2009-03-23 Ian Lance Taylor <iant@google.com>
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35
36 #include "elfcpp.h"
37 #include "options.h"
38 #include "parameters.h"
39
40 namespace gold
41 {
42
43 class General_options;
44 class Object;
45 template<int size, bool big_endian>
46 class Sized_relobj;
47 class Relocatable_relocs;
48 template<int size, bool big_endian>
49 class Relocate_info;
50 class Symbol;
51 template<int size>
52 class Sized_symbol;
53 class Symbol_table;
54 class Output_section;
55
56 // The abstract class for target specific handling.
57
58 class Target
59 {
60 public:
61 virtual ~Target()
62 { }
63
64 // Return the bit size that this target implements. This should
65 // return 32 or 64.
66 int
67 get_size() const
68 { return this->pti_->size; }
69
70 // Return whether this target is big-endian.
71 bool
72 is_big_endian() const
73 { return this->pti_->is_big_endian; }
74
75 // Machine code to store in e_machine field of ELF header.
76 elfcpp::EM
77 machine_code() const
78 { return this->pti_->machine_code; }
79
80 // Whether this target has a specific make_symbol function.
81 bool
82 has_make_symbol() const
83 { return this->pti_->has_make_symbol; }
84
85 // Whether this target has a specific resolve function.
86 bool
87 has_resolve() const
88 { return this->pti_->has_resolve; }
89
90 // Whether this target has a specific code fill function.
91 bool
92 has_code_fill() const
93 { return this->pti_->has_code_fill; }
94
95 // Return the default name of the dynamic linker.
96 const char*
97 dynamic_linker() const
98 { return this->pti_->dynamic_linker; }
99
100 // Return the default address to use for the text segment.
101 uint64_t
102 default_text_segment_address() const
103 { return this->pti_->default_text_segment_address; }
104
105 // Return the ABI specified page size.
106 uint64_t
107 abi_pagesize() const
108 {
109 if (parameters->options().max_page_size() > 0)
110 return parameters->options().max_page_size();
111 else
112 return this->pti_->abi_pagesize;
113 }
114
115 // Return the common page size used on actual systems.
116 uint64_t
117 common_pagesize() const
118 {
119 if (parameters->options().common_page_size() > 0)
120 return std::min(parameters->options().common_page_size(),
121 this->abi_pagesize());
122 else
123 return std::min(this->pti_->common_pagesize,
124 this->abi_pagesize());
125 }
126
127 // If we see some object files with .note.GNU-stack sections, and
128 // some objects files without them, this returns whether we should
129 // consider the object files without them to imply that the stack
130 // should be executable.
131 bool
132 is_default_stack_executable() const
133 { return this->pti_->is_default_stack_executable; }
134
135 // Return a character which may appear as a prefix for a wrap
136 // symbol. If this character appears, we strip it when checking for
137 // wrapping and add it back when forming the final symbol name.
138 // This should be '\0' if not special prefix is required, which is
139 // the normal case.
140 char
141 wrap_char() const
142 { return this->pti_->wrap_char; }
143
144 // This is called to tell the target to complete any sections it is
145 // handling. After this all sections must have their final size.
146 void
147 finalize_sections(Layout* layout)
148 { return this->do_finalize_sections(layout); }
149
150 // Return the value to use for a global symbol which needs a special
151 // value in the dynamic symbol table. This will only be called if
152 // the backend first calls symbol->set_needs_dynsym_value().
153 uint64_t
154 dynsym_value(const Symbol* sym) const
155 { return this->do_dynsym_value(sym); }
156
157 // Return a string to use to fill out a code section. This is
158 // basically one or more NOPS which must fill out the specified
159 // length in bytes.
160 std::string
161 code_fill(section_size_type length) const
162 { return this->do_code_fill(length); }
163
164 // Return whether SYM is known to be defined by the ABI. This is
165 // used to avoid inappropriate warnings about undefined symbols.
166 bool
167 is_defined_by_abi(const Symbol* sym) const
168 { return this->do_is_defined_by_abi(sym); }
169
170 // Adjust the output file header before it is written out. VIEW
171 // points to the header in external form. LEN is the length.
172 void
173 adjust_elf_header(unsigned char* view, int len) const
174 { return this->do_adjust_elf_header(view, len); }
175
176 protected:
177 // This struct holds the constant information for a child class. We
178 // use a struct to avoid the overhead of virtual function calls for
179 // simple information.
180 struct Target_info
181 {
182 // Address size (32 or 64).
183 int size;
184 // Whether the target is big endian.
185 bool is_big_endian;
186 // The code to store in the e_machine field of the ELF header.
187 elfcpp::EM machine_code;
188 // Whether this target has a specific make_symbol function.
189 bool has_make_symbol;
190 // Whether this target has a specific resolve function.
191 bool has_resolve;
192 // Whether this target has a specific code fill function.
193 bool has_code_fill;
194 // Whether an object file with no .note.GNU-stack sections implies
195 // that the stack should be executable.
196 bool is_default_stack_executable;
197 // Prefix character to strip when checking for wrapping.
198 char wrap_char;
199 // The default dynamic linker name.
200 const char* dynamic_linker;
201 // The default text segment address.
202 uint64_t default_text_segment_address;
203 // The ABI specified page size.
204 uint64_t abi_pagesize;
205 // The common page size used by actual implementations.
206 uint64_t common_pagesize;
207 };
208
209 Target(const Target_info* pti)
210 : pti_(pti)
211 { }
212
213 // Virtual function which may be implemented by the child class.
214 virtual void
215 do_finalize_sections(Layout*)
216 { }
217
218 // Virtual function which may be implemented by the child class.
219 virtual uint64_t
220 do_dynsym_value(const Symbol*) const
221 { gold_unreachable(); }
222
223 // Virtual function which must be implemented by the child class if
224 // needed.
225 virtual std::string
226 do_code_fill(section_size_type) const
227 { gold_unreachable(); }
228
229 // Virtual function which may be implemented by the child class.
230 virtual bool
231 do_is_defined_by_abi(const Symbol*) const
232 { return false; }
233
234 // Adjust the output file header before it is written out. VIEW
235 // points to the header in external form. LEN is the length, and
236 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
237 // By default, we do nothing.
238 virtual void
239 do_adjust_elf_header(unsigned char*, int) const
240 { }
241
242 private:
243 Target(const Target&);
244 Target& operator=(const Target&);
245
246 // The target information.
247 const Target_info* pti_;
248 };
249
250 // The abstract class for a specific size and endianness of target.
251 // Each actual target implementation class should derive from an
252 // instantiation of Sized_target.
253
254 template<int size, bool big_endian>
255 class Sized_target : public Target
256 {
257 public:
258 // Make a new symbol table entry for the target. This should be
259 // overridden by a target which needs additional information in the
260 // symbol table. This will only be called if has_make_symbol()
261 // returns true.
262 virtual Sized_symbol<size>*
263 make_symbol() const
264 { gold_unreachable(); }
265
266 // Resolve a symbol for the target. This should be overridden by a
267 // target which needs to take special action. TO is the
268 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
269 // VERSION is the version of SYM. This will only be called if
270 // has_resolve() returns true.
271 virtual void
272 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
273 const char*)
274 { gold_unreachable(); }
275
276 // Process the relocs for a section, and record information of the
277 // mapping from source to destination sections. This mapping is later
278 // used to determine unreferenced garbage sections. This procedure is
279 // only called during garbage collection.
280 virtual void
281 gc_process_relocs(const General_options& options,
282 Symbol_table* symtab,
283 Layout* layout,
284 Sized_relobj<size, big_endian>* object,
285 unsigned int data_shndx,
286 unsigned int sh_type,
287 const unsigned char* prelocs,
288 size_t reloc_count,
289 Output_section* output_section,
290 bool needs_special_offset_handling,
291 size_t local_symbol_count,
292 const unsigned char* plocal_symbols) = 0;
293
294 // Scan the relocs for a section, and record any information
295 // required for the symbol. OPTIONS is the command line options.
296 // SYMTAB is the symbol table. OBJECT is the object in which the
297 // section appears. DATA_SHNDX is the section index that these
298 // relocs apply to. SH_TYPE is the type of the relocation section,
299 // SHT_REL or SHT_RELA. PRELOCS points to the relocation data.
300 // RELOC_COUNT is the number of relocs. LOCAL_SYMBOL_COUNT is the
301 // number of local symbols. OUTPUT_SECTION is the output section.
302 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
303 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
304 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
305 // pointers to the global symbol table from OBJECT.
306 virtual void
307 scan_relocs(const General_options& options,
308 Symbol_table* symtab,
309 Layout* layout,
310 Sized_relobj<size, big_endian>* object,
311 unsigned int data_shndx,
312 unsigned int sh_type,
313 const unsigned char* prelocs,
314 size_t reloc_count,
315 Output_section* output_section,
316 bool needs_special_offset_handling,
317 size_t local_symbol_count,
318 const unsigned char* plocal_symbols) = 0;
319
320 // Relocate section data. SH_TYPE is the type of the relocation
321 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
322 // information. RELOC_COUNT is the number of relocs.
323 // OUTPUT_SECTION is the output section.
324 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
325 // to correspond to the output section. VIEW is a view into the
326 // output file holding the section contents, VIEW_ADDRESS is the
327 // virtual address of the view, and VIEW_SIZE is the size of the
328 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
329 // parameters refer to the complete output section data, not just
330 // the input section data.
331 virtual void
332 relocate_section(const Relocate_info<size, big_endian>*,
333 unsigned int sh_type,
334 const unsigned char* prelocs,
335 size_t reloc_count,
336 Output_section* output_section,
337 bool needs_special_offset_handling,
338 unsigned char* view,
339 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
340 section_size_type view_size) = 0;
341
342 // Scan the relocs during a relocatable link. The parameters are
343 // like scan_relocs, with an additional Relocatable_relocs
344 // parameter, used to record the disposition of the relocs.
345 virtual void
346 scan_relocatable_relocs(const General_options& options,
347 Symbol_table* symtab,
348 Layout* layout,
349 Sized_relobj<size, big_endian>* object,
350 unsigned int data_shndx,
351 unsigned int sh_type,
352 const unsigned char* prelocs,
353 size_t reloc_count,
354 Output_section* output_section,
355 bool needs_special_offset_handling,
356 size_t local_symbol_count,
357 const unsigned char* plocal_symbols,
358 Relocatable_relocs*) = 0;
359
360 // Relocate a section during a relocatable link. The parameters are
361 // like relocate_section, with additional parameters for the view of
362 // the output reloc section.
363 virtual void
364 relocate_for_relocatable(const Relocate_info<size, big_endian>*,
365 unsigned int sh_type,
366 const unsigned char* prelocs,
367 size_t reloc_count,
368 Output_section* output_section,
369 off_t offset_in_output_section,
370 const Relocatable_relocs*,
371 unsigned char* view,
372 typename elfcpp::Elf_types<size>::Elf_Addr
373 view_address,
374 section_size_type view_size,
375 unsigned char* reloc_view,
376 section_size_type reloc_view_size) = 0;
377
378 protected:
379 Sized_target(const Target::Target_info* pti)
380 : Target(pti)
381 {
382 gold_assert(pti->size == size);
383 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
384 }
385 };
386
387 } // End namespace gold.
388
389 #endif // !defined(GOLD_TARGET_H)
This page took 0.044235 seconds and 5 git commands to generate.