool keys.
1581 struct Symbol_table_hash
1582 {
1583 inline size_t
1584 operator()(const Symbol_table_key& key) const
1585 {
1586 return key.first ^ key.second;
1587 }
1588 };
1589
1590 struct Symbol_table_eq
1591 {
1592 bool
1593 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1594 };
1595
1596 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1597 Symbol_table_eq> Symbol_table_type;
1598
1599 // A map from symbol name (as a pointer into the namepool) to all
1600 // the locations the symbols is (weakly) defined (and certain other
1601 // conditions are met). This map will be used later to detect
1602 // possible One Definition Rule (ODR) violations.
1603 struct Symbol_location
1604 {
1605 Object* object; // Object where the symbol is defined.
1606 unsigned int shndx; // Section-in-object where the symbol is defined.
1607 off_t offset; // Offset-in-section where the symbol is defined.
1608 bool operator==(const Symbol_location& that) const
1609 {
1610 return (this->object == that.object
1611 && this->shndx == that.shndx
1612 && this->offset == that.offset);
1613 }
1614 };
1615
1616 struct Symbol_location_hash
1617 {
1618 size_t operator()(const Symbol_location& loc) const
1619 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1620 };
1621
1622 typedef Unordered_map<const char*,
1623 Unordered_set<Symbol_location, Symbol_location_hash> >
1624 Odr_map;
1625
1626 // Make FROM a forwarder symbol to TO.
1627 void
1628 make_forwarder(Symbol* from, Symbol* to);
1629
1630 // Add a symbol.
1631 template<int size, bool big_endian>
1632 Sized_symbol<size>*
1633 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1634 const char* version, Stringpool::Key version_key,
1635 bool def, const elfcpp::Sym<size, big_endian>& sym,
1636 unsigned int st_shndx, bool is_ordinary,
1637 unsigned int orig_st_shndx);
1638
1639 // Define a default symbol.
1640 template<int size, bool big_endian>
1641 void
1642 define_default_version(Sized_symbol<size>*, bool,
1643 Symbol_table_type::iterator);
1644
1645 // Resolve symbols.
1646 template<int size, bool big_endian>
1647 void
1648 resolve(Sized_symbol<size>* to,
1649 const elfcpp::Sym<size, big_endian>& sym,
1650 unsigned int st_shndx, bool is_ordinary,
1651 unsigned int orig_st_shndx,
1652 Object*, const char* version);
1653
1654 template<int size, bool big_endian>
1655 void
1656 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1657
1658 // Record that a symbol is forced to be local by a version script or
1659 // by visibility.
1660 void
1661 force_local(Symbol*);
1662
1663 // Adjust NAME and *NAME_KEY for wrapping.
1664 const char*
1665 wrap_symbol(const char* name, Stringpool::Key* name_key);
1666
1667 // Whether we should override a symbol, based on flags in
1668 // resolve.cc.
1669 static bool
1670 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1671 Object*, bool*, bool*);
1672
1673 // Report a problem in symbol resolution.
1674 static void
1675 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1676 Defined, Object* object);
1677
1678 // Override a symbol.
1679 template<int size, bool big_endian>
1680 void
1681 override(Sized_symbol<size>* tosym,
1682 const elfcpp::Sym<size, big_endian>& fromsym,
1683 unsigned int st_shndx, bool is_ordinary,
1684 Object* object, const char* version);
1685
1686 // Whether we should override a symbol with a special symbol which
1687 // is automatically defined by the linker.
1688 static bool
1689 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1690
1691 // Override a symbol with a special symbol.
1692 template<int size>
1693 void
1694 override_with_special(Sized_symbol<size>* tosym,
1695 const Sized_symbol<size>* fromsym);
1696
1697 // Record all weak alias sets for a dynamic object.
1698 template<int size>
1699 void
1700 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1701
1702 // Define a special symbol.
1703 template<int size, bool big_endian>
1704 Sized_symbol<size>*
1705 define_special_symbol(const char** pname, const char** pversion,
1706 bool only_if_ref, Sized_symbol<size>** poldsym,
1707 bool* resolve_oldsym);
1708
1709 // Define a symbol in an Output_data, sized version.
1710 template<int size>
1711 Sized_symbol<size>*
1712 do_define_in_output_data(const char* name, const char* version, Defined,
1713 Output_data*,
1714 typename elfcpp::Elf_types<size>::Elf_Addr value,
1715 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1716 elfcpp::STT type, elfcpp::STB binding,
1717 elfcpp::STV visibility, unsigned char nonvis,
1718 bool offset_is_from_end, bool only_if_ref);
1719
1720 // Define a symbol in an Output_segment, sized version.
1721 template<int size>
1722 Sized_symbol<size>*
1723 do_define_in_output_segment(
1724 const char* name, const char* version, Defined, Output_segment* os,
1725 typename elfcpp::Elf_types<size>::Elf_Addr value,
1726 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1727 elfcpp::STT type, elfcpp::STB binding,
1728 elfcpp::STV visibility, unsigned char nonvis,
1729 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1730
1731 // Define a symbol as a constant, sized version.
1732 template<int size>
1733 Sized_symbol<size>*
1734 do_define_as_constant(
1735 const char* name, const char* version, Defined,
1736 typename elfcpp::Elf_types<size>::Elf_Addr value,
1737 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1738 elfcpp::STT type, elfcpp::STB binding,
1739 elfcpp::STV visibility, unsigned char nonvis,
1740 bool only_if_ref, bool force_override);
1741
1742 // Add any undefined symbols named on the command line to the symbol
1743 // table, sized version.
1744 template<int size>
1745 void
1746 do_add_undefined_symbols_from_command_line(Layout*);
1747
1748 // Add one undefined symbol.
1749 template<int size>
1750 void
1751 add_undefined_symbol_from_command_line(const char* name);
1752
1753 // Types of common symbols.
1754
1755 enum Commons_section_type
1756 {
1757 COMMONS_NORMAL,
1758 COMMONS_TLS,
1759 COMMONS_SMALL,
1760 COMMONS_LARGE
1761 };
1762
1763 // Allocate the common symbols, sized version.
1764 template<int size>
1765 void
1766 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1767
1768 // Allocate the common symbols from one list.
1769 template<int size>
1770 void
1771 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1772 Mapfile*, Sort_commons_order);
1773
1774 // Returns all of the lines attached to LOC, not just the one the
1775 // instruction actually came from. This helps the ODR checker avoid
1776 // false positives.
1777 static std::vector<std::string>
1778 linenos_from_loc(const Task* task, const Symbol_location& loc);
1779
1780 // Implement detect_odr_violations.
1781 template<int size, bool big_endian>
1782 void
1783 sized_detect_odr_violations() const;
1784
1785 // Finalize symbols specialized for size.
1786 template<int size>
1787 off_t
1788 sized_finalize(off_t, Stringpool*, unsigned int*);
1789
1790 // Finalize a symbol. Return whether it should be added to the
1791 // symbol table.
1792 template<int size>
1793 bool
1794 sized_finalize_symbol(Symbol*);
1795
1796 // Add a symbol the final symtab by setting its index.
1797 template<int size>
1798 void
1799 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1800
1801 // Write globals specialized for size and endianness.
1802 template<int size, bool big_endian>
1803 void
1804 sized_write_globals(const Stringpool*, const Stringpool*,
1805 Output_symtab_xindex*, Output_symtab_xindex*,
1806 Output_file*) const;
1807
1808 // Write out a symbol to P.
1809 template<int size, bool big_endian>
1810 void
1811 sized_write_symbol(Sized_symbol<size>*,
1812 typename elfcpp::Elf_types<size>::Elf_Addr value,
1813 unsigned int shndx, elfcpp::STB,
1814 const Stringpool*, unsigned char* p) const;
1815
1816 // Possibly warn about an undefined symbol from a dynamic object.
1817 void
1818 warn_about_undefined_dynobj_symbol(Symbol*) const;
1819
1820 // Write out a section symbol, specialized for size and endianness.
1821 template<int size, bool big_endian>
1822 void
1823 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1824 Output_file*, off_t) const;
1825
1826 // The type of the list of symbols which have been forced local.
1827 typedef std::vector<Symbol*> Forced_locals;
1828
1829 // A map from symbols with COPY relocs to the dynamic objects where
1830 // they are defined.
1831 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1832
1833 // We increment this every time we see a new undefined symbol, for
1834 // use in archive groups.
1835 size_t saw_undefined_;
1836 // The index of the first global symbol in the output file.
1837 unsigned int first_global_index_;
1838 // The file offset within the output symtab section where we should
1839 // write the table.
1840 off_t offset_;
1841 // The number of global symbols we want to write out.
1842 unsigned int output_count_;
1843 // The file offset of the global dynamic symbols, or 0 if none.
1844 off_t dynamic_offset_;
1845 // The index of the first global dynamic symbol.
1846 unsigned int first_dynamic_global_index_;
1847 // The number of global dynamic symbols, or 0 if none.
1848 unsigned int dynamic_count_;
1849 // The symbol hash table.
1850 Symbol_table_type table_;
1851 // A pool of symbol names. This is used for all global symbols.
1852 // Entries in the hash table point into this pool.
1853 Stringpool namepool_;
1854 // Forwarding symbols.
1855 Unordered_map<const Symbol*, Symbol*> forwarders_;
1856 // Weak aliases. A symbol in this list points to the next alias.
1857 // The aliases point to each other in a circular list.
1858 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1859 // We don't expect there to be very many common symbols, so we keep
1860 // a list of them. When we find a common symbol we add it to this
1861 // list. It is possible that by the time we process the list the
1862 // symbol is no longer a common symbol. It may also have become a
1863 // forwarder.
1864 Commons_type commons_;
1865 // This is like the commons_ field, except that it holds TLS common
1866 // symbols.
1867 Commons_type tls_commons_;
1868 // This is for small common symbols.
1869 Commons_type small_commons_;
1870 // This is for large common symbols.
1871 Commons_type large_commons_;
1872 // A list of symbols which have been forced to be local. We don't
1873 // expect there to be very many of them, so we keep a list of them
1874 // rather than walking the whole table to find them.
1875 Forced_locals forced_locals_;
1876 // Manage symbol warnings.
1877 Warnings warnings_;
1878 // Manage potential One Definition Rule (ODR) violations.
1879 Odr_map candidate_odr_violations_;
1880
1881 // When we emit a COPY reloc for a symbol, we define it in an
1882 // Output_data. When it's time to emit version information for it,
1883 // we need to know the dynamic object in which we found the original
1884 // definition. This maps symbols with COPY relocs to the dynamic
1885 // object where they were defined.
1886 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1887 // Information parsed from the version script, if any.
1888 const Version_script_info& version_script_;
1889 Garbage_collection* gc_;
1890 Icf* icf_;
1891 };
1892
1893 // We inline get_sized_symbol for efficiency.
1894
1895 template<int size>
1896 Sized_symbol<size>*
1897 Symbol_table::get_sized_symbol(Symbol* sym) const
1898 {
1899 gold_assert(size == parameters->target().get_size());
1900 return static_cast<Sized_symbol<size>*>(sym);
1901 }
1902
1903 template<int size>
1904 const Sized_symbol<size>*
1905 Symbol_table::get_sized_symbol(const Symbol* sym) const
1906 {
1907 gold_assert(size == parameters->target().get_size());
1908 return static_cast<const Sized_symbol<size>*>(sym);
1909 }
1910
1911 } // End namespace gold.
1912
1913 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.069936 seconds and 5 git commands to generate.