* target.h (Target::output_section_name): New function.
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 // The abstract class Target is the interface for target specific
25 // support. It defines abstract methods which each target must
26 // implement. Typically there will be one target per processor, but
27 // in some cases it may be necessary to have subclasses.
28
29 // For speed and consistency we want to use inline functions to handle
30 // relocation processing. So besides implementations of the abstract
31 // methods, each target is expected to define a template
32 // specialization of the relocation functions.
33
34 #ifndef GOLD_TARGET_H
35 #define GOLD_TARGET_H
36
37 #include "elfcpp.h"
38 #include "options.h"
39 #include "parameters.h"
40 #include "debug.h"
41
42 namespace gold
43 {
44
45 class Object;
46 class Relobj;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51 class Relocatable_relocs;
52 template<int size, bool big_endian>
53 struct Relocate_info;
54 class Reloc_symbol_changes;
55 class Symbol;
56 template<int size>
57 class Sized_symbol;
58 class Symbol_table;
59 class Output_data;
60 class Output_data_got_base;
61 class Output_section;
62 class Input_objects;
63 class Task;
64
65 // The abstract class for target specific handling.
66
67 class Target
68 {
69 public:
70 virtual ~Target()
71 { }
72
73 // Return the bit size that this target implements. This should
74 // return 32 or 64.
75 int
76 get_size() const
77 { return this->pti_->size; }
78
79 // Return whether this target is big-endian.
80 bool
81 is_big_endian() const
82 { return this->pti_->is_big_endian; }
83
84 // Machine code to store in e_machine field of ELF header.
85 elfcpp::EM
86 machine_code() const
87 { return this->pti_->machine_code; }
88
89 // Processor specific flags to store in e_flags field of ELF header.
90 elfcpp::Elf_Word
91 processor_specific_flags() const
92 { return this->processor_specific_flags_; }
93
94 // Whether processor specific flags are set at least once.
95 bool
96 are_processor_specific_flags_set() const
97 { return this->are_processor_specific_flags_set_; }
98
99 // Whether this target has a specific make_symbol function.
100 bool
101 has_make_symbol() const
102 { return this->pti_->has_make_symbol; }
103
104 // Whether this target has a specific resolve function.
105 bool
106 has_resolve() const
107 { return this->pti_->has_resolve; }
108
109 // Whether this target has a specific code fill function.
110 bool
111 has_code_fill() const
112 { return this->pti_->has_code_fill; }
113
114 // Return the default name of the dynamic linker.
115 const char*
116 dynamic_linker() const
117 { return this->pti_->dynamic_linker; }
118
119 // Return the default address to use for the text segment.
120 uint64_t
121 default_text_segment_address() const
122 { return this->pti_->default_text_segment_address; }
123
124 // Return the ABI specified page size.
125 uint64_t
126 abi_pagesize() const
127 {
128 if (parameters->options().max_page_size() > 0)
129 return parameters->options().max_page_size();
130 else
131 return this->pti_->abi_pagesize;
132 }
133
134 // Return the common page size used on actual systems.
135 uint64_t
136 common_pagesize() const
137 {
138 if (parameters->options().common_page_size() > 0)
139 return std::min(parameters->options().common_page_size(),
140 this->abi_pagesize());
141 else
142 return std::min(this->pti_->common_pagesize,
143 this->abi_pagesize());
144 }
145
146 // Return whether PF_X segments must contain nothing but the contents of
147 // SHF_EXECINSTR sections (no non-executable data, no headers).
148 bool
149 isolate_execinstr() const
150 { return this->pti_->isolate_execinstr; }
151
152 uint64_t
153 rosegment_gap() const
154 { return this->pti_->rosegment_gap; }
155
156 // If we see some object files with .note.GNU-stack sections, and
157 // some objects files without them, this returns whether we should
158 // consider the object files without them to imply that the stack
159 // should be executable.
160 bool
161 is_default_stack_executable() const
162 { return this->pti_->is_default_stack_executable; }
163
164 // Return a character which may appear as a prefix for a wrap
165 // symbol. If this character appears, we strip it when checking for
166 // wrapping and add it back when forming the final symbol name.
167 // This should be '\0' if not special prefix is required, which is
168 // the normal case.
169 char
170 wrap_char() const
171 { return this->pti_->wrap_char; }
172
173 // Return the special section index which indicates a small common
174 // symbol. This will return SHN_UNDEF if there are no small common
175 // symbols.
176 elfcpp::Elf_Half
177 small_common_shndx() const
178 { return this->pti_->small_common_shndx; }
179
180 // Return values to add to the section flags for the section holding
181 // small common symbols.
182 elfcpp::Elf_Xword
183 small_common_section_flags() const
184 {
185 gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
186 return this->pti_->small_common_section_flags;
187 }
188
189 // Return the special section index which indicates a large common
190 // symbol. This will return SHN_UNDEF if there are no large common
191 // symbols.
192 elfcpp::Elf_Half
193 large_common_shndx() const
194 { return this->pti_->large_common_shndx; }
195
196 // Return values to add to the section flags for the section holding
197 // large common symbols.
198 elfcpp::Elf_Xword
199 large_common_section_flags() const
200 {
201 gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
202 return this->pti_->large_common_section_flags;
203 }
204
205 // This hook is called when an output section is created.
206 void
207 new_output_section(Output_section* os) const
208 { this->do_new_output_section(os); }
209
210 // This is called to tell the target to complete any sections it is
211 // handling. After this all sections must have their final size.
212 void
213 finalize_sections(Layout* layout, const Input_objects* input_objects,
214 Symbol_table* symtab)
215 { return this->do_finalize_sections(layout, input_objects, symtab); }
216
217 // Return the value to use for a global symbol which needs a special
218 // value in the dynamic symbol table. This will only be called if
219 // the backend first calls symbol->set_needs_dynsym_value().
220 uint64_t
221 dynsym_value(const Symbol* sym) const
222 { return this->do_dynsym_value(sym); }
223
224 // Return a string to use to fill out a code section. This is
225 // basically one or more NOPS which must fill out the specified
226 // length in bytes.
227 std::string
228 code_fill(section_size_type length) const
229 { return this->do_code_fill(length); }
230
231 // Return whether SYM is known to be defined by the ABI. This is
232 // used to avoid inappropriate warnings about undefined symbols.
233 bool
234 is_defined_by_abi(const Symbol* sym) const
235 { return this->do_is_defined_by_abi(sym); }
236
237 // Adjust the output file header before it is written out. VIEW
238 // points to the header in external form. LEN is the length.
239 void
240 adjust_elf_header(unsigned char* view, int len) const
241 { return this->do_adjust_elf_header(view, len); }
242
243 // Return whether NAME is a local label name. This is used to implement the
244 // --discard-locals options.
245 bool
246 is_local_label_name(const char* name) const
247 { return this->do_is_local_label_name(name); }
248
249 // Get the symbol index to use for a target specific reloc.
250 unsigned int
251 reloc_symbol_index(void* arg, unsigned int type) const
252 { return this->do_reloc_symbol_index(arg, type); }
253
254 // Get the addend to use for a target specific reloc.
255 uint64_t
256 reloc_addend(void* arg, unsigned int type, uint64_t addend) const
257 { return this->do_reloc_addend(arg, type, addend); }
258
259 // Return the PLT address to use for a global symbol. This is used
260 // for STT_GNU_IFUNC symbols. The symbol's plt_offset is relative
261 // to this PLT address.
262 uint64_t
263 plt_address_for_global(const Symbol* sym) const
264 { return this->do_plt_address_for_global(sym); }
265
266 // Return the PLT address to use for a local symbol. This is used
267 // for STT_GNU_IFUNC symbols. The symbol's plt_offset is relative
268 // to this PLT address.
269 uint64_t
270 plt_address_for_local(const Relobj* object, unsigned int symndx) const
271 { return this->do_plt_address_for_local(object, symndx); }
272
273 // Return whether this target can use relocation types to determine
274 // if a function's address is taken.
275 bool
276 can_check_for_function_pointers() const
277 { return this->do_can_check_for_function_pointers(); }
278
279 // Return whether a relocation to a merged section can be processed
280 // to retrieve the contents.
281 bool
282 can_icf_inline_merge_sections () const
283 { return this->pti_->can_icf_inline_merge_sections; }
284
285 // Whether a section called SECTION_NAME may have function pointers to
286 // sections not eligible for safe ICF folding.
287 virtual bool
288 section_may_have_icf_unsafe_pointers(const char* section_name) const
289 { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
290
291 // Return the base to use for the PC value in an FDE when it is
292 // encoded using DW_EH_PE_datarel. This does not appear to be
293 // documented anywhere, but it is target specific. Any use of
294 // DW_EH_PE_datarel in gcc requires defining a special macro
295 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
296 uint64_t
297 ehframe_datarel_base() const
298 { return this->do_ehframe_datarel_base(); }
299
300 // Return true if a reference to SYM from a reloc of type R_TYPE
301 // means that the current function may call an object compiled
302 // without -fsplit-stack. SYM is known to be defined in an object
303 // compiled without -fsplit-stack.
304 bool
305 is_call_to_non_split(const Symbol* sym, unsigned int r_type) const
306 { return this->do_is_call_to_non_split(sym, r_type); }
307
308 // A function starts at OFFSET in section SHNDX in OBJECT. That
309 // function was compiled with -fsplit-stack, but it refers to a
310 // function which was compiled without -fsplit-stack. VIEW is a
311 // modifiable view of the section; VIEW_SIZE is the size of the
312 // view. The target has to adjust the function so that it allocates
313 // enough stack.
314 void
315 calls_non_split(Relobj* object, unsigned int shndx,
316 section_offset_type fnoffset, section_size_type fnsize,
317 unsigned char* view, section_size_type view_size,
318 std::string* from, std::string* to) const
319 {
320 this->do_calls_non_split(object, shndx, fnoffset, fnsize, view, view_size,
321 from, to);
322 }
323
324 // Make an ELF object.
325 template<int size, bool big_endian>
326 Object*
327 make_elf_object(const std::string& name, Input_file* input_file,
328 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
329 { return this->do_make_elf_object(name, input_file, offset, ehdr); }
330
331 // Make an output section.
332 Output_section*
333 make_output_section(const char* name, elfcpp::Elf_Word type,
334 elfcpp::Elf_Xword flags)
335 { return this->do_make_output_section(name, type, flags); }
336
337 // Return true if target wants to perform relaxation.
338 bool
339 may_relax() const
340 {
341 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
342 if (is_debugging_enabled(DEBUG_RELAXATION))
343 return true;
344
345 return this->do_may_relax();
346 }
347
348 // Perform a relaxation pass. Return true if layout may be changed.
349 bool
350 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
351 Layout* layout, const Task* task)
352 {
353 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
354 if (is_debugging_enabled(DEBUG_RELAXATION))
355 return pass < 2;
356
357 return this->do_relax(pass, input_objects, symtab, layout, task);
358 }
359
360 // Return the target-specific name of attributes section. This is
361 // NULL if a target does not use attributes section or if it uses
362 // the default section name ".gnu.attributes".
363 const char*
364 attributes_section() const
365 { return this->pti_->attributes_section; }
366
367 // Return the vendor name of vendor attributes.
368 const char*
369 attributes_vendor() const
370 { return this->pti_->attributes_vendor; }
371
372 // Whether a section called NAME is an attribute section.
373 bool
374 is_attributes_section(const char* name) const
375 {
376 return ((this->pti_->attributes_section != NULL
377 && strcmp(name, this->pti_->attributes_section) == 0)
378 || strcmp(name, ".gnu.attributes") == 0);
379 }
380
381 // Return a bit mask of argument types for attribute with TAG.
382 int
383 attribute_arg_type(int tag) const
384 { return this->do_attribute_arg_type(tag); }
385
386 // Return the attribute tag of the position NUM in the list of fixed
387 // attributes. Normally there is no reordering and
388 // attributes_order(NUM) == NUM.
389 int
390 attributes_order(int num) const
391 { return this->do_attributes_order(num); }
392
393 // When a target is selected as the default target, we call this method,
394 // which may be used for expensive, target-specific initialization.
395 void
396 select_as_default_target()
397 { this->do_select_as_default_target(); }
398
399 // Return the value to store in the EI_OSABI field in the ELF
400 // header.
401 elfcpp::ELFOSABI
402 osabi() const
403 { return this->osabi_; }
404
405 // Set the value to store in the EI_OSABI field in the ELF header.
406 void
407 set_osabi(elfcpp::ELFOSABI osabi)
408 { this->osabi_ = osabi; }
409
410 // Define target-specific standard symbols.
411 void
412 define_standard_symbols(Symbol_table* symtab, Layout* layout)
413 { this->do_define_standard_symbols(symtab, layout); }
414
415 // Return the output section name to use given an input section
416 // name, or NULL if no target specific name mapping is required.
417 // Set *PLEN to the length of the name if returning non-NULL.
418 const char*
419 output_section_name(const Relobj* relobj,
420 const char* name,
421 size_t* plen) const
422 { return this->do_output_section_name(relobj, name, plen); }
423
424 protected:
425 // This struct holds the constant information for a child class. We
426 // use a struct to avoid the overhead of virtual function calls for
427 // simple information.
428 struct Target_info
429 {
430 // Address size (32 or 64).
431 int size;
432 // Whether the target is big endian.
433 bool is_big_endian;
434 // The code to store in the e_machine field of the ELF header.
435 elfcpp::EM machine_code;
436 // Whether this target has a specific make_symbol function.
437 bool has_make_symbol;
438 // Whether this target has a specific resolve function.
439 bool has_resolve;
440 // Whether this target has a specific code fill function.
441 bool has_code_fill;
442 // Whether an object file with no .note.GNU-stack sections implies
443 // that the stack should be executable.
444 bool is_default_stack_executable;
445 // Whether a relocation to a merged section can be processed to
446 // retrieve the contents.
447 bool can_icf_inline_merge_sections;
448 // Prefix character to strip when checking for wrapping.
449 char wrap_char;
450 // The default dynamic linker name.
451 const char* dynamic_linker;
452 // The default text segment address.
453 uint64_t default_text_segment_address;
454 // The ABI specified page size.
455 uint64_t abi_pagesize;
456 // The common page size used by actual implementations.
457 uint64_t common_pagesize;
458 // Whether PF_X segments must contain nothing but the contents of
459 // SHF_EXECINSTR sections (no non-executable data, no headers).
460 bool isolate_execinstr;
461 // If nonzero, distance from the text segment to the read-only segment.
462 uint64_t rosegment_gap;
463 // The special section index for small common symbols; SHN_UNDEF
464 // if none.
465 elfcpp::Elf_Half small_common_shndx;
466 // The special section index for large common symbols; SHN_UNDEF
467 // if none.
468 elfcpp::Elf_Half large_common_shndx;
469 // Section flags for small common section.
470 elfcpp::Elf_Xword small_common_section_flags;
471 // Section flags for large common section.
472 elfcpp::Elf_Xword large_common_section_flags;
473 // Name of attributes section if it is not ".gnu.attributes".
474 const char* attributes_section;
475 // Vendor name of vendor attributes.
476 const char* attributes_vendor;
477 };
478
479 Target(const Target_info* pti)
480 : pti_(pti), processor_specific_flags_(0),
481 are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
482 { }
483
484 // Virtual function which may be implemented by the child class.
485 virtual void
486 do_new_output_section(Output_section*) const
487 { }
488
489 // Virtual function which may be implemented by the child class.
490 virtual void
491 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
492 { }
493
494 // Virtual function which may be implemented by the child class.
495 virtual uint64_t
496 do_dynsym_value(const Symbol*) const
497 { gold_unreachable(); }
498
499 // Virtual function which must be implemented by the child class if
500 // needed.
501 virtual std::string
502 do_code_fill(section_size_type) const
503 { gold_unreachable(); }
504
505 // Virtual function which may be implemented by the child class.
506 virtual bool
507 do_is_defined_by_abi(const Symbol*) const
508 { return false; }
509
510 // Adjust the output file header before it is written out. VIEW
511 // points to the header in external form. LEN is the length, and
512 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
513 // By default, we set the EI_OSABI field if requested (in
514 // Sized_target).
515 virtual void
516 do_adjust_elf_header(unsigned char*, int) const = 0;
517
518 // Virtual function which may be overridden by the child class.
519 virtual bool
520 do_is_local_label_name(const char*) const;
521
522 // Virtual function that must be overridden by a target which uses
523 // target specific relocations.
524 virtual unsigned int
525 do_reloc_symbol_index(void*, unsigned int) const
526 { gold_unreachable(); }
527
528 // Virtual function that must be overridden by a target which uses
529 // target specific relocations.
530 virtual uint64_t
531 do_reloc_addend(void*, unsigned int, uint64_t) const
532 { gold_unreachable(); }
533
534 // Virtual functions that must be overridden by a target that uses
535 // STT_GNU_IFUNC symbols.
536 virtual uint64_t
537 do_plt_address_for_global(const Symbol*) const
538 { gold_unreachable(); }
539
540 virtual uint64_t
541 do_plt_address_for_local(const Relobj*, unsigned int) const
542 { gold_unreachable(); }
543
544 // Virtual function which may be overriden by the child class.
545 virtual bool
546 do_can_check_for_function_pointers() const
547 { return false; }
548
549 // Virtual function which may be overridden by the child class. We
550 // recognize some default sections for which we don't care whether
551 // they have function pointers.
552 virtual bool
553 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
554 {
555 // We recognize sections for normal vtables, construction vtables and
556 // EH frames.
557 return (!is_prefix_of(".rodata._ZTV", section_name)
558 && !is_prefix_of(".data.rel.ro._ZTV", section_name)
559 && !is_prefix_of(".rodata._ZTC", section_name)
560 && !is_prefix_of(".data.rel.ro._ZTC", section_name)
561 && !is_prefix_of(".eh_frame", section_name));
562 }
563
564 virtual uint64_t
565 do_ehframe_datarel_base() const
566 { gold_unreachable(); }
567
568 // Virtual function which may be overridden by the child class. The
569 // default implementation is that any function not defined by the
570 // ABI is a call to a non-split function.
571 virtual bool
572 do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
573
574 // Virtual function which may be overridden by the child class.
575 virtual void
576 do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
577 section_size_type, unsigned char*, section_size_type,
578 std::string*, std::string*) const;
579
580 // make_elf_object hooks. There are four versions of these for
581 // different address sizes and endianness.
582
583 // Set processor specific flags.
584 void
585 set_processor_specific_flags(elfcpp::Elf_Word flags)
586 {
587 this->processor_specific_flags_ = flags;
588 this->are_processor_specific_flags_set_ = true;
589 }
590
591 #ifdef HAVE_TARGET_32_LITTLE
592 // Virtual functions which may be overridden by the child class.
593 virtual Object*
594 do_make_elf_object(const std::string&, Input_file*, off_t,
595 const elfcpp::Ehdr<32, false>&);
596 #endif
597
598 #ifdef HAVE_TARGET_32_BIG
599 // Virtual functions which may be overridden by the child class.
600 virtual Object*
601 do_make_elf_object(const std::string&, Input_file*, off_t,
602 const elfcpp::Ehdr<32, true>&);
603 #endif
604
605 #ifdef HAVE_TARGET_64_LITTLE
606 // Virtual functions which may be overridden by the child class.
607 virtual Object*
608 do_make_elf_object(const std::string&, Input_file*, off_t,
609 const elfcpp::Ehdr<64, false>& ehdr);
610 #endif
611
612 #ifdef HAVE_TARGET_64_BIG
613 // Virtual functions which may be overridden by the child class.
614 virtual Object*
615 do_make_elf_object(const std::string& name, Input_file* input_file,
616 off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
617 #endif
618
619 // Virtual functions which may be overridden by the child class.
620 virtual Output_section*
621 do_make_output_section(const char* name, elfcpp::Elf_Word type,
622 elfcpp::Elf_Xword flags);
623
624 // Virtual function which may be overridden by the child class.
625 virtual bool
626 do_may_relax() const
627 { return parameters->options().relax(); }
628
629 // Virtual function which may be overridden by the child class.
630 virtual bool
631 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
632 { return false; }
633
634 // A function for targets to call. Return whether BYTES/LEN matches
635 // VIEW/VIEW_SIZE at OFFSET.
636 bool
637 match_view(const unsigned char* view, section_size_type view_size,
638 section_offset_type offset, const char* bytes, size_t len) const;
639
640 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
641 // for LEN bytes.
642 void
643 set_view_to_nop(unsigned char* view, section_size_type view_size,
644 section_offset_type offset, size_t len) const;
645
646 // This must be overridden by the child class if it has target-specific
647 // attributes subsection in the attribute section.
648 virtual int
649 do_attribute_arg_type(int) const
650 { gold_unreachable(); }
651
652 // This may be overridden by the child class.
653 virtual int
654 do_attributes_order(int num) const
655 { return num; }
656
657 // This may be overridden by the child class.
658 virtual void
659 do_select_as_default_target()
660 { }
661
662 // This may be overridden by the child class.
663 virtual void
664 do_define_standard_symbols(Symbol_table*, Layout*)
665 { }
666
667 // This may be overridden by the child class.
668 virtual const char*
669 do_output_section_name(const Relobj*, const char*, size_t*) const
670 { return NULL; }
671
672 private:
673 // The implementations of the four do_make_elf_object virtual functions are
674 // almost identical except for their sizes and endianness. We use a template.
675 // for their implementations.
676 template<int size, bool big_endian>
677 inline Object*
678 do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
679 const elfcpp::Ehdr<size, big_endian>&);
680
681 Target(const Target&);
682 Target& operator=(const Target&);
683
684 // The target information.
685 const Target_info* pti_;
686 // Processor-specific flags.
687 elfcpp::Elf_Word processor_specific_flags_;
688 // Whether the processor-specific flags are set at least once.
689 bool are_processor_specific_flags_set_;
690 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
691 // the ELF header. This is handled at this level because it is
692 // OS-specific rather than processor-specific.
693 elfcpp::ELFOSABI osabi_;
694 };
695
696 // The abstract class for a specific size and endianness of target.
697 // Each actual target implementation class should derive from an
698 // instantiation of Sized_target.
699
700 template<int size, bool big_endian>
701 class Sized_target : public Target
702 {
703 public:
704 // Make a new symbol table entry for the target. This should be
705 // overridden by a target which needs additional information in the
706 // symbol table. This will only be called if has_make_symbol()
707 // returns true.
708 virtual Sized_symbol<size>*
709 make_symbol() const
710 { gold_unreachable(); }
711
712 // Resolve a symbol for the target. This should be overridden by a
713 // target which needs to take special action. TO is the
714 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
715 // VERSION is the version of SYM. This will only be called if
716 // has_resolve() returns true.
717 virtual void
718 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
719 const char*)
720 { gold_unreachable(); }
721
722 // Process the relocs for a section, and record information of the
723 // mapping from source to destination sections. This mapping is later
724 // used to determine unreferenced garbage sections. This procedure is
725 // only called during garbage collection.
726 virtual void
727 gc_process_relocs(Symbol_table* symtab,
728 Layout* layout,
729 Sized_relobj_file<size, big_endian>* object,
730 unsigned int data_shndx,
731 unsigned int sh_type,
732 const unsigned char* prelocs,
733 size_t reloc_count,
734 Output_section* output_section,
735 bool needs_special_offset_handling,
736 size_t local_symbol_count,
737 const unsigned char* plocal_symbols) = 0;
738
739 // Scan the relocs for a section, and record any information
740 // required for the symbol. SYMTAB is the symbol table. OBJECT is
741 // the object in which the section appears. DATA_SHNDX is the
742 // section index that these relocs apply to. SH_TYPE is the type of
743 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to
744 // the relocation data. RELOC_COUNT is the number of relocs.
745 // LOCAL_SYMBOL_COUNT is the number of local symbols.
746 // OUTPUT_SECTION is the output section.
747 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
748 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
749 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
750 // pointers to the global symbol table from OBJECT.
751 virtual void
752 scan_relocs(Symbol_table* symtab,
753 Layout* layout,
754 Sized_relobj_file<size, big_endian>* object,
755 unsigned int data_shndx,
756 unsigned int sh_type,
757 const unsigned char* prelocs,
758 size_t reloc_count,
759 Output_section* output_section,
760 bool needs_special_offset_handling,
761 size_t local_symbol_count,
762 const unsigned char* plocal_symbols) = 0;
763
764 // Relocate section data. SH_TYPE is the type of the relocation
765 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
766 // information. RELOC_COUNT is the number of relocs.
767 // OUTPUT_SECTION is the output section.
768 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
769 // to correspond to the output section. VIEW is a view into the
770 // output file holding the section contents, VIEW_ADDRESS is the
771 // virtual address of the view, and VIEW_SIZE is the size of the
772 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
773 // parameters refer to the complete output section data, not just
774 // the input section data.
775 virtual void
776 relocate_section(const Relocate_info<size, big_endian>*,
777 unsigned int sh_type,
778 const unsigned char* prelocs,
779 size_t reloc_count,
780 Output_section* output_section,
781 bool needs_special_offset_handling,
782 unsigned char* view,
783 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
784 section_size_type view_size,
785 const Reloc_symbol_changes*) = 0;
786
787 // Scan the relocs during a relocatable link. The parameters are
788 // like scan_relocs, with an additional Relocatable_relocs
789 // parameter, used to record the disposition of the relocs.
790 virtual void
791 scan_relocatable_relocs(Symbol_table* symtab,
792 Layout* layout,
793 Sized_relobj_file<size, big_endian>* object,
794 unsigned int data_shndx,
795 unsigned int sh_type,
796 const unsigned char* prelocs,
797 size_t reloc_count,
798 Output_section* output_section,
799 bool needs_special_offset_handling,
800 size_t local_symbol_count,
801 const unsigned char* plocal_symbols,
802 Relocatable_relocs*) = 0;
803
804 // Relocate a section during a relocatable link. The parameters are
805 // like relocate_section, with additional parameters for the view of
806 // the output reloc section.
807 virtual void
808 relocate_for_relocatable(const Relocate_info<size, big_endian>*,
809 unsigned int sh_type,
810 const unsigned char* prelocs,
811 size_t reloc_count,
812 Output_section* output_section,
813 off_t offset_in_output_section,
814 const Relocatable_relocs*,
815 unsigned char* view,
816 typename elfcpp::Elf_types<size>::Elf_Addr
817 view_address,
818 section_size_type view_size,
819 unsigned char* reloc_view,
820 section_size_type reloc_view_size) = 0;
821
822 // Perform target-specific processing in a relocatable link. This is
823 // only used if we use the relocation strategy RELOC_SPECIAL.
824 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
825 // section type. PRELOC_IN points to the original relocation. RELNUM is
826 // the index number of the relocation in the relocation section.
827 // OUTPUT_SECTION is the output section to which the relocation is applied.
828 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
829 // within the output section. VIEW points to the output view of the
830 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE
831 // is the size of the output view and PRELOC_OUT points to the new
832 // relocation in the output object.
833 //
834 // A target only needs to override this if the generic code in
835 // target-reloc.h cannot handle some relocation types.
836
837 virtual void
838 relocate_special_relocatable(const Relocate_info<size, big_endian>*
839 /*relinfo */,
840 unsigned int /* sh_type */,
841 const unsigned char* /* preloc_in */,
842 size_t /* relnum */,
843 Output_section* /* output_section */,
844 off_t /* offset_in_output_section */,
845 unsigned char* /* view */,
846 typename elfcpp::Elf_types<size>::Elf_Addr
847 /* view_address */,
848 section_size_type /* view_size */,
849 unsigned char* /* preloc_out*/)
850 { gold_unreachable(); }
851
852 // Return the number of entries in the GOT. This is only used for
853 // laying out the incremental link info sections. A target needs
854 // to implement this to support incremental linking.
855
856 virtual unsigned int
857 got_entry_count() const
858 { gold_unreachable(); }
859
860 // Return the number of entries in the PLT. This is only used for
861 // laying out the incremental link info sections. A target needs
862 // to implement this to support incremental linking.
863
864 virtual unsigned int
865 plt_entry_count() const
866 { gold_unreachable(); }
867
868 // Return the offset of the first non-reserved PLT entry. This is
869 // only used for laying out the incremental link info sections.
870 // A target needs to implement this to support incremental linking.
871
872 virtual unsigned int
873 first_plt_entry_offset() const
874 { gold_unreachable(); }
875
876 // Return the size of each PLT entry. This is only used for
877 // laying out the incremental link info sections. A target needs
878 // to implement this to support incremental linking.
879
880 virtual unsigned int
881 plt_entry_size() const
882 { gold_unreachable(); }
883
884 // Create the GOT and PLT sections for an incremental update.
885 // A target needs to implement this to support incremental linking.
886
887 virtual Output_data_got_base*
888 init_got_plt_for_update(Symbol_table*,
889 Layout*,
890 unsigned int /* got_count */,
891 unsigned int /* plt_count */)
892 { gold_unreachable(); }
893
894 // Reserve a GOT entry for a local symbol, and regenerate any
895 // necessary dynamic relocations.
896 virtual void
897 reserve_local_got_entry(unsigned int /* got_index */,
898 Sized_relobj<size, big_endian>* /* obj */,
899 unsigned int /* r_sym */,
900 unsigned int /* got_type */)
901 { gold_unreachable(); }
902
903 // Reserve a GOT entry for a global symbol, and regenerate any
904 // necessary dynamic relocations.
905 virtual void
906 reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
907 unsigned int /* got_type */)
908 { gold_unreachable(); }
909
910 // Register an existing PLT entry for a global symbol.
911 // A target needs to implement this to support incremental linking.
912
913 virtual void
914 register_global_plt_entry(Symbol_table*, Layout*,
915 unsigned int /* plt_index */,
916 Symbol*)
917 { gold_unreachable(); }
918
919 // Force a COPY relocation for a given symbol.
920 // A target needs to implement this to support incremental linking.
921
922 virtual void
923 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
924 { gold_unreachable(); }
925
926 // Apply an incremental relocation.
927
928 virtual void
929 apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
930 typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
931 unsigned int /* r_type */,
932 typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
933 const Symbol* /* gsym */,
934 unsigned char* /* view */,
935 typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
936 section_size_type /* view_size */)
937 { gold_unreachable(); }
938
939 protected:
940 Sized_target(const Target::Target_info* pti)
941 : Target(pti)
942 {
943 gold_assert(pti->size == size);
944 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
945 }
946
947 // Set the EI_OSABI field if requested.
948 virtual void
949 do_adjust_elf_header(unsigned char*, int) const;
950 };
951
952 } // End namespace gold.
953
954 #endif // !defined(GOLD_TARGET_H)
This page took 0.04868 seconds and 5 git commands to generate.