Use nops when doing alignment padding between code sections.
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // The abstract class Target is the interface for target specific
4 // support. It defines abstract methods which each target must
5 // implement. Typically there will be one target per processor, but
6 // in some cases it may be necessary to have subclasses.
7
8 // For speed and consistency we want to use inline functions to handle
9 // relocation processing. So besides implementations of the abstract
10 // methods, each target is expected to define a template
11 // specialization of the relocation functions.
12
13 #ifndef GOLD_TARGET_H
14 #define GOLD_TARGET_H
15
16 #include "elfcpp.h"
17
18 namespace gold
19 {
20
21 class General_options;
22 class Object;
23 template<int size, bool big_endian>
24 class Sized_relobj;
25 template<int size, bool big_endian>
26 struct Relocate_info;
27 class Symbol;
28 template<int size>
29 class Sized_symbol;
30 class Symbol_table;
31
32 // The abstract class for target specific handling.
33
34 class Target
35 {
36 public:
37 virtual ~Target()
38 { }
39
40 // Return the bit size that this target implements. This should
41 // return 32 or 64.
42 int
43 get_size() const
44 { return this->pti_->size; }
45
46 // Return whether this target is big-endian.
47 bool
48 is_big_endian() const
49 { return this->pti_->is_big_endian; }
50
51 // Machine code to store in e_machine field of ELF header.
52 elfcpp::EM
53 machine_code() const
54 { return this->pti_->machine_code; }
55
56 // Whether this target has a specific make_symbol function.
57 bool
58 has_make_symbol() const
59 { return this->pti_->has_make_symbol; }
60
61 // Whether this target has a specific resolve function.
62 bool
63 has_resolve() const
64 { return this->pti_->has_resolve; }
65
66 // Whether this target has a specific code fill function.
67 bool
68 has_code_fill() const
69 { return this->pti_->has_code_fill; }
70
71 // Return the default name of the dynamic linker.
72 const char*
73 dynamic_linker() const
74 { return this->pti_->dynamic_linker; }
75
76 // Return the default address to use for the text segment.
77 uint64_t
78 text_segment_address() const
79 { return this->pti_->text_segment_address; }
80
81 // Return the ABI specified page size.
82 uint64_t
83 abi_pagesize() const
84 { return this->pti_->abi_pagesize; }
85
86 // Return the common page size used on actual systems.
87 uint64_t
88 common_pagesize() const
89 { return this->pti_->common_pagesize; }
90
91 // This is called to tell the target to complete any sections it is
92 // handling. After this all sections must have their final size.
93 void
94 finalize_sections(const General_options* options, Layout* layout)
95 { return this->do_finalize_sections(options, layout); }
96
97 // Return a string to use to fill out a code section. This is
98 // basically one or more NOPS which must fill out the specified
99 // length in bytes.
100 std::string
101 code_fill(off_t length)
102 { return this->do_code_fill(length); }
103
104 protected:
105 // This struct holds the constant information for a child class. We
106 // use a struct to avoid the overhead of virtual function calls for
107 // simple information.
108 struct Target_info
109 {
110 // Address size (32 or 64).
111 int size;
112 // Whether the target is big endian.
113 bool is_big_endian;
114 // The code to store in the e_machine field of the ELF header.
115 elfcpp::EM machine_code;
116 // Whether this target has a specific make_symbol function.
117 bool has_make_symbol;
118 // Whether this target has a specific resolve function.
119 bool has_resolve;
120 // Whether this target has a specific code fill function.
121 bool has_code_fill;
122 // The default dynamic linker name.
123 const char* dynamic_linker;
124 // The default text segment address.
125 uint64_t text_segment_address;
126 // The ABI specified page size.
127 uint64_t abi_pagesize;
128 // The common page size used by actual implementations.
129 uint64_t common_pagesize;
130 };
131
132 Target(const Target_info* pti)
133 : pti_(pti)
134 { }
135
136 // Virtual function which may be implemented by the child class.
137 virtual void
138 do_finalize_sections(const General_options*, Layout*)
139 { }
140
141 // Virtual function which must be implemented by the child class if
142 // needed.
143 virtual std::string
144 do_code_fill(off_t)
145 { gold_unreachable(); }
146
147 private:
148 Target(const Target&);
149 Target& operator=(const Target&);
150
151 // The target information.
152 const Target_info* pti_;
153 };
154
155 // The abstract class for a specific size and endianness of target.
156 // Each actual target implementation class should derive from an
157 // instantiation of Sized_target.
158
159 template<int size, bool big_endian>
160 class Sized_target : public Target
161 {
162 public:
163 // Make a new symbol table entry for the target. This should be
164 // overridden by a target which needs additional information in the
165 // symbol table. This will only be called if has_make_symbol()
166 // returns true.
167 virtual Sized_symbol<size>*
168 make_symbol() const
169 { gold_unreachable(); }
170
171 // Resolve a symbol for the target. This should be overridden by a
172 // target which needs to take special action. TO is the
173 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
174 // VERSION is the version of SYM. This will only be called if
175 // has_resolve() returns true.
176 virtual void
177 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
178 const char*)
179 { gold_unreachable(); }
180
181 // Scan the relocs for a section, and record any information
182 // required for the symbol. OPTIONS is the command line options.
183 // SYMTAB is the symbol table. OBJECT is the object in which the
184 // section appears. DATA_SHNDX is the section index that these
185 // relocs apply to. SH_TYPE is the type of the relocation section,
186 // SHT_REL or SHT_RELA. PRELOCS points to the relocation data.
187 // RELOC_COUNT is the number of relocs. LOCAL_SYMBOL_COUNT is the
188 // number of local symbols. PLOCAL_SYMBOLS points to the local
189 // symbol data from OBJECT. GLOBAL_SYMBOLS is the array of pointers
190 // to the global symbol table from OBJECT.
191 virtual void
192 scan_relocs(const General_options& options,
193 Symbol_table* symtab,
194 Layout* layout,
195 Sized_relobj<size, big_endian>* object,
196 unsigned int data_shndx,
197 unsigned int sh_type,
198 const unsigned char* prelocs,
199 size_t reloc_count,
200 size_t local_symbol_count,
201 const unsigned char* plocal_symbols,
202 Symbol** global_symbols) = 0;
203
204 // Relocate section data. SH_TYPE is the type of the relocation
205 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
206 // information. RELOC_COUNT is the number of relocs. VIEW is a
207 // view into the output file holding the section contents,
208 // VIEW_ADDRESS is the virtual address of the view, and VIEW_SIZE is
209 // the size of the view.
210 virtual void
211 relocate_section(const Relocate_info<size, big_endian>*,
212 unsigned int sh_type,
213 const unsigned char* prelocs,
214 size_t reloc_count,
215 unsigned char* view,
216 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
217 off_t view_size) = 0;
218
219 protected:
220 Sized_target(const Target::Target_info* pti)
221 : Target(pti)
222 {
223 gold_assert(pti->size == size);
224 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
225 }
226 };
227
228 } // End namespace gold.
229
230 #endif // !defined(GOLD_TARGET_H)
This page took 0.036463 seconds and 5 git commands to generate.