Allow target to set dynsym indexes.
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35
36 #include "elfcpp.h"
37 #include "options.h"
38 #include "parameters.h"
39 #include "stringpool.h"
40 #include "debug.h"
41
42 namespace gold
43 {
44
45 class Object;
46 class Relobj;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51 class Relocatable_relocs;
52 template<int size, bool big_endian>
53 struct Relocate_info;
54 class Reloc_symbol_changes;
55 class Symbol;
56 template<int size>
57 class Sized_symbol;
58 class Symbol_table;
59 class Output_data;
60 class Output_data_got_base;
61 class Output_section;
62 class Input_objects;
63 class Task;
64 struct Symbol_location;
65 class Versions;
66
67 // The abstract class for target specific handling.
68
69 class Target
70 {
71 public:
72 virtual ~Target()
73 { }
74
75 // Return the bit size that this target implements. This should
76 // return 32 or 64.
77 int
78 get_size() const
79 { return this->pti_->size; }
80
81 // Return whether this target is big-endian.
82 bool
83 is_big_endian() const
84 { return this->pti_->is_big_endian; }
85
86 // Machine code to store in e_machine field of ELF header.
87 elfcpp::EM
88 machine_code() const
89 { return this->pti_->machine_code; }
90
91 // Processor specific flags to store in e_flags field of ELF header.
92 elfcpp::Elf_Word
93 processor_specific_flags() const
94 { return this->processor_specific_flags_; }
95
96 // Whether processor specific flags are set at least once.
97 bool
98 are_processor_specific_flags_set() const
99 { return this->are_processor_specific_flags_set_; }
100
101 // Whether this target has a specific make_symbol function.
102 bool
103 has_make_symbol() const
104 { return this->pti_->has_make_symbol; }
105
106 // Whether this target has a specific resolve function.
107 bool
108 has_resolve() const
109 { return this->pti_->has_resolve; }
110
111 // Whether this target has a specific code fill function.
112 bool
113 has_code_fill() const
114 { return this->pti_->has_code_fill; }
115
116 // Return the default name of the dynamic linker.
117 const char*
118 dynamic_linker() const
119 { return this->pti_->dynamic_linker; }
120
121 // Return the default address to use for the text segment.
122 uint64_t
123 default_text_segment_address() const
124 { return this->pti_->default_text_segment_address; }
125
126 // Return the ABI specified page size.
127 uint64_t
128 abi_pagesize() const
129 {
130 if (parameters->options().max_page_size() > 0)
131 return parameters->options().max_page_size();
132 else
133 return this->pti_->abi_pagesize;
134 }
135
136 // Return the common page size used on actual systems.
137 uint64_t
138 common_pagesize() const
139 {
140 if (parameters->options().common_page_size() > 0)
141 return std::min(parameters->options().common_page_size(),
142 this->abi_pagesize());
143 else
144 return std::min(this->pti_->common_pagesize,
145 this->abi_pagesize());
146 }
147
148 // Return whether PF_X segments must contain nothing but the contents of
149 // SHF_EXECINSTR sections (no non-executable data, no headers).
150 bool
151 isolate_execinstr() const
152 { return this->pti_->isolate_execinstr; }
153
154 uint64_t
155 rosegment_gap() const
156 { return this->pti_->rosegment_gap; }
157
158 // If we see some object files with .note.GNU-stack sections, and
159 // some objects files without them, this returns whether we should
160 // consider the object files without them to imply that the stack
161 // should be executable.
162 bool
163 is_default_stack_executable() const
164 { return this->pti_->is_default_stack_executable; }
165
166 // Return a character which may appear as a prefix for a wrap
167 // symbol. If this character appears, we strip it when checking for
168 // wrapping and add it back when forming the final symbol name.
169 // This should be '\0' if not special prefix is required, which is
170 // the normal case.
171 char
172 wrap_char() const
173 { return this->pti_->wrap_char; }
174
175 // Return the special section index which indicates a small common
176 // symbol. This will return SHN_UNDEF if there are no small common
177 // symbols.
178 elfcpp::Elf_Half
179 small_common_shndx() const
180 { return this->pti_->small_common_shndx; }
181
182 // Return values to add to the section flags for the section holding
183 // small common symbols.
184 elfcpp::Elf_Xword
185 small_common_section_flags() const
186 {
187 gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
188 return this->pti_->small_common_section_flags;
189 }
190
191 // Return the special section index which indicates a large common
192 // symbol. This will return SHN_UNDEF if there are no large common
193 // symbols.
194 elfcpp::Elf_Half
195 large_common_shndx() const
196 { return this->pti_->large_common_shndx; }
197
198 // Return values to add to the section flags for the section holding
199 // large common symbols.
200 elfcpp::Elf_Xword
201 large_common_section_flags() const
202 {
203 gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
204 return this->pti_->large_common_section_flags;
205 }
206
207 // This hook is called when an output section is created.
208 void
209 new_output_section(Output_section* os) const
210 { this->do_new_output_section(os); }
211
212 // This is called to tell the target to complete any sections it is
213 // handling. After this all sections must have their final size.
214 void
215 finalize_sections(Layout* layout, const Input_objects* input_objects,
216 Symbol_table* symtab)
217 { return this->do_finalize_sections(layout, input_objects, symtab); }
218
219 // Return the value to use for a global symbol which needs a special
220 // value in the dynamic symbol table. This will only be called if
221 // the backend first calls symbol->set_needs_dynsym_value().
222 uint64_t
223 dynsym_value(const Symbol* sym) const
224 { return this->do_dynsym_value(sym); }
225
226 // Return a string to use to fill out a code section. This is
227 // basically one or more NOPS which must fill out the specified
228 // length in bytes.
229 std::string
230 code_fill(section_size_type length) const
231 { return this->do_code_fill(length); }
232
233 // Return whether SYM is known to be defined by the ABI. This is
234 // used to avoid inappropriate warnings about undefined symbols.
235 bool
236 is_defined_by_abi(const Symbol* sym) const
237 { return this->do_is_defined_by_abi(sym); }
238
239 // Adjust the output file header before it is written out. VIEW
240 // points to the header in external form. LEN is the length.
241 void
242 adjust_elf_header(unsigned char* view, int len)
243 { return this->do_adjust_elf_header(view, len); }
244
245 // Return address and size to plug into eh_frame FDEs associated with a PLT.
246 void
247 plt_fde_location(const Output_data* plt, unsigned char* oview,
248 uint64_t* address, off_t* len) const
249 { return this->do_plt_fde_location(plt, oview, address, len); }
250
251 // Return whether NAME is a local label name. This is used to implement the
252 // --discard-locals options.
253 bool
254 is_local_label_name(const char* name) const
255 { return this->do_is_local_label_name(name); }
256
257 // Get the symbol index to use for a target specific reloc.
258 unsigned int
259 reloc_symbol_index(void* arg, unsigned int type) const
260 { return this->do_reloc_symbol_index(arg, type); }
261
262 // Get the addend to use for a target specific reloc.
263 uint64_t
264 reloc_addend(void* arg, unsigned int type, uint64_t addend) const
265 { return this->do_reloc_addend(arg, type, addend); }
266
267 // Return the PLT address to use for a global symbol.
268 uint64_t
269 plt_address_for_global(const Symbol* sym) const
270 { return this->do_plt_address_for_global(sym); }
271
272 // Return the PLT address to use for a local symbol.
273 uint64_t
274 plt_address_for_local(const Relobj* object, unsigned int symndx) const
275 { return this->do_plt_address_for_local(object, symndx); }
276
277 // Return the offset to use for the GOT_INDX'th got entry which is
278 // for a local tls symbol specified by OBJECT, SYMNDX.
279 int64_t
280 tls_offset_for_local(const Relobj* object,
281 unsigned int symndx,
282 unsigned int got_indx) const
283 { return do_tls_offset_for_local(object, symndx, got_indx); }
284
285 // Return the offset to use for the GOT_INDX'th got entry which is
286 // for global tls symbol GSYM.
287 int64_t
288 tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const
289 { return do_tls_offset_for_global(gsym, got_indx); }
290
291 // For targets that use function descriptors, if LOC is the location
292 // of a function, modify it to point at the function entry location.
293 void
294 function_location(Symbol_location* loc) const
295 { return do_function_location(loc); }
296
297 // Return whether this target can use relocation types to determine
298 // if a function's address is taken.
299 bool
300 can_check_for_function_pointers() const
301 { return this->do_can_check_for_function_pointers(); }
302
303 // Return whether a relocation to a merged section can be processed
304 // to retrieve the contents.
305 bool
306 can_icf_inline_merge_sections () const
307 { return this->pti_->can_icf_inline_merge_sections; }
308
309 // Whether a section called SECTION_NAME may have function pointers to
310 // sections not eligible for safe ICF folding.
311 virtual bool
312 section_may_have_icf_unsafe_pointers(const char* section_name) const
313 { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
314
315 // Return the base to use for the PC value in an FDE when it is
316 // encoded using DW_EH_PE_datarel. This does not appear to be
317 // documented anywhere, but it is target specific. Any use of
318 // DW_EH_PE_datarel in gcc requires defining a special macro
319 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
320 uint64_t
321 ehframe_datarel_base() const
322 { return this->do_ehframe_datarel_base(); }
323
324 // Return true if a reference to SYM from a reloc of type R_TYPE
325 // means that the current function may call an object compiled
326 // without -fsplit-stack. SYM is known to be defined in an object
327 // compiled without -fsplit-stack.
328 bool
329 is_call_to_non_split(const Symbol* sym, unsigned int r_type) const
330 { return this->do_is_call_to_non_split(sym, r_type); }
331
332 // A function starts at OFFSET in section SHNDX in OBJECT. That
333 // function was compiled with -fsplit-stack, but it refers to a
334 // function which was compiled without -fsplit-stack. VIEW is a
335 // modifiable view of the section; VIEW_SIZE is the size of the
336 // view. The target has to adjust the function so that it allocates
337 // enough stack.
338 void
339 calls_non_split(Relobj* object, unsigned int shndx,
340 section_offset_type fnoffset, section_size_type fnsize,
341 unsigned char* view, section_size_type view_size,
342 std::string* from, std::string* to) const
343 {
344 this->do_calls_non_split(object, shndx, fnoffset, fnsize, view, view_size,
345 from, to);
346 }
347
348 // Make an ELF object.
349 template<int size, bool big_endian>
350 Object*
351 make_elf_object(const std::string& name, Input_file* input_file,
352 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
353 { return this->do_make_elf_object(name, input_file, offset, ehdr); }
354
355 // Make an output section.
356 Output_section*
357 make_output_section(const char* name, elfcpp::Elf_Word type,
358 elfcpp::Elf_Xword flags)
359 { return this->do_make_output_section(name, type, flags); }
360
361 // Return true if target wants to perform relaxation.
362 bool
363 may_relax() const
364 {
365 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
366 if (is_debugging_enabled(DEBUG_RELAXATION))
367 return true;
368
369 return this->do_may_relax();
370 }
371
372 // Perform a relaxation pass. Return true if layout may be changed.
373 bool
374 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
375 Layout* layout, const Task* task)
376 {
377 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
378 if (is_debugging_enabled(DEBUG_RELAXATION))
379 return pass < 2;
380
381 return this->do_relax(pass, input_objects, symtab, layout, task);
382 }
383
384 // Return the target-specific name of attributes section. This is
385 // NULL if a target does not use attributes section or if it uses
386 // the default section name ".gnu.attributes".
387 const char*
388 attributes_section() const
389 { return this->pti_->attributes_section; }
390
391 // Return the vendor name of vendor attributes.
392 const char*
393 attributes_vendor() const
394 { return this->pti_->attributes_vendor; }
395
396 // Whether a section called NAME is an attribute section.
397 bool
398 is_attributes_section(const char* name) const
399 {
400 return ((this->pti_->attributes_section != NULL
401 && strcmp(name, this->pti_->attributes_section) == 0)
402 || strcmp(name, ".gnu.attributes") == 0);
403 }
404
405 // Return a bit mask of argument types for attribute with TAG.
406 int
407 attribute_arg_type(int tag) const
408 { return this->do_attribute_arg_type(tag); }
409
410 // Return the attribute tag of the position NUM in the list of fixed
411 // attributes. Normally there is no reordering and
412 // attributes_order(NUM) == NUM.
413 int
414 attributes_order(int num) const
415 { return this->do_attributes_order(num); }
416
417 // When a target is selected as the default target, we call this method,
418 // which may be used for expensive, target-specific initialization.
419 void
420 select_as_default_target()
421 { this->do_select_as_default_target(); }
422
423 // Return the value to store in the EI_OSABI field in the ELF
424 // header.
425 elfcpp::ELFOSABI
426 osabi() const
427 { return this->osabi_; }
428
429 // Set the value to store in the EI_OSABI field in the ELF header.
430 void
431 set_osabi(elfcpp::ELFOSABI osabi)
432 { this->osabi_ = osabi; }
433
434 // Define target-specific standard symbols.
435 void
436 define_standard_symbols(Symbol_table* symtab, Layout* layout)
437 { this->do_define_standard_symbols(symtab, layout); }
438
439 // Return the output section name to use given an input section
440 // name, or NULL if no target specific name mapping is required.
441 // Set *PLEN to the length of the name if returning non-NULL.
442 const char*
443 output_section_name(const Relobj* relobj,
444 const char* name,
445 size_t* plen) const
446 { return this->do_output_section_name(relobj, name, plen); }
447
448 // Add any special sections for this symbol to the gc work list.
449 void
450 gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const
451 { this->do_gc_mark_symbol(symtab, sym); }
452
453 // Return the name of the entry point symbol.
454 const char*
455 entry_symbol_name() const
456 { return this->pti_->entry_symbol_name; }
457
458 // Whether the target has a custom set_dynsym_indexes method.
459 bool
460 has_custom_set_dynsym_indexes() const
461 { return this->do_has_custom_set_dynsym_indexes(); }
462
463 // Custom set_dynsym_indexes method for a target.
464 unsigned int
465 set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
466 std::vector<Symbol*>* syms, Stringpool* dynpool,
467 Versions* versions, Symbol_table* symtab) const
468 {
469 return this->do_set_dynsym_indexes(dyn_symbols, index, syms, dynpool,
470 versions, symtab);
471 }
472
473 protected:
474 // This struct holds the constant information for a child class. We
475 // use a struct to avoid the overhead of virtual function calls for
476 // simple information.
477 struct Target_info
478 {
479 // Address size (32 or 64).
480 int size;
481 // Whether the target is big endian.
482 bool is_big_endian;
483 // The code to store in the e_machine field of the ELF header.
484 elfcpp::EM machine_code;
485 // Whether this target has a specific make_symbol function.
486 bool has_make_symbol;
487 // Whether this target has a specific resolve function.
488 bool has_resolve;
489 // Whether this target has a specific code fill function.
490 bool has_code_fill;
491 // Whether an object file with no .note.GNU-stack sections implies
492 // that the stack should be executable.
493 bool is_default_stack_executable;
494 // Whether a relocation to a merged section can be processed to
495 // retrieve the contents.
496 bool can_icf_inline_merge_sections;
497 // Prefix character to strip when checking for wrapping.
498 char wrap_char;
499 // The default dynamic linker name.
500 const char* dynamic_linker;
501 // The default text segment address.
502 uint64_t default_text_segment_address;
503 // The ABI specified page size.
504 uint64_t abi_pagesize;
505 // The common page size used by actual implementations.
506 uint64_t common_pagesize;
507 // Whether PF_X segments must contain nothing but the contents of
508 // SHF_EXECINSTR sections (no non-executable data, no headers).
509 bool isolate_execinstr;
510 // If nonzero, distance from the text segment to the read-only segment.
511 uint64_t rosegment_gap;
512 // The special section index for small common symbols; SHN_UNDEF
513 // if none.
514 elfcpp::Elf_Half small_common_shndx;
515 // The special section index for large common symbols; SHN_UNDEF
516 // if none.
517 elfcpp::Elf_Half large_common_shndx;
518 // Section flags for small common section.
519 elfcpp::Elf_Xword small_common_section_flags;
520 // Section flags for large common section.
521 elfcpp::Elf_Xword large_common_section_flags;
522 // Name of attributes section if it is not ".gnu.attributes".
523 const char* attributes_section;
524 // Vendor name of vendor attributes.
525 const char* attributes_vendor;
526 // Name of the main entry point to the program.
527 const char* entry_symbol_name;
528 };
529
530 Target(const Target_info* pti)
531 : pti_(pti), processor_specific_flags_(0),
532 are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
533 { }
534
535 // Virtual function which may be implemented by the child class.
536 virtual void
537 do_new_output_section(Output_section*) const
538 { }
539
540 // Virtual function which may be implemented by the child class.
541 virtual void
542 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
543 { }
544
545 // Virtual function which may be implemented by the child class.
546 virtual uint64_t
547 do_dynsym_value(const Symbol*) const
548 { gold_unreachable(); }
549
550 // Virtual function which must be implemented by the child class if
551 // needed.
552 virtual std::string
553 do_code_fill(section_size_type) const
554 { gold_unreachable(); }
555
556 // Virtual function which may be implemented by the child class.
557 virtual bool
558 do_is_defined_by_abi(const Symbol*) const
559 { return false; }
560
561 // Adjust the output file header before it is written out. VIEW
562 // points to the header in external form. LEN is the length, and
563 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
564 // By default, we set the EI_OSABI field if requested (in
565 // Sized_target).
566 virtual void
567 do_adjust_elf_header(unsigned char*, int) = 0;
568
569 // Return address and size to plug into eh_frame FDEs associated with a PLT.
570 virtual void
571 do_plt_fde_location(const Output_data* plt, unsigned char* oview,
572 uint64_t* address, off_t* len) const;
573
574 // Virtual function which may be overridden by the child class.
575 virtual bool
576 do_is_local_label_name(const char*) const;
577
578 // Virtual function that must be overridden by a target which uses
579 // target specific relocations.
580 virtual unsigned int
581 do_reloc_symbol_index(void*, unsigned int) const
582 { gold_unreachable(); }
583
584 // Virtual function that must be overridden by a target which uses
585 // target specific relocations.
586 virtual uint64_t
587 do_reloc_addend(void*, unsigned int, uint64_t) const
588 { gold_unreachable(); }
589
590 // Virtual functions that must be overridden by a target that uses
591 // STT_GNU_IFUNC symbols.
592 virtual uint64_t
593 do_plt_address_for_global(const Symbol*) const
594 { gold_unreachable(); }
595
596 virtual uint64_t
597 do_plt_address_for_local(const Relobj*, unsigned int) const
598 { gold_unreachable(); }
599
600 virtual int64_t
601 do_tls_offset_for_local(const Relobj*, unsigned int, unsigned int) const
602 { gold_unreachable(); }
603
604 virtual int64_t
605 do_tls_offset_for_global(Symbol*, unsigned int) const
606 { gold_unreachable(); }
607
608 virtual void
609 do_function_location(Symbol_location*) const = 0;
610
611 // Virtual function which may be overriden by the child class.
612 virtual bool
613 do_can_check_for_function_pointers() const
614 { return false; }
615
616 // Virtual function which may be overridden by the child class. We
617 // recognize some default sections for which we don't care whether
618 // they have function pointers.
619 virtual bool
620 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
621 {
622 // We recognize sections for normal vtables, construction vtables and
623 // EH frames.
624 return (!is_prefix_of(".rodata._ZTV", section_name)
625 && !is_prefix_of(".data.rel.ro._ZTV", section_name)
626 && !is_prefix_of(".rodata._ZTC", section_name)
627 && !is_prefix_of(".data.rel.ro._ZTC", section_name)
628 && !is_prefix_of(".eh_frame", section_name));
629 }
630
631 virtual uint64_t
632 do_ehframe_datarel_base() const
633 { gold_unreachable(); }
634
635 // Virtual function which may be overridden by the child class. The
636 // default implementation is that any function not defined by the
637 // ABI is a call to a non-split function.
638 virtual bool
639 do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
640
641 // Virtual function which may be overridden by the child class.
642 virtual void
643 do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
644 section_size_type, unsigned char*, section_size_type,
645 std::string*, std::string*) const;
646
647 // make_elf_object hooks. There are four versions of these for
648 // different address sizes and endianness.
649
650 // Set processor specific flags.
651 void
652 set_processor_specific_flags(elfcpp::Elf_Word flags)
653 {
654 this->processor_specific_flags_ = flags;
655 this->are_processor_specific_flags_set_ = true;
656 }
657
658 #ifdef HAVE_TARGET_32_LITTLE
659 // Virtual functions which may be overridden by the child class.
660 virtual Object*
661 do_make_elf_object(const std::string&, Input_file*, off_t,
662 const elfcpp::Ehdr<32, false>&);
663 #endif
664
665 #ifdef HAVE_TARGET_32_BIG
666 // Virtual functions which may be overridden by the child class.
667 virtual Object*
668 do_make_elf_object(const std::string&, Input_file*, off_t,
669 const elfcpp::Ehdr<32, true>&);
670 #endif
671
672 #ifdef HAVE_TARGET_64_LITTLE
673 // Virtual functions which may be overridden by the child class.
674 virtual Object*
675 do_make_elf_object(const std::string&, Input_file*, off_t,
676 const elfcpp::Ehdr<64, false>& ehdr);
677 #endif
678
679 #ifdef HAVE_TARGET_64_BIG
680 // Virtual functions which may be overridden by the child class.
681 virtual Object*
682 do_make_elf_object(const std::string& name, Input_file* input_file,
683 off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
684 #endif
685
686 // Virtual functions which may be overridden by the child class.
687 virtual Output_section*
688 do_make_output_section(const char* name, elfcpp::Elf_Word type,
689 elfcpp::Elf_Xword flags);
690
691 // Virtual function which may be overridden by the child class.
692 virtual bool
693 do_may_relax() const
694 { return parameters->options().relax(); }
695
696 // Virtual function which may be overridden by the child class.
697 virtual bool
698 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
699 { return false; }
700
701 // A function for targets to call. Return whether BYTES/LEN matches
702 // VIEW/VIEW_SIZE at OFFSET.
703 bool
704 match_view(const unsigned char* view, section_size_type view_size,
705 section_offset_type offset, const char* bytes, size_t len) const;
706
707 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
708 // for LEN bytes.
709 void
710 set_view_to_nop(unsigned char* view, section_size_type view_size,
711 section_offset_type offset, size_t len) const;
712
713 // This must be overridden by the child class if it has target-specific
714 // attributes subsection in the attribute section.
715 virtual int
716 do_attribute_arg_type(int) const
717 { gold_unreachable(); }
718
719 // This may be overridden by the child class.
720 virtual int
721 do_attributes_order(int num) const
722 { return num; }
723
724 // This may be overridden by the child class.
725 virtual void
726 do_select_as_default_target()
727 { }
728
729 // This may be overridden by the child class.
730 virtual void
731 do_define_standard_symbols(Symbol_table*, Layout*)
732 { }
733
734 // This may be overridden by the child class.
735 virtual const char*
736 do_output_section_name(const Relobj*, const char*, size_t*) const
737 { return NULL; }
738
739 // This may be overridden by the child class.
740 virtual void
741 do_gc_mark_symbol(Symbol_table*, Symbol*) const
742 { }
743
744 // This may be overridden by the child class.
745 virtual bool
746 do_has_custom_set_dynsym_indexes() const
747 { return false; }
748
749 // This may be overridden by the child class.
750 virtual unsigned int
751 do_set_dynsym_indexes(std::vector<Symbol*>*, unsigned int,
752 std::vector<Symbol*>*, Stringpool*, Versions*,
753 Symbol_table*) const
754 { gold_unreachable(); }
755
756 private:
757 // The implementations of the four do_make_elf_object virtual functions are
758 // almost identical except for their sizes and endianness. We use a template.
759 // for their implementations.
760 template<int size, bool big_endian>
761 inline Object*
762 do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
763 const elfcpp::Ehdr<size, big_endian>&);
764
765 Target(const Target&);
766 Target& operator=(const Target&);
767
768 // The target information.
769 const Target_info* pti_;
770 // Processor-specific flags.
771 elfcpp::Elf_Word processor_specific_flags_;
772 // Whether the processor-specific flags are set at least once.
773 bool are_processor_specific_flags_set_;
774 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
775 // the ELF header. This is handled at this level because it is
776 // OS-specific rather than processor-specific.
777 elfcpp::ELFOSABI osabi_;
778 };
779
780 // The abstract class for a specific size and endianness of target.
781 // Each actual target implementation class should derive from an
782 // instantiation of Sized_target.
783
784 template<int size, bool big_endian>
785 class Sized_target : public Target
786 {
787 public:
788 // Make a new symbol table entry for the target. This should be
789 // overridden by a target which needs additional information in the
790 // symbol table. This will only be called if has_make_symbol()
791 // returns true.
792 virtual Sized_symbol<size>*
793 make_symbol() const
794 { gold_unreachable(); }
795
796 // Resolve a symbol for the target. This should be overridden by a
797 // target which needs to take special action. TO is the
798 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
799 // VERSION is the version of SYM. This will only be called if
800 // has_resolve() returns true.
801 virtual void
802 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
803 const char*)
804 { gold_unreachable(); }
805
806 // Process the relocs for a section, and record information of the
807 // mapping from source to destination sections. This mapping is later
808 // used to determine unreferenced garbage sections. This procedure is
809 // only called during garbage collection.
810 virtual void
811 gc_process_relocs(Symbol_table* symtab,
812 Layout* layout,
813 Sized_relobj_file<size, big_endian>* object,
814 unsigned int data_shndx,
815 unsigned int sh_type,
816 const unsigned char* prelocs,
817 size_t reloc_count,
818 Output_section* output_section,
819 bool needs_special_offset_handling,
820 size_t local_symbol_count,
821 const unsigned char* plocal_symbols) = 0;
822
823 // Scan the relocs for a section, and record any information
824 // required for the symbol. SYMTAB is the symbol table. OBJECT is
825 // the object in which the section appears. DATA_SHNDX is the
826 // section index that these relocs apply to. SH_TYPE is the type of
827 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to
828 // the relocation data. RELOC_COUNT is the number of relocs.
829 // LOCAL_SYMBOL_COUNT is the number of local symbols.
830 // OUTPUT_SECTION is the output section.
831 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
832 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
833 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
834 // pointers to the global symbol table from OBJECT.
835 virtual void
836 scan_relocs(Symbol_table* symtab,
837 Layout* layout,
838 Sized_relobj_file<size, big_endian>* object,
839 unsigned int data_shndx,
840 unsigned int sh_type,
841 const unsigned char* prelocs,
842 size_t reloc_count,
843 Output_section* output_section,
844 bool needs_special_offset_handling,
845 size_t local_symbol_count,
846 const unsigned char* plocal_symbols) = 0;
847
848 // Relocate section data. SH_TYPE is the type of the relocation
849 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
850 // information. RELOC_COUNT is the number of relocs.
851 // OUTPUT_SECTION is the output section.
852 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
853 // to correspond to the output section. VIEW is a view into the
854 // output file holding the section contents, VIEW_ADDRESS is the
855 // virtual address of the view, and VIEW_SIZE is the size of the
856 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
857 // parameters refer to the complete output section data, not just
858 // the input section data.
859 virtual void
860 relocate_section(const Relocate_info<size, big_endian>*,
861 unsigned int sh_type,
862 const unsigned char* prelocs,
863 size_t reloc_count,
864 Output_section* output_section,
865 bool needs_special_offset_handling,
866 unsigned char* view,
867 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
868 section_size_type view_size,
869 const Reloc_symbol_changes*) = 0;
870
871 // Scan the relocs during a relocatable link. The parameters are
872 // like scan_relocs, with an additional Relocatable_relocs
873 // parameter, used to record the disposition of the relocs.
874 virtual void
875 scan_relocatable_relocs(Symbol_table* symtab,
876 Layout* layout,
877 Sized_relobj_file<size, big_endian>* object,
878 unsigned int data_shndx,
879 unsigned int sh_type,
880 const unsigned char* prelocs,
881 size_t reloc_count,
882 Output_section* output_section,
883 bool needs_special_offset_handling,
884 size_t local_symbol_count,
885 const unsigned char* plocal_symbols,
886 Relocatable_relocs*) = 0;
887
888 // Emit relocations for a section during a relocatable link, and for
889 // --emit-relocs. The parameters are like relocate_section, with
890 // additional parameters for the view of the output reloc section.
891 virtual void
892 relocate_relocs(const Relocate_info<size, big_endian>*,
893 unsigned int sh_type,
894 const unsigned char* prelocs,
895 size_t reloc_count,
896 Output_section* output_section,
897 typename elfcpp::Elf_types<size>::Elf_Off
898 offset_in_output_section,
899 const Relocatable_relocs*,
900 unsigned char* view,
901 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
902 section_size_type view_size,
903 unsigned char* reloc_view,
904 section_size_type reloc_view_size) = 0;
905
906 // Perform target-specific processing in a relocatable link. This is
907 // only used if we use the relocation strategy RELOC_SPECIAL.
908 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
909 // section type. PRELOC_IN points to the original relocation. RELNUM is
910 // the index number of the relocation in the relocation section.
911 // OUTPUT_SECTION is the output section to which the relocation is applied.
912 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
913 // within the output section. VIEW points to the output view of the
914 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE
915 // is the size of the output view and PRELOC_OUT points to the new
916 // relocation in the output object.
917 //
918 // A target only needs to override this if the generic code in
919 // target-reloc.h cannot handle some relocation types.
920
921 virtual void
922 relocate_special_relocatable(const Relocate_info<size, big_endian>*
923 /*relinfo */,
924 unsigned int /* sh_type */,
925 const unsigned char* /* preloc_in */,
926 size_t /* relnum */,
927 Output_section* /* output_section */,
928 typename elfcpp::Elf_types<size>::Elf_Off
929 /* offset_in_output_section */,
930 unsigned char* /* view */,
931 typename elfcpp::Elf_types<size>::Elf_Addr
932 /* view_address */,
933 section_size_type /* view_size */,
934 unsigned char* /* preloc_out*/)
935 { gold_unreachable(); }
936
937 // Return the number of entries in the GOT. This is only used for
938 // laying out the incremental link info sections. A target needs
939 // to implement this to support incremental linking.
940
941 virtual unsigned int
942 got_entry_count() const
943 { gold_unreachable(); }
944
945 // Return the number of entries in the PLT. This is only used for
946 // laying out the incremental link info sections. A target needs
947 // to implement this to support incremental linking.
948
949 virtual unsigned int
950 plt_entry_count() const
951 { gold_unreachable(); }
952
953 // Return the offset of the first non-reserved PLT entry. This is
954 // only used for laying out the incremental link info sections.
955 // A target needs to implement this to support incremental linking.
956
957 virtual unsigned int
958 first_plt_entry_offset() const
959 { gold_unreachable(); }
960
961 // Return the size of each PLT entry. This is only used for
962 // laying out the incremental link info sections. A target needs
963 // to implement this to support incremental linking.
964
965 virtual unsigned int
966 plt_entry_size() const
967 { gold_unreachable(); }
968
969 // Create the GOT and PLT sections for an incremental update.
970 // A target needs to implement this to support incremental linking.
971
972 virtual Output_data_got_base*
973 init_got_plt_for_update(Symbol_table*,
974 Layout*,
975 unsigned int /* got_count */,
976 unsigned int /* plt_count */)
977 { gold_unreachable(); }
978
979 // Reserve a GOT entry for a local symbol, and regenerate any
980 // necessary dynamic relocations.
981 virtual void
982 reserve_local_got_entry(unsigned int /* got_index */,
983 Sized_relobj<size, big_endian>* /* obj */,
984 unsigned int /* r_sym */,
985 unsigned int /* got_type */)
986 { gold_unreachable(); }
987
988 // Reserve a GOT entry for a global symbol, and regenerate any
989 // necessary dynamic relocations.
990 virtual void
991 reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
992 unsigned int /* got_type */)
993 { gold_unreachable(); }
994
995 // Register an existing PLT entry for a global symbol.
996 // A target needs to implement this to support incremental linking.
997
998 virtual void
999 register_global_plt_entry(Symbol_table*, Layout*,
1000 unsigned int /* plt_index */,
1001 Symbol*)
1002 { gold_unreachable(); }
1003
1004 // Force a COPY relocation for a given symbol.
1005 // A target needs to implement this to support incremental linking.
1006
1007 virtual void
1008 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
1009 { gold_unreachable(); }
1010
1011 // Apply an incremental relocation.
1012
1013 virtual void
1014 apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
1015 typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
1016 unsigned int /* r_type */,
1017 typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
1018 const Symbol* /* gsym */,
1019 unsigned char* /* view */,
1020 typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
1021 section_size_type /* view_size */)
1022 { gold_unreachable(); }
1023
1024 // Handle target specific gc actions when adding a gc reference from
1025 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
1026 // and DST_OFF.
1027 void
1028 gc_add_reference(Symbol_table* symtab,
1029 Object* src_obj,
1030 unsigned int src_shndx,
1031 Object* dst_obj,
1032 unsigned int dst_shndx,
1033 typename elfcpp::Elf_types<size>::Elf_Addr dst_off) const
1034 {
1035 this->do_gc_add_reference(symtab, src_obj, src_shndx,
1036 dst_obj, dst_shndx, dst_off);
1037 }
1038
1039 protected:
1040 Sized_target(const Target::Target_info* pti)
1041 : Target(pti)
1042 {
1043 gold_assert(pti->size == size);
1044 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
1045 }
1046
1047 // Set the EI_OSABI field if requested.
1048 virtual void
1049 do_adjust_elf_header(unsigned char*, int);
1050
1051 // Handle target specific gc actions when adding a gc reference.
1052 virtual void
1053 do_gc_add_reference(Symbol_table*, Object*, unsigned int,
1054 Object*, unsigned int,
1055 typename elfcpp::Elf_types<size>::Elf_Addr) const
1056 { }
1057
1058 virtual void
1059 do_function_location(Symbol_location*) const
1060 { }
1061 };
1062
1063 } // End namespace gold.
1064
1065 #endif // !defined(GOLD_TARGET_H)
This page took 0.067462 seconds and 5 git commands to generate.