Framework for relocation scanning. Implement simple static TLS
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // The abstract class Target is the interface for target specific
4 // support. It defines abstract methods which each target must
5 // implement. Typically there will be one target per processor, but
6 // in some cases it may be necessary to have subclasses.
7
8 // For speed and consistency we want to use inline functions to handle
9 // relocation processing. So besides implementations of the abstract
10 // methods, each target is expected to define a template
11 // specialization of the relocation functions.
12
13 #ifndef GOLD_TARGET_H
14 #define GOLD_TARGET_H
15
16 #include <cassert>
17
18 #include "elfcpp.h"
19 #include "symtab.h"
20
21 namespace gold
22 {
23
24 class General_options;
25 class Object;
26 template<int size, bool big_endian>
27 class Sized_object;
28 template<int size, bool big_endian>
29 struct Relocate_info;
30
31 // The abstract class for target specific handling.
32
33 class Target
34 {
35 public:
36 virtual ~Target()
37 { }
38
39 // Return the bit size that this target implements. This should
40 // return 32 or 64.
41 int
42 get_size() const
43 { return this->pti_->size; }
44
45 // Return whether this target is big-endian.
46 bool
47 is_big_endian() const
48 { return this->pti_->is_big_endian; }
49
50 // Machine code to store in e_machine field of ELF header.
51 elfcpp::EM
52 machine_code() const
53 { return this->pti_->machine_code; }
54
55 // Whether this target has a specific make_symbol function.
56 bool
57 has_make_symbol() const
58 { return this->pti_->has_make_symbol; }
59
60 // Whether this target has a specific resolve function.
61 bool
62 has_resolve() const
63 { return this->pti_->has_resolve; }
64
65 // Return the default address to use for the text segment.
66 uint64_t
67 text_segment_address() const
68 { return this->pti_->text_segment_address; }
69
70 // Return the ABI specified page size.
71 uint64_t
72 abi_pagesize() const
73 { return this->pti_->abi_pagesize; }
74
75 // Return the common page size used on actual systems.
76 uint64_t
77 common_pagesize() const
78 { return this->pti_->common_pagesize; }
79
80 protected:
81 // This struct holds the constant information for a child class. We
82 // use a struct to avoid the overhead of virtual function calls for
83 // simple information.
84 struct Target_info
85 {
86 // Address size (32 or 64).
87 int size;
88 // Whether the target is big endian.
89 bool is_big_endian;
90 // The code to store in the e_machine field of the ELF header.
91 elfcpp::EM machine_code;
92 // Whether this target has a specific make_symbol function.
93 bool has_make_symbol;
94 // Whether this target has a specific resolve function.
95 bool has_resolve;
96 // The default text segment address.
97 uint64_t text_segment_address;
98 // The ABI specified page size.
99 uint64_t abi_pagesize;
100 // The common page size used by actual implementations.
101 uint64_t common_pagesize;
102 };
103
104 Target(const Target_info* pti)
105 : pti_(pti)
106 { }
107
108 private:
109 Target(const Target&);
110 Target& operator=(const Target&);
111
112 // The target information.
113 const Target_info* pti_;
114 };
115
116 // The abstract class for a specific size and endianness of target.
117 // Each actual target implementation class should derive from an
118 // instantiation of Sized_target.
119
120 template<int size, bool big_endian>
121 class Sized_target : public Target
122 {
123 public:
124 // Make a new symbol table entry for the target. This should be
125 // overridden by a target which needs additional information in the
126 // symbol table. This will only be called if has_make_symbol()
127 // returns true.
128 virtual Sized_symbol<size>*
129 make_symbol()
130 { abort(); }
131
132 // Resolve a symbol for the target. This should be overridden by a
133 // target which needs to take special action. TO is the
134 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
135 // This will only be called if has_resolve() returns true.
136 virtual void
137 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*)
138 { abort(); }
139
140 // Scan the relocs for a section, and record any information
141 // required for the symbol. OPTIONS is the command line options.
142 // SYMTAB is the symbol table. OBJECT is the object in which the
143 // section appears. SH_TYPE is the type of the relocation section,
144 // SHT_REL or SHT_RELA. PRELOCS points to the relocation data.
145 // RELOC_COUNT is the number of relocs. LOCAL_SYMBOL_COUNT is the
146 // number of local symbols. PLOCAL_SYMBOLS points to the local
147 // symbol data from OBJECT. GLOBAL_SYMBOLS is the array of pointers
148 // to the global symbol table from OBJECT.
149 virtual void
150 scan_relocs(const General_options& options,
151 Symbol_table* symtab,
152 Sized_object<size, big_endian>* object,
153 unsigned int sh_type,
154 const unsigned char* prelocs,
155 size_t reloc_count,
156 size_t local_symbol_count,
157 const unsigned char* plocal_symbols,
158 Symbol** global_symbols) = 0;
159
160 // Relocate section data. SH_TYPE is the type of the relocation
161 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
162 // information. RELOC_COUNT is the number of relocs. VIEW is a
163 // view into the output file holding the section contents,
164 // VIEW_ADDRESS is the virtual address of the view, and VIEW_SIZE is
165 // the size of the view.
166 virtual void
167 relocate_section(const Relocate_info<size, big_endian>*,
168 unsigned int sh_type,
169 const unsigned char* prelocs,
170 size_t reloc_count,
171 unsigned char* view,
172 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
173 off_t view_size) = 0;
174
175 protected:
176 Sized_target(const Target::Target_info* pti)
177 : Target(pti)
178 {
179 assert(pti->size == size);
180 assert(pti->is_big_endian ? big_endian : !big_endian);
181 }
182 };
183
184 } // End namespace gold.
185
186 #endif // !defined(GOLD_TARGET_H)
This page took 0.034259 seconds and 5 git commands to generate.