PR gold/12372
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35
36 #include "elfcpp.h"
37 #include "options.h"
38 #include "parameters.h"
39 #include "debug.h"
40
41 namespace gold
42 {
43
44 class Object;
45 class Relobj;
46 template<int size, bool big_endian>
47 class Sized_relobj;
48 template<int size, bool big_endian>
49 class Sized_relobj_file;
50 class Relocatable_relocs;
51 template<int size, bool big_endian>
52 class Relocate_info;
53 class Reloc_symbol_changes;
54 class Symbol;
55 template<int size>
56 class Sized_symbol;
57 class Symbol_table;
58 class Output_data;
59 template<int size, bool big_endian>
60 class Output_data_got;
61 class Output_section;
62 class Input_objects;
63 class Task;
64
65 // The abstract class for target specific handling.
66
67 class Target
68 {
69 public:
70 virtual ~Target()
71 { }
72
73 // Return the bit size that this target implements. This should
74 // return 32 or 64.
75 int
76 get_size() const
77 { return this->pti_->size; }
78
79 // Return whether this target is big-endian.
80 bool
81 is_big_endian() const
82 { return this->pti_->is_big_endian; }
83
84 // Machine code to store in e_machine field of ELF header.
85 elfcpp::EM
86 machine_code() const
87 { return this->pti_->machine_code; }
88
89 // Processor specific flags to store in e_flags field of ELF header.
90 elfcpp::Elf_Word
91 processor_specific_flags() const
92 { return this->processor_specific_flags_; }
93
94 // Whether processor specific flags are set at least once.
95 bool
96 are_processor_specific_flags_set() const
97 { return this->are_processor_specific_flags_set_; }
98
99 // Whether this target has a specific make_symbol function.
100 bool
101 has_make_symbol() const
102 { return this->pti_->has_make_symbol; }
103
104 // Whether this target has a specific resolve function.
105 bool
106 has_resolve() const
107 { return this->pti_->has_resolve; }
108
109 // Whether this target has a specific code fill function.
110 bool
111 has_code_fill() const
112 { return this->pti_->has_code_fill; }
113
114 // Return the default name of the dynamic linker.
115 const char*
116 dynamic_linker() const
117 { return this->pti_->dynamic_linker; }
118
119 // Return the default address to use for the text segment.
120 uint64_t
121 default_text_segment_address() const
122 { return this->pti_->default_text_segment_address; }
123
124 // Return the ABI specified page size.
125 uint64_t
126 abi_pagesize() const
127 {
128 if (parameters->options().max_page_size() > 0)
129 return parameters->options().max_page_size();
130 else
131 return this->pti_->abi_pagesize;
132 }
133
134 // Return the common page size used on actual systems.
135 uint64_t
136 common_pagesize() const
137 {
138 if (parameters->options().common_page_size() > 0)
139 return std::min(parameters->options().common_page_size(),
140 this->abi_pagesize());
141 else
142 return std::min(this->pti_->common_pagesize,
143 this->abi_pagesize());
144 }
145
146 // If we see some object files with .note.GNU-stack sections, and
147 // some objects files without them, this returns whether we should
148 // consider the object files without them to imply that the stack
149 // should be executable.
150 bool
151 is_default_stack_executable() const
152 { return this->pti_->is_default_stack_executable; }
153
154 // Return a character which may appear as a prefix for a wrap
155 // symbol. If this character appears, we strip it when checking for
156 // wrapping and add it back when forming the final symbol name.
157 // This should be '\0' if not special prefix is required, which is
158 // the normal case.
159 char
160 wrap_char() const
161 { return this->pti_->wrap_char; }
162
163 // Return the special section index which indicates a small common
164 // symbol. This will return SHN_UNDEF if there are no small common
165 // symbols.
166 elfcpp::Elf_Half
167 small_common_shndx() const
168 { return this->pti_->small_common_shndx; }
169
170 // Return values to add to the section flags for the section holding
171 // small common symbols.
172 elfcpp::Elf_Xword
173 small_common_section_flags() const
174 {
175 gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
176 return this->pti_->small_common_section_flags;
177 }
178
179 // Return the special section index which indicates a large common
180 // symbol. This will return SHN_UNDEF if there are no large common
181 // symbols.
182 elfcpp::Elf_Half
183 large_common_shndx() const
184 { return this->pti_->large_common_shndx; }
185
186 // Return values to add to the section flags for the section holding
187 // large common symbols.
188 elfcpp::Elf_Xword
189 large_common_section_flags() const
190 {
191 gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
192 return this->pti_->large_common_section_flags;
193 }
194
195 // This hook is called when an output section is created.
196 void
197 new_output_section(Output_section* os) const
198 { this->do_new_output_section(os); }
199
200 // This is called to tell the target to complete any sections it is
201 // handling. After this all sections must have their final size.
202 void
203 finalize_sections(Layout* layout, const Input_objects* input_objects,
204 Symbol_table* symtab)
205 { return this->do_finalize_sections(layout, input_objects, symtab); }
206
207 // Return the value to use for a global symbol which needs a special
208 // value in the dynamic symbol table. This will only be called if
209 // the backend first calls symbol->set_needs_dynsym_value().
210 uint64_t
211 dynsym_value(const Symbol* sym) const
212 { return this->do_dynsym_value(sym); }
213
214 // Return a string to use to fill out a code section. This is
215 // basically one or more NOPS which must fill out the specified
216 // length in bytes.
217 std::string
218 code_fill(section_size_type length) const
219 { return this->do_code_fill(length); }
220
221 // Return whether SYM is known to be defined by the ABI. This is
222 // used to avoid inappropriate warnings about undefined symbols.
223 bool
224 is_defined_by_abi(const Symbol* sym) const
225 { return this->do_is_defined_by_abi(sym); }
226
227 // Adjust the output file header before it is written out. VIEW
228 // points to the header in external form. LEN is the length.
229 void
230 adjust_elf_header(unsigned char* view, int len) const
231 { return this->do_adjust_elf_header(view, len); }
232
233 // Return whether NAME is a local label name. This is used to implement the
234 // --discard-locals options.
235 bool
236 is_local_label_name(const char* name) const
237 { return this->do_is_local_label_name(name); }
238
239 // Get the symbol index to use for a target specific reloc.
240 unsigned int
241 reloc_symbol_index(void* arg, unsigned int type) const
242 { return this->do_reloc_symbol_index(arg, type); }
243
244 // Get the addend to use for a target specific reloc.
245 uint64_t
246 reloc_addend(void* arg, unsigned int type, uint64_t addend) const
247 { return this->do_reloc_addend(arg, type, addend); }
248
249 // Return the PLT address to use for a global symbol. This is used
250 // for STT_GNU_IFUNC symbols. The symbol's plt_offset is relative
251 // to this PLT address.
252 uint64_t
253 plt_address_for_global(const Symbol* sym) const
254 { return this->do_plt_address_for_global(sym); }
255
256 // Return the PLT address to use for a local symbol. This is used
257 // for STT_GNU_IFUNC symbols. The symbol's plt_offset is relative
258 // to this PLT address.
259 uint64_t
260 plt_address_for_local(const Relobj* object, unsigned int symndx) const
261 { return this->do_plt_address_for_local(object, symndx); }
262
263 // Return whether this target can use relocation types to determine
264 // if a function's address is taken.
265 bool
266 can_check_for_function_pointers() const
267 { return this->do_can_check_for_function_pointers(); }
268
269 // Return whether a relocation to a merged section can be processed
270 // to retrieve the contents.
271 bool
272 can_icf_inline_merge_sections () const
273 { return this->pti_->can_icf_inline_merge_sections; }
274
275 // Whether a section called SECTION_NAME may have function pointers to
276 // sections not eligible for safe ICF folding.
277 virtual bool
278 section_may_have_icf_unsafe_pointers(const char* section_name) const
279 { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
280
281 // Return the base to use for the PC value in an FDE when it is
282 // encoded using DW_EH_PE_datarel. This does not appear to be
283 // documented anywhere, but it is target specific. Any use of
284 // DW_EH_PE_datarel in gcc requires defining a special macro
285 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
286 uint64_t
287 ehframe_datarel_base() const
288 { return this->do_ehframe_datarel_base(); }
289
290 // Return true if a reference to SYM from a reloc of type R_TYPE
291 // means that the current function may call an object compiled
292 // without -fsplit-stack. SYM is known to be defined in an object
293 // compiled without -fsplit-stack.
294 bool
295 is_call_to_non_split(const Symbol* sym, unsigned int r_type) const
296 { return this->do_is_call_to_non_split(sym, r_type); }
297
298 // A function starts at OFFSET in section SHNDX in OBJECT. That
299 // function was compiled with -fsplit-stack, but it refers to a
300 // function which was compiled without -fsplit-stack. VIEW is a
301 // modifiable view of the section; VIEW_SIZE is the size of the
302 // view. The target has to adjust the function so that it allocates
303 // enough stack.
304 void
305 calls_non_split(Relobj* object, unsigned int shndx,
306 section_offset_type fnoffset, section_size_type fnsize,
307 unsigned char* view, section_size_type view_size,
308 std::string* from, std::string* to) const
309 {
310 this->do_calls_non_split(object, shndx, fnoffset, fnsize, view, view_size,
311 from, to);
312 }
313
314 // Make an ELF object.
315 template<int size, bool big_endian>
316 Object*
317 make_elf_object(const std::string& name, Input_file* input_file,
318 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
319 { return this->do_make_elf_object(name, input_file, offset, ehdr); }
320
321 // Make an output section.
322 Output_section*
323 make_output_section(const char* name, elfcpp::Elf_Word type,
324 elfcpp::Elf_Xword flags)
325 { return this->do_make_output_section(name, type, flags); }
326
327 // Return true if target wants to perform relaxation.
328 bool
329 may_relax() const
330 {
331 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
332 if (is_debugging_enabled(DEBUG_RELAXATION))
333 return true;
334
335 return this->do_may_relax();
336 }
337
338 // Perform a relaxation pass. Return true if layout may be changed.
339 bool
340 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
341 Layout* layout, const Task* task)
342 {
343 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
344 if (is_debugging_enabled(DEBUG_RELAXATION))
345 return pass < 2;
346
347 return this->do_relax(pass, input_objects, symtab, layout, task);
348 }
349
350 // Return the target-specific name of attributes section. This is
351 // NULL if a target does not use attributes section or if it uses
352 // the default section name ".gnu.attributes".
353 const char*
354 attributes_section() const
355 { return this->pti_->attributes_section; }
356
357 // Return the vendor name of vendor attributes.
358 const char*
359 attributes_vendor() const
360 { return this->pti_->attributes_vendor; }
361
362 // Whether a section called NAME is an attribute section.
363 bool
364 is_attributes_section(const char* name) const
365 {
366 return ((this->pti_->attributes_section != NULL
367 && strcmp(name, this->pti_->attributes_section) == 0)
368 || strcmp(name, ".gnu.attributes") == 0);
369 }
370
371 // Return a bit mask of argument types for attribute with TAG.
372 int
373 attribute_arg_type(int tag) const
374 { return this->do_attribute_arg_type(tag); }
375
376 // Return the attribute tag of the position NUM in the list of fixed
377 // attributes. Normally there is no reordering and
378 // attributes_order(NUM) == NUM.
379 int
380 attributes_order(int num) const
381 { return this->do_attributes_order(num); }
382
383 // When a target is selected as the default target, we call this method,
384 // which may be used for expensive, target-specific initialization.
385 void
386 select_as_default_target()
387 { this->do_select_as_default_target(); }
388
389 // Return the value to store in the EI_OSABI field in the ELF
390 // header.
391 elfcpp::ELFOSABI
392 osabi() const
393 { return this->osabi_; }
394
395 // Set the value to store in the EI_OSABI field in the ELF header.
396 void
397 set_osabi(elfcpp::ELFOSABI osabi)
398 { this->osabi_ = osabi; }
399
400 protected:
401 // This struct holds the constant information for a child class. We
402 // use a struct to avoid the overhead of virtual function calls for
403 // simple information.
404 struct Target_info
405 {
406 // Address size (32 or 64).
407 int size;
408 // Whether the target is big endian.
409 bool is_big_endian;
410 // The code to store in the e_machine field of the ELF header.
411 elfcpp::EM machine_code;
412 // Whether this target has a specific make_symbol function.
413 bool has_make_symbol;
414 // Whether this target has a specific resolve function.
415 bool has_resolve;
416 // Whether this target has a specific code fill function.
417 bool has_code_fill;
418 // Whether an object file with no .note.GNU-stack sections implies
419 // that the stack should be executable.
420 bool is_default_stack_executable;
421 // Whether a relocation to a merged section can be processed to
422 // retrieve the contents.
423 bool can_icf_inline_merge_sections;
424 // Prefix character to strip when checking for wrapping.
425 char wrap_char;
426 // The default dynamic linker name.
427 const char* dynamic_linker;
428 // The default text segment address.
429 uint64_t default_text_segment_address;
430 // The ABI specified page size.
431 uint64_t abi_pagesize;
432 // The common page size used by actual implementations.
433 uint64_t common_pagesize;
434 // The special section index for small common symbols; SHN_UNDEF
435 // if none.
436 elfcpp::Elf_Half small_common_shndx;
437 // The special section index for large common symbols; SHN_UNDEF
438 // if none.
439 elfcpp::Elf_Half large_common_shndx;
440 // Section flags for small common section.
441 elfcpp::Elf_Xword small_common_section_flags;
442 // Section flags for large common section.
443 elfcpp::Elf_Xword large_common_section_flags;
444 // Name of attributes section if it is not ".gnu.attributes".
445 const char* attributes_section;
446 // Vendor name of vendor attributes.
447 const char* attributes_vendor;
448 };
449
450 Target(const Target_info* pti)
451 : pti_(pti), processor_specific_flags_(0),
452 are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
453 { }
454
455 // Virtual function which may be implemented by the child class.
456 virtual void
457 do_new_output_section(Output_section*) const
458 { }
459
460 // Virtual function which may be implemented by the child class.
461 virtual void
462 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
463 { }
464
465 // Virtual function which may be implemented by the child class.
466 virtual uint64_t
467 do_dynsym_value(const Symbol*) const
468 { gold_unreachable(); }
469
470 // Virtual function which must be implemented by the child class if
471 // needed.
472 virtual std::string
473 do_code_fill(section_size_type) const
474 { gold_unreachable(); }
475
476 // Virtual function which may be implemented by the child class.
477 virtual bool
478 do_is_defined_by_abi(const Symbol*) const
479 { return false; }
480
481 // Adjust the output file header before it is written out. VIEW
482 // points to the header in external form. LEN is the length, and
483 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
484 // By default, we set the EI_OSABI field if requested (in
485 // Sized_target).
486 virtual void
487 do_adjust_elf_header(unsigned char*, int) const = 0;
488
489 // Virtual function which may be overridden by the child class.
490 virtual bool
491 do_is_local_label_name(const char*) const;
492
493 // Virtual function that must be overridden by a target which uses
494 // target specific relocations.
495 virtual unsigned int
496 do_reloc_symbol_index(void*, unsigned int) const
497 { gold_unreachable(); }
498
499 // Virtual function that must be overridden by a target which uses
500 // target specific relocations.
501 virtual uint64_t
502 do_reloc_addend(void*, unsigned int, uint64_t) const
503 { gold_unreachable(); }
504
505 // Virtual functions that must be overridden by a target that uses
506 // STT_GNU_IFUNC symbols.
507 virtual uint64_t
508 do_plt_address_for_global(const Symbol*) const
509 { gold_unreachable(); }
510
511 virtual uint64_t
512 do_plt_address_for_local(const Relobj*, unsigned int) const
513 { gold_unreachable(); }
514
515 // Virtual function which may be overriden by the child class.
516 virtual bool
517 do_can_check_for_function_pointers() const
518 { return false; }
519
520 // Virtual function which may be overridden by the child class. We
521 // recognize some default sections for which we don't care whether
522 // they have function pointers.
523 virtual bool
524 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
525 {
526 // We recognize sections for normal vtables, construction vtables and
527 // EH frames.
528 return (!is_prefix_of(".rodata._ZTV", section_name)
529 && !is_prefix_of(".data.rel.ro._ZTV", section_name)
530 && !is_prefix_of(".rodata._ZTC", section_name)
531 && !is_prefix_of(".data.rel.ro._ZTC", section_name)
532 && !is_prefix_of(".eh_frame", section_name));
533 }
534
535 virtual uint64_t
536 do_ehframe_datarel_base() const
537 { gold_unreachable(); }
538
539 // Virtual function which may be overridden by the child class. The
540 // default implementation is that any function not defined by the
541 // ABI is a call to a non-split function.
542 virtual bool
543 do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
544
545 // Virtual function which may be overridden by the child class.
546 virtual void
547 do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
548 section_size_type, unsigned char*, section_size_type,
549 std::string*, std::string*) const;
550
551 // make_elf_object hooks. There are four versions of these for
552 // different address sizes and endianness.
553
554 // Set processor specific flags.
555 void
556 set_processor_specific_flags(elfcpp::Elf_Word flags)
557 {
558 this->processor_specific_flags_ = flags;
559 this->are_processor_specific_flags_set_ = true;
560 }
561
562 #ifdef HAVE_TARGET_32_LITTLE
563 // Virtual functions which may be overridden by the child class.
564 virtual Object*
565 do_make_elf_object(const std::string&, Input_file*, off_t,
566 const elfcpp::Ehdr<32, false>&);
567 #endif
568
569 #ifdef HAVE_TARGET_32_BIG
570 // Virtual functions which may be overridden by the child class.
571 virtual Object*
572 do_make_elf_object(const std::string&, Input_file*, off_t,
573 const elfcpp::Ehdr<32, true>&);
574 #endif
575
576 #ifdef HAVE_TARGET_64_LITTLE
577 // Virtual functions which may be overridden by the child class.
578 virtual Object*
579 do_make_elf_object(const std::string&, Input_file*, off_t,
580 const elfcpp::Ehdr<64, false>& ehdr);
581 #endif
582
583 #ifdef HAVE_TARGET_64_BIG
584 // Virtual functions which may be overridden by the child class.
585 virtual Object*
586 do_make_elf_object(const std::string& name, Input_file* input_file,
587 off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
588 #endif
589
590 // Virtual functions which may be overridden by the child class.
591 virtual Output_section*
592 do_make_output_section(const char* name, elfcpp::Elf_Word type,
593 elfcpp::Elf_Xword flags);
594
595 // Virtual function which may be overridden by the child class.
596 virtual bool
597 do_may_relax() const
598 { return parameters->options().relax(); }
599
600 // Virtual function which may be overridden by the child class.
601 virtual bool
602 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
603 { return false; }
604
605 // A function for targets to call. Return whether BYTES/LEN matches
606 // VIEW/VIEW_SIZE at OFFSET.
607 bool
608 match_view(const unsigned char* view, section_size_type view_size,
609 section_offset_type offset, const char* bytes, size_t len) const;
610
611 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
612 // for LEN bytes.
613 void
614 set_view_to_nop(unsigned char* view, section_size_type view_size,
615 section_offset_type offset, size_t len) const;
616
617 // This must be overridden by the child class if it has target-specific
618 // attributes subsection in the attribute section.
619 virtual int
620 do_attribute_arg_type(int) const
621 { gold_unreachable(); }
622
623 // This may be overridden by the child class.
624 virtual int
625 do_attributes_order(int num) const
626 { return num; }
627
628 // This may be overridden by the child class.
629 virtual void
630 do_select_as_default_target()
631 { }
632
633 private:
634 // The implementations of the four do_make_elf_object virtual functions are
635 // almost identical except for their sizes and endianness. We use a template.
636 // for their implementations.
637 template<int size, bool big_endian>
638 inline Object*
639 do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
640 const elfcpp::Ehdr<size, big_endian>&);
641
642 Target(const Target&);
643 Target& operator=(const Target&);
644
645 // The target information.
646 const Target_info* pti_;
647 // Processor-specific flags.
648 elfcpp::Elf_Word processor_specific_flags_;
649 // Whether the processor-specific flags are set at least once.
650 bool are_processor_specific_flags_set_;
651 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
652 // the ELF header. This is handled at this level because it is
653 // OS-specific rather than processor-specific.
654 elfcpp::ELFOSABI osabi_;
655 };
656
657 // The abstract class for a specific size and endianness of target.
658 // Each actual target implementation class should derive from an
659 // instantiation of Sized_target.
660
661 template<int size, bool big_endian>
662 class Sized_target : public Target
663 {
664 public:
665 // Make a new symbol table entry for the target. This should be
666 // overridden by a target which needs additional information in the
667 // symbol table. This will only be called if has_make_symbol()
668 // returns true.
669 virtual Sized_symbol<size>*
670 make_symbol() const
671 { gold_unreachable(); }
672
673 // Resolve a symbol for the target. This should be overridden by a
674 // target which needs to take special action. TO is the
675 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
676 // VERSION is the version of SYM. This will only be called if
677 // has_resolve() returns true.
678 virtual void
679 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
680 const char*)
681 { gold_unreachable(); }
682
683 // Process the relocs for a section, and record information of the
684 // mapping from source to destination sections. This mapping is later
685 // used to determine unreferenced garbage sections. This procedure is
686 // only called during garbage collection.
687 virtual void
688 gc_process_relocs(Symbol_table* symtab,
689 Layout* layout,
690 Sized_relobj_file<size, big_endian>* object,
691 unsigned int data_shndx,
692 unsigned int sh_type,
693 const unsigned char* prelocs,
694 size_t reloc_count,
695 Output_section* output_section,
696 bool needs_special_offset_handling,
697 size_t local_symbol_count,
698 const unsigned char* plocal_symbols) = 0;
699
700 // Scan the relocs for a section, and record any information
701 // required for the symbol. SYMTAB is the symbol table. OBJECT is
702 // the object in which the section appears. DATA_SHNDX is the
703 // section index that these relocs apply to. SH_TYPE is the type of
704 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to
705 // the relocation data. RELOC_COUNT is the number of relocs.
706 // LOCAL_SYMBOL_COUNT is the number of local symbols.
707 // OUTPUT_SECTION is the output section.
708 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
709 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
710 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
711 // pointers to the global symbol table from OBJECT.
712 virtual void
713 scan_relocs(Symbol_table* symtab,
714 Layout* layout,
715 Sized_relobj_file<size, big_endian>* object,
716 unsigned int data_shndx,
717 unsigned int sh_type,
718 const unsigned char* prelocs,
719 size_t reloc_count,
720 Output_section* output_section,
721 bool needs_special_offset_handling,
722 size_t local_symbol_count,
723 const unsigned char* plocal_symbols) = 0;
724
725 // Relocate section data. SH_TYPE is the type of the relocation
726 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
727 // information. RELOC_COUNT is the number of relocs.
728 // OUTPUT_SECTION is the output section.
729 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
730 // to correspond to the output section. VIEW is a view into the
731 // output file holding the section contents, VIEW_ADDRESS is the
732 // virtual address of the view, and VIEW_SIZE is the size of the
733 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
734 // parameters refer to the complete output section data, not just
735 // the input section data.
736 virtual void
737 relocate_section(const Relocate_info<size, big_endian>*,
738 unsigned int sh_type,
739 const unsigned char* prelocs,
740 size_t reloc_count,
741 Output_section* output_section,
742 bool needs_special_offset_handling,
743 unsigned char* view,
744 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
745 section_size_type view_size,
746 const Reloc_symbol_changes*) = 0;
747
748 // Scan the relocs during a relocatable link. The parameters are
749 // like scan_relocs, with an additional Relocatable_relocs
750 // parameter, used to record the disposition of the relocs.
751 virtual void
752 scan_relocatable_relocs(Symbol_table* symtab,
753 Layout* layout,
754 Sized_relobj_file<size, big_endian>* object,
755 unsigned int data_shndx,
756 unsigned int sh_type,
757 const unsigned char* prelocs,
758 size_t reloc_count,
759 Output_section* output_section,
760 bool needs_special_offset_handling,
761 size_t local_symbol_count,
762 const unsigned char* plocal_symbols,
763 Relocatable_relocs*) = 0;
764
765 // Relocate a section during a relocatable link. The parameters are
766 // like relocate_section, with additional parameters for the view of
767 // the output reloc section.
768 virtual void
769 relocate_for_relocatable(const Relocate_info<size, big_endian>*,
770 unsigned int sh_type,
771 const unsigned char* prelocs,
772 size_t reloc_count,
773 Output_section* output_section,
774 off_t offset_in_output_section,
775 const Relocatable_relocs*,
776 unsigned char* view,
777 typename elfcpp::Elf_types<size>::Elf_Addr
778 view_address,
779 section_size_type view_size,
780 unsigned char* reloc_view,
781 section_size_type reloc_view_size) = 0;
782
783 // Perform target-specific processing in a relocatable link. This is
784 // only used if we use the relocation strategy RELOC_SPECIAL.
785 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
786 // section type. PRELOC_IN points to the original relocation. RELNUM is
787 // the index number of the relocation in the relocation section.
788 // OUTPUT_SECTION is the output section to which the relocation is applied.
789 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
790 // within the output section. VIEW points to the output view of the
791 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE
792 // is the size of the output view and PRELOC_OUT points to the new
793 // relocation in the output object.
794 //
795 // A target only needs to override this if the generic code in
796 // target-reloc.h cannot handle some relocation types.
797
798 virtual void
799 relocate_special_relocatable(const Relocate_info<size, big_endian>*
800 /*relinfo */,
801 unsigned int /* sh_type */,
802 const unsigned char* /* preloc_in */,
803 size_t /* relnum */,
804 Output_section* /* output_section */,
805 off_t /* offset_in_output_section */,
806 unsigned char* /* view */,
807 typename elfcpp::Elf_types<size>::Elf_Addr
808 /* view_address */,
809 section_size_type /* view_size */,
810 unsigned char* /* preloc_out*/)
811 { gold_unreachable(); }
812
813 // Return the number of entries in the GOT. This is only used for
814 // laying out the incremental link info sections. A target needs
815 // to implement this to support incremental linking.
816
817 virtual unsigned int
818 got_entry_count() const
819 { gold_unreachable(); }
820
821 // Return the number of entries in the PLT. This is only used for
822 // laying out the incremental link info sections. A target needs
823 // to implement this to support incremental linking.
824
825 virtual unsigned int
826 plt_entry_count() const
827 { gold_unreachable(); }
828
829 // Return the offset of the first non-reserved PLT entry. This is
830 // only used for laying out the incremental link info sections.
831 // A target needs to implement this to support incremental linking.
832
833 virtual unsigned int
834 first_plt_entry_offset() const
835 { gold_unreachable(); }
836
837 // Return the size of each PLT entry. This is only used for
838 // laying out the incremental link info sections. A target needs
839 // to implement this to support incremental linking.
840
841 virtual unsigned int
842 plt_entry_size() const
843 { gold_unreachable(); }
844
845 // Create the GOT and PLT sections for an incremental update.
846 // A target needs to implement this to support incremental linking.
847
848 virtual Output_data_got<size, big_endian>*
849 init_got_plt_for_update(Symbol_table*,
850 Layout*,
851 unsigned int /* got_count */,
852 unsigned int /* plt_count */)
853 { gold_unreachable(); }
854
855 // Reserve a GOT entry for a local symbol, and regenerate any
856 // necessary dynamic relocations.
857 virtual void
858 reserve_local_got_entry(unsigned int /* got_index */,
859 Sized_relobj<size, big_endian>* /* obj */,
860 unsigned int /* r_sym */,
861 unsigned int /* got_type */)
862 { gold_unreachable(); }
863
864 // Reserve a GOT entry for a global symbol, and regenerate any
865 // necessary dynamic relocations.
866 virtual void
867 reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
868 unsigned int /* got_type */)
869 { gold_unreachable(); }
870
871 // Register an existing PLT entry for a global symbol.
872 // A target needs to implement this to support incremental linking.
873
874 virtual void
875 register_global_plt_entry(Symbol_table*, Layout*,
876 unsigned int /* plt_index */,
877 Symbol*)
878 { gold_unreachable(); }
879
880 // Force a COPY relocation for a given symbol.
881 // A target needs to implement this to support incremental linking.
882
883 virtual void
884 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
885 { gold_unreachable(); }
886
887 // Apply an incremental relocation.
888
889 virtual void
890 apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
891 typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
892 unsigned int /* r_type */,
893 typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
894 const Symbol* /* gsym */,
895 unsigned char* /* view */,
896 typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
897 section_size_type /* view_size */)
898 { gold_unreachable(); }
899
900 protected:
901 Sized_target(const Target::Target_info* pti)
902 : Target(pti)
903 {
904 gold_assert(pti->size == size);
905 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
906 }
907
908 // Set the EI_OSABI field if requested.
909 virtual void
910 do_adjust_elf_header(unsigned char*, int) const;
911 };
912
913 } // End namespace gold.
914
915 #endif // !defined(GOLD_TARGET_H)
This page took 0.061449 seconds and 5 git commands to generate.