Support special always-defined symbols for targets.
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35
36 #include "elfcpp.h"
37
38 namespace gold
39 {
40
41 class General_options;
42 class Object;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 template<int size, bool big_endian>
46 class Relocate_info;
47 class Symbol;
48 template<int size>
49 class Sized_symbol;
50 class Symbol_table;
51 class Output_section;
52
53 // The abstract class for target specific handling.
54
55 class Target
56 {
57 public:
58 virtual ~Target()
59 { }
60
61 // Return the bit size that this target implements. This should
62 // return 32 or 64.
63 int
64 get_size() const
65 { return this->pti_->size; }
66
67 // Return whether this target is big-endian.
68 bool
69 is_big_endian() const
70 { return this->pti_->is_big_endian; }
71
72 // Machine code to store in e_machine field of ELF header.
73 elfcpp::EM
74 machine_code() const
75 { return this->pti_->machine_code; }
76
77 // Whether this target has a specific make_symbol function.
78 bool
79 has_make_symbol() const
80 { return this->pti_->has_make_symbol; }
81
82 // Whether this target has a specific resolve function.
83 bool
84 has_resolve() const
85 { return this->pti_->has_resolve; }
86
87 // Whether this target has a specific code fill function.
88 bool
89 has_code_fill() const
90 { return this->pti_->has_code_fill; }
91
92 // Return the default name of the dynamic linker.
93 const char*
94 dynamic_linker() const
95 { return this->pti_->dynamic_linker; }
96
97 // Return the default address to use for the text segment.
98 uint64_t
99 default_text_segment_address() const
100 { return this->pti_->default_text_segment_address; }
101
102 // Return the ABI specified page size.
103 uint64_t
104 abi_pagesize() const
105 { return this->pti_->abi_pagesize; }
106
107 // Return the common page size used on actual systems.
108 uint64_t
109 common_pagesize() const
110 { return this->pti_->common_pagesize; }
111
112 // If we see some object files with .note.GNU-stack sections, and
113 // some objects files without them, this returns whether we should
114 // consider the object files without them to imply that the stack
115 // should be executable.
116 bool
117 is_default_stack_executable() const
118 { return this->pti_->is_default_stack_executable; }
119
120 // This is called to tell the target to complete any sections it is
121 // handling. After this all sections must have their final size.
122 void
123 finalize_sections(Layout* layout)
124 { return this->do_finalize_sections(layout); }
125
126 // Return the value to use for a global symbol which needs a special
127 // value in the dynamic symbol table. This will only be called if
128 // the backend first calls symbol->set_needs_dynsym_value().
129 uint64_t
130 dynsym_value(const Symbol* sym) const
131 { return this->do_dynsym_value(sym); }
132
133 // Return a string to use to fill out a code section. This is
134 // basically one or more NOPS which must fill out the specified
135 // length in bytes.
136 std::string
137 code_fill(off_t length)
138 { return this->do_code_fill(length); }
139
140 // Return whether SYM is a special symbol which is known to be
141 // defined. This is used to avoid inappropriate warnings about
142 // undefined symbols.
143 bool
144 is_always_defined(Symbol* sym) const
145 { return this->do_is_always_defined(sym); }
146
147 protected:
148 // This struct holds the constant information for a child class. We
149 // use a struct to avoid the overhead of virtual function calls for
150 // simple information.
151 struct Target_info
152 {
153 // Address size (32 or 64).
154 int size;
155 // Whether the target is big endian.
156 bool is_big_endian;
157 // The code to store in the e_machine field of the ELF header.
158 elfcpp::EM machine_code;
159 // Whether this target has a specific make_symbol function.
160 bool has_make_symbol;
161 // Whether this target has a specific resolve function.
162 bool has_resolve;
163 // Whether this target has a specific code fill function.
164 bool has_code_fill;
165 // Whether an object file with no .note.GNU-stack sections implies
166 // that the stack should be executable.
167 bool is_default_stack_executable;
168 // The default dynamic linker name.
169 const char* dynamic_linker;
170 // The default text segment address.
171 uint64_t default_text_segment_address;
172 // The ABI specified page size.
173 uint64_t abi_pagesize;
174 // The common page size used by actual implementations.
175 uint64_t common_pagesize;
176 };
177
178 Target(const Target_info* pti)
179 : pti_(pti)
180 { }
181
182 // Virtual function which may be implemented by the child class.
183 virtual void
184 do_finalize_sections(Layout*)
185 { }
186
187 // Virtual function which may be implemented by the child class.
188 virtual uint64_t
189 do_dynsym_value(const Symbol*) const
190 { gold_unreachable(); }
191
192 // Virtual function which must be implemented by the child class if
193 // needed.
194 virtual std::string
195 do_code_fill(off_t)
196 { gold_unreachable(); }
197
198 // Virtual function which may be implemented by the child class if
199 // needed.
200 virtual bool
201 do_is_always_defined(Symbol*) const
202 { return false; }
203
204 private:
205 Target(const Target&);
206 Target& operator=(const Target&);
207
208 // The target information.
209 const Target_info* pti_;
210 };
211
212 // The abstract class for a specific size and endianness of target.
213 // Each actual target implementation class should derive from an
214 // instantiation of Sized_target.
215
216 template<int size, bool big_endian>
217 class Sized_target : public Target
218 {
219 public:
220 // Make a new symbol table entry for the target. This should be
221 // overridden by a target which needs additional information in the
222 // symbol table. This will only be called if has_make_symbol()
223 // returns true.
224 virtual Sized_symbol<size>*
225 make_symbol() const
226 { gold_unreachable(); }
227
228 // Resolve a symbol for the target. This should be overridden by a
229 // target which needs to take special action. TO is the
230 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
231 // VERSION is the version of SYM. This will only be called if
232 // has_resolve() returns true.
233 virtual void
234 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
235 const char*)
236 { gold_unreachable(); }
237
238 // Scan the relocs for a section, and record any information
239 // required for the symbol. OPTIONS is the command line options.
240 // SYMTAB is the symbol table. OBJECT is the object in which the
241 // section appears. DATA_SHNDX is the section index that these
242 // relocs apply to. SH_TYPE is the type of the relocation section,
243 // SHT_REL or SHT_RELA. PRELOCS points to the relocation data.
244 // RELOC_COUNT is the number of relocs. LOCAL_SYMBOL_COUNT is the
245 // number of local symbols. OUTPUT_SECTION is the output section.
246 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
247 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
248 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
249 // pointers to the global symbol table from OBJECT.
250 virtual void
251 scan_relocs(const General_options& options,
252 Symbol_table* symtab,
253 Layout* layout,
254 Sized_relobj<size, big_endian>* object,
255 unsigned int data_shndx,
256 unsigned int sh_type,
257 const unsigned char* prelocs,
258 size_t reloc_count,
259 Output_section* output_section,
260 bool needs_special_offset_handling,
261 size_t local_symbol_count,
262 const unsigned char* plocal_symbols) = 0;
263
264 // Relocate section data. SH_TYPE is the type of the relocation
265 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
266 // information. RELOC_COUNT is the number of relocs.
267 // OUTPUT_SECTION is the output section.
268 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
269 // to correspond to the output section. VIEW is a view into the
270 // output file holding the section contents, VIEW_ADDRESS is the
271 // virtual address of the view, and VIEW_SIZE is the size of the
272 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
273 // parameters refer to the complete output section data, not just
274 // the input section data.
275 virtual void
276 relocate_section(const Relocate_info<size, big_endian>*,
277 unsigned int sh_type,
278 const unsigned char* prelocs,
279 size_t reloc_count,
280 Output_section* output_section,
281 bool needs_special_offset_handling,
282 unsigned char* view,
283 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
284 off_t view_size) = 0;
285
286 protected:
287 Sized_target(const Target::Target_info* pti)
288 : Target(pti)
289 {
290 gold_assert(pti->size == size);
291 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
292 }
293 };
294
295 } // End namespace gold.
296
297 #endif // !defined(GOLD_TARGET_H)
This page took 0.035878 seconds and 5 git commands to generate.