gold/
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 // The abstract class Target is the interface for target specific
25 // support. It defines abstract methods which each target must
26 // implement. Typically there will be one target per processor, but
27 // in some cases it may be necessary to have subclasses.
28
29 // For speed and consistency we want to use inline functions to handle
30 // relocation processing. So besides implementations of the abstract
31 // methods, each target is expected to define a template
32 // specialization of the relocation functions.
33
34 #ifndef GOLD_TARGET_H
35 #define GOLD_TARGET_H
36
37 #include "elfcpp.h"
38 #include "options.h"
39 #include "parameters.h"
40 #include "debug.h"
41
42 namespace gold
43 {
44
45 class Object;
46 class Relobj;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51 class Relocatable_relocs;
52 template<int size, bool big_endian>
53 struct Relocate_info;
54 class Reloc_symbol_changes;
55 class Symbol;
56 template<int size>
57 class Sized_symbol;
58 class Symbol_table;
59 class Output_data;
60 class Output_data_got_base;
61 class Output_section;
62 class Input_objects;
63 class Task;
64 struct Symbol_location;
65
66 // The abstract class for target specific handling.
67
68 class Target
69 {
70 public:
71 virtual ~Target()
72 { }
73
74 // Return the bit size that this target implements. This should
75 // return 32 or 64.
76 int
77 get_size() const
78 { return this->pti_->size; }
79
80 // Return whether this target is big-endian.
81 bool
82 is_big_endian() const
83 { return this->pti_->is_big_endian; }
84
85 // Machine code to store in e_machine field of ELF header.
86 elfcpp::EM
87 machine_code() const
88 { return this->pti_->machine_code; }
89
90 // Processor specific flags to store in e_flags field of ELF header.
91 elfcpp::Elf_Word
92 processor_specific_flags() const
93 { return this->processor_specific_flags_; }
94
95 // Whether processor specific flags are set at least once.
96 bool
97 are_processor_specific_flags_set() const
98 { return this->are_processor_specific_flags_set_; }
99
100 // Whether this target has a specific make_symbol function.
101 bool
102 has_make_symbol() const
103 { return this->pti_->has_make_symbol; }
104
105 // Whether this target has a specific resolve function.
106 bool
107 has_resolve() const
108 { return this->pti_->has_resolve; }
109
110 // Whether this target has a specific code fill function.
111 bool
112 has_code_fill() const
113 { return this->pti_->has_code_fill; }
114
115 // Return the default name of the dynamic linker.
116 const char*
117 dynamic_linker() const
118 { return this->pti_->dynamic_linker; }
119
120 // Return the default address to use for the text segment.
121 uint64_t
122 default_text_segment_address() const
123 { return this->pti_->default_text_segment_address; }
124
125 // Return the ABI specified page size.
126 uint64_t
127 abi_pagesize() const
128 {
129 if (parameters->options().max_page_size() > 0)
130 return parameters->options().max_page_size();
131 else
132 return this->pti_->abi_pagesize;
133 }
134
135 // Return the common page size used on actual systems.
136 uint64_t
137 common_pagesize() const
138 {
139 if (parameters->options().common_page_size() > 0)
140 return std::min(parameters->options().common_page_size(),
141 this->abi_pagesize());
142 else
143 return std::min(this->pti_->common_pagesize,
144 this->abi_pagesize());
145 }
146
147 // Return whether PF_X segments must contain nothing but the contents of
148 // SHF_EXECINSTR sections (no non-executable data, no headers).
149 bool
150 isolate_execinstr() const
151 { return this->pti_->isolate_execinstr; }
152
153 uint64_t
154 rosegment_gap() const
155 { return this->pti_->rosegment_gap; }
156
157 // If we see some object files with .note.GNU-stack sections, and
158 // some objects files without them, this returns whether we should
159 // consider the object files without them to imply that the stack
160 // should be executable.
161 bool
162 is_default_stack_executable() const
163 { return this->pti_->is_default_stack_executable; }
164
165 // Return a character which may appear as a prefix for a wrap
166 // symbol. If this character appears, we strip it when checking for
167 // wrapping and add it back when forming the final symbol name.
168 // This should be '\0' if not special prefix is required, which is
169 // the normal case.
170 char
171 wrap_char() const
172 { return this->pti_->wrap_char; }
173
174 // Return the special section index which indicates a small common
175 // symbol. This will return SHN_UNDEF if there are no small common
176 // symbols.
177 elfcpp::Elf_Half
178 small_common_shndx() const
179 { return this->pti_->small_common_shndx; }
180
181 // Return values to add to the section flags for the section holding
182 // small common symbols.
183 elfcpp::Elf_Xword
184 small_common_section_flags() const
185 {
186 gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
187 return this->pti_->small_common_section_flags;
188 }
189
190 // Return the special section index which indicates a large common
191 // symbol. This will return SHN_UNDEF if there are no large common
192 // symbols.
193 elfcpp::Elf_Half
194 large_common_shndx() const
195 { return this->pti_->large_common_shndx; }
196
197 // Return values to add to the section flags for the section holding
198 // large common symbols.
199 elfcpp::Elf_Xword
200 large_common_section_flags() const
201 {
202 gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
203 return this->pti_->large_common_section_flags;
204 }
205
206 // This hook is called when an output section is created.
207 void
208 new_output_section(Output_section* os) const
209 { this->do_new_output_section(os); }
210
211 // This is called to tell the target to complete any sections it is
212 // handling. After this all sections must have their final size.
213 void
214 finalize_sections(Layout* layout, const Input_objects* input_objects,
215 Symbol_table* symtab)
216 { return this->do_finalize_sections(layout, input_objects, symtab); }
217
218 // Return the value to use for a global symbol which needs a special
219 // value in the dynamic symbol table. This will only be called if
220 // the backend first calls symbol->set_needs_dynsym_value().
221 uint64_t
222 dynsym_value(const Symbol* sym) const
223 { return this->do_dynsym_value(sym); }
224
225 // Return a string to use to fill out a code section. This is
226 // basically one or more NOPS which must fill out the specified
227 // length in bytes.
228 std::string
229 code_fill(section_size_type length) const
230 { return this->do_code_fill(length); }
231
232 // Return whether SYM is known to be defined by the ABI. This is
233 // used to avoid inappropriate warnings about undefined symbols.
234 bool
235 is_defined_by_abi(const Symbol* sym) const
236 { return this->do_is_defined_by_abi(sym); }
237
238 // Adjust the output file header before it is written out. VIEW
239 // points to the header in external form. LEN is the length.
240 void
241 adjust_elf_header(unsigned char* view, int len)
242 { return this->do_adjust_elf_header(view, len); }
243
244 // Return address and size to plug into eh_frame FDEs associated with a PLT.
245 void
246 plt_fde_location(const Output_data* plt, unsigned char* oview,
247 uint64_t* address, off_t* len) const
248 { return this->do_plt_fde_location(plt, oview, address, len); }
249
250 // Return whether NAME is a local label name. This is used to implement the
251 // --discard-locals options.
252 bool
253 is_local_label_name(const char* name) const
254 { return this->do_is_local_label_name(name); }
255
256 // Get the symbol index to use for a target specific reloc.
257 unsigned int
258 reloc_symbol_index(void* arg, unsigned int type) const
259 { return this->do_reloc_symbol_index(arg, type); }
260
261 // Get the addend to use for a target specific reloc.
262 uint64_t
263 reloc_addend(void* arg, unsigned int type, uint64_t addend) const
264 { return this->do_reloc_addend(arg, type, addend); }
265
266 // Return the PLT address to use for a global symbol.
267 uint64_t
268 plt_address_for_global(const Symbol* sym) const
269 { return this->do_plt_address_for_global(sym); }
270
271 // Return the PLT address to use for a local symbol.
272 uint64_t
273 plt_address_for_local(const Relobj* object, unsigned int symndx) const
274 { return this->do_plt_address_for_local(object, symndx); }
275
276 // Return the offset to use for the GOT_INDX'th got entry which is
277 // for a local tls symbol specified by OBJECT, SYMNDX.
278 int64_t
279 tls_offset_for_local(const Relobj* object,
280 unsigned int symndx,
281 unsigned int got_indx) const
282 { return do_tls_offset_for_local(object, symndx, got_indx); }
283
284 // Return the offset to use for the GOT_INDX'th got entry which is
285 // for global tls symbol GSYM.
286 int64_t
287 tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const
288 { return do_tls_offset_for_global(gsym, got_indx); }
289
290 // For targets that use function descriptors, if LOC is the location
291 // of a function, modify it to point at the function entry location.
292 void
293 function_location(Symbol_location* loc) const
294 { return do_function_location(loc); }
295
296 // Return whether this target can use relocation types to determine
297 // if a function's address is taken.
298 bool
299 can_check_for_function_pointers() const
300 { return this->do_can_check_for_function_pointers(); }
301
302 // Return whether a relocation to a merged section can be processed
303 // to retrieve the contents.
304 bool
305 can_icf_inline_merge_sections () const
306 { return this->pti_->can_icf_inline_merge_sections; }
307
308 // Whether a section called SECTION_NAME may have function pointers to
309 // sections not eligible for safe ICF folding.
310 virtual bool
311 section_may_have_icf_unsafe_pointers(const char* section_name) const
312 { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
313
314 // Return the base to use for the PC value in an FDE when it is
315 // encoded using DW_EH_PE_datarel. This does not appear to be
316 // documented anywhere, but it is target specific. Any use of
317 // DW_EH_PE_datarel in gcc requires defining a special macro
318 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
319 uint64_t
320 ehframe_datarel_base() const
321 { return this->do_ehframe_datarel_base(); }
322
323 // Return true if a reference to SYM from a reloc of type R_TYPE
324 // means that the current function may call an object compiled
325 // without -fsplit-stack. SYM is known to be defined in an object
326 // compiled without -fsplit-stack.
327 bool
328 is_call_to_non_split(const Symbol* sym, unsigned int r_type) const
329 { return this->do_is_call_to_non_split(sym, r_type); }
330
331 // A function starts at OFFSET in section SHNDX in OBJECT. That
332 // function was compiled with -fsplit-stack, but it refers to a
333 // function which was compiled without -fsplit-stack. VIEW is a
334 // modifiable view of the section; VIEW_SIZE is the size of the
335 // view. The target has to adjust the function so that it allocates
336 // enough stack.
337 void
338 calls_non_split(Relobj* object, unsigned int shndx,
339 section_offset_type fnoffset, section_size_type fnsize,
340 unsigned char* view, section_size_type view_size,
341 std::string* from, std::string* to) const
342 {
343 this->do_calls_non_split(object, shndx, fnoffset, fnsize, view, view_size,
344 from, to);
345 }
346
347 // Make an ELF object.
348 template<int size, bool big_endian>
349 Object*
350 make_elf_object(const std::string& name, Input_file* input_file,
351 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
352 { return this->do_make_elf_object(name, input_file, offset, ehdr); }
353
354 // Make an output section.
355 Output_section*
356 make_output_section(const char* name, elfcpp::Elf_Word type,
357 elfcpp::Elf_Xword flags)
358 { return this->do_make_output_section(name, type, flags); }
359
360 // Return true if target wants to perform relaxation.
361 bool
362 may_relax() const
363 {
364 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
365 if (is_debugging_enabled(DEBUG_RELAXATION))
366 return true;
367
368 return this->do_may_relax();
369 }
370
371 // Perform a relaxation pass. Return true if layout may be changed.
372 bool
373 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
374 Layout* layout, const Task* task)
375 {
376 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
377 if (is_debugging_enabled(DEBUG_RELAXATION))
378 return pass < 2;
379
380 return this->do_relax(pass, input_objects, symtab, layout, task);
381 }
382
383 // Return the target-specific name of attributes section. This is
384 // NULL if a target does not use attributes section or if it uses
385 // the default section name ".gnu.attributes".
386 const char*
387 attributes_section() const
388 { return this->pti_->attributes_section; }
389
390 // Return the vendor name of vendor attributes.
391 const char*
392 attributes_vendor() const
393 { return this->pti_->attributes_vendor; }
394
395 // Whether a section called NAME is an attribute section.
396 bool
397 is_attributes_section(const char* name) const
398 {
399 return ((this->pti_->attributes_section != NULL
400 && strcmp(name, this->pti_->attributes_section) == 0)
401 || strcmp(name, ".gnu.attributes") == 0);
402 }
403
404 // Return a bit mask of argument types for attribute with TAG.
405 int
406 attribute_arg_type(int tag) const
407 { return this->do_attribute_arg_type(tag); }
408
409 // Return the attribute tag of the position NUM in the list of fixed
410 // attributes. Normally there is no reordering and
411 // attributes_order(NUM) == NUM.
412 int
413 attributes_order(int num) const
414 { return this->do_attributes_order(num); }
415
416 // When a target is selected as the default target, we call this method,
417 // which may be used for expensive, target-specific initialization.
418 void
419 select_as_default_target()
420 { this->do_select_as_default_target(); }
421
422 // Return the value to store in the EI_OSABI field in the ELF
423 // header.
424 elfcpp::ELFOSABI
425 osabi() const
426 { return this->osabi_; }
427
428 // Set the value to store in the EI_OSABI field in the ELF header.
429 void
430 set_osabi(elfcpp::ELFOSABI osabi)
431 { this->osabi_ = osabi; }
432
433 // Define target-specific standard symbols.
434 void
435 define_standard_symbols(Symbol_table* symtab, Layout* layout)
436 { this->do_define_standard_symbols(symtab, layout); }
437
438 // Return the output section name to use given an input section
439 // name, or NULL if no target specific name mapping is required.
440 // Set *PLEN to the length of the name if returning non-NULL.
441 const char*
442 output_section_name(const Relobj* relobj,
443 const char* name,
444 size_t* plen) const
445 { return this->do_output_section_name(relobj, name, plen); }
446
447 // Add any special sections for this symbol to the gc work list.
448 void
449 gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const
450 { this->do_gc_mark_symbol(symtab, sym); }
451
452 // Return the name of the entry point symbol.
453 const char*
454 entry_symbol_name() const
455 { return this->pti_->entry_symbol_name; }
456
457 protected:
458 // This struct holds the constant information for a child class. We
459 // use a struct to avoid the overhead of virtual function calls for
460 // simple information.
461 struct Target_info
462 {
463 // Address size (32 or 64).
464 int size;
465 // Whether the target is big endian.
466 bool is_big_endian;
467 // The code to store in the e_machine field of the ELF header.
468 elfcpp::EM machine_code;
469 // Whether this target has a specific make_symbol function.
470 bool has_make_symbol;
471 // Whether this target has a specific resolve function.
472 bool has_resolve;
473 // Whether this target has a specific code fill function.
474 bool has_code_fill;
475 // Whether an object file with no .note.GNU-stack sections implies
476 // that the stack should be executable.
477 bool is_default_stack_executable;
478 // Whether a relocation to a merged section can be processed to
479 // retrieve the contents.
480 bool can_icf_inline_merge_sections;
481 // Prefix character to strip when checking for wrapping.
482 char wrap_char;
483 // The default dynamic linker name.
484 const char* dynamic_linker;
485 // The default text segment address.
486 uint64_t default_text_segment_address;
487 // The ABI specified page size.
488 uint64_t abi_pagesize;
489 // The common page size used by actual implementations.
490 uint64_t common_pagesize;
491 // Whether PF_X segments must contain nothing but the contents of
492 // SHF_EXECINSTR sections (no non-executable data, no headers).
493 bool isolate_execinstr;
494 // If nonzero, distance from the text segment to the read-only segment.
495 uint64_t rosegment_gap;
496 // The special section index for small common symbols; SHN_UNDEF
497 // if none.
498 elfcpp::Elf_Half small_common_shndx;
499 // The special section index for large common symbols; SHN_UNDEF
500 // if none.
501 elfcpp::Elf_Half large_common_shndx;
502 // Section flags for small common section.
503 elfcpp::Elf_Xword small_common_section_flags;
504 // Section flags for large common section.
505 elfcpp::Elf_Xword large_common_section_flags;
506 // Name of attributes section if it is not ".gnu.attributes".
507 const char* attributes_section;
508 // Vendor name of vendor attributes.
509 const char* attributes_vendor;
510 // Name of the main entry point to the program.
511 const char* entry_symbol_name;
512 };
513
514 Target(const Target_info* pti)
515 : pti_(pti), processor_specific_flags_(0),
516 are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
517 { }
518
519 // Virtual function which may be implemented by the child class.
520 virtual void
521 do_new_output_section(Output_section*) const
522 { }
523
524 // Virtual function which may be implemented by the child class.
525 virtual void
526 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
527 { }
528
529 // Virtual function which may be implemented by the child class.
530 virtual uint64_t
531 do_dynsym_value(const Symbol*) const
532 { gold_unreachable(); }
533
534 // Virtual function which must be implemented by the child class if
535 // needed.
536 virtual std::string
537 do_code_fill(section_size_type) const
538 { gold_unreachable(); }
539
540 // Virtual function which may be implemented by the child class.
541 virtual bool
542 do_is_defined_by_abi(const Symbol*) const
543 { return false; }
544
545 // Adjust the output file header before it is written out. VIEW
546 // points to the header in external form. LEN is the length, and
547 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
548 // By default, we set the EI_OSABI field if requested (in
549 // Sized_target).
550 virtual void
551 do_adjust_elf_header(unsigned char*, int) = 0;
552
553 // Return address and size to plug into eh_frame FDEs associated with a PLT.
554 virtual void
555 do_plt_fde_location(const Output_data* plt, unsigned char* oview,
556 uint64_t* address, off_t* len) const;
557
558 // Virtual function which may be overridden by the child class.
559 virtual bool
560 do_is_local_label_name(const char*) const;
561
562 // Virtual function that must be overridden by a target which uses
563 // target specific relocations.
564 virtual unsigned int
565 do_reloc_symbol_index(void*, unsigned int) const
566 { gold_unreachable(); }
567
568 // Virtual function that must be overridden by a target which uses
569 // target specific relocations.
570 virtual uint64_t
571 do_reloc_addend(void*, unsigned int, uint64_t) const
572 { gold_unreachable(); }
573
574 // Virtual functions that must be overridden by a target that uses
575 // STT_GNU_IFUNC symbols.
576 virtual uint64_t
577 do_plt_address_for_global(const Symbol*) const
578 { gold_unreachable(); }
579
580 virtual uint64_t
581 do_plt_address_for_local(const Relobj*, unsigned int) const
582 { gold_unreachable(); }
583
584 virtual int64_t
585 do_tls_offset_for_local(const Relobj*, unsigned int, unsigned int) const
586 { gold_unreachable(); }
587
588 virtual int64_t
589 do_tls_offset_for_global(Symbol*, unsigned int) const
590 { gold_unreachable(); }
591
592 virtual void
593 do_function_location(Symbol_location*) const = 0;
594
595 // Virtual function which may be overriden by the child class.
596 virtual bool
597 do_can_check_for_function_pointers() const
598 { return false; }
599
600 // Virtual function which may be overridden by the child class. We
601 // recognize some default sections for which we don't care whether
602 // they have function pointers.
603 virtual bool
604 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
605 {
606 // We recognize sections for normal vtables, construction vtables and
607 // EH frames.
608 return (!is_prefix_of(".rodata._ZTV", section_name)
609 && !is_prefix_of(".data.rel.ro._ZTV", section_name)
610 && !is_prefix_of(".rodata._ZTC", section_name)
611 && !is_prefix_of(".data.rel.ro._ZTC", section_name)
612 && !is_prefix_of(".eh_frame", section_name));
613 }
614
615 virtual uint64_t
616 do_ehframe_datarel_base() const
617 { gold_unreachable(); }
618
619 // Virtual function which may be overridden by the child class. The
620 // default implementation is that any function not defined by the
621 // ABI is a call to a non-split function.
622 virtual bool
623 do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
624
625 // Virtual function which may be overridden by the child class.
626 virtual void
627 do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
628 section_size_type, unsigned char*, section_size_type,
629 std::string*, std::string*) const;
630
631 // make_elf_object hooks. There are four versions of these for
632 // different address sizes and endianness.
633
634 // Set processor specific flags.
635 void
636 set_processor_specific_flags(elfcpp::Elf_Word flags)
637 {
638 this->processor_specific_flags_ = flags;
639 this->are_processor_specific_flags_set_ = true;
640 }
641
642 #ifdef HAVE_TARGET_32_LITTLE
643 // Virtual functions which may be overridden by the child class.
644 virtual Object*
645 do_make_elf_object(const std::string&, Input_file*, off_t,
646 const elfcpp::Ehdr<32, false>&);
647 #endif
648
649 #ifdef HAVE_TARGET_32_BIG
650 // Virtual functions which may be overridden by the child class.
651 virtual Object*
652 do_make_elf_object(const std::string&, Input_file*, off_t,
653 const elfcpp::Ehdr<32, true>&);
654 #endif
655
656 #ifdef HAVE_TARGET_64_LITTLE
657 // Virtual functions which may be overridden by the child class.
658 virtual Object*
659 do_make_elf_object(const std::string&, Input_file*, off_t,
660 const elfcpp::Ehdr<64, false>& ehdr);
661 #endif
662
663 #ifdef HAVE_TARGET_64_BIG
664 // Virtual functions which may be overridden by the child class.
665 virtual Object*
666 do_make_elf_object(const std::string& name, Input_file* input_file,
667 off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
668 #endif
669
670 // Virtual functions which may be overridden by the child class.
671 virtual Output_section*
672 do_make_output_section(const char* name, elfcpp::Elf_Word type,
673 elfcpp::Elf_Xword flags);
674
675 // Virtual function which may be overridden by the child class.
676 virtual bool
677 do_may_relax() const
678 { return parameters->options().relax(); }
679
680 // Virtual function which may be overridden by the child class.
681 virtual bool
682 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
683 { return false; }
684
685 // A function for targets to call. Return whether BYTES/LEN matches
686 // VIEW/VIEW_SIZE at OFFSET.
687 bool
688 match_view(const unsigned char* view, section_size_type view_size,
689 section_offset_type offset, const char* bytes, size_t len) const;
690
691 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
692 // for LEN bytes.
693 void
694 set_view_to_nop(unsigned char* view, section_size_type view_size,
695 section_offset_type offset, size_t len) const;
696
697 // This must be overridden by the child class if it has target-specific
698 // attributes subsection in the attribute section.
699 virtual int
700 do_attribute_arg_type(int) const
701 { gold_unreachable(); }
702
703 // This may be overridden by the child class.
704 virtual int
705 do_attributes_order(int num) const
706 { return num; }
707
708 // This may be overridden by the child class.
709 virtual void
710 do_select_as_default_target()
711 { }
712
713 // This may be overridden by the child class.
714 virtual void
715 do_define_standard_symbols(Symbol_table*, Layout*)
716 { }
717
718 // This may be overridden by the child class.
719 virtual const char*
720 do_output_section_name(const Relobj*, const char*, size_t*) const
721 { return NULL; }
722
723 // This may be overridden by the child class.
724 virtual void
725 do_gc_mark_symbol(Symbol_table*, Symbol*) const
726 { }
727
728 private:
729 // The implementations of the four do_make_elf_object virtual functions are
730 // almost identical except for their sizes and endianness. We use a template.
731 // for their implementations.
732 template<int size, bool big_endian>
733 inline Object*
734 do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
735 const elfcpp::Ehdr<size, big_endian>&);
736
737 Target(const Target&);
738 Target& operator=(const Target&);
739
740 // The target information.
741 const Target_info* pti_;
742 // Processor-specific flags.
743 elfcpp::Elf_Word processor_specific_flags_;
744 // Whether the processor-specific flags are set at least once.
745 bool are_processor_specific_flags_set_;
746 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
747 // the ELF header. This is handled at this level because it is
748 // OS-specific rather than processor-specific.
749 elfcpp::ELFOSABI osabi_;
750 };
751
752 // The abstract class for a specific size and endianness of target.
753 // Each actual target implementation class should derive from an
754 // instantiation of Sized_target.
755
756 template<int size, bool big_endian>
757 class Sized_target : public Target
758 {
759 public:
760 // Make a new symbol table entry for the target. This should be
761 // overridden by a target which needs additional information in the
762 // symbol table. This will only be called if has_make_symbol()
763 // returns true.
764 virtual Sized_symbol<size>*
765 make_symbol() const
766 { gold_unreachable(); }
767
768 // Resolve a symbol for the target. This should be overridden by a
769 // target which needs to take special action. TO is the
770 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
771 // VERSION is the version of SYM. This will only be called if
772 // has_resolve() returns true.
773 virtual void
774 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
775 const char*)
776 { gold_unreachable(); }
777
778 // Process the relocs for a section, and record information of the
779 // mapping from source to destination sections. This mapping is later
780 // used to determine unreferenced garbage sections. This procedure is
781 // only called during garbage collection.
782 virtual void
783 gc_process_relocs(Symbol_table* symtab,
784 Layout* layout,
785 Sized_relobj_file<size, big_endian>* object,
786 unsigned int data_shndx,
787 unsigned int sh_type,
788 const unsigned char* prelocs,
789 size_t reloc_count,
790 Output_section* output_section,
791 bool needs_special_offset_handling,
792 size_t local_symbol_count,
793 const unsigned char* plocal_symbols) = 0;
794
795 // Scan the relocs for a section, and record any information
796 // required for the symbol. SYMTAB is the symbol table. OBJECT is
797 // the object in which the section appears. DATA_SHNDX is the
798 // section index that these relocs apply to. SH_TYPE is the type of
799 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to
800 // the relocation data. RELOC_COUNT is the number of relocs.
801 // LOCAL_SYMBOL_COUNT is the number of local symbols.
802 // OUTPUT_SECTION is the output section.
803 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
804 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
805 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
806 // pointers to the global symbol table from OBJECT.
807 virtual void
808 scan_relocs(Symbol_table* symtab,
809 Layout* layout,
810 Sized_relobj_file<size, big_endian>* object,
811 unsigned int data_shndx,
812 unsigned int sh_type,
813 const unsigned char* prelocs,
814 size_t reloc_count,
815 Output_section* output_section,
816 bool needs_special_offset_handling,
817 size_t local_symbol_count,
818 const unsigned char* plocal_symbols) = 0;
819
820 // Relocate section data. SH_TYPE is the type of the relocation
821 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
822 // information. RELOC_COUNT is the number of relocs.
823 // OUTPUT_SECTION is the output section.
824 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
825 // to correspond to the output section. VIEW is a view into the
826 // output file holding the section contents, VIEW_ADDRESS is the
827 // virtual address of the view, and VIEW_SIZE is the size of the
828 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
829 // parameters refer to the complete output section data, not just
830 // the input section data.
831 virtual void
832 relocate_section(const Relocate_info<size, big_endian>*,
833 unsigned int sh_type,
834 const unsigned char* prelocs,
835 size_t reloc_count,
836 Output_section* output_section,
837 bool needs_special_offset_handling,
838 unsigned char* view,
839 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
840 section_size_type view_size,
841 const Reloc_symbol_changes*) = 0;
842
843 // Scan the relocs during a relocatable link. The parameters are
844 // like scan_relocs, with an additional Relocatable_relocs
845 // parameter, used to record the disposition of the relocs.
846 virtual void
847 scan_relocatable_relocs(Symbol_table* symtab,
848 Layout* layout,
849 Sized_relobj_file<size, big_endian>* object,
850 unsigned int data_shndx,
851 unsigned int sh_type,
852 const unsigned char* prelocs,
853 size_t reloc_count,
854 Output_section* output_section,
855 bool needs_special_offset_handling,
856 size_t local_symbol_count,
857 const unsigned char* plocal_symbols,
858 Relocatable_relocs*) = 0;
859
860 // Emit relocations for a section during a relocatable link, and for
861 // --emit-relocs. The parameters are like relocate_section, with
862 // additional parameters for the view of the output reloc section.
863 virtual void
864 relocate_relocs(const Relocate_info<size, big_endian>*,
865 unsigned int sh_type,
866 const unsigned char* prelocs,
867 size_t reloc_count,
868 Output_section* output_section,
869 typename elfcpp::Elf_types<size>::Elf_Off
870 offset_in_output_section,
871 const Relocatable_relocs*,
872 unsigned char* view,
873 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
874 section_size_type view_size,
875 unsigned char* reloc_view,
876 section_size_type reloc_view_size) = 0;
877
878 // Perform target-specific processing in a relocatable link. This is
879 // only used if we use the relocation strategy RELOC_SPECIAL.
880 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
881 // section type. PRELOC_IN points to the original relocation. RELNUM is
882 // the index number of the relocation in the relocation section.
883 // OUTPUT_SECTION is the output section to which the relocation is applied.
884 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
885 // within the output section. VIEW points to the output view of the
886 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE
887 // is the size of the output view and PRELOC_OUT points to the new
888 // relocation in the output object.
889 //
890 // A target only needs to override this if the generic code in
891 // target-reloc.h cannot handle some relocation types.
892
893 virtual void
894 relocate_special_relocatable(const Relocate_info<size, big_endian>*
895 /*relinfo */,
896 unsigned int /* sh_type */,
897 const unsigned char* /* preloc_in */,
898 size_t /* relnum */,
899 Output_section* /* output_section */,
900 typename elfcpp::Elf_types<size>::Elf_Off
901 /* offset_in_output_section */,
902 unsigned char* /* view */,
903 typename elfcpp::Elf_types<size>::Elf_Addr
904 /* view_address */,
905 section_size_type /* view_size */,
906 unsigned char* /* preloc_out*/)
907 { gold_unreachable(); }
908
909 // Return the number of entries in the GOT. This is only used for
910 // laying out the incremental link info sections. A target needs
911 // to implement this to support incremental linking.
912
913 virtual unsigned int
914 got_entry_count() const
915 { gold_unreachable(); }
916
917 // Return the number of entries in the PLT. This is only used for
918 // laying out the incremental link info sections. A target needs
919 // to implement this to support incremental linking.
920
921 virtual unsigned int
922 plt_entry_count() const
923 { gold_unreachable(); }
924
925 // Return the offset of the first non-reserved PLT entry. This is
926 // only used for laying out the incremental link info sections.
927 // A target needs to implement this to support incremental linking.
928
929 virtual unsigned int
930 first_plt_entry_offset() const
931 { gold_unreachable(); }
932
933 // Return the size of each PLT entry. This is only used for
934 // laying out the incremental link info sections. A target needs
935 // to implement this to support incremental linking.
936
937 virtual unsigned int
938 plt_entry_size() const
939 { gold_unreachable(); }
940
941 // Create the GOT and PLT sections for an incremental update.
942 // A target needs to implement this to support incremental linking.
943
944 virtual Output_data_got_base*
945 init_got_plt_for_update(Symbol_table*,
946 Layout*,
947 unsigned int /* got_count */,
948 unsigned int /* plt_count */)
949 { gold_unreachable(); }
950
951 // Reserve a GOT entry for a local symbol, and regenerate any
952 // necessary dynamic relocations.
953 virtual void
954 reserve_local_got_entry(unsigned int /* got_index */,
955 Sized_relobj<size, big_endian>* /* obj */,
956 unsigned int /* r_sym */,
957 unsigned int /* got_type */)
958 { gold_unreachable(); }
959
960 // Reserve a GOT entry for a global symbol, and regenerate any
961 // necessary dynamic relocations.
962 virtual void
963 reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
964 unsigned int /* got_type */)
965 { gold_unreachable(); }
966
967 // Register an existing PLT entry for a global symbol.
968 // A target needs to implement this to support incremental linking.
969
970 virtual void
971 register_global_plt_entry(Symbol_table*, Layout*,
972 unsigned int /* plt_index */,
973 Symbol*)
974 { gold_unreachable(); }
975
976 // Force a COPY relocation for a given symbol.
977 // A target needs to implement this to support incremental linking.
978
979 virtual void
980 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
981 { gold_unreachable(); }
982
983 // Apply an incremental relocation.
984
985 virtual void
986 apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
987 typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
988 unsigned int /* r_type */,
989 typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
990 const Symbol* /* gsym */,
991 unsigned char* /* view */,
992 typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
993 section_size_type /* view_size */)
994 { gold_unreachable(); }
995
996 // Handle target specific gc actions when adding a gc reference from
997 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
998 // and DST_OFF.
999 void
1000 gc_add_reference(Symbol_table* symtab,
1001 Object* src_obj,
1002 unsigned int src_shndx,
1003 Object* dst_obj,
1004 unsigned int dst_shndx,
1005 typename elfcpp::Elf_types<size>::Elf_Addr dst_off) const
1006 {
1007 this->do_gc_add_reference(symtab, src_obj, src_shndx,
1008 dst_obj, dst_shndx, dst_off);
1009 }
1010
1011 protected:
1012 Sized_target(const Target::Target_info* pti)
1013 : Target(pti)
1014 {
1015 gold_assert(pti->size == size);
1016 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
1017 }
1018
1019 // Set the EI_OSABI field if requested.
1020 virtual void
1021 do_adjust_elf_header(unsigned char*, int);
1022
1023 // Handle target specific gc actions when adding a gc reference.
1024 virtual void
1025 do_gc_add_reference(Symbol_table*, Object*, unsigned int,
1026 Object*, unsigned int,
1027 typename elfcpp::Elf_types<size>::Elf_Addr) const
1028 { }
1029
1030 virtual void
1031 do_function_location(Symbol_location*) const
1032 { }
1033 };
1034
1035 } // End namespace gold.
1036
1037 #endif // !defined(GOLD_TARGET_H)
This page took 0.051449 seconds and 5 git commands to generate.