* gold/incremental.cc (Sized_incremental_binary::do_process_got_plt):
[deliverable/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35
36 #include "elfcpp.h"
37 #include "options.h"
38 #include "parameters.h"
39 #include "debug.h"
40
41 namespace gold
42 {
43
44 class Object;
45 class Relobj;
46 template<int size, bool big_endian>
47 class Sized_relobj;
48 template<int size, bool big_endian>
49 class Sized_relobj_file;
50 class Relocatable_relocs;
51 template<int size, bool big_endian>
52 class Relocate_info;
53 class Reloc_symbol_changes;
54 class Symbol;
55 template<int size>
56 class Sized_symbol;
57 class Symbol_table;
58 class Output_data;
59 class Output_data_got_base;
60 class Output_section;
61 class Input_objects;
62 class Task;
63
64 // The abstract class for target specific handling.
65
66 class Target
67 {
68 public:
69 virtual ~Target()
70 { }
71
72 // Return the bit size that this target implements. This should
73 // return 32 or 64.
74 int
75 get_size() const
76 { return this->pti_->size; }
77
78 // Return whether this target is big-endian.
79 bool
80 is_big_endian() const
81 { return this->pti_->is_big_endian; }
82
83 // Machine code to store in e_machine field of ELF header.
84 elfcpp::EM
85 machine_code() const
86 { return this->pti_->machine_code; }
87
88 // Processor specific flags to store in e_flags field of ELF header.
89 elfcpp::Elf_Word
90 processor_specific_flags() const
91 { return this->processor_specific_flags_; }
92
93 // Whether processor specific flags are set at least once.
94 bool
95 are_processor_specific_flags_set() const
96 { return this->are_processor_specific_flags_set_; }
97
98 // Whether this target has a specific make_symbol function.
99 bool
100 has_make_symbol() const
101 { return this->pti_->has_make_symbol; }
102
103 // Whether this target has a specific resolve function.
104 bool
105 has_resolve() const
106 { return this->pti_->has_resolve; }
107
108 // Whether this target has a specific code fill function.
109 bool
110 has_code_fill() const
111 { return this->pti_->has_code_fill; }
112
113 // Return the default name of the dynamic linker.
114 const char*
115 dynamic_linker() const
116 { return this->pti_->dynamic_linker; }
117
118 // Return the default address to use for the text segment.
119 uint64_t
120 default_text_segment_address() const
121 { return this->pti_->default_text_segment_address; }
122
123 // Return the ABI specified page size.
124 uint64_t
125 abi_pagesize() const
126 {
127 if (parameters->options().max_page_size() > 0)
128 return parameters->options().max_page_size();
129 else
130 return this->pti_->abi_pagesize;
131 }
132
133 // Return the common page size used on actual systems.
134 uint64_t
135 common_pagesize() const
136 {
137 if (parameters->options().common_page_size() > 0)
138 return std::min(parameters->options().common_page_size(),
139 this->abi_pagesize());
140 else
141 return std::min(this->pti_->common_pagesize,
142 this->abi_pagesize());
143 }
144
145 // If we see some object files with .note.GNU-stack sections, and
146 // some objects files without them, this returns whether we should
147 // consider the object files without them to imply that the stack
148 // should be executable.
149 bool
150 is_default_stack_executable() const
151 { return this->pti_->is_default_stack_executable; }
152
153 // Return a character which may appear as a prefix for a wrap
154 // symbol. If this character appears, we strip it when checking for
155 // wrapping and add it back when forming the final symbol name.
156 // This should be '\0' if not special prefix is required, which is
157 // the normal case.
158 char
159 wrap_char() const
160 { return this->pti_->wrap_char; }
161
162 // Return the special section index which indicates a small common
163 // symbol. This will return SHN_UNDEF if there are no small common
164 // symbols.
165 elfcpp::Elf_Half
166 small_common_shndx() const
167 { return this->pti_->small_common_shndx; }
168
169 // Return values to add to the section flags for the section holding
170 // small common symbols.
171 elfcpp::Elf_Xword
172 small_common_section_flags() const
173 {
174 gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
175 return this->pti_->small_common_section_flags;
176 }
177
178 // Return the special section index which indicates a large common
179 // symbol. This will return SHN_UNDEF if there are no large common
180 // symbols.
181 elfcpp::Elf_Half
182 large_common_shndx() const
183 { return this->pti_->large_common_shndx; }
184
185 // Return values to add to the section flags for the section holding
186 // large common symbols.
187 elfcpp::Elf_Xword
188 large_common_section_flags() const
189 {
190 gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
191 return this->pti_->large_common_section_flags;
192 }
193
194 // This hook is called when an output section is created.
195 void
196 new_output_section(Output_section* os) const
197 { this->do_new_output_section(os); }
198
199 // This is called to tell the target to complete any sections it is
200 // handling. After this all sections must have their final size.
201 void
202 finalize_sections(Layout* layout, const Input_objects* input_objects,
203 Symbol_table* symtab)
204 { return this->do_finalize_sections(layout, input_objects, symtab); }
205
206 // Return the value to use for a global symbol which needs a special
207 // value in the dynamic symbol table. This will only be called if
208 // the backend first calls symbol->set_needs_dynsym_value().
209 uint64_t
210 dynsym_value(const Symbol* sym) const
211 { return this->do_dynsym_value(sym); }
212
213 // Return a string to use to fill out a code section. This is
214 // basically one or more NOPS which must fill out the specified
215 // length in bytes.
216 std::string
217 code_fill(section_size_type length) const
218 { return this->do_code_fill(length); }
219
220 // Return whether SYM is known to be defined by the ABI. This is
221 // used to avoid inappropriate warnings about undefined symbols.
222 bool
223 is_defined_by_abi(const Symbol* sym) const
224 { return this->do_is_defined_by_abi(sym); }
225
226 // Adjust the output file header before it is written out. VIEW
227 // points to the header in external form. LEN is the length.
228 void
229 adjust_elf_header(unsigned char* view, int len) const
230 { return this->do_adjust_elf_header(view, len); }
231
232 // Return whether NAME is a local label name. This is used to implement the
233 // --discard-locals options.
234 bool
235 is_local_label_name(const char* name) const
236 { return this->do_is_local_label_name(name); }
237
238 // Get the symbol index to use for a target specific reloc.
239 unsigned int
240 reloc_symbol_index(void* arg, unsigned int type) const
241 { return this->do_reloc_symbol_index(arg, type); }
242
243 // Get the addend to use for a target specific reloc.
244 uint64_t
245 reloc_addend(void* arg, unsigned int type, uint64_t addend) const
246 { return this->do_reloc_addend(arg, type, addend); }
247
248 // Return the PLT address to use for a global symbol. This is used
249 // for STT_GNU_IFUNC symbols. The symbol's plt_offset is relative
250 // to this PLT address.
251 uint64_t
252 plt_address_for_global(const Symbol* sym) const
253 { return this->do_plt_address_for_global(sym); }
254
255 // Return the PLT address to use for a local symbol. This is used
256 // for STT_GNU_IFUNC symbols. The symbol's plt_offset is relative
257 // to this PLT address.
258 uint64_t
259 plt_address_for_local(const Relobj* object, unsigned int symndx) const
260 { return this->do_plt_address_for_local(object, symndx); }
261
262 // Return whether this target can use relocation types to determine
263 // if a function's address is taken.
264 bool
265 can_check_for_function_pointers() const
266 { return this->do_can_check_for_function_pointers(); }
267
268 // Return whether a relocation to a merged section can be processed
269 // to retrieve the contents.
270 bool
271 can_icf_inline_merge_sections () const
272 { return this->pti_->can_icf_inline_merge_sections; }
273
274 // Whether a section called SECTION_NAME may have function pointers to
275 // sections not eligible for safe ICF folding.
276 virtual bool
277 section_may_have_icf_unsafe_pointers(const char* section_name) const
278 { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
279
280 // Return the base to use for the PC value in an FDE when it is
281 // encoded using DW_EH_PE_datarel. This does not appear to be
282 // documented anywhere, but it is target specific. Any use of
283 // DW_EH_PE_datarel in gcc requires defining a special macro
284 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
285 uint64_t
286 ehframe_datarel_base() const
287 { return this->do_ehframe_datarel_base(); }
288
289 // Return true if a reference to SYM from a reloc of type R_TYPE
290 // means that the current function may call an object compiled
291 // without -fsplit-stack. SYM is known to be defined in an object
292 // compiled without -fsplit-stack.
293 bool
294 is_call_to_non_split(const Symbol* sym, unsigned int r_type) const
295 { return this->do_is_call_to_non_split(sym, r_type); }
296
297 // A function starts at OFFSET in section SHNDX in OBJECT. That
298 // function was compiled with -fsplit-stack, but it refers to a
299 // function which was compiled without -fsplit-stack. VIEW is a
300 // modifiable view of the section; VIEW_SIZE is the size of the
301 // view. The target has to adjust the function so that it allocates
302 // enough stack.
303 void
304 calls_non_split(Relobj* object, unsigned int shndx,
305 section_offset_type fnoffset, section_size_type fnsize,
306 unsigned char* view, section_size_type view_size,
307 std::string* from, std::string* to) const
308 {
309 this->do_calls_non_split(object, shndx, fnoffset, fnsize, view, view_size,
310 from, to);
311 }
312
313 // Make an ELF object.
314 template<int size, bool big_endian>
315 Object*
316 make_elf_object(const std::string& name, Input_file* input_file,
317 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
318 { return this->do_make_elf_object(name, input_file, offset, ehdr); }
319
320 // Make an output section.
321 Output_section*
322 make_output_section(const char* name, elfcpp::Elf_Word type,
323 elfcpp::Elf_Xword flags)
324 { return this->do_make_output_section(name, type, flags); }
325
326 // Return true if target wants to perform relaxation.
327 bool
328 may_relax() const
329 {
330 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
331 if (is_debugging_enabled(DEBUG_RELAXATION))
332 return true;
333
334 return this->do_may_relax();
335 }
336
337 // Perform a relaxation pass. Return true if layout may be changed.
338 bool
339 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
340 Layout* layout, const Task* task)
341 {
342 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
343 if (is_debugging_enabled(DEBUG_RELAXATION))
344 return pass < 2;
345
346 return this->do_relax(pass, input_objects, symtab, layout, task);
347 }
348
349 // Return the target-specific name of attributes section. This is
350 // NULL if a target does not use attributes section or if it uses
351 // the default section name ".gnu.attributes".
352 const char*
353 attributes_section() const
354 { return this->pti_->attributes_section; }
355
356 // Return the vendor name of vendor attributes.
357 const char*
358 attributes_vendor() const
359 { return this->pti_->attributes_vendor; }
360
361 // Whether a section called NAME is an attribute section.
362 bool
363 is_attributes_section(const char* name) const
364 {
365 return ((this->pti_->attributes_section != NULL
366 && strcmp(name, this->pti_->attributes_section) == 0)
367 || strcmp(name, ".gnu.attributes") == 0);
368 }
369
370 // Return a bit mask of argument types for attribute with TAG.
371 int
372 attribute_arg_type(int tag) const
373 { return this->do_attribute_arg_type(tag); }
374
375 // Return the attribute tag of the position NUM in the list of fixed
376 // attributes. Normally there is no reordering and
377 // attributes_order(NUM) == NUM.
378 int
379 attributes_order(int num) const
380 { return this->do_attributes_order(num); }
381
382 // When a target is selected as the default target, we call this method,
383 // which may be used for expensive, target-specific initialization.
384 void
385 select_as_default_target()
386 { this->do_select_as_default_target(); }
387
388 // Return the value to store in the EI_OSABI field in the ELF
389 // header.
390 elfcpp::ELFOSABI
391 osabi() const
392 { return this->osabi_; }
393
394 // Set the value to store in the EI_OSABI field in the ELF header.
395 void
396 set_osabi(elfcpp::ELFOSABI osabi)
397 { this->osabi_ = osabi; }
398
399 protected:
400 // This struct holds the constant information for a child class. We
401 // use a struct to avoid the overhead of virtual function calls for
402 // simple information.
403 struct Target_info
404 {
405 // Address size (32 or 64).
406 int size;
407 // Whether the target is big endian.
408 bool is_big_endian;
409 // The code to store in the e_machine field of the ELF header.
410 elfcpp::EM machine_code;
411 // Whether this target has a specific make_symbol function.
412 bool has_make_symbol;
413 // Whether this target has a specific resolve function.
414 bool has_resolve;
415 // Whether this target has a specific code fill function.
416 bool has_code_fill;
417 // Whether an object file with no .note.GNU-stack sections implies
418 // that the stack should be executable.
419 bool is_default_stack_executable;
420 // Whether a relocation to a merged section can be processed to
421 // retrieve the contents.
422 bool can_icf_inline_merge_sections;
423 // Prefix character to strip when checking for wrapping.
424 char wrap_char;
425 // The default dynamic linker name.
426 const char* dynamic_linker;
427 // The default text segment address.
428 uint64_t default_text_segment_address;
429 // The ABI specified page size.
430 uint64_t abi_pagesize;
431 // The common page size used by actual implementations.
432 uint64_t common_pagesize;
433 // The special section index for small common symbols; SHN_UNDEF
434 // if none.
435 elfcpp::Elf_Half small_common_shndx;
436 // The special section index for large common symbols; SHN_UNDEF
437 // if none.
438 elfcpp::Elf_Half large_common_shndx;
439 // Section flags for small common section.
440 elfcpp::Elf_Xword small_common_section_flags;
441 // Section flags for large common section.
442 elfcpp::Elf_Xword large_common_section_flags;
443 // Name of attributes section if it is not ".gnu.attributes".
444 const char* attributes_section;
445 // Vendor name of vendor attributes.
446 const char* attributes_vendor;
447 };
448
449 Target(const Target_info* pti)
450 : pti_(pti), processor_specific_flags_(0),
451 are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
452 { }
453
454 // Virtual function which may be implemented by the child class.
455 virtual void
456 do_new_output_section(Output_section*) const
457 { }
458
459 // Virtual function which may be implemented by the child class.
460 virtual void
461 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
462 { }
463
464 // Virtual function which may be implemented by the child class.
465 virtual uint64_t
466 do_dynsym_value(const Symbol*) const
467 { gold_unreachable(); }
468
469 // Virtual function which must be implemented by the child class if
470 // needed.
471 virtual std::string
472 do_code_fill(section_size_type) const
473 { gold_unreachable(); }
474
475 // Virtual function which may be implemented by the child class.
476 virtual bool
477 do_is_defined_by_abi(const Symbol*) const
478 { return false; }
479
480 // Adjust the output file header before it is written out. VIEW
481 // points to the header in external form. LEN is the length, and
482 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
483 // By default, we set the EI_OSABI field if requested (in
484 // Sized_target).
485 virtual void
486 do_adjust_elf_header(unsigned char*, int) const = 0;
487
488 // Virtual function which may be overridden by the child class.
489 virtual bool
490 do_is_local_label_name(const char*) const;
491
492 // Virtual function that must be overridden by a target which uses
493 // target specific relocations.
494 virtual unsigned int
495 do_reloc_symbol_index(void*, unsigned int) const
496 { gold_unreachable(); }
497
498 // Virtual function that must be overridden by a target which uses
499 // target specific relocations.
500 virtual uint64_t
501 do_reloc_addend(void*, unsigned int, uint64_t) const
502 { gold_unreachable(); }
503
504 // Virtual functions that must be overridden by a target that uses
505 // STT_GNU_IFUNC symbols.
506 virtual uint64_t
507 do_plt_address_for_global(const Symbol*) const
508 { gold_unreachable(); }
509
510 virtual uint64_t
511 do_plt_address_for_local(const Relobj*, unsigned int) const
512 { gold_unreachable(); }
513
514 // Virtual function which may be overriden by the child class.
515 virtual bool
516 do_can_check_for_function_pointers() const
517 { return false; }
518
519 // Virtual function which may be overridden by the child class. We
520 // recognize some default sections for which we don't care whether
521 // they have function pointers.
522 virtual bool
523 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
524 {
525 // We recognize sections for normal vtables, construction vtables and
526 // EH frames.
527 return (!is_prefix_of(".rodata._ZTV", section_name)
528 && !is_prefix_of(".data.rel.ro._ZTV", section_name)
529 && !is_prefix_of(".rodata._ZTC", section_name)
530 && !is_prefix_of(".data.rel.ro._ZTC", section_name)
531 && !is_prefix_of(".eh_frame", section_name));
532 }
533
534 virtual uint64_t
535 do_ehframe_datarel_base() const
536 { gold_unreachable(); }
537
538 // Virtual function which may be overridden by the child class. The
539 // default implementation is that any function not defined by the
540 // ABI is a call to a non-split function.
541 virtual bool
542 do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
543
544 // Virtual function which may be overridden by the child class.
545 virtual void
546 do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
547 section_size_type, unsigned char*, section_size_type,
548 std::string*, std::string*) const;
549
550 // make_elf_object hooks. There are four versions of these for
551 // different address sizes and endianness.
552
553 // Set processor specific flags.
554 void
555 set_processor_specific_flags(elfcpp::Elf_Word flags)
556 {
557 this->processor_specific_flags_ = flags;
558 this->are_processor_specific_flags_set_ = true;
559 }
560
561 #ifdef HAVE_TARGET_32_LITTLE
562 // Virtual functions which may be overridden by the child class.
563 virtual Object*
564 do_make_elf_object(const std::string&, Input_file*, off_t,
565 const elfcpp::Ehdr<32, false>&);
566 #endif
567
568 #ifdef HAVE_TARGET_32_BIG
569 // Virtual functions which may be overridden by the child class.
570 virtual Object*
571 do_make_elf_object(const std::string&, Input_file*, off_t,
572 const elfcpp::Ehdr<32, true>&);
573 #endif
574
575 #ifdef HAVE_TARGET_64_LITTLE
576 // Virtual functions which may be overridden by the child class.
577 virtual Object*
578 do_make_elf_object(const std::string&, Input_file*, off_t,
579 const elfcpp::Ehdr<64, false>& ehdr);
580 #endif
581
582 #ifdef HAVE_TARGET_64_BIG
583 // Virtual functions which may be overridden by the child class.
584 virtual Object*
585 do_make_elf_object(const std::string& name, Input_file* input_file,
586 off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
587 #endif
588
589 // Virtual functions which may be overridden by the child class.
590 virtual Output_section*
591 do_make_output_section(const char* name, elfcpp::Elf_Word type,
592 elfcpp::Elf_Xword flags);
593
594 // Virtual function which may be overridden by the child class.
595 virtual bool
596 do_may_relax() const
597 { return parameters->options().relax(); }
598
599 // Virtual function which may be overridden by the child class.
600 virtual bool
601 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
602 { return false; }
603
604 // A function for targets to call. Return whether BYTES/LEN matches
605 // VIEW/VIEW_SIZE at OFFSET.
606 bool
607 match_view(const unsigned char* view, section_size_type view_size,
608 section_offset_type offset, const char* bytes, size_t len) const;
609
610 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
611 // for LEN bytes.
612 void
613 set_view_to_nop(unsigned char* view, section_size_type view_size,
614 section_offset_type offset, size_t len) const;
615
616 // This must be overridden by the child class if it has target-specific
617 // attributes subsection in the attribute section.
618 virtual int
619 do_attribute_arg_type(int) const
620 { gold_unreachable(); }
621
622 // This may be overridden by the child class.
623 virtual int
624 do_attributes_order(int num) const
625 { return num; }
626
627 // This may be overridden by the child class.
628 virtual void
629 do_select_as_default_target()
630 { }
631
632 private:
633 // The implementations of the four do_make_elf_object virtual functions are
634 // almost identical except for their sizes and endianness. We use a template.
635 // for their implementations.
636 template<int size, bool big_endian>
637 inline Object*
638 do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
639 const elfcpp::Ehdr<size, big_endian>&);
640
641 Target(const Target&);
642 Target& operator=(const Target&);
643
644 // The target information.
645 const Target_info* pti_;
646 // Processor-specific flags.
647 elfcpp::Elf_Word processor_specific_flags_;
648 // Whether the processor-specific flags are set at least once.
649 bool are_processor_specific_flags_set_;
650 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
651 // the ELF header. This is handled at this level because it is
652 // OS-specific rather than processor-specific.
653 elfcpp::ELFOSABI osabi_;
654 };
655
656 // The abstract class for a specific size and endianness of target.
657 // Each actual target implementation class should derive from an
658 // instantiation of Sized_target.
659
660 template<int size, bool big_endian>
661 class Sized_target : public Target
662 {
663 public:
664 // Make a new symbol table entry for the target. This should be
665 // overridden by a target which needs additional information in the
666 // symbol table. This will only be called if has_make_symbol()
667 // returns true.
668 virtual Sized_symbol<size>*
669 make_symbol() const
670 { gold_unreachable(); }
671
672 // Resolve a symbol for the target. This should be overridden by a
673 // target which needs to take special action. TO is the
674 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
675 // VERSION is the version of SYM. This will only be called if
676 // has_resolve() returns true.
677 virtual void
678 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
679 const char*)
680 { gold_unreachable(); }
681
682 // Process the relocs for a section, and record information of the
683 // mapping from source to destination sections. This mapping is later
684 // used to determine unreferenced garbage sections. This procedure is
685 // only called during garbage collection.
686 virtual void
687 gc_process_relocs(Symbol_table* symtab,
688 Layout* layout,
689 Sized_relobj_file<size, big_endian>* object,
690 unsigned int data_shndx,
691 unsigned int sh_type,
692 const unsigned char* prelocs,
693 size_t reloc_count,
694 Output_section* output_section,
695 bool needs_special_offset_handling,
696 size_t local_symbol_count,
697 const unsigned char* plocal_symbols) = 0;
698
699 // Scan the relocs for a section, and record any information
700 // required for the symbol. SYMTAB is the symbol table. OBJECT is
701 // the object in which the section appears. DATA_SHNDX is the
702 // section index that these relocs apply to. SH_TYPE is the type of
703 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to
704 // the relocation data. RELOC_COUNT is the number of relocs.
705 // LOCAL_SYMBOL_COUNT is the number of local symbols.
706 // OUTPUT_SECTION is the output section.
707 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
708 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
709 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
710 // pointers to the global symbol table from OBJECT.
711 virtual void
712 scan_relocs(Symbol_table* symtab,
713 Layout* layout,
714 Sized_relobj_file<size, big_endian>* object,
715 unsigned int data_shndx,
716 unsigned int sh_type,
717 const unsigned char* prelocs,
718 size_t reloc_count,
719 Output_section* output_section,
720 bool needs_special_offset_handling,
721 size_t local_symbol_count,
722 const unsigned char* plocal_symbols) = 0;
723
724 // Relocate section data. SH_TYPE is the type of the relocation
725 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
726 // information. RELOC_COUNT is the number of relocs.
727 // OUTPUT_SECTION is the output section.
728 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
729 // to correspond to the output section. VIEW is a view into the
730 // output file holding the section contents, VIEW_ADDRESS is the
731 // virtual address of the view, and VIEW_SIZE is the size of the
732 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
733 // parameters refer to the complete output section data, not just
734 // the input section data.
735 virtual void
736 relocate_section(const Relocate_info<size, big_endian>*,
737 unsigned int sh_type,
738 const unsigned char* prelocs,
739 size_t reloc_count,
740 Output_section* output_section,
741 bool needs_special_offset_handling,
742 unsigned char* view,
743 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
744 section_size_type view_size,
745 const Reloc_symbol_changes*) = 0;
746
747 // Scan the relocs during a relocatable link. The parameters are
748 // like scan_relocs, with an additional Relocatable_relocs
749 // parameter, used to record the disposition of the relocs.
750 virtual void
751 scan_relocatable_relocs(Symbol_table* symtab,
752 Layout* layout,
753 Sized_relobj_file<size, big_endian>* object,
754 unsigned int data_shndx,
755 unsigned int sh_type,
756 const unsigned char* prelocs,
757 size_t reloc_count,
758 Output_section* output_section,
759 bool needs_special_offset_handling,
760 size_t local_symbol_count,
761 const unsigned char* plocal_symbols,
762 Relocatable_relocs*) = 0;
763
764 // Relocate a section during a relocatable link. The parameters are
765 // like relocate_section, with additional parameters for the view of
766 // the output reloc section.
767 virtual void
768 relocate_for_relocatable(const Relocate_info<size, big_endian>*,
769 unsigned int sh_type,
770 const unsigned char* prelocs,
771 size_t reloc_count,
772 Output_section* output_section,
773 off_t offset_in_output_section,
774 const Relocatable_relocs*,
775 unsigned char* view,
776 typename elfcpp::Elf_types<size>::Elf_Addr
777 view_address,
778 section_size_type view_size,
779 unsigned char* reloc_view,
780 section_size_type reloc_view_size) = 0;
781
782 // Perform target-specific processing in a relocatable link. This is
783 // only used if we use the relocation strategy RELOC_SPECIAL.
784 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
785 // section type. PRELOC_IN points to the original relocation. RELNUM is
786 // the index number of the relocation in the relocation section.
787 // OUTPUT_SECTION is the output section to which the relocation is applied.
788 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
789 // within the output section. VIEW points to the output view of the
790 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE
791 // is the size of the output view and PRELOC_OUT points to the new
792 // relocation in the output object.
793 //
794 // A target only needs to override this if the generic code in
795 // target-reloc.h cannot handle some relocation types.
796
797 virtual void
798 relocate_special_relocatable(const Relocate_info<size, big_endian>*
799 /*relinfo */,
800 unsigned int /* sh_type */,
801 const unsigned char* /* preloc_in */,
802 size_t /* relnum */,
803 Output_section* /* output_section */,
804 off_t /* offset_in_output_section */,
805 unsigned char* /* view */,
806 typename elfcpp::Elf_types<size>::Elf_Addr
807 /* view_address */,
808 section_size_type /* view_size */,
809 unsigned char* /* preloc_out*/)
810 { gold_unreachable(); }
811
812 // Return the number of entries in the GOT. This is only used for
813 // laying out the incremental link info sections. A target needs
814 // to implement this to support incremental linking.
815
816 virtual unsigned int
817 got_entry_count() const
818 { gold_unreachable(); }
819
820 // Return the number of entries in the PLT. This is only used for
821 // laying out the incremental link info sections. A target needs
822 // to implement this to support incremental linking.
823
824 virtual unsigned int
825 plt_entry_count() const
826 { gold_unreachable(); }
827
828 // Return the offset of the first non-reserved PLT entry. This is
829 // only used for laying out the incremental link info sections.
830 // A target needs to implement this to support incremental linking.
831
832 virtual unsigned int
833 first_plt_entry_offset() const
834 { gold_unreachable(); }
835
836 // Return the size of each PLT entry. This is only used for
837 // laying out the incremental link info sections. A target needs
838 // to implement this to support incremental linking.
839
840 virtual unsigned int
841 plt_entry_size() const
842 { gold_unreachable(); }
843
844 // Create the GOT and PLT sections for an incremental update.
845 // A target needs to implement this to support incremental linking.
846
847 virtual Output_data_got_base*
848 init_got_plt_for_update(Symbol_table*,
849 Layout*,
850 unsigned int /* got_count */,
851 unsigned int /* plt_count */)
852 { gold_unreachable(); }
853
854 // Reserve a GOT entry for a local symbol, and regenerate any
855 // necessary dynamic relocations.
856 virtual void
857 reserve_local_got_entry(unsigned int /* got_index */,
858 Sized_relobj<size, big_endian>* /* obj */,
859 unsigned int /* r_sym */,
860 unsigned int /* got_type */)
861 { gold_unreachable(); }
862
863 // Reserve a GOT entry for a global symbol, and regenerate any
864 // necessary dynamic relocations.
865 virtual void
866 reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
867 unsigned int /* got_type */)
868 { gold_unreachable(); }
869
870 // Register an existing PLT entry for a global symbol.
871 // A target needs to implement this to support incremental linking.
872
873 virtual void
874 register_global_plt_entry(Symbol_table*, Layout*,
875 unsigned int /* plt_index */,
876 Symbol*)
877 { gold_unreachable(); }
878
879 // Force a COPY relocation for a given symbol.
880 // A target needs to implement this to support incremental linking.
881
882 virtual void
883 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
884 { gold_unreachable(); }
885
886 // Apply an incremental relocation.
887
888 virtual void
889 apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
890 typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
891 unsigned int /* r_type */,
892 typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
893 const Symbol* /* gsym */,
894 unsigned char* /* view */,
895 typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
896 section_size_type /* view_size */)
897 { gold_unreachable(); }
898
899 protected:
900 Sized_target(const Target::Target_info* pti)
901 : Target(pti)
902 {
903 gold_assert(pti->size == size);
904 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
905 }
906
907 // Set the EI_OSABI field if requested.
908 virtual void
909 do_adjust_elf_header(unsigned char*, int) const;
910 };
911
912 } // End namespace gold.
913
914 #endif // !defined(GOLD_TARGET_H)
This page took 0.048467 seconds and 5 git commands to generate.