Use special value when we refer a function symbol in some way other
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35
36 #include "elfcpp.h"
37
38 namespace gold
39 {
40
41 class General_options;
42 class Object;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 template<int size, bool big_endian>
46 struct Relocate_info;
47 class Symbol;
48 template<int size>
49 class Sized_symbol;
50 class Symbol_table;
51
52 // The abstract class for target specific handling.
53
54 class Target
55 {
56 public:
57 virtual ~Target()
58 { }
59
60 // Return the bit size that this target implements. This should
61 // return 32 or 64.
62 int
63 get_size() const
64 { return this->pti_->size; }
65
66 // Return whether this target is big-endian.
67 bool
68 is_big_endian() const
69 { return this->pti_->is_big_endian; }
70
71 // Machine code to store in e_machine field of ELF header.
72 elfcpp::EM
73 machine_code() const
74 { return this->pti_->machine_code; }
75
76 // Whether this target has a specific make_symbol function.
77 bool
78 has_make_symbol() const
79 { return this->pti_->has_make_symbol; }
80
81 // Whether this target has a specific resolve function.
82 bool
83 has_resolve() const
84 { return this->pti_->has_resolve; }
85
86 // Whether this target has a specific code fill function.
87 bool
88 has_code_fill() const
89 { return this->pti_->has_code_fill; }
90
91 // Return the default name of the dynamic linker.
92 const char*
93 dynamic_linker() const
94 { return this->pti_->dynamic_linker; }
95
96 // Return the default address to use for the text segment.
97 uint64_t
98 text_segment_address() const
99 { return this->pti_->text_segment_address; }
100
101 // Return the ABI specified page size.
102 uint64_t
103 abi_pagesize() const
104 { return this->pti_->abi_pagesize; }
105
106 // Return the common page size used on actual systems.
107 uint64_t
108 common_pagesize() const
109 { return this->pti_->common_pagesize; }
110
111 // This is called to tell the target to complete any sections it is
112 // handling. After this all sections must have their final size.
113 void
114 finalize_sections(Layout* layout)
115 { return this->do_finalize_sections(layout); }
116
117 // Return the value to use for a global symbol which needs a special
118 // value in the dynamic symbol table. This will only be called if
119 // the backend first calls symbol->set_needs_dynsym_value().
120 uint64_t
121 dynsym_value(const Symbol* sym) const
122 { return this->do_dynsym_value(sym); }
123
124 // Return a string to use to fill out a code section. This is
125 // basically one or more NOPS which must fill out the specified
126 // length in bytes.
127 std::string
128 code_fill(off_t length)
129 { return this->do_code_fill(length); }
130
131 protected:
132 // This struct holds the constant information for a child class. We
133 // use a struct to avoid the overhead of virtual function calls for
134 // simple information.
135 struct Target_info
136 {
137 // Address size (32 or 64).
138 int size;
139 // Whether the target is big endian.
140 bool is_big_endian;
141 // The code to store in the e_machine field of the ELF header.
142 elfcpp::EM machine_code;
143 // Whether this target has a specific make_symbol function.
144 bool has_make_symbol;
145 // Whether this target has a specific resolve function.
146 bool has_resolve;
147 // Whether this target has a specific code fill function.
148 bool has_code_fill;
149 // The default dynamic linker name.
150 const char* dynamic_linker;
151 // The default text segment address.
152 uint64_t text_segment_address;
153 // The ABI specified page size.
154 uint64_t abi_pagesize;
155 // The common page size used by actual implementations.
156 uint64_t common_pagesize;
157 };
158
159 Target(const Target_info* pti)
160 : pti_(pti)
161 { }
162
163 // Virtual function which may be implemented by the child class.
164 virtual void
165 do_finalize_sections(Layout*)
166 { }
167
168 // Virtual function which may be implemented by the child class.
169 virtual uint64_t
170 do_dynsym_value(const Symbol*) const
171 { gold_unreachable(); }
172
173 // Virtual function which must be implemented by the child class if
174 // needed.
175 virtual std::string
176 do_code_fill(off_t)
177 { gold_unreachable(); }
178
179 private:
180 Target(const Target&);
181 Target& operator=(const Target&);
182
183 // The target information.
184 const Target_info* pti_;
185 };
186
187 // The abstract class for a specific size and endianness of target.
188 // Each actual target implementation class should derive from an
189 // instantiation of Sized_target.
190
191 template<int size, bool big_endian>
192 class Sized_target : public Target
193 {
194 public:
195 // Make a new symbol table entry for the target. This should be
196 // overridden by a target which needs additional information in the
197 // symbol table. This will only be called if has_make_symbol()
198 // returns true.
199 virtual Sized_symbol<size>*
200 make_symbol() const
201 { gold_unreachable(); }
202
203 // Resolve a symbol for the target. This should be overridden by a
204 // target which needs to take special action. TO is the
205 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
206 // VERSION is the version of SYM. This will only be called if
207 // has_resolve() returns true.
208 virtual void
209 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
210 const char*)
211 { gold_unreachable(); }
212
213 // Scan the relocs for a section, and record any information
214 // required for the symbol. OPTIONS is the command line options.
215 // SYMTAB is the symbol table. OBJECT is the object in which the
216 // section appears. DATA_SHNDX is the section index that these
217 // relocs apply to. SH_TYPE is the type of the relocation section,
218 // SHT_REL or SHT_RELA. PRELOCS points to the relocation data.
219 // RELOC_COUNT is the number of relocs. LOCAL_SYMBOL_COUNT is the
220 // number of local symbols. PLOCAL_SYMBOLS points to the local
221 // symbol data from OBJECT. GLOBAL_SYMBOLS is the array of pointers
222 // to the global symbol table from OBJECT.
223 virtual void
224 scan_relocs(const General_options& options,
225 Symbol_table* symtab,
226 Layout* layout,
227 Sized_relobj<size, big_endian>* object,
228 unsigned int data_shndx,
229 unsigned int sh_type,
230 const unsigned char* prelocs,
231 size_t reloc_count,
232 size_t local_symbol_count,
233 const unsigned char* plocal_symbols,
234 Symbol** global_symbols) = 0;
235
236 // Relocate section data. SH_TYPE is the type of the relocation
237 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
238 // information. RELOC_COUNT is the number of relocs. VIEW is a
239 // view into the output file holding the section contents,
240 // VIEW_ADDRESS is the virtual address of the view, and VIEW_SIZE is
241 // the size of the view.
242 virtual void
243 relocate_section(const Relocate_info<size, big_endian>*,
244 unsigned int sh_type,
245 const unsigned char* prelocs,
246 size_t reloc_count,
247 unsigned char* view,
248 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
249 off_t view_size) = 0;
250
251 protected:
252 Sized_target(const Target::Target_info* pti)
253 : Target(pti)
254 {
255 gold_assert(pti->size == size);
256 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
257 }
258 };
259
260 } // End namespace gold.
261
262 #endif // !defined(GOLD_TARGET_H)
This page took 0.040844 seconds and 5 git commands to generate.