Copyright update for binutils
[deliverable/binutils-gdb.git] / gold / tilegx.cc
1 // tilegx.cc -- tilegx target support for gold.
2
3 // Copyright (C) 2012-2016 Free Software Foundation, Inc.
4 // Written by Jiong Wang (jiwang@tilera.com)
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "tilegx.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "gc.h"
42 #include "icf.h"
43
44 // the first got entry reserved
45 const int32_t TILEGX_GOT_RESERVE_COUNT = 1;
46
47 // the first two .got.plt entry reserved
48 const int32_t TILEGX_GOTPLT_RESERVE_COUNT = 2;
49
50 // 1. for both 64/32 bit mode, the instruction bundle is always 64bit.
51 // 2. thus .plt section should always be aligned to 64 bit.
52 const int32_t TILEGX_INST_BUNDLE_SIZE = 64;
53
54 namespace
55 {
56
57 using namespace gold;
58
59 // A class to handle the PLT data.
60 // This is an abstract base class that handles most of the linker details
61 // but does not know the actual contents of PLT entries. The derived
62 // classes below fill in those details.
63
64 template<int size, bool big_endian>
65 class Output_data_plt_tilegx : public Output_section_data
66 {
67 public:
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true,size, big_endian>
69 Reloc_section;
70
71 Output_data_plt_tilegx(Layout* layout, uint64_t addralign,
72 Output_data_got<size, big_endian>* got,
73 Output_data_space* got_plt,
74 Output_data_space* got_irelative)
75 : Output_section_data(addralign), layout_(layout),
76 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
77 got_irelative_(got_irelative), count_(0),
78 irelative_count_(0), free_list_()
79 { this->init(layout); }
80
81 Output_data_plt_tilegx(Layout* layout, uint64_t plt_entry_size,
82 Output_data_got<size, big_endian>* got,
83 Output_data_space* got_plt,
84 Output_data_space* got_irelative,
85 unsigned int plt_count)
86 : Output_section_data((plt_count + 1) * plt_entry_size,
87 TILEGX_INST_BUNDLE_SIZE, false),
88 layout_(layout), irelative_rel_(NULL), got_(got),
89 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
90 irelative_count_(0), free_list_()
91 {
92 this->init(layout);
93
94 // Initialize the free list and reserve the first entry.
95 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
96 this->free_list_.remove(0, plt_entry_size);
97 }
98
99 // Initialize the PLT section.
100 void
101 init(Layout* layout);
102
103 // Add an entry to the PLT.
104 void
105 add_entry(Symbol_table*, Layout*, Symbol* gsym);
106
107 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
108 unsigned int
109 add_local_ifunc_entry(Symbol_table*, Layout*,
110 Sized_relobj_file<size, big_endian>*, unsigned int);
111
112 // Add the relocation for a PLT entry.
113 void
114 add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
115
116 // Return the .rela.plt section data.
117 Reloc_section*
118 rela_plt()
119 { return this->rel_; }
120
121 // Return where the IRELATIVE relocations should go in the PLT
122 // relocations.
123 Reloc_section*
124 rela_irelative(Symbol_table*, Layout*);
125
126 // Return whether we created a section for IRELATIVE relocations.
127 bool
128 has_irelative_section() const
129 { return this->irelative_rel_ != NULL; }
130
131 // Return the number of PLT entries.
132 unsigned int
133 entry_count() const
134 { return this->count_ + this->irelative_count_; }
135
136 // Return the offset of the first non-reserved PLT entry.
137 unsigned int
138 first_plt_entry_offset()
139 { return this->get_plt_entry_size(); }
140
141 // Return the size of a PLT entry.
142 unsigned int
143 get_plt_entry_size() const
144 { return plt_entry_size; }
145
146 // Reserve a slot in the PLT for an existing symbol in an incremental update.
147 void
148 reserve_slot(unsigned int plt_index)
149 {
150 this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
151 (plt_index + 2) * this->get_plt_entry_size());
152 }
153
154 // Return the PLT address to use for a global symbol.
155 uint64_t
156 address_for_global(const Symbol*);
157
158 // Return the PLT address to use for a local symbol.
159 uint64_t
160 address_for_local(const Relobj*, unsigned int symndx);
161
162 protected:
163 // Fill in the first PLT entry.
164 void
165 fill_first_plt_entry(unsigned char*);
166
167 // Fill in a normal PLT entry. Returns the offset into the entry that
168 // should be the initial GOT slot value.
169 void
170 fill_plt_entry(unsigned char*,
171 typename elfcpp::Elf_types<size>::Elf_Addr,
172 unsigned int,
173 typename elfcpp::Elf_types<size>::Elf_Addr,
174 unsigned int, unsigned int);
175
176 void
177 do_adjust_output_section(Output_section* os);
178
179 // Write to a map file.
180 void
181 do_print_to_mapfile(Mapfile* mapfile) const
182 { mapfile->print_output_data(this, _("** PLT")); }
183
184 private:
185 // Set the final size.
186 void
187 set_final_data_size();
188
189 // Write out the PLT data.
190 void
191 do_write(Output_file*);
192
193 // A pointer to the Layout class, so that we can find the .dynamic
194 // section when we write out the GOT PLT section.
195 Layout* layout_;
196 // The reloc section.
197 Reloc_section* rel_;
198 // The IRELATIVE relocs, if necessary. These must follow the
199 // regular PLT relocations.
200 Reloc_section* irelative_rel_;
201 // The .got section.
202 Output_data_got<size, big_endian>* got_;
203 // The .got.plt section.
204 Output_data_space* got_plt_;
205 // The part of the .got.plt section used for IRELATIVE relocs.
206 Output_data_space* got_irelative_;
207 // The number of PLT entries.
208 unsigned int count_;
209 // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These
210 // follow the regular PLT entries.
211 unsigned int irelative_count_;
212 // List of available regions within the section, for incremental
213 // update links.
214 Free_list free_list_;
215 // The size of an entry in the PLT.
216 static const int plt_entry_size = 40;
217 // The first entry in the PLT.
218 static const unsigned char first_plt_entry[plt_entry_size];
219 // Other entries in the PLT for an executable.
220 static const unsigned char plt_entry[plt_entry_size];
221 };
222
223 // The tilegx target class.
224 // See the ABI at
225 // http://www.tilera.com/scm
226 // TLS info comes from
227 // http://people.redhat.com/drepper/tls.pdf
228
229 template<int size, bool big_endian>
230 class Target_tilegx : public Sized_target<size, big_endian>
231 {
232 public:
233 // TileGX use RELA
234 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
235 Reloc_section;
236
237 Target_tilegx(const Target::Target_info* info = &tilegx_info)
238 : Sized_target<size, big_endian>(info),
239 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
240 global_offset_table_(NULL), tilegx_dynamic_(NULL), rela_dyn_(NULL),
241 rela_irelative_(NULL), copy_relocs_(elfcpp::R_TILEGX_COPY),
242 got_mod_index_offset_(-1U),
243 tls_get_addr_sym_defined_(false)
244 { }
245
246 // Scan the relocations to look for symbol adjustments.
247 void
248 gc_process_relocs(Symbol_table* symtab,
249 Layout* layout,
250 Sized_relobj_file<size, big_endian>* object,
251 unsigned int data_shndx,
252 unsigned int sh_type,
253 const unsigned char* prelocs,
254 size_t reloc_count,
255 Output_section* output_section,
256 bool needs_special_offset_handling,
257 size_t local_symbol_count,
258 const unsigned char* plocal_symbols);
259
260 // Scan the relocations to look for symbol adjustments.
261 void
262 scan_relocs(Symbol_table* symtab,
263 Layout* layout,
264 Sized_relobj_file<size, big_endian>* object,
265 unsigned int data_shndx,
266 unsigned int sh_type,
267 const unsigned char* prelocs,
268 size_t reloc_count,
269 Output_section* output_section,
270 bool needs_special_offset_handling,
271 size_t local_symbol_count,
272 const unsigned char* plocal_symbols);
273
274 // Finalize the sections.
275 void
276 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
277
278 // Return the value to use for a dynamic which requires special
279 // treatment.
280 uint64_t
281 do_dynsym_value(const Symbol*) const;
282
283 // Relocate a section.
284 void
285 relocate_section(const Relocate_info<size, big_endian>*,
286 unsigned int sh_type,
287 const unsigned char* prelocs,
288 size_t reloc_count,
289 Output_section* output_section,
290 bool needs_special_offset_handling,
291 unsigned char* view,
292 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
293 section_size_type view_size,
294 const Reloc_symbol_changes*);
295
296 // Scan the relocs during a relocatable link.
297 void
298 scan_relocatable_relocs(Symbol_table* symtab,
299 Layout* layout,
300 Sized_relobj_file<size, big_endian>* object,
301 unsigned int data_shndx,
302 unsigned int sh_type,
303 const unsigned char* prelocs,
304 size_t reloc_count,
305 Output_section* output_section,
306 bool needs_special_offset_handling,
307 size_t local_symbol_count,
308 const unsigned char* plocal_symbols,
309 Relocatable_relocs*);
310
311 // Relocate a section during a relocatable link.
312 void
313 relocate_relocs(
314 const Relocate_info<size, big_endian>*,
315 unsigned int sh_type,
316 const unsigned char* prelocs,
317 size_t reloc_count,
318 Output_section* output_section,
319 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
320 unsigned char* view,
321 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
322 section_size_type view_size,
323 unsigned char* reloc_view,
324 section_size_type reloc_view_size);
325
326 // Return whether SYM is defined by the ABI.
327 bool
328 do_is_defined_by_abi(const Symbol* sym) const
329 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
330
331 // define tilegx specific symbols
332 virtual void
333 do_define_standard_symbols(Symbol_table*, Layout*);
334
335 // Return the PLT section.
336 uint64_t
337 do_plt_address_for_global(const Symbol* gsym) const
338 { return this->plt_section()->address_for_global(gsym); }
339
340 uint64_t
341 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
342 { return this->plt_section()->address_for_local(relobj, symndx); }
343
344 // This function should be defined in targets that can use relocation
345 // types to determine (implemented in local_reloc_may_be_function_pointer
346 // and global_reloc_may_be_function_pointer)
347 // if a function's pointer is taken. ICF uses this in safe mode to only
348 // fold those functions whose pointer is defintely not taken. For tilegx
349 // pie binaries, safe ICF cannot be done by looking at relocation types.
350 bool
351 do_can_check_for_function_pointers() const
352 { return true; }
353
354 // Return the base for a DW_EH_PE_datarel encoding.
355 uint64_t
356 do_ehframe_datarel_base() const;
357
358 // Return whether there is a GOT section.
359 bool
360 has_got_section() const
361 { return this->got_ != NULL; }
362
363 // Return the size of the GOT section.
364 section_size_type
365 got_size() const
366 {
367 gold_assert(this->got_ != NULL);
368 return this->got_->data_size();
369 }
370
371 // Return the number of entries in the GOT.
372 unsigned int
373 got_entry_count() const
374 {
375 if (this->got_ == NULL)
376 return 0;
377 return this->got_size() / (size / 8);
378 }
379
380 // Return the number of entries in the PLT.
381 unsigned int
382 plt_entry_count() const;
383
384 // Return the offset of the first non-reserved PLT entry.
385 unsigned int
386 first_plt_entry_offset() const;
387
388 // Return the size of each PLT entry.
389 unsigned int
390 plt_entry_size() const;
391
392 // Create the GOT section for an incremental update.
393 Output_data_got_base*
394 init_got_plt_for_update(Symbol_table* symtab,
395 Layout* layout,
396 unsigned int got_count,
397 unsigned int plt_count);
398
399 // Reserve a GOT entry for a local symbol, and regenerate any
400 // necessary dynamic relocations.
401 void
402 reserve_local_got_entry(unsigned int got_index,
403 Sized_relobj<size, big_endian>* obj,
404 unsigned int r_sym,
405 unsigned int got_type);
406
407 // Reserve a GOT entry for a global symbol, and regenerate any
408 // necessary dynamic relocations.
409 void
410 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
411 unsigned int got_type);
412
413 // Register an existing PLT entry for a global symbol.
414 void
415 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
416 Symbol* gsym);
417
418 // Force a COPY relocation for a given symbol.
419 void
420 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
421
422 // Apply an incremental relocation.
423 void
424 apply_relocation(const Relocate_info<size, big_endian>* relinfo,
425 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
426 unsigned int r_type,
427 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
428 const Symbol* gsym,
429 unsigned char* view,
430 typename elfcpp::Elf_types<size>::Elf_Addr address,
431 section_size_type view_size);
432
433 private:
434 // The class which scans relocations.
435 class Scan
436 {
437 public:
438 Scan()
439 : issued_non_pic_error_(false)
440 { }
441
442 static inline int
443 get_reference_flags(unsigned int r_type);
444
445 inline void
446 local(Symbol_table* symtab, Layout* layout, Target_tilegx* target,
447 Sized_relobj_file<size, big_endian>* object,
448 unsigned int data_shndx,
449 Output_section* output_section,
450 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
451 const elfcpp::Sym<size, big_endian>& lsym,
452 bool is_discarded);
453
454 inline void
455 global(Symbol_table* symtab, Layout* layout, Target_tilegx* target,
456 Sized_relobj_file<size, big_endian>* object,
457 unsigned int data_shndx,
458 Output_section* output_section,
459 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
460 Symbol* gsym);
461
462 inline bool
463 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
464 Target_tilegx* target,
465 Sized_relobj_file<size, big_endian>* object,
466 unsigned int data_shndx,
467 Output_section* output_section,
468 const elfcpp::Rela<size, big_endian>& reloc,
469 unsigned int r_type,
470 const elfcpp::Sym<size, big_endian>& lsym);
471
472 inline bool
473 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
474 Target_tilegx* target,
475 Sized_relobj_file<size, big_endian>* object,
476 unsigned int data_shndx,
477 Output_section* output_section,
478 const elfcpp::Rela<size, big_endian>& reloc,
479 unsigned int r_type,
480 Symbol* gsym);
481
482 private:
483 static void
484 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
485 unsigned int r_type);
486
487 static void
488 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
489 unsigned int r_type, Symbol*);
490
491 void
492 check_non_pic(Relobj*, unsigned int r_type);
493
494 inline bool
495 possible_function_pointer_reloc(unsigned int r_type);
496
497 bool
498 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
499 unsigned int r_type);
500
501 // Whether we have issued an error about a non-PIC compilation.
502 bool issued_non_pic_error_;
503 };
504
505 // The class which implements relocation.
506 class Relocate
507 {
508 public:
509 Relocate()
510 { }
511
512 ~Relocate()
513 {
514 }
515
516 // Do a relocation. Return false if the caller should not issue
517 // any warnings about this relocation.
518 inline bool
519 relocate(const Relocate_info<size, big_endian>*, unsigned int,
520 Target_tilegx*, Output_section*, size_t, const unsigned char*,
521 const Sized_symbol<size>*, const Symbol_value<size>*,
522 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
523 section_size_type);
524 };
525
526 // A class which returns the size required for a relocation type,
527 // used while scanning relocs during a relocatable link.
528 class Relocatable_size_for_reloc
529 {
530 public:
531 unsigned int
532 get_size_for_reloc(unsigned int, Relobj*);
533 };
534
535 // Adjust TLS relocation type based on the options and whether this
536 // is a local symbol.
537 static tls::Tls_optimization
538 optimize_tls_reloc(bool is_final, int r_type);
539
540 // Get the GOT section, creating it if necessary.
541 Output_data_got<size, big_endian>*
542 got_section(Symbol_table*, Layout*);
543
544 // Get the GOT PLT section.
545 Output_data_space*
546 got_plt_section() const
547 {
548 gold_assert(this->got_plt_ != NULL);
549 return this->got_plt_;
550 }
551
552 // Create the PLT section.
553 void
554 make_plt_section(Symbol_table* symtab, Layout* layout);
555
556 // Create a PLT entry for a global symbol.
557 void
558 make_plt_entry(Symbol_table*, Layout*, Symbol*);
559
560 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
561 void
562 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
563 Sized_relobj_file<size, big_endian>* relobj,
564 unsigned int local_sym_index);
565
566 // Create a GOT entry for the TLS module index.
567 unsigned int
568 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
569 Sized_relobj_file<size, big_endian>* object);
570
571 // Get the PLT section.
572 Output_data_plt_tilegx<size, big_endian>*
573 plt_section() const
574 {
575 gold_assert(this->plt_ != NULL);
576 return this->plt_;
577 }
578
579 // Get the dynamic reloc section, creating it if necessary.
580 Reloc_section*
581 rela_dyn_section(Layout*);
582
583 // Get the section to use for IRELATIVE relocations.
584 Reloc_section*
585 rela_irelative_section(Layout*);
586
587 // Add a potential copy relocation.
588 void
589 copy_reloc(Symbol_table* symtab, Layout* layout,
590 Sized_relobj_file<size, big_endian>* object,
591 unsigned int shndx, Output_section* output_section,
592 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
593 {
594 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
595 this->copy_relocs_.copy_reloc(symtab, layout,
596 symtab->get_sized_symbol<size>(sym),
597 object, shndx, output_section,
598 r_type, reloc.get_r_offset(),
599 reloc.get_r_addend(),
600 this->rela_dyn_section(layout));
601 }
602
603 // Information about this specific target which we pass to the
604 // general Target structure.
605 static const Target::Target_info tilegx_info;
606
607 // The types of GOT entries needed for this platform.
608 // These values are exposed to the ABI in an incremental link.
609 // Do not renumber existing values without changing the version
610 // number of the .gnu_incremental_inputs section.
611 enum Got_type
612 {
613 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
614 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
615 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
616 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
617 };
618
619 // This type is used as the argument to the target specific
620 // relocation routines. The only target specific reloc is
621 // R_X86_64_TLSDESC against a local symbol.
622 struct Tlsdesc_info
623 {
624 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
625 unsigned int a_r_sym)
626 : object(a_object), r_sym(a_r_sym)
627 { }
628
629 // The object in which the local symbol is defined.
630 Sized_relobj_file<size, big_endian>* object;
631 // The local symbol index in the object.
632 unsigned int r_sym;
633 };
634
635 // The GOT section.
636 Output_data_got<size, big_endian>* got_;
637 // The PLT section.
638 Output_data_plt_tilegx<size, big_endian>* plt_;
639 // The GOT PLT section.
640 Output_data_space* got_plt_;
641 // The GOT section for IRELATIVE relocations.
642 Output_data_space* got_irelative_;
643 // The _GLOBAL_OFFSET_TABLE_ symbol.
644 Symbol* global_offset_table_;
645 // The _TILEGX_DYNAMIC_ symbol.
646 Symbol* tilegx_dynamic_;
647 // The dynamic reloc section.
648 Reloc_section* rela_dyn_;
649 // The section to use for IRELATIVE relocs.
650 Reloc_section* rela_irelative_;
651 // Relocs saved to avoid a COPY reloc.
652 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
653 // Offset of the GOT entry for the TLS module index.
654 unsigned int got_mod_index_offset_;
655 // True if the _tls_get_addr symbol has been defined.
656 bool tls_get_addr_sym_defined_;
657 };
658
659 template<>
660 const Target::Target_info Target_tilegx<64, false>::tilegx_info =
661 {
662 64, // size
663 false, // is_big_endian
664 elfcpp::EM_TILEGX, // machine_code
665 false, // has_make_symbol
666 false, // has_resolve
667 false, // has_code_fill
668 true, // is_default_stack_executable
669 false, // can_icf_inline_merge_sections
670 '\0', // wrap_char
671 "/lib/ld.so.1", // program interpreter
672 0x10000, // default_text_segment_address
673 0x10000, // abi_pagesize (overridable by -z max-page-size)
674 0x10000, // common_pagesize (overridable by -z common-page-size)
675 false, // isolate_execinstr
676 0, // rosegment_gap
677 elfcpp::SHN_UNDEF, // small_common_shndx
678 elfcpp::SHN_UNDEF, // large_common_shndx
679 0, // small_common_section_flags
680 0, // large_common_section_flags
681 NULL, // attributes_section
682 NULL, // attributes_vendor
683 "_start", // entry_symbol_name
684 32, // hash_entry_size
685 };
686
687 template<>
688 const Target::Target_info Target_tilegx<32, false>::tilegx_info =
689 {
690 32, // size
691 false, // is_big_endian
692 elfcpp::EM_TILEGX, // machine_code
693 false, // has_make_symbol
694 false, // has_resolve
695 false, // has_code_fill
696 true, // is_default_stack_executable
697 false, // can_icf_inline_merge_sections
698 '\0', // wrap_char
699 "/lib32/ld.so.1", // program interpreter
700 0x10000, // default_text_segment_address
701 0x10000, // abi_pagesize (overridable by -z max-page-size)
702 0x10000, // common_pagesize (overridable by -z common-page-size)
703 false, // isolate_execinstr
704 0, // rosegment_gap
705 elfcpp::SHN_UNDEF, // small_common_shndx
706 elfcpp::SHN_UNDEF, // large_common_shndx
707 0, // small_common_section_flags
708 0, // large_common_section_flags
709 NULL, // attributes_section
710 NULL, // attributes_vendor
711 "_start", // entry_symbol_name
712 32, // hash_entry_size
713 };
714
715 template<>
716 const Target::Target_info Target_tilegx<64, true>::tilegx_info =
717 {
718 64, // size
719 true, // is_big_endian
720 elfcpp::EM_TILEGX, // machine_code
721 false, // has_make_symbol
722 false, // has_resolve
723 false, // has_code_fill
724 true, // is_default_stack_executable
725 false, // can_icf_inline_merge_sections
726 '\0', // wrap_char
727 "/lib/ld.so.1", // program interpreter
728 0x10000, // default_text_segment_address
729 0x10000, // abi_pagesize (overridable by -z max-page-size)
730 0x10000, // common_pagesize (overridable by -z common-page-size)
731 false, // isolate_execinstr
732 0, // rosegment_gap
733 elfcpp::SHN_UNDEF, // small_common_shndx
734 elfcpp::SHN_UNDEF, // large_common_shndx
735 0, // small_common_section_flags
736 0, // large_common_section_flags
737 NULL, // attributes_section
738 NULL, // attributes_vendor
739 "_start", // entry_symbol_name
740 32, // hash_entry_size
741 };
742
743 template<>
744 const Target::Target_info Target_tilegx<32, true>::tilegx_info =
745 {
746 32, // size
747 true, // is_big_endian
748 elfcpp::EM_TILEGX, // machine_code
749 false, // has_make_symbol
750 false, // has_resolve
751 false, // has_code_fill
752 true, // is_default_stack_executable
753 false, // can_icf_inline_merge_sections
754 '\0', // wrap_char
755 "/lib32/ld.so.1", // program interpreter
756 0x10000, // default_text_segment_address
757 0x10000, // abi_pagesize (overridable by -z max-page-size)
758 0x10000, // common_pagesize (overridable by -z common-page-size)
759 false, // isolate_execinstr
760 0, // rosegment_gap
761 elfcpp::SHN_UNDEF, // small_common_shndx
762 elfcpp::SHN_UNDEF, // large_common_shndx
763 0, // small_common_section_flags
764 0, // large_common_section_flags
765 NULL, // attributes_section
766 NULL, // attributes_vendor
767 "_start", // entry_symbol_name
768 32, // hash_entry_size
769 };
770
771 // tilegx relocation handlers
772 template<int size, bool big_endian>
773 class Tilegx_relocate_functions
774 {
775 public:
776 // overflow check will be supported later
777 typedef enum
778 {
779 STATUS_OKAY, // No error during relocation.
780 STATUS_OVERFLOW, // Relocation overflow.
781 STATUS_BAD_RELOC // Relocation cannot be applied.
782 } Status;
783
784 struct Tilegx_howto
785 {
786 // right shift operand by this number of bits.
787 unsigned char srshift;
788
789 // the offset to apply relocation.
790 unsigned char doffset;
791
792 // set to 1 for pc-relative relocation.
793 unsigned char is_pcrel;
794
795 // size in bits, or 0 if this table entry should be ignored.
796 unsigned char bsize;
797
798 // whether we need to check overflow.
799 unsigned char overflow;
800 };
801
802 static const Tilegx_howto howto[elfcpp::R_TILEGX_NUM];
803
804 private:
805
806 // Do a simple rela relocation
807 template<int valsize>
808 static inline void
809 rela(unsigned char* view,
810 const Sized_relobj_file<size, big_endian>* object,
811 const Symbol_value<size>* psymval,
812 typename elfcpp::Swap<size, big_endian>::Valtype addend,
813 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
814 elfcpp::Elf_Xword bitmask)
815 {
816 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
817 Valtype* wv = reinterpret_cast<Valtype*>(view);
818 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
819 Valtype reloc = 0;
820 if (size == 32)
821 reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
822 else
823 reloc = psymval->value(object, addend) >> srshift;
824
825 elfcpp::Elf_Xword dst_mask = bitmask << doffset;
826
827 val &= ~dst_mask;
828 reloc &= bitmask;
829
830 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset));
831 }
832
833 // Do a simple rela relocation
834 template<int valsize>
835 static inline void
836 rela_ua(unsigned char* view,
837 const Sized_relobj_file<size, big_endian>* object,
838 const Symbol_value<size>* psymval,
839 typename elfcpp::Swap<size, big_endian>::Valtype addend,
840 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
841 elfcpp::Elf_Xword bitmask)
842 {
843 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
844 Valtype;
845 unsigned char* wv = view;
846 Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv);
847 Valtype reloc = 0;
848 if (size == 32)
849 reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
850 else
851 reloc = psymval->value(object, addend) >> srshift;
852
853 elfcpp::Elf_Xword dst_mask = bitmask << doffset;
854
855 val &= ~dst_mask;
856 reloc &= bitmask;
857
858 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv,
859 val | (reloc<<doffset));
860 }
861
862 template<int valsize>
863 static inline void
864 rela(unsigned char* view,
865 const Sized_relobj_file<size, big_endian>* object,
866 const Symbol_value<size>* psymval,
867 typename elfcpp::Swap<size, big_endian>::Valtype addend,
868 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1,
869 elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2,
870 elfcpp::Elf_Xword bitmask2)
871 {
872 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
873 Valtype* wv = reinterpret_cast<Valtype*>(view);
874 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
875 Valtype reloc = 0;
876 if (size == 32)
877 reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
878 else
879 reloc = psymval->value(object, addend) >> srshift;
880
881 elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1)
882 | (bitmask2 << doffset2);
883 val &= ~dst_mask;
884 reloc = ((reloc & bitmask1) << doffset1)
885 | ((reloc & bitmask2) << doffset2);
886
887 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
888
889 }
890
891 // Do a simple PC relative relocation with a Symbol_value with the
892 // addend in the relocation.
893 template<int valsize>
894 static inline void
895 pcrela(unsigned char* view,
896 const Sized_relobj_file<size, big_endian>* object,
897 const Symbol_value<size>* psymval,
898 typename elfcpp::Swap<size, big_endian>::Valtype addend,
899 typename elfcpp::Elf_types<size>::Elf_Addr address,
900 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
901 elfcpp::Elf_Xword bitmask)
902
903 {
904 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
905 Valtype* wv = reinterpret_cast<Valtype*>(view);
906 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
907 Valtype reloc = 0;
908 if (size == 32)
909 reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
910 >> srshift;
911 else
912 reloc = (psymval->value(object, addend) - address) >> srshift;
913
914 elfcpp::Elf_Xword dst_mask = bitmask << doffset;
915 val &= ~dst_mask;
916 reloc &= bitmask;
917
918 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset));
919 }
920
921 template<int valsize>
922 static inline void
923 pcrela_ua(unsigned char* view,
924 const Sized_relobj_file<size, big_endian>* object,
925 const Symbol_value<size>* psymval,
926 typename elfcpp::Swap<size, big_endian>::Valtype addend,
927 typename elfcpp::Elf_types<size>::Elf_Addr address,
928 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
929 elfcpp::Elf_Xword bitmask)
930
931 {
932 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
933 Valtype;
934 unsigned char* wv = view;
935 Valtype reloc = 0;
936 if (size == 32)
937 reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
938 >> srshift;
939 else
940 reloc = (psymval->value(object, addend) - address) >> srshift;
941
942 reloc &= bitmask;
943
944 elfcpp::Swap<valsize, big_endian>::writeval(wv, reloc << doffset);
945 }
946
947 template<int valsize>
948 static inline void
949 pcrela(unsigned char* view,
950 const Sized_relobj_file<size, big_endian>* object,
951 const Symbol_value<size>* psymval,
952 typename elfcpp::Swap<size, big_endian>::Valtype addend,
953 typename elfcpp::Elf_types<size>::Elf_Addr address,
954 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1,
955 elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2,
956 elfcpp::Elf_Xword bitmask2)
957
958 {
959 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
960 Valtype* wv = reinterpret_cast<Valtype*>(view);
961 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
962 Valtype reloc = 0;
963 if (size == 32)
964 reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
965 >> srshift;
966 else
967 reloc = (psymval->value(object, addend) - address) >> srshift;
968
969 elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1)
970 | (bitmask2 << doffset2);
971 val &= ~dst_mask;
972 reloc = ((reloc & bitmask1) << doffset1)
973 | ((reloc & bitmask2) << doffset2);
974
975 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
976 }
977
978 typedef Tilegx_relocate_functions<size, big_endian> This;
979 typedef Relocate_functions<size, big_endian> Base;
980
981 public:
982
983 static inline void
984 abs64(unsigned char* view,
985 const Sized_relobj_file<size, big_endian>* object,
986 const Symbol_value<size>* psymval,
987 typename elfcpp::Elf_types<size>::Elf_Addr addend)
988 {
989 This::template rela_ua<64>(view, object, psymval, addend, 0, 0,
990 0xffffffffffffffffllu);
991 }
992
993 static inline void
994 abs32(unsigned char* view,
995 const Sized_relobj_file<size, big_endian>* object,
996 const Symbol_value<size>* psymval,
997 typename elfcpp::Elf_types<size>::Elf_Addr addend)
998 {
999 This::template rela_ua<32>(view, object, psymval, addend, 0, 0,
1000 0xffffffff);
1001 }
1002
1003 static inline void
1004 abs16(unsigned char* view,
1005 const Sized_relobj_file<size, big_endian>* object,
1006 const Symbol_value<size>* psymval,
1007 typename elfcpp::Elf_types<size>::Elf_Addr addend)
1008 {
1009 This::template rela_ua<16>(view, object, psymval, addend, 0, 0,
1010 0xffff);
1011 }
1012
1013 static inline void
1014 pc_abs64(unsigned char* view,
1015 const Sized_relobj_file<size, big_endian>* object,
1016 const Symbol_value<size>* psymval,
1017 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1018 typename elfcpp::Elf_types<size>::Elf_Addr address)
1019 {
1020 This::template pcrela_ua<64>(view, object, psymval, addend, address, 0, 0,
1021 0xffffffffffffffffllu);
1022 }
1023
1024 static inline void
1025 pc_abs32(unsigned char* view,
1026 const Sized_relobj_file<size, big_endian>* object,
1027 const Symbol_value<size>* psymval,
1028 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1029 typename elfcpp::Elf_types<size>::Elf_Addr address)
1030 {
1031 This::template pcrela_ua<32>(view, object, psymval, addend, address, 0, 0,
1032 0xffffffff);
1033 }
1034
1035 static inline void
1036 pc_abs16(unsigned char* view,
1037 const Sized_relobj_file<size, big_endian>* object,
1038 const Symbol_value<size>* psymval,
1039 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1040 typename elfcpp::Elf_types<size>::Elf_Addr address)
1041 {
1042 This::template pcrela_ua<16>(view, object, psymval, addend, address, 0, 0,
1043 0xffff);
1044 }
1045
1046 static inline void
1047 imm_x_general(unsigned char* view,
1048 const Sized_relobj_file<size, big_endian>* object,
1049 const Symbol_value<size>* psymval,
1050 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1051 Tilegx_howto &r_howto)
1052 {
1053 This::template rela<64>(view, object, psymval, addend,
1054 (elfcpp::Elf_Xword)(r_howto.srshift),
1055 (elfcpp::Elf_Xword)(r_howto.doffset),
1056 (elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1));
1057 }
1058
1059 static inline void
1060 imm_x_pcrel_general(unsigned char* view,
1061 const Sized_relobj_file<size, big_endian>* object,
1062 const Symbol_value<size>* psymval,
1063 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1064 typename elfcpp::Elf_types<size>::Elf_Addr address,
1065 Tilegx_howto &r_howto)
1066 {
1067 This::template pcrela<64>(view, object, psymval, addend, address,
1068 (elfcpp::Elf_Xword)(r_howto.srshift),
1069 (elfcpp::Elf_Xword)(r_howto.doffset),
1070 (elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1));
1071 }
1072
1073 static inline void
1074 imm_x_two_part_general(unsigned char* view,
1075 const Sized_relobj_file<size, big_endian>* object,
1076 const Symbol_value<size>* psymval,
1077 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1078 typename elfcpp::Elf_types<size>::Elf_Addr address,
1079 unsigned int r_type)
1080 {
1081
1082 elfcpp::Elf_Xword doffset1 = 0llu;
1083 elfcpp::Elf_Xword doffset2 = 0llu;
1084 elfcpp::Elf_Xword dmask1 = 0llu;
1085 elfcpp::Elf_Xword dmask2 = 0llu;
1086 elfcpp::Elf_Xword rshift = 0llu;
1087 unsigned int pc_rel = 0;
1088
1089 switch (r_type)
1090 {
1091 case elfcpp::R_TILEGX_BROFF_X1:
1092 doffset1 = 31llu;
1093 doffset2 = 37llu;
1094 dmask1 = 0x3fllu;
1095 dmask2 = 0x1ffc0llu;
1096 rshift = 3llu;
1097 pc_rel = 1;
1098 break;
1099 case elfcpp::R_TILEGX_DEST_IMM8_X1:
1100 doffset1 = 31llu;
1101 doffset2 = 43llu;
1102 dmask1 = 0x3fllu;
1103 dmask2 = 0xc0llu;
1104 rshift = 0llu;
1105 break;
1106 }
1107
1108 if (pc_rel)
1109 This::template pcrela<64>(view, object, psymval, addend, address,
1110 rshift, doffset1, dmask1, doffset2, dmask2);
1111 else
1112 This::template rela<64>(view, object, psymval, addend, rshift,
1113 doffset1, dmask1, doffset2, dmask2);
1114
1115 }
1116
1117 static inline void
1118 tls_relax(unsigned char* view, unsigned int r_type,
1119 tls::Tls_optimization opt_t)
1120 {
1121
1122 const uint64_t TILEGX_X_MOVE_R0_R0 = 0x283bf8005107f000llu;
1123 const uint64_t TILEGX_Y_MOVE_R0_R0 = 0xae05f800540bf000llu;
1124 const uint64_t TILEGX_X_LD = 0x286ae80000000000llu;
1125 const uint64_t TILEGX_X_LD4S = 0x286a980000000000llu;
1126 const uint64_t TILEGX_X1_FULL_MASK = 0x3fffffff80000000llu;
1127 const uint64_t TILEGX_X0_RRR_MASK = 0x000000007ffc0000llu;
1128 const uint64_t TILEGX_X1_RRR_MASK = 0x3ffe000000000000llu;
1129 const uint64_t TILEGX_Y0_RRR_MASK = 0x00000000780c0000llu;
1130 const uint64_t TILEGX_Y1_RRR_MASK = 0x3c06000000000000llu;
1131 const uint64_t TILEGX_X0_RRR_SRCB_MASK = 0x000000007ffff000llu;
1132 const uint64_t TILEGX_X1_RRR_SRCB_MASK = 0x3ffff80000000000llu;
1133 const uint64_t TILEGX_Y0_RRR_SRCB_MASK = 0x00000000780ff000llu;
1134 const uint64_t TILEGX_Y1_RRR_SRCB_MASK = 0x3c07f80000000000llu;
1135 const uint64_t TILEGX_X_ADD_R0_R0_TP = 0x2807a800500f5000llu;
1136 const uint64_t TILEGX_Y_ADD_R0_R0_TP = 0x9a13a8002c275000llu;
1137 const uint64_t TILEGX_X_ADDX_R0_R0_TP = 0x2805a800500b5000llu;
1138 const uint64_t TILEGX_Y_ADDX_R0_R0_TP = 0x9a01a8002c035000llu;
1139
1140 const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_MASK =
1141 (TILEGX_X0_RRR_MASK | (0x3Fllu << 12));
1142
1143 const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_MASK =
1144 (TILEGX_X1_RRR_MASK | (0x3Fllu << 43));
1145
1146 const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_MASK =
1147 (TILEGX_Y0_RRR_MASK | (0x3Fllu << 12));
1148
1149 const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_MASK =
1150 (TILEGX_Y1_RRR_MASK | (0x3Fllu << 43));
1151
1152 const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK =
1153 (TILEGX_X0_RRR_SRCB_MASK | (0x3Fllu << 6));
1154
1155 const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK =
1156 (TILEGX_X1_RRR_SRCB_MASK | (0x3Fllu << 37));
1157
1158 const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK =
1159 (TILEGX_Y0_RRR_SRCB_MASK | (0x3Fllu << 6));
1160
1161 const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK =
1162 (TILEGX_Y1_RRR_SRCB_MASK | (0x3Fllu << 37));
1163
1164 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1165 Valtype* wv = reinterpret_cast<Valtype*>(view);
1166 Valtype val = elfcpp::Swap<64, big_endian>::readval(wv);
1167 Valtype reloc = 0;
1168
1169 switch (r_type)
1170 {
1171 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
1172 if (opt_t == tls::TLSOPT_NONE) {
1173 // GD/IE: 1. copy dest operand into the second source operand
1174 // 2. change the opcode to "add"
1175 reloc = (val & 0x3Fllu) << 12; // featch the dest reg
1176 reloc |= ((size == 32
1177 ? TILEGX_X_ADDX_R0_R0_TP
1178 : TILEGX_X_ADD_R0_R0_TP)
1179 & TILEGX_X0_RRR_MASK); // change opcode
1180 val &= ~R_TILEGX_IMM8_X0_TLS_ADD_MASK;
1181 } else if (opt_t == tls::TLSOPT_TO_LE) {
1182 // LE: 1. copy dest operand into the first source operand
1183 // 2. change the opcode to "move"
1184 reloc = (val & 0x3Fllu) << 6;
1185 reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK);
1186 val &= ~R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK;
1187 } else
1188 gold_unreachable();
1189 break;
1190 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
1191 if (opt_t == tls::TLSOPT_NONE) {
1192 reloc = (val & (0x3Fllu << 31)) << 12;
1193 reloc |= ((size == 32
1194 ? TILEGX_X_ADDX_R0_R0_TP
1195 : TILEGX_X_ADD_R0_R0_TP)
1196 & TILEGX_X1_RRR_MASK);
1197 val &= ~R_TILEGX_IMM8_X1_TLS_ADD_MASK;
1198 } else if (opt_t == tls::TLSOPT_TO_LE) {
1199 reloc = (val & (0x3Fllu << 31)) << 6;
1200 reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK);
1201 val &= ~R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK;
1202 } else
1203 gold_unreachable();
1204 break;
1205 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
1206 if (opt_t == tls::TLSOPT_NONE) {
1207 reloc = (val & 0x3Fllu) << 12;
1208 reloc |= ((size == 32
1209 ? TILEGX_Y_ADDX_R0_R0_TP
1210 : TILEGX_Y_ADD_R0_R0_TP)
1211 & TILEGX_Y0_RRR_MASK);
1212 val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_MASK;
1213 } else if (opt_t == tls::TLSOPT_TO_LE) {
1214 reloc = (val & 0x3Fllu) << 6;
1215 reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK);
1216 val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK;
1217 } else
1218 gold_unreachable();
1219 break;
1220 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
1221 if (opt_t == tls::TLSOPT_NONE) {
1222 reloc = (val & (0x3Fllu << 31)) << 12;
1223 reloc |= ((size == 32
1224 ? TILEGX_Y_ADDX_R0_R0_TP
1225 : TILEGX_Y_ADD_R0_R0_TP)
1226 & TILEGX_Y1_RRR_MASK);
1227 val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_MASK;
1228 } else if (opt_t == tls::TLSOPT_TO_LE) {
1229 reloc = (val & (0x3Fllu << 31)) << 6;
1230 reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK);
1231 val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK;
1232 } else
1233 gold_unreachable();
1234 break;
1235 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
1236 if (opt_t == tls::TLSOPT_NONE) {
1237 // GD see comments for optimize_tls_reloc
1238 reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK;
1239 val &= ~TILEGX_X0_RRR_SRCB_MASK;
1240 } else if (opt_t == tls::TLSOPT_TO_IE
1241 || opt_t == tls::TLSOPT_TO_LE) {
1242 // IE/LE
1243 reloc = (size == 32
1244 ? TILEGX_X_ADDX_R0_R0_TP
1245 : TILEGX_X_ADD_R0_R0_TP)
1246 & TILEGX_X0_RRR_SRCB_MASK;
1247 val &= ~TILEGX_X0_RRR_SRCB_MASK;
1248 }
1249 break;
1250 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
1251 if (opt_t == tls::TLSOPT_NONE) {
1252 reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK;
1253 val &= ~TILEGX_X1_RRR_SRCB_MASK;
1254 } else if (opt_t == tls::TLSOPT_TO_IE
1255 || opt_t == tls::TLSOPT_TO_LE) {
1256 reloc = (size == 32
1257 ? TILEGX_X_ADDX_R0_R0_TP
1258 : TILEGX_X_ADD_R0_R0_TP)
1259 & TILEGX_X1_RRR_SRCB_MASK;
1260 val &= ~TILEGX_X1_RRR_SRCB_MASK;
1261 }
1262 break;
1263 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
1264 if (opt_t == tls::TLSOPT_NONE) {
1265 reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK;
1266 val &= ~TILEGX_Y0_RRR_SRCB_MASK;
1267 } else if (opt_t == tls::TLSOPT_TO_IE
1268 || opt_t == tls::TLSOPT_TO_LE) {
1269 reloc = (size == 32
1270 ? TILEGX_Y_ADDX_R0_R0_TP
1271 : TILEGX_Y_ADD_R0_R0_TP)
1272 & TILEGX_Y0_RRR_SRCB_MASK;
1273 val &= ~TILEGX_Y0_RRR_SRCB_MASK;
1274 }
1275 break;
1276 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
1277 if (opt_t == tls::TLSOPT_NONE) {
1278 reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK;
1279 val &= ~TILEGX_Y1_RRR_SRCB_MASK;
1280 } else if (opt_t == tls::TLSOPT_TO_IE
1281 || opt_t == tls::TLSOPT_TO_LE) {
1282 reloc = (size == 32
1283 ? TILEGX_Y_ADDX_R0_R0_TP
1284 : TILEGX_Y_ADD_R0_R0_TP)
1285 & TILEGX_Y1_RRR_SRCB_MASK;
1286 val &= ~TILEGX_Y1_RRR_SRCB_MASK;
1287 }
1288 break;
1289 case elfcpp::R_TILEGX_TLS_IE_LOAD:
1290 if (opt_t == tls::TLSOPT_NONE) {
1291 // IE
1292 reloc = (size == 32
1293 ? TILEGX_X_LD4S
1294 : TILEGX_X_LD)
1295 & TILEGX_X1_RRR_SRCB_MASK;
1296 val &= ~TILEGX_X1_RRR_SRCB_MASK;
1297 } else if (opt_t == tls::TLSOPT_TO_LE) {
1298 // LE
1299 reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK;
1300 val &= ~TILEGX_X1_RRR_SRCB_MASK;
1301 } else
1302 gold_unreachable();
1303 break;
1304 case elfcpp::R_TILEGX_TLS_GD_CALL:
1305 if (opt_t == tls::TLSOPT_TO_IE) {
1306 // ld/ld4s r0, r0
1307 reloc = (size == 32
1308 ? TILEGX_X_LD4S
1309 : TILEGX_X_LD) & TILEGX_X1_FULL_MASK;
1310 val &= ~TILEGX_X1_FULL_MASK;
1311 } else if (opt_t == tls::TLSOPT_TO_LE) {
1312 // move r0, r0
1313 reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_FULL_MASK;
1314 val &= ~TILEGX_X1_FULL_MASK;
1315 } else
1316 // should be handled in ::relocate
1317 gold_unreachable();
1318 break;
1319 default:
1320 gold_unreachable();
1321 break;
1322 }
1323 elfcpp::Swap<64, big_endian>::writeval(wv, val | reloc);
1324 }
1325 };
1326
1327 template<>
1328 const Tilegx_relocate_functions<64, false>::Tilegx_howto
1329 Tilegx_relocate_functions<64, false>::howto[elfcpp::R_TILEGX_NUM] =
1330 {
1331 { 0, 0, 0, 0, 0}, // R_TILEGX_NONE
1332 { 0, 0, 0, 64, 0}, // R_TILEGX_64
1333 { 0, 0, 0, 32, 0}, // R_TILEGX_32
1334 { 0, 0, 0, 16, 0}, // R_TILEGX_16
1335 { 0, 0, 0, 8, 0}, // R_TILEGX_8
1336 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
1337 { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
1338 { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
1339 { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
1340 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0
1341 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1
1342 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2
1343 { 48, 0, 0, 0, 0}, // R_TILEGX_HW3
1344 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
1345 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
1346 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
1347 { 0, 0, 0, 0, 0}, // R_TILEGX_COPY
1348 { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
1349 { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
1350 { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
1351 { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
1352 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1353 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1354 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
1355 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
1356 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
1357 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
1358 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
1359 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
1360 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
1361 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
1362 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
1363 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
1364 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
1365 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
1366 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
1367 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1368 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1369 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1370 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1371 { 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1372 { 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1373 { 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1374 { 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1375 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1376 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1377 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1378 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1379 { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1380 { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1381 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1382 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1383 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1384 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1385 { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1386 { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1387 { 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1388 { 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1389 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1390 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1391 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1392 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1393 { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1394 { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1395 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1396 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1397 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1398 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1399 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1400 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1401 { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1402 { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1403 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1404 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1405 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1406 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1407 { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1408 { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1409 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1410 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1411 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1412 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1413 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1414 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1415 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1416 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1417 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1418 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1419 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1420 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1421 { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
1422 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1423 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1424 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1425 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1426 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1427 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1428 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1429 { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1430 { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1431 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1432 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1433 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1434 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1435 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1436 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1437 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
1438 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
1439 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
1440 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
1441 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
1442 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
1443 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1444 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1445 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1446 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1447 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1448 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
1449 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1450 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1451 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1452 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1453 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
1454 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
1455 };
1456
1457 template<>
1458 const Tilegx_relocate_functions<32, false>::Tilegx_howto
1459 Tilegx_relocate_functions<32, false>::howto[elfcpp::R_TILEGX_NUM] =
1460 {
1461 { 0, 0, 0, 0, 0}, // R_TILEGX_NONE
1462 { 0, 0, 0, 64, 0}, // R_TILEGX_64
1463 { 0, 0, 0, 32, 0}, // R_TILEGX_32
1464 { 0, 0, 0, 16, 0}, // R_TILEGX_16
1465 { 0, 0, 0, 8, 0}, // R_TILEGX_8
1466 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
1467 { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
1468 { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
1469 { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
1470 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0
1471 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1
1472 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2
1473 { 31, 0, 0, 0, 0}, // R_TILEGX_HW3
1474 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
1475 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
1476 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
1477 { 0, 0, 0, 0, 0}, // R_TILEGX_COPY
1478 { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
1479 { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
1480 { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
1481 { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
1482 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1483 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1484 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
1485 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
1486 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
1487 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
1488 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
1489 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
1490 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
1491 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
1492 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
1493 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
1494 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
1495 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
1496 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
1497 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1498 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1499 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1500 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1501 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1502 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1503 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1504 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1505 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1506 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1507 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1508 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1509 { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1510 { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1511 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1512 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1513 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1514 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1515 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1516 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1517 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1518 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1519 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1520 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1521 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1522 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1523 { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1524 { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1525 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1526 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1527 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1528 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1529 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1530 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1531 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1532 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1533 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1534 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1535 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1536 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1537 { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1538 { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1539 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1540 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1541 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1542 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1543 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1544 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1545 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1546 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1547 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1548 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1549 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1550 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1551 { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
1552 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1553 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1554 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1555 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1556 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1557 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1558 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1559 { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1560 { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1561 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1562 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1563 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1564 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1565 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1566 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1567 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
1568 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
1569 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
1570 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
1571 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
1572 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
1573 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1574 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1575 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1576 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1577 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1578 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
1579 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1580 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1581 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1582 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1583 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
1584 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
1585 };
1586
1587 template<>
1588 const Tilegx_relocate_functions<64, true>::Tilegx_howto
1589 Tilegx_relocate_functions<64, true>::howto[elfcpp::R_TILEGX_NUM] =
1590 {
1591 { 0, 0, 0, 0, 0}, // R_TILEGX_NONE
1592 { 0, 0, 0, 64, 0}, // R_TILEGX_64
1593 { 0, 0, 0, 32, 0}, // R_TILEGX_32
1594 { 0, 0, 0, 16, 0}, // R_TILEGX_16
1595 { 0, 0, 0, 8, 0}, // R_TILEGX_8
1596 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
1597 { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
1598 { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
1599 { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
1600 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0
1601 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1
1602 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2
1603 { 48, 0, 0, 0, 0}, // R_TILEGX_HW3
1604 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
1605 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
1606 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
1607 { 0, 0, 0, 0, 0}, // R_TILEGX_COPY
1608 { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
1609 { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
1610 { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
1611 { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
1612 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1613 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1614 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
1615 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
1616 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
1617 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
1618 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
1619 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
1620 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
1621 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
1622 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
1623 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
1624 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
1625 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
1626 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
1627 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1628 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1629 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1630 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1631 { 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1632 { 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1633 { 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1634 { 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1635 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1636 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1637 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1638 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1639 { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1640 { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1641 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1642 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1643 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1644 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1645 { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1646 { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1647 { 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1648 { 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1649 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1650 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1651 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1652 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1653 { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1654 { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1655 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1656 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1657 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1658 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1659 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1660 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1661 { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1662 { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1663 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1664 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1665 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1666 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1667 { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1668 { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1669 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1670 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1671 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1672 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1673 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1674 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1675 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1676 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1677 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1678 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1679 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1680 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1681 { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
1682 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1683 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1684 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1685 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1686 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1687 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1688 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1689 { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1690 { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1691 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1692 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1693 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1694 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1695 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1696 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1697 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
1698 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
1699 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
1700 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
1701 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
1702 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
1703 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1704 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1705 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1706 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1707 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1708 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
1709 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1710 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1711 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1712 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1713 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
1714 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
1715 };
1716
1717 template<>
1718 const Tilegx_relocate_functions<32, true>::Tilegx_howto
1719 Tilegx_relocate_functions<32, true>::howto[elfcpp::R_TILEGX_NUM] =
1720 {
1721 { 0, 0, 0, 0, 0}, // R_TILEGX_NONE
1722 { 0, 0, 0, 64, 0}, // R_TILEGX_64
1723 { 0, 0, 0, 32, 0}, // R_TILEGX_32
1724 { 0, 0, 0, 16, 0}, // R_TILEGX_16
1725 { 0, 0, 0, 8, 0}, // R_TILEGX_8
1726 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
1727 { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
1728 { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
1729 { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
1730 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0
1731 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1
1732 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2
1733 { 31, 0, 0, 0, 0}, // R_TILEGX_HW3
1734 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
1735 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
1736 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
1737 { 0, 0, 0, 0, 0}, // R_TILEGX_COPY
1738 { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
1739 { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
1740 { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
1741 { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
1742 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1743 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1744 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
1745 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
1746 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
1747 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
1748 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
1749 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
1750 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
1751 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
1752 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
1753 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
1754 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
1755 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
1756 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
1757 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1758 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1759 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1760 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1761 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1762 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1763 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1764 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1765 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1766 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1767 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1768 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1769 { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1770 { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1771 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1772 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1773 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1774 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1775 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1776 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1777 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1778 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1779 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1780 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1781 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1782 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1783 { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1784 { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1785 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1786 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1787 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1788 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1789 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1790 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1791 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1792 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1793 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1794 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1795 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1796 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1797 { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1798 { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1799 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1800 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1801 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1802 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1803 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1804 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1805 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1806 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1807 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1808 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1809 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1810 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1811 { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
1812 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1813 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1814 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1815 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1816 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1817 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1818 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1819 { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1820 { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1821 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1822 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1823 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1824 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1825 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1826 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1827 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
1828 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
1829 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
1830 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
1831 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
1832 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
1833 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1834 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1835 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1836 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1837 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1838 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
1839 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1840 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1841 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1842 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1843 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
1844 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
1845 };
1846
1847 // Get the GOT section, creating it if necessary.
1848
1849 template<int size, bool big_endian>
1850 Output_data_got<size, big_endian>*
1851 Target_tilegx<size, big_endian>::got_section(Symbol_table* symtab,
1852 Layout* layout)
1853 {
1854 if (this->got_ == NULL)
1855 {
1856 gold_assert(symtab != NULL && layout != NULL);
1857
1858 // When using -z now, we can treat .got.plt as a relro section.
1859 // Without -z now, it is modified after program startup by lazy
1860 // PLT relocations.
1861 bool is_got_plt_relro = parameters->options().now();
1862 Output_section_order got_order = (is_got_plt_relro
1863 ? ORDER_RELRO
1864 : ORDER_RELRO_LAST);
1865 Output_section_order got_plt_order = (is_got_plt_relro
1866 ? ORDER_RELRO
1867 : ORDER_NON_RELRO_FIRST);
1868
1869 this->got_ = new Output_data_got<size, big_endian>();
1870
1871 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1872 (elfcpp::SHF_ALLOC
1873 | elfcpp::SHF_WRITE),
1874 this->got_, got_order, true);
1875
1876 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1877 this->global_offset_table_ =
1878 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1879 Symbol_table::PREDEFINED,
1880 this->got_,
1881 0, 0, elfcpp::STT_OBJECT,
1882 elfcpp::STB_LOCAL,
1883 elfcpp::STV_HIDDEN, 0,
1884 false, false);
1885
1886 if (parameters->options().shared()) {
1887 // we need to keep the address of .dynamic section in the
1888 // first got entry for .so
1889 this->tilegx_dynamic_ =
1890 symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL,
1891 Symbol_table::PREDEFINED,
1892 layout->dynamic_section(),
1893 0, 0, elfcpp::STT_OBJECT,
1894 elfcpp::STB_LOCAL,
1895 elfcpp::STV_HIDDEN, 0,
1896 false, false);
1897
1898 this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD);
1899 } else
1900 // for executable, just set the first entry to zero.
1901 this->got_->set_current_data_size(size / 8);
1902
1903 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
1904 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1905 (elfcpp::SHF_ALLOC
1906 | elfcpp::SHF_WRITE),
1907 this->got_plt_, got_plt_order,
1908 is_got_plt_relro);
1909
1910 // The first two entries are reserved.
1911 this->got_plt_->set_current_data_size
1912 (TILEGX_GOTPLT_RESERVE_COUNT * (size / 8));
1913
1914 if (!is_got_plt_relro)
1915 {
1916 // Those bytes can go into the relro segment.
1917 layout->increase_relro(size / 8);
1918 }
1919
1920
1921 // If there are any IRELATIVE relocations, they get GOT entries
1922 // in .got.plt after the jump slot entries.
1923 this->got_irelative_
1924 = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1925 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1926 (elfcpp::SHF_ALLOC
1927 | elfcpp::SHF_WRITE),
1928 this->got_irelative_,
1929 got_plt_order, is_got_plt_relro);
1930 }
1931
1932 return this->got_;
1933 }
1934
1935 // Get the dynamic reloc section, creating it if necessary.
1936
1937 template<int size, bool big_endian>
1938 typename Target_tilegx<size, big_endian>::Reloc_section*
1939 Target_tilegx<size, big_endian>::rela_dyn_section(Layout* layout)
1940 {
1941 if (this->rela_dyn_ == NULL)
1942 {
1943 gold_assert(layout != NULL);
1944 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1945 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1946 elfcpp::SHF_ALLOC, this->rela_dyn_,
1947 ORDER_DYNAMIC_RELOCS, false);
1948 }
1949 return this->rela_dyn_;
1950 }
1951
1952 // Get the section to use for IRELATIVE relocs, creating it if
1953 // necessary. These go in .rela.dyn, but only after all other dynamic
1954 // relocations. They need to follow the other dynamic relocations so
1955 // that they can refer to global variables initialized by those
1956 // relocs.
1957
1958 template<int size, bool big_endian>
1959 typename Target_tilegx<size, big_endian>::Reloc_section*
1960 Target_tilegx<size, big_endian>::rela_irelative_section(Layout* layout)
1961 {
1962 if (this->rela_irelative_ == NULL)
1963 {
1964 // Make sure we have already created the dynamic reloc section.
1965 this->rela_dyn_section(layout);
1966 this->rela_irelative_ = new Reloc_section(false);
1967 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1968 elfcpp::SHF_ALLOC, this->rela_irelative_,
1969 ORDER_DYNAMIC_RELOCS, false);
1970 gold_assert(this->rela_dyn_->output_section()
1971 == this->rela_irelative_->output_section());
1972 }
1973 return this->rela_irelative_;
1974 }
1975
1976 // Initialize the PLT section.
1977
1978 template<int size, bool big_endian>
1979 void
1980 Output_data_plt_tilegx<size, big_endian>::init(Layout* layout)
1981 {
1982 this->rel_ = new Reloc_section(false);
1983 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1984 elfcpp::SHF_ALLOC, this->rel_,
1985 ORDER_DYNAMIC_PLT_RELOCS, false);
1986 }
1987
1988 template<int size, bool big_endian>
1989 void
1990 Output_data_plt_tilegx<size, big_endian>::do_adjust_output_section(
1991 Output_section* os)
1992 {
1993 os->set_entsize(this->get_plt_entry_size());
1994 }
1995
1996 // Add an entry to the PLT.
1997
1998 template<int size, bool big_endian>
1999 void
2000 Output_data_plt_tilegx<size, big_endian>::add_entry(Symbol_table* symtab,
2001 Layout* layout, Symbol* gsym)
2002 {
2003 gold_assert(!gsym->has_plt_offset());
2004
2005 unsigned int plt_index;
2006 off_t plt_offset;
2007 section_offset_type got_offset;
2008
2009 unsigned int* pcount;
2010 unsigned int reserved;
2011 Output_data_space* got;
2012 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2013 && gsym->can_use_relative_reloc(false))
2014 {
2015 pcount = &this->irelative_count_;
2016 reserved = 0;
2017 got = this->got_irelative_;
2018 }
2019 else
2020 {
2021 pcount = &this->count_;
2022 reserved = TILEGX_GOTPLT_RESERVE_COUNT;
2023 got = this->got_plt_;
2024 }
2025
2026 if (!this->is_data_size_valid())
2027 {
2028 plt_index = *pcount;
2029
2030 // TILEGX .plt section layout
2031 //
2032 // ----
2033 // plt_header
2034 // ----
2035 // plt stub
2036 // ----
2037 // ...
2038 // ----
2039 //
2040 // TILEGX .got.plt section layout
2041 //
2042 // ----
2043 // reserv1
2044 // ----
2045 // reserv2
2046 // ----
2047 // entries for normal function
2048 // ----
2049 // ...
2050 // ----
2051 // entries for ifunc
2052 // ----
2053 // ...
2054 // ----
2055 if (got == this->got_irelative_)
2056 plt_offset = plt_index * this->get_plt_entry_size();
2057 else
2058 plt_offset = (plt_index + 1) * this->get_plt_entry_size();
2059
2060 ++*pcount;
2061
2062 got_offset = (plt_index + reserved) * (size / 8);
2063 gold_assert(got_offset == got->current_data_size());
2064
2065 // Every PLT entry needs a GOT entry which points back to the PLT
2066 // entry (this will be changed by the dynamic linker, normally
2067 // lazily when the function is called).
2068 got->set_current_data_size(got_offset + size / 8);
2069 }
2070 else
2071 {
2072 // FIXME: This is probably not correct for IRELATIVE relocs.
2073
2074 // For incremental updates, find an available slot.
2075 plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
2076 this->get_plt_entry_size(), 0);
2077 if (plt_offset == -1)
2078 gold_fallback(_("out of patch space (PLT);"
2079 " relink with --incremental-full"));
2080
2081 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
2082 // can be calculated from the PLT index, adjusting for the three
2083 // reserved entries at the beginning of the GOT.
2084 plt_index = plt_offset / this->get_plt_entry_size() - 1;
2085 got_offset = (plt_index + reserved) * (size / 8);
2086 }
2087
2088 gsym->set_plt_offset(plt_offset);
2089
2090 // Every PLT entry needs a reloc.
2091 this->add_relocation(symtab, layout, gsym, got_offset);
2092
2093 // Note that we don't need to save the symbol. The contents of the
2094 // PLT are independent of which symbols are used. The symbols only
2095 // appear in the relocations.
2096 }
2097
2098 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
2099 // the PLT offset.
2100
2101 template<int size, bool big_endian>
2102 unsigned int
2103 Output_data_plt_tilegx<size, big_endian>::add_local_ifunc_entry(
2104 Symbol_table* symtab,
2105 Layout* layout,
2106 Sized_relobj_file<size, big_endian>* relobj,
2107 unsigned int local_sym_index)
2108 {
2109 unsigned int plt_offset =
2110 this->irelative_count_ * this->get_plt_entry_size();
2111 ++this->irelative_count_;
2112
2113 section_offset_type got_offset = this->got_irelative_->current_data_size();
2114
2115 // Every PLT entry needs a GOT entry which points back to the PLT
2116 // entry.
2117 this->got_irelative_->set_current_data_size(got_offset + size / 8);
2118
2119 // Every PLT entry needs a reloc.
2120 Reloc_section* rela = this->rela_irelative(symtab, layout);
2121 rela->add_symbolless_local_addend(relobj, local_sym_index,
2122 elfcpp::R_TILEGX_IRELATIVE,
2123 this->got_irelative_, got_offset, 0);
2124
2125 return plt_offset;
2126 }
2127
2128 // Add the relocation for a PLT entry.
2129
2130 template<int size, bool big_endian>
2131 void
2132 Output_data_plt_tilegx<size, big_endian>::add_relocation(Symbol_table* symtab,
2133 Layout* layout,
2134 Symbol* gsym,
2135 unsigned int got_offset)
2136 {
2137 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2138 && gsym->can_use_relative_reloc(false))
2139 {
2140 Reloc_section* rela = this->rela_irelative(symtab, layout);
2141 rela->add_symbolless_global_addend(gsym, elfcpp::R_TILEGX_IRELATIVE,
2142 this->got_irelative_, got_offset, 0);
2143 }
2144 else
2145 {
2146 gsym->set_needs_dynsym_entry();
2147 this->rel_->add_global(gsym, elfcpp::R_TILEGX_JMP_SLOT, this->got_plt_,
2148 got_offset, 0);
2149 }
2150 }
2151
2152 // Return where the IRELATIVE relocations should go in the PLT. These
2153 // follow the JUMP_SLOT and the TLSDESC relocations.
2154
2155 template<int size, bool big_endian>
2156 typename Output_data_plt_tilegx<size, big_endian>::Reloc_section*
2157 Output_data_plt_tilegx<size, big_endian>::rela_irelative(Symbol_table* symtab,
2158 Layout* layout)
2159 {
2160 if (this->irelative_rel_ == NULL)
2161 {
2162 // case we see any later on.
2163 this->irelative_rel_ = new Reloc_section(false);
2164 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2165 elfcpp::SHF_ALLOC, this->irelative_rel_,
2166 ORDER_DYNAMIC_PLT_RELOCS, false);
2167 gold_assert(this->irelative_rel_->output_section()
2168 == this->rel_->output_section());
2169
2170 if (parameters->doing_static_link())
2171 {
2172 // A statically linked executable will only have a .rela.plt
2173 // section to hold R_TILEGX_IRELATIVE relocs for
2174 // STT_GNU_IFUNC symbols. The library will use these
2175 // symbols to locate the IRELATIVE relocs at program startup
2176 // time.
2177 symtab->define_in_output_data("__rela_iplt_start", NULL,
2178 Symbol_table::PREDEFINED,
2179 this->irelative_rel_, 0, 0,
2180 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2181 elfcpp::STV_HIDDEN, 0, false, true);
2182 symtab->define_in_output_data("__rela_iplt_end", NULL,
2183 Symbol_table::PREDEFINED,
2184 this->irelative_rel_, 0, 0,
2185 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2186 elfcpp::STV_HIDDEN, 0, true, true);
2187 }
2188 }
2189 return this->irelative_rel_;
2190 }
2191
2192 // Return the PLT address to use for a global symbol.
2193
2194 template<int size, bool big_endian>
2195 uint64_t
2196 Output_data_plt_tilegx<size, big_endian>::address_for_global(
2197 const Symbol* gsym)
2198 {
2199 uint64_t offset = 0;
2200 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2201 && gsym->can_use_relative_reloc(false))
2202 offset = (this->count_ + 1) * this->get_plt_entry_size();
2203 return this->address() + offset + gsym->plt_offset();
2204 }
2205
2206 // Return the PLT address to use for a local symbol. These are always
2207 // IRELATIVE relocs.
2208
2209 template<int size, bool big_endian>
2210 uint64_t
2211 Output_data_plt_tilegx<size, big_endian>::address_for_local(
2212 const Relobj* object,
2213 unsigned int r_sym)
2214 {
2215 return (this->address()
2216 + (this->count_ + 1) * this->get_plt_entry_size()
2217 + object->local_plt_offset(r_sym));
2218 }
2219
2220 // Set the final size.
2221 template<int size, bool big_endian>
2222 void
2223 Output_data_plt_tilegx<size, big_endian>::set_final_data_size()
2224 {
2225 unsigned int count = this->count_ + this->irelative_count_;
2226 this->set_data_size((count + 1) * this->get_plt_entry_size());
2227 }
2228
2229 // The first entry in the PLT for an executable.
2230 template<>
2231 const unsigned char
2232 Output_data_plt_tilegx<64, false>::first_plt_entry[plt_entry_size] =
2233 {
2234 0x00, 0x30, 0x48, 0x51,
2235 0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 }
2236 0x00, 0x30, 0xbc, 0x35,
2237 0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 }
2238 0xff, 0xaf, 0x30, 0x40,
2239 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2240 // padding
2241 0x00, 0x00, 0x00, 0x00,
2242 0x00, 0x00, 0x00, 0x00,
2243 0x00, 0x00, 0x00, 0x00,
2244 0x00, 0x00, 0x00, 0x00
2245 };
2246
2247 template<>
2248 const unsigned char
2249 Output_data_plt_tilegx<32, false>::first_plt_entry[plt_entry_size] =
2250 {
2251 0x00, 0x30, 0x48, 0x51,
2252 0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 }
2253 0x00, 0x30, 0xbc, 0x35,
2254 0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 }
2255 0xff, 0xaf, 0x30, 0x40,
2256 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2257 // padding
2258 0x00, 0x00, 0x00, 0x00,
2259 0x00, 0x00, 0x00, 0x00,
2260 0x00, 0x00, 0x00, 0x00,
2261 0x00, 0x00, 0x00, 0x00
2262 };
2263
2264 template<>
2265 const unsigned char
2266 Output_data_plt_tilegx<64, true>::first_plt_entry[plt_entry_size] =
2267 {
2268 0x00, 0x30, 0x48, 0x51,
2269 0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 }
2270 0x00, 0x30, 0xbc, 0x35,
2271 0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 }
2272 0xff, 0xaf, 0x30, 0x40,
2273 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2274 // padding
2275 0x00, 0x00, 0x00, 0x00,
2276 0x00, 0x00, 0x00, 0x00,
2277 0x00, 0x00, 0x00, 0x00,
2278 0x00, 0x00, 0x00, 0x00
2279 };
2280
2281 template<>
2282 const unsigned char
2283 Output_data_plt_tilegx<32, true>::first_plt_entry[plt_entry_size] =
2284 {
2285 0x00, 0x30, 0x48, 0x51,
2286 0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 }
2287 0x00, 0x30, 0xbc, 0x35,
2288 0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 }
2289 0xff, 0xaf, 0x30, 0x40,
2290 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2291 // padding
2292 0x00, 0x00, 0x00, 0x00,
2293 0x00, 0x00, 0x00, 0x00,
2294 0x00, 0x00, 0x00, 0x00,
2295 0x00, 0x00, 0x00, 0x00
2296 };
2297
2298 template<int size, bool big_endian>
2299 void
2300 Output_data_plt_tilegx<size, big_endian>::fill_first_plt_entry(
2301 unsigned char* pov)
2302 {
2303 memcpy(pov, first_plt_entry, plt_entry_size);
2304 }
2305
2306 // Subsequent entries in the PLT for an executable.
2307
2308 template<>
2309 const unsigned char
2310 Output_data_plt_tilegx<64, false>::plt_entry[plt_entry_size] =
2311 {
2312 0xdc, 0x0f, 0x00, 0x10,
2313 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2314 0xdb, 0x0f, 0x00, 0x10,
2315 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2316 0x9c, 0xc6, 0x0d, 0xd0,
2317 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2318 0x9b, 0xb6, 0xc5, 0xad,
2319 0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 }
2320 0xdd, 0x0f, 0x00, 0x70,
2321 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2322
2323 };
2324
2325 template<>
2326 const unsigned char
2327 Output_data_plt_tilegx<32, false>::plt_entry[plt_entry_size] =
2328 {
2329 0xdc, 0x0f, 0x00, 0x10,
2330 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2331 0xdb, 0x0f, 0x00, 0x10,
2332 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2333 0x9c, 0xc6, 0x0d, 0xd0,
2334 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2335 0x9b, 0xb6, 0xc5, 0xad,
2336 0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 }
2337 0xdd, 0x0f, 0x00, 0x70,
2338 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2339 };
2340
2341 template<>
2342 const unsigned char
2343 Output_data_plt_tilegx<64, true>::plt_entry[plt_entry_size] =
2344 {
2345 0xdc, 0x0f, 0x00, 0x10,
2346 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2347 0xdb, 0x0f, 0x00, 0x10,
2348 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2349 0x9c, 0xc6, 0x0d, 0xd0,
2350 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2351 0x9b, 0xb6, 0xc5, 0xad,
2352 0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 }
2353 0xdd, 0x0f, 0x00, 0x70,
2354 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2355
2356 };
2357
2358 template<>
2359 const unsigned char
2360 Output_data_plt_tilegx<32, true>::plt_entry[plt_entry_size] =
2361 {
2362 0xdc, 0x0f, 0x00, 0x10,
2363 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2364 0xdb, 0x0f, 0x00, 0x10,
2365 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2366 0x9c, 0xc6, 0x0d, 0xd0,
2367 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2368 0x9b, 0xb6, 0xc5, 0xad,
2369 0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 }
2370 0xdd, 0x0f, 0x00, 0x70,
2371 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2372 };
2373
2374 template<int size, bool big_endian>
2375 void
2376 Output_data_plt_tilegx<size, big_endian>::fill_plt_entry(
2377 unsigned char* pov,
2378 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_base,
2379 unsigned int got_offset,
2380 typename elfcpp::Elf_types<size>::Elf_Addr plt_base,
2381 unsigned int plt_offset, unsigned int plt_index)
2382 {
2383
2384 const uint32_t TILEGX_IMM16_MASK = 0xFFFF;
2385 const uint32_t TILEGX_X0_IMM16_BITOFF = 12;
2386 const uint32_t TILEGX_X1_IMM16_BITOFF = 43;
2387
2388 typedef typename elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::Valtype
2389 Valtype;
2390 memcpy(pov, plt_entry, plt_entry_size);
2391
2392 // first bundle in plt stub - x0
2393 Valtype* wv = reinterpret_cast<Valtype*>(pov);
2394 Valtype val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2395 Valtype reloc =
2396 ((gotplt_base + got_offset) - (plt_base + plt_offset + 8)) >> 16;
2397 elfcpp::Elf_Xword dst_mask =
2398 (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
2399 val &= ~dst_mask;
2400 reloc &= TILEGX_IMM16_MASK;
2401 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2402 val | (reloc<<TILEGX_X0_IMM16_BITOFF));
2403
2404 // second bundle in plt stub - x1
2405 wv = reinterpret_cast<Valtype*>(pov + 8);
2406 val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2407 reloc = (gotplt_base + got_offset) - (plt_base + plt_offset + 8);
2408 dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF;
2409 val &= ~dst_mask;
2410 reloc &= TILEGX_IMM16_MASK;
2411 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2412 val | (reloc<<TILEGX_X1_IMM16_BITOFF));
2413
2414 // second bundle in plt stub - x0
2415 wv = reinterpret_cast<Valtype*>(pov + 8);
2416 val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2417 reloc = (gotplt_base - (plt_base + plt_offset + 8)) >> 16;
2418 dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
2419 val &= ~dst_mask;
2420 reloc &= TILEGX_IMM16_MASK;
2421 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2422 val | (reloc<<TILEGX_X0_IMM16_BITOFF));
2423
2424 // third bundle in plt stub - x1
2425 wv = reinterpret_cast<Valtype*>(pov + 16);
2426 val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2427 reloc = gotplt_base - (plt_base + plt_offset + 8);
2428 dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF;
2429 val &= ~dst_mask;
2430 reloc &= TILEGX_IMM16_MASK;
2431 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2432 val | (reloc<<TILEGX_X1_IMM16_BITOFF));
2433
2434 // fifth bundle in plt stub - carry plt_index x0
2435 wv = reinterpret_cast<Valtype*>(pov + 32);
2436 val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2437 dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
2438 val &= ~dst_mask;
2439 plt_index &= TILEGX_IMM16_MASK;
2440 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2441 val | (plt_index<<TILEGX_X0_IMM16_BITOFF));
2442
2443 }
2444
2445 // Write out the PLT. This uses the hand-coded instructions above.
2446
2447 template<int size, bool big_endian>
2448 void
2449 Output_data_plt_tilegx<size, big_endian>::do_write(Output_file* of)
2450 {
2451 const off_t offset = this->offset();
2452 const section_size_type oview_size =
2453 convert_to_section_size_type(this->data_size());
2454 unsigned char* const oview = of->get_output_view(offset, oview_size);
2455
2456 const off_t got_file_offset = this->got_plt_->offset();
2457 gold_assert(parameters->incremental_update()
2458 || (got_file_offset + this->got_plt_->data_size()
2459 == this->got_irelative_->offset()));
2460 const section_size_type got_size =
2461 convert_to_section_size_type(this->got_plt_->data_size()
2462 + this->got_irelative_->data_size());
2463 unsigned char* const got_view = of->get_output_view(got_file_offset,
2464 got_size);
2465
2466 unsigned char* pov = oview;
2467
2468 // The base address of the .plt section.
2469 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
2470 typename elfcpp::Elf_types<size>::Elf_Addr got_address =
2471 this->got_plt_->address();
2472
2473 this->fill_first_plt_entry(pov);
2474 pov += this->get_plt_entry_size();
2475
2476 unsigned char* got_pov = got_view;
2477
2478 // first entry of .got.plt are set to -1
2479 // second entry of .got.plt are set to 0
2480 memset(got_pov, 0xff, size / 8);
2481 got_pov += size / 8;
2482 memset(got_pov, 0x0, size / 8);
2483 got_pov += size / 8;
2484
2485 unsigned int plt_offset = this->get_plt_entry_size();
2486 const unsigned int count = this->count_ + this->irelative_count_;
2487 unsigned int got_offset = (size / 8) * TILEGX_GOTPLT_RESERVE_COUNT;
2488 for (unsigned int plt_index = 0;
2489 plt_index < count;
2490 ++plt_index,
2491 pov += this->get_plt_entry_size(),
2492 got_pov += size / 8,
2493 plt_offset += this->get_plt_entry_size(),
2494 got_offset += size / 8)
2495 {
2496 // Set and adjust the PLT entry itself.
2497 this->fill_plt_entry(pov, got_address, got_offset,
2498 plt_address, plt_offset, plt_index);
2499
2500 // Initialize entry in .got.plt to plt start address
2501 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
2502 }
2503
2504 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2505 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2506
2507 of->write_output_view(offset, oview_size, oview);
2508 of->write_output_view(got_file_offset, got_size, got_view);
2509 }
2510
2511 // Create the PLT section.
2512
2513 template<int size, bool big_endian>
2514 void
2515 Target_tilegx<size, big_endian>::make_plt_section(Symbol_table* symtab,
2516 Layout* layout)
2517 {
2518 if (this->plt_ == NULL)
2519 {
2520 // Create the GOT sections first.
2521 this->got_section(symtab, layout);
2522
2523 // Ensure that .rela.dyn always appears before .rela.plt,
2524 // becuase on TILE-Gx, .rela.dyn needs to include .rela.plt
2525 // in it's range.
2526 this->rela_dyn_section(layout);
2527
2528 this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout,
2529 TILEGX_INST_BUNDLE_SIZE, this->got_, this->got_plt_,
2530 this->got_irelative_);
2531
2532 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2533 (elfcpp::SHF_ALLOC
2534 | elfcpp::SHF_EXECINSTR),
2535 this->plt_, ORDER_NON_RELRO_FIRST,
2536 false);
2537
2538 // Make the sh_info field of .rela.plt point to .plt.
2539 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2540 rela_plt_os->set_info_section(this->plt_->output_section());
2541 }
2542 }
2543
2544 // Create a PLT entry for a global symbol.
2545
2546 template<int size, bool big_endian>
2547 void
2548 Target_tilegx<size, big_endian>::make_plt_entry(Symbol_table* symtab,
2549 Layout* layout, Symbol* gsym)
2550 {
2551 if (gsym->has_plt_offset())
2552 return;
2553
2554 if (this->plt_ == NULL)
2555 this->make_plt_section(symtab, layout);
2556
2557 this->plt_->add_entry(symtab, layout, gsym);
2558 }
2559
2560 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
2561
2562 template<int size, bool big_endian>
2563 void
2564 Target_tilegx<size, big_endian>::make_local_ifunc_plt_entry(
2565 Symbol_table* symtab, Layout* layout,
2566 Sized_relobj_file<size, big_endian>* relobj,
2567 unsigned int local_sym_index)
2568 {
2569 if (relobj->local_has_plt_offset(local_sym_index))
2570 return;
2571 if (this->plt_ == NULL)
2572 this->make_plt_section(symtab, layout);
2573 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
2574 relobj,
2575 local_sym_index);
2576 relobj->set_local_plt_offset(local_sym_index, plt_offset);
2577 }
2578
2579 // Return the number of entries in the PLT.
2580
2581 template<int size, bool big_endian>
2582 unsigned int
2583 Target_tilegx<size, big_endian>::plt_entry_count() const
2584 {
2585 if (this->plt_ == NULL)
2586 return 0;
2587 return this->plt_->entry_count();
2588 }
2589
2590 // Return the offset of the first non-reserved PLT entry.
2591
2592 template<int size, bool big_endian>
2593 unsigned int
2594 Target_tilegx<size, big_endian>::first_plt_entry_offset() const
2595 {
2596 return this->plt_->first_plt_entry_offset();
2597 }
2598
2599 // Return the size of each PLT entry.
2600
2601 template<int size, bool big_endian>
2602 unsigned int
2603 Target_tilegx<size, big_endian>::plt_entry_size() const
2604 {
2605 return this->plt_->get_plt_entry_size();
2606 }
2607
2608 // Create the GOT and PLT sections for an incremental update.
2609
2610 template<int size, bool big_endian>
2611 Output_data_got_base*
2612 Target_tilegx<size, big_endian>::init_got_plt_for_update(Symbol_table* symtab,
2613 Layout* layout,
2614 unsigned int got_count,
2615 unsigned int plt_count)
2616 {
2617 gold_assert(this->got_ == NULL);
2618
2619 this->got_ =
2620 new Output_data_got<size, big_endian>((got_count
2621 + TILEGX_GOT_RESERVE_COUNT)
2622 * (size / 8));
2623 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2624 (elfcpp::SHF_ALLOC
2625 | elfcpp::SHF_WRITE),
2626 this->got_, ORDER_RELRO_LAST,
2627 true);
2628
2629 // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
2630 this->global_offset_table_ =
2631 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2632 Symbol_table::PREDEFINED,
2633 this->got_,
2634 0, 0, elfcpp::STT_OBJECT,
2635 elfcpp::STB_LOCAL,
2636 elfcpp::STV_HIDDEN, 0,
2637 false, false);
2638
2639 if (parameters->options().shared()) {
2640 this->tilegx_dynamic_ =
2641 symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL,
2642 Symbol_table::PREDEFINED,
2643 layout->dynamic_section(),
2644 0, 0, elfcpp::STT_OBJECT,
2645 elfcpp::STB_LOCAL,
2646 elfcpp::STV_HIDDEN, 0,
2647 false, false);
2648
2649 this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD);
2650 } else
2651 this->got_->set_current_data_size(size / 8);
2652
2653 // Add the two reserved entries.
2654 this->got_plt_
2655 = new Output_data_space((plt_count + TILEGX_GOTPLT_RESERVE_COUNT)
2656 * (size / 8), size / 8, "** GOT PLT");
2657 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2658 (elfcpp::SHF_ALLOC
2659 | elfcpp::SHF_WRITE),
2660 this->got_plt_, ORDER_NON_RELRO_FIRST,
2661 false);
2662
2663 // If there are any IRELATIVE relocations, they get GOT entries in
2664 // .got.plt after the jump slot.
2665 this->got_irelative_
2666 = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
2667 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2668 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2669 this->got_irelative_,
2670 ORDER_NON_RELRO_FIRST, false);
2671
2672 // Create the PLT section.
2673 this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout,
2674 this->plt_entry_size(), this->got_, this->got_plt_, this->got_irelative_,
2675 plt_count);
2676
2677 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2678 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
2679 this->plt_, ORDER_PLT, false);
2680
2681 // Make the sh_info field of .rela.plt point to .plt.
2682 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2683 rela_plt_os->set_info_section(this->plt_->output_section());
2684
2685 // Create the rela_dyn section.
2686 this->rela_dyn_section(layout);
2687
2688 return this->got_;
2689 }
2690
2691 // Reserve a GOT entry for a local symbol, and regenerate any
2692 // necessary dynamic relocations.
2693
2694 template<int size, bool big_endian>
2695 void
2696 Target_tilegx<size, big_endian>::reserve_local_got_entry(
2697 unsigned int got_index,
2698 Sized_relobj<size, big_endian>* obj,
2699 unsigned int r_sym,
2700 unsigned int got_type)
2701 {
2702 unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT)
2703 * (size / 8);
2704 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2705
2706 this->got_->reserve_local(got_index, obj, r_sym, got_type);
2707 switch (got_type)
2708 {
2709 case GOT_TYPE_STANDARD:
2710 if (parameters->options().output_is_position_independent())
2711 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_TILEGX_RELATIVE,
2712 this->got_, got_offset, 0, false);
2713 break;
2714 case GOT_TYPE_TLS_OFFSET:
2715 rela_dyn->add_local(obj, r_sym,
2716 size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32
2717 : elfcpp::R_TILEGX_TLS_DTPOFF64,
2718 this->got_, got_offset, 0);
2719 break;
2720 case GOT_TYPE_TLS_PAIR:
2721 this->got_->reserve_slot(got_index + 1);
2722 rela_dyn->add_local(obj, r_sym,
2723 size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
2724 : elfcpp::R_TILEGX_TLS_DTPMOD64,
2725 this->got_, got_offset, 0);
2726 break;
2727 case GOT_TYPE_TLS_DESC:
2728 gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
2729 break;
2730 default:
2731 gold_unreachable();
2732 }
2733 }
2734
2735 // Reserve a GOT entry for a global symbol, and regenerate any
2736 // necessary dynamic relocations.
2737
2738 template<int size, bool big_endian>
2739 void
2740 Target_tilegx<size, big_endian>::reserve_global_got_entry(
2741 unsigned int got_index, Symbol* gsym, unsigned int got_type)
2742 {
2743 unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT)
2744 * (size / 8);
2745 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2746
2747 this->got_->reserve_global(got_index, gsym, got_type);
2748 switch (got_type)
2749 {
2750 case GOT_TYPE_STANDARD:
2751 if (!gsym->final_value_is_known())
2752 {
2753 if (gsym->is_from_dynobj()
2754 || gsym->is_undefined()
2755 || gsym->is_preemptible()
2756 || gsym->type() == elfcpp::STT_GNU_IFUNC)
2757 rela_dyn->add_global(gsym, elfcpp::R_TILEGX_GLOB_DAT,
2758 this->got_, got_offset, 0);
2759 else
2760 rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE,
2761 this->got_, got_offset, 0, false);
2762 }
2763 break;
2764 case GOT_TYPE_TLS_OFFSET:
2765 rela_dyn->add_global_relative(gsym,
2766 size == 32 ? elfcpp::R_TILEGX_TLS_TPOFF32
2767 : elfcpp::R_TILEGX_TLS_TPOFF64,
2768 this->got_, got_offset, 0, false);
2769 break;
2770 case GOT_TYPE_TLS_PAIR:
2771 this->got_->reserve_slot(got_index + 1);
2772 rela_dyn->add_global_relative(gsym,
2773 size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
2774 : elfcpp::R_TILEGX_TLS_DTPMOD64,
2775 this->got_, got_offset, 0, false);
2776 rela_dyn->add_global_relative(gsym,
2777 size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32
2778 : elfcpp::R_TILEGX_TLS_DTPOFF64,
2779 this->got_, got_offset + size / 8,
2780 0, false);
2781 break;
2782 case GOT_TYPE_TLS_DESC:
2783 gold_fatal(_("TLS_DESC not yet supported for TILEGX"));
2784 break;
2785 default:
2786 gold_unreachable();
2787 }
2788 }
2789
2790 // Register an existing PLT entry for a global symbol.
2791
2792 template<int size, bool big_endian>
2793 void
2794 Target_tilegx<size, big_endian>::register_global_plt_entry(
2795 Symbol_table* symtab, Layout* layout, unsigned int plt_index, Symbol* gsym)
2796 {
2797 gold_assert(this->plt_ != NULL);
2798 gold_assert(!gsym->has_plt_offset());
2799
2800 this->plt_->reserve_slot(plt_index);
2801
2802 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2803
2804 unsigned int got_offset = (plt_index + 2) * (size / 8);
2805 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2806 }
2807
2808 // Force a COPY relocation for a given symbol.
2809
2810 template<int size, bool big_endian>
2811 void
2812 Target_tilegx<size, big_endian>::emit_copy_reloc(
2813 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2814 {
2815 this->copy_relocs_.emit_copy_reloc(symtab,
2816 symtab->get_sized_symbol<size>(sym),
2817 os,
2818 offset,
2819 this->rela_dyn_section(NULL));
2820 }
2821
2822 // Create a GOT entry for the TLS module index.
2823
2824 template<int size, bool big_endian>
2825 unsigned int
2826 Target_tilegx<size, big_endian>::got_mod_index_entry(Symbol_table* symtab,
2827 Layout* layout,
2828 Sized_relobj_file<size, big_endian>* object)
2829 {
2830 if (this->got_mod_index_offset_ == -1U)
2831 {
2832 gold_assert(symtab != NULL && layout != NULL && object != NULL);
2833 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2834 Output_data_got<size, big_endian>* got
2835 = this->got_section(symtab, layout);
2836 unsigned int got_offset = got->add_constant(0);
2837 rela_dyn->add_local(object, 0,
2838 size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
2839 : elfcpp::R_TILEGX_TLS_DTPMOD64, got,
2840 got_offset, 0);
2841 got->add_constant(0);
2842 this->got_mod_index_offset_ = got_offset;
2843 }
2844 return this->got_mod_index_offset_;
2845 }
2846
2847 // Optimize the TLS relocation type based on what we know about the
2848 // symbol. IS_FINAL is true if the final address of this symbol is
2849 // known at link time.
2850 //
2851 // the transformation rules is described below:
2852 //
2853 // compiler GD reference
2854 // |
2855 // V
2856 // moveli tmp, hw1_last_tls_gd(x) X0/X1
2857 // shl16insli r0, tmp, hw0_tls_gd(x) X0/X1
2858 // addi r0, got, tls_add(x) Y0/Y1/X0/X1
2859 // jal tls_gd_call(x) X1
2860 // addi adr, r0, tls_gd_add(x) Y0/Y1/X0/X1
2861 //
2862 // linker tranformation of GD insn sequence
2863 // |
2864 // V
2865 // ==> GD:
2866 // moveli tmp, hw1_last_tls_gd(x) X0/X1
2867 // shl16insli r0, tmp, hw0_tls_gd(x) X0/X1
2868 // add r0, got, r0 Y0/Y1/X0/X1
2869 // jal plt(__tls_get_addr) X1
2870 // move adr, r0 Y0/Y1/X0/X1
2871 // ==> IE:
2872 // moveli tmp, hw1_last_tls_ie(x) X0/X1
2873 // shl16insli r0, tmp, hw0_tls_ie(x) X0/X1
2874 // add r0, got, r0 Y0/Y1/X0/X1
2875 // ld r0, r0 X1
2876 // add adr, r0, tp Y0/Y1/X0/X1
2877 // ==> LE:
2878 // moveli tmp, hw1_last_tls_le(x) X0/X1
2879 // shl16insli r0, tmp, hw0_tls_le(x) X0/X1
2880 // move r0, r0 Y0/Y1/X0/X1
2881 // move r0, r0 Y0/Y1/X0/X1
2882 // add adr, r0, tp Y0/Y1/X0/X1
2883 //
2884 //
2885 // compiler IE reference
2886 // |
2887 // V
2888 // moveli tmp, hw1_last_tls_ie(x) X0/X1
2889 // shl16insli tmp, tmp, hw0_tls_ie(x) X0/X1
2890 // addi tmp, got, tls_add(x) Y0/Y1/X0/X1
2891 // ld_tls tmp, tmp, tls_ie_load(x) X1
2892 // add adr, tmp, tp Y0/Y1/X0/X1
2893 //
2894 // linker transformation for IE insn sequence
2895 // |
2896 // V
2897 // ==> IE:
2898 // moveli tmp, hw1_last_tls_ie(x) X0/X1
2899 // shl16insli tmp, tmp, hw0_tls_ie(x) X0/X1
2900 // add tmp, got, tmp Y0/Y1/X0/X1
2901 // ld tmp, tmp X1
2902 // add adr, tmp, tp Y0/Y1/X0/X1
2903 // ==> LE:
2904 // moveli tmp, hw1_last_tls_le(x) X0/X1
2905 // shl16insli tmp, tmp, hw0_tls_le(x) X0/X1
2906 // move tmp, tmp Y0/Y1/X0/X1
2907 // move tmp, tmp Y0/Y1/X0/X1
2908 //
2909 //
2910 // compiler LE reference
2911 // |
2912 // V
2913 // moveli tmp, hw1_last_tls_le(x) X0/X1
2914 // shl16insli tmp, tmp, hw0_tls_le(x) X0/X1
2915 // add adr, tmp, tp Y0/Y1/X0/X1
2916
2917 template<int size, bool big_endian>
2918 tls::Tls_optimization
2919 Target_tilegx<size, big_endian>::optimize_tls_reloc(bool is_final, int r_type)
2920 {
2921 // If we are generating a shared library, then we can't do anything
2922 // in the linker.
2923 if (parameters->options().shared())
2924 return tls::TLSOPT_NONE;
2925
2926 switch (r_type)
2927 {
2928 // unique GD relocations
2929 case elfcpp::R_TILEGX_TLS_GD_CALL:
2930 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
2931 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
2932 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
2933 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
2934 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
2935 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
2936 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
2937 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
2938 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
2939 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
2940 // These are General-Dynamic which permits fully general TLS
2941 // access. Since we know that we are generating an executable,
2942 // we can convert this to Initial-Exec. If we also know that
2943 // this is a local symbol, we can further switch to Local-Exec.
2944 if (is_final)
2945 return tls::TLSOPT_TO_LE;
2946 return tls::TLSOPT_TO_IE;
2947
2948 // unique IE relocations
2949 case elfcpp::R_TILEGX_TLS_IE_LOAD:
2950 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
2951 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
2952 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
2953 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
2954 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
2955 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
2956 // These are Initial-Exec relocs which get the thread offset
2957 // from the GOT. If we know that we are linking against the
2958 // local symbol, we can switch to Local-Exec, which links the
2959 // thread offset into the instruction.
2960 if (is_final)
2961 return tls::TLSOPT_TO_LE;
2962 return tls::TLSOPT_NONE;
2963
2964 // could be created for both GD and IE
2965 // but they are expanded into the same
2966 // instruction in GD and IE.
2967 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
2968 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
2969 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
2970 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
2971 if (is_final)
2972 return tls::TLSOPT_TO_LE;
2973 return tls::TLSOPT_NONE;
2974
2975 // unique LE relocations
2976 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
2977 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
2978 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
2979 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
2980 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
2981 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
2982 // When we already have Local-Exec, there is nothing further we
2983 // can do.
2984 return tls::TLSOPT_NONE;
2985
2986 default:
2987 gold_unreachable();
2988 }
2989 }
2990
2991 // Get the Reference_flags for a particular relocation.
2992
2993 template<int size, bool big_endian>
2994 int
2995 Target_tilegx<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
2996 {
2997 switch (r_type)
2998 {
2999 case elfcpp::R_TILEGX_NONE:
3000 case elfcpp::R_TILEGX_GNU_VTINHERIT:
3001 case elfcpp::R_TILEGX_GNU_VTENTRY:
3002 // No symbol reference.
3003 return 0;
3004
3005 case elfcpp::R_TILEGX_64:
3006 case elfcpp::R_TILEGX_32:
3007 case elfcpp::R_TILEGX_16:
3008 case elfcpp::R_TILEGX_8:
3009 return Symbol::ABSOLUTE_REF;
3010
3011 case elfcpp::R_TILEGX_BROFF_X1:
3012 case elfcpp::R_TILEGX_64_PCREL:
3013 case elfcpp::R_TILEGX_32_PCREL:
3014 case elfcpp::R_TILEGX_16_PCREL:
3015 case elfcpp::R_TILEGX_8_PCREL:
3016 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3017 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3018 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3019 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3020 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3021 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3022 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3023 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3024 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3025 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3026 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3027 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3028 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3029 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3030 return Symbol::RELATIVE_REF;
3031
3032 case elfcpp::R_TILEGX_JUMPOFF_X1:
3033 case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
3034 case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
3035 case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
3036 case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
3037 case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
3038 case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
3039 case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
3040 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
3041 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
3042 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
3043 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
3044 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
3045 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
3046 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
3047
3048 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3049 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3050 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3051 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3052 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3053 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3054 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3055 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3056 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3057 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3058 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3059 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3060 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3061 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3062 return Symbol::ABSOLUTE_REF;
3063
3064 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3065 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3066 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3067 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3068 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3069 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3070 // Absolute in GOT.
3071 return Symbol::ABSOLUTE_REF;
3072
3073 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3074 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3075 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3076 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3077 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3078 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3079 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3080 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3081 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3082 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3083 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3084 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3085 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3086 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3087 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3088 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3089 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3090 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3091 case elfcpp::R_TILEGX_TLS_DTPOFF64:
3092 case elfcpp::R_TILEGX_TLS_DTPMOD32:
3093 case elfcpp::R_TILEGX_TLS_DTPOFF32:
3094 case elfcpp::R_TILEGX_TLS_TPOFF32:
3095 case elfcpp::R_TILEGX_TLS_GD_CALL:
3096 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3097 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3098 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3099 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3100 case elfcpp::R_TILEGX_TLS_IE_LOAD:
3101 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3102 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3103 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3104 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3105 return Symbol::TLS_REF;
3106
3107 case elfcpp::R_TILEGX_COPY:
3108 case elfcpp::R_TILEGX_GLOB_DAT:
3109 case elfcpp::R_TILEGX_JMP_SLOT:
3110 case elfcpp::R_TILEGX_RELATIVE:
3111 case elfcpp::R_TILEGX_TLS_TPOFF64:
3112 case elfcpp::R_TILEGX_TLS_DTPMOD64:
3113 default:
3114 // Not expected. We will give an error later.
3115 return 0;
3116 }
3117 }
3118
3119 // Report an unsupported relocation against a local symbol.
3120
3121 template<int size, bool big_endian>
3122 void
3123 Target_tilegx<size, big_endian>::Scan::unsupported_reloc_local(
3124 Sized_relobj_file<size, big_endian>* object,
3125 unsigned int r_type)
3126 {
3127 gold_error(_("%s: unsupported reloc %u against local symbol"),
3128 object->name().c_str(), r_type);
3129 }
3130
3131 // We are about to emit a dynamic relocation of type R_TYPE. If the
3132 // dynamic linker does not support it, issue an error.
3133 template<int size, bool big_endian>
3134 void
3135 Target_tilegx<size, big_endian>::Scan::check_non_pic(Relobj* object,
3136 unsigned int r_type)
3137 {
3138 switch (r_type)
3139 {
3140 // These are the relocation types supported by glibc for tilegx
3141 // which should always work.
3142 case elfcpp::R_TILEGX_RELATIVE:
3143 case elfcpp::R_TILEGX_GLOB_DAT:
3144 case elfcpp::R_TILEGX_JMP_SLOT:
3145 case elfcpp::R_TILEGX_TLS_DTPMOD64:
3146 case elfcpp::R_TILEGX_TLS_DTPOFF64:
3147 case elfcpp::R_TILEGX_TLS_TPOFF64:
3148 case elfcpp::R_TILEGX_8:
3149 case elfcpp::R_TILEGX_16:
3150 case elfcpp::R_TILEGX_32:
3151 case elfcpp::R_TILEGX_64:
3152 case elfcpp::R_TILEGX_COPY:
3153 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3154 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3155 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3156 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3157 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3158 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3159 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3160 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3161 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3162 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3163 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3164 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3165 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3166 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3167 case elfcpp::R_TILEGX_BROFF_X1:
3168 case elfcpp::R_TILEGX_JUMPOFF_X1:
3169 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3170 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3171 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3172 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3173 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3174 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3175 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3176 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3177 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3178 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3179 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3180 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3181 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3182 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3183 return;
3184
3185 default:
3186 // This prevents us from issuing more than one error per reloc
3187 // section. But we can still wind up issuing more than one
3188 // error per object file.
3189 if (this->issued_non_pic_error_)
3190 return;
3191 gold_assert(parameters->options().output_is_position_independent());
3192 object->error(_("requires unsupported dynamic reloc %u; "
3193 "recompile with -fPIC"),
3194 r_type);
3195 this->issued_non_pic_error_ = true;
3196 return;
3197
3198 case elfcpp::R_TILEGX_NONE:
3199 gold_unreachable();
3200 }
3201 }
3202
3203 // Return whether we need to make a PLT entry for a relocation of the
3204 // given type against a STT_GNU_IFUNC symbol.
3205
3206 template<int size, bool big_endian>
3207 bool
3208 Target_tilegx<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
3209 Sized_relobj_file<size, big_endian>* object, unsigned int r_type)
3210 {
3211 int flags = Scan::get_reference_flags(r_type);
3212 if (flags & Symbol::TLS_REF)
3213 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
3214 object->name().c_str(), r_type);
3215 return flags != 0;
3216 }
3217
3218 // Scan a relocation for a local symbol.
3219
3220 template<int size, bool big_endian>
3221 inline void
3222 Target_tilegx<size, big_endian>::Scan::local(Symbol_table* symtab,
3223 Layout* layout,
3224 Target_tilegx<size, big_endian>* target,
3225 Sized_relobj_file<size, big_endian>* object,
3226 unsigned int data_shndx,
3227 Output_section* output_section,
3228 const elfcpp::Rela<size, big_endian>& reloc,
3229 unsigned int r_type,
3230 const elfcpp::Sym<size, big_endian>& lsym,
3231 bool is_discarded)
3232 {
3233 if (is_discarded)
3234 return;
3235
3236 // A local STT_GNU_IFUNC symbol may require a PLT entry.
3237 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
3238 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
3239 {
3240 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3241 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
3242 }
3243
3244 switch (r_type)
3245 {
3246 case elfcpp::R_TILEGX_NONE:
3247 case elfcpp::R_TILEGX_GNU_VTINHERIT:
3248 case elfcpp::R_TILEGX_GNU_VTENTRY:
3249 break;
3250
3251 // If building a shared library (or a position-independent
3252 // executable), because the runtime address needs plus
3253 // the module base address, so generate a R_TILEGX_RELATIVE.
3254 case elfcpp::R_TILEGX_32:
3255 case elfcpp::R_TILEGX_64:
3256 if (parameters->options().output_is_position_independent())
3257 {
3258 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3259 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3260 rela_dyn->add_local_relative(object, r_sym,
3261 elfcpp::R_TILEGX_RELATIVE,
3262 output_section, data_shndx,
3263 reloc.get_r_offset(),
3264 reloc.get_r_addend(), is_ifunc);
3265 }
3266 break;
3267
3268 // If building a shared library (or a position-independent
3269 // executable), we need to create a dynamic relocation for this
3270 // location.
3271 case elfcpp::R_TILEGX_8:
3272 case elfcpp::R_TILEGX_16:
3273 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3274 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3275 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3276 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3277 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3278 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3279 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3280 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3281 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3282 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3283 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3284 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3285 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3286 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3287 if (parameters->options().output_is_position_independent())
3288 {
3289 this->check_non_pic(object, r_type);
3290
3291 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3292 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3293 if (lsym.get_st_type() != elfcpp::STT_SECTION)
3294 rela_dyn->add_local(object, r_sym, r_type, output_section,
3295 data_shndx, reloc.get_r_offset(),
3296 reloc.get_r_addend());
3297 else
3298 {
3299 gold_assert(lsym.get_st_value() == 0);
3300 rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
3301 output_section,
3302 data_shndx,
3303 reloc.get_r_offset(),
3304 reloc.get_r_addend());
3305
3306 }
3307 }
3308 break;
3309
3310 // R_TILEGX_JUMPOFF_X1_PLT against local symbol
3311 // may happen for ifunc case.
3312 case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
3313 case elfcpp::R_TILEGX_JUMPOFF_X1:
3314 case elfcpp::R_TILEGX_64_PCREL:
3315 case elfcpp::R_TILEGX_32_PCREL:
3316 case elfcpp::R_TILEGX_16_PCREL:
3317 case elfcpp::R_TILEGX_8_PCREL:
3318 case elfcpp::R_TILEGX_BROFF_X1:
3319 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3320 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3321 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3322 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3323 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3324 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3325 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3326 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3327 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3328 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3329 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3330 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3331 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3332 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3333 case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
3334 case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
3335 case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
3336 case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
3337 case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
3338 case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
3339 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
3340 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
3341 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
3342 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
3343 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
3344 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
3345 break;
3346
3347 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3348 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3349 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3350 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3351 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3352 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3353 {
3354 // The symbol requires a GOT entry.
3355 Output_data_got<size, big_endian>* got
3356 = target->got_section(symtab, layout);
3357 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3358
3359 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
3360 // lets function pointers compare correctly with shared
3361 // libraries. Otherwise we would need an IRELATIVE reloc.
3362 bool is_new;
3363 if (is_ifunc)
3364 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3365 else
3366 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3367 if (is_new)
3368 {
3369 // tilegx dynamic linker will not update local got entry,
3370 // so, if we are generating a shared object, we need to add a
3371 // dynamic relocation for this symbol's GOT entry to inform
3372 // dynamic linker plus the load base explictly.
3373 if (parameters->options().output_is_position_independent())
3374 {
3375 unsigned int got_offset
3376 = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3377
3378 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3379 rela_dyn->add_local_relative(object, r_sym,
3380 r_type,
3381 got, got_offset, 0, is_ifunc);
3382 }
3383 }
3384 }
3385 break;
3386
3387 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3388 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3389 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3390 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3391 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3392 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3393 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3394 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3395 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3396 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3397 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3398 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3399 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3400 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3401 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3402 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3403 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3404 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3405 case elfcpp::R_TILEGX_TLS_GD_CALL:
3406 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3407 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3408 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3409 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3410 case elfcpp::R_TILEGX_TLS_IE_LOAD:
3411 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3412 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3413 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3414 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3415 {
3416 bool output_is_shared = parameters->options().shared();
3417 const tls::Tls_optimization opt_t =
3418 Target_tilegx<size, big_endian>::optimize_tls_reloc(
3419 !output_is_shared, r_type);
3420
3421 switch (r_type)
3422 {
3423 case elfcpp::R_TILEGX_TLS_GD_CALL:
3424 // FIXME: predefine __tls_get_addr
3425 //
3426 // R_TILEGX_TLS_GD_CALL implicitly reference __tls_get_addr,
3427 // while all other target, x86/arm/mips/powerpc/sparc
3428 // generate tls relocation against __tls_get_addr explictly,
3429 // so for TILEGX, we need the following hack.
3430 if (opt_t == tls::TLSOPT_NONE) {
3431 if (!target->tls_get_addr_sym_defined_) {
3432 Symbol* sym = NULL;
3433 options::parse_set(NULL, "__tls_get_addr",
3434 (gold::options::String_set*)
3435 &parameters->options().undefined());
3436 symtab->add_undefined_symbols_from_command_line(layout);
3437 target->tls_get_addr_sym_defined_ = true;
3438 sym = symtab->lookup("__tls_get_addr");
3439 sym->set_in_reg();
3440 }
3441 target->make_plt_entry(symtab, layout,
3442 symtab->lookup("__tls_get_addr"));
3443 }
3444 break;
3445
3446 // only make effect when applying relocation
3447 case elfcpp::R_TILEGX_TLS_IE_LOAD:
3448 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3449 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3450 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3451 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3452 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3453 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3454 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3455 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3456 break;
3457
3458 // GD: requires two GOT entry for module index and offset
3459 // IE: requires one GOT entry for tp-relative offset
3460 // LE: shouldn't happen for global symbol
3461 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3462 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3463 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3464 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3465 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3466 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3467 {
3468 if (opt_t == tls::TLSOPT_NONE) {
3469 Output_data_got<size, big_endian> *got
3470 = target->got_section(symtab, layout);
3471 unsigned int r_sym
3472 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3473 unsigned int shndx = lsym.get_st_shndx();
3474 bool is_ordinary;
3475 shndx = object->adjust_sym_shndx(r_sym, shndx,
3476 &is_ordinary);
3477 if (!is_ordinary)
3478 object->error(_("local symbol %u has bad shndx %u"),
3479 r_sym, shndx);
3480 else
3481 got->add_local_pair_with_rel(object, r_sym, shndx,
3482 GOT_TYPE_TLS_PAIR,
3483 target->rela_dyn_section(layout),
3484 size == 32
3485 ? elfcpp::R_TILEGX_TLS_DTPMOD32
3486 : elfcpp::R_TILEGX_TLS_DTPMOD64);
3487 } else if (opt_t == tls::TLSOPT_TO_IE) {
3488 Output_data_got<size, big_endian>* got
3489 = target->got_section(symtab, layout);
3490 Reloc_section* rela_dyn
3491 = target->rela_dyn_section(layout);
3492 unsigned int r_sym
3493 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3494 unsigned int off = got->add_constant(0);
3495 object->set_local_got_offset(r_sym,
3496 GOT_TYPE_TLS_OFFSET,off);
3497 rela_dyn->add_symbolless_local_addend(object, r_sym,
3498 size == 32
3499 ? elfcpp::R_TILEGX_TLS_TPOFF32
3500 : elfcpp::R_TILEGX_TLS_TPOFF64,
3501 got, off, 0);
3502 } else if (opt_t != tls::TLSOPT_TO_LE)
3503 // only TO_LE is allowed for local symbol
3504 unsupported_reloc_local(object, r_type);
3505 }
3506 break;
3507
3508 // IE
3509 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3510 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3511 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3512 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3513 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3514 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3515 {
3516 layout->set_has_static_tls();
3517 if (opt_t == tls::TLSOPT_NONE) {
3518 Output_data_got<size, big_endian>* got
3519 = target->got_section(symtab, layout);
3520 Reloc_section* rela_dyn
3521 = target->rela_dyn_section(layout);
3522 unsigned int r_sym
3523 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3524 unsigned int off = got->add_constant(0);
3525 object->set_local_got_offset(r_sym,
3526 GOT_TYPE_TLS_OFFSET, off);
3527 rela_dyn->add_symbolless_local_addend(object, r_sym,
3528 size == 32
3529 ? elfcpp::R_TILEGX_TLS_TPOFF32
3530 : elfcpp::R_TILEGX_TLS_TPOFF64,
3531 got, off, 0);
3532 } else if (opt_t != tls::TLSOPT_TO_LE)
3533 unsupported_reloc_local(object, r_type);
3534 }
3535 break;
3536
3537 // LE
3538 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3539 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3540 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3541 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3542 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3543 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3544 layout->set_has_static_tls();
3545 if (parameters->options().shared()) {
3546 // defer to dynamic linker
3547 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
3548 unsigned int r_sym
3549 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3550 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3551 rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
3552 output_section, data_shndx,
3553 reloc.get_r_offset(), 0);
3554 }
3555 break;
3556
3557 default:
3558 gold_unreachable();
3559 }
3560 }
3561 break;
3562
3563 case elfcpp::R_TILEGX_COPY:
3564 case elfcpp::R_TILEGX_GLOB_DAT:
3565 case elfcpp::R_TILEGX_JMP_SLOT:
3566 case elfcpp::R_TILEGX_RELATIVE:
3567 // These are outstanding tls relocs, which are unexpected when linking
3568 case elfcpp::R_TILEGX_TLS_TPOFF32:
3569 case elfcpp::R_TILEGX_TLS_TPOFF64:
3570 case elfcpp::R_TILEGX_TLS_DTPMOD32:
3571 case elfcpp::R_TILEGX_TLS_DTPMOD64:
3572 case elfcpp::R_TILEGX_TLS_DTPOFF32:
3573 case elfcpp::R_TILEGX_TLS_DTPOFF64:
3574 gold_error(_("%s: unexpected reloc %u in object file"),
3575 object->name().c_str(), r_type);
3576 break;
3577
3578 default:
3579 gold_error(_("%s: unsupported reloc %u against local symbol"),
3580 object->name().c_str(), r_type);
3581 break;
3582 }
3583 }
3584
3585
3586 // Report an unsupported relocation against a global symbol.
3587
3588 template<int size, bool big_endian>
3589 void
3590 Target_tilegx<size, big_endian>::Scan::unsupported_reloc_global(
3591 Sized_relobj_file<size, big_endian>* object,
3592 unsigned int r_type,
3593 Symbol* gsym)
3594 {
3595 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3596 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3597 }
3598
3599 // Returns true if this relocation type could be that of a function pointer.
3600 template<int size, bool big_endian>
3601 inline bool
3602 Target_tilegx<size, big_endian>::Scan::possible_function_pointer_reloc(
3603 unsigned int r_type)
3604 {
3605 switch (r_type)
3606 {
3607 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3608 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3609 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3610 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3611 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3612 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3613 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3614 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3615 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3616 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3617 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3618 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3619 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3620 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3621 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3622 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3623 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3624 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3625 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3626 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3627 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3628 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3629 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3630 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3631 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3632 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3633 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3634 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3635 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3636 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3637 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3638 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3639 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3640 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3641 {
3642 return true;
3643 }
3644 }
3645 return false;
3646 }
3647
3648 // For safe ICF, scan a relocation for a local symbol to check if it
3649 // corresponds to a function pointer being taken. In that case mark
3650 // the function whose pointer was taken as not foldable.
3651
3652 template<int size, bool big_endian>
3653 inline bool
3654 Target_tilegx<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
3655 Symbol_table* ,
3656 Layout* ,
3657 Target_tilegx<size, big_endian>* ,
3658 Sized_relobj_file<size, big_endian>* ,
3659 unsigned int ,
3660 Output_section* ,
3661 const elfcpp::Rela<size, big_endian>& ,
3662 unsigned int r_type,
3663 const elfcpp::Sym<size, big_endian>&)
3664 {
3665 return possible_function_pointer_reloc(r_type);
3666 }
3667
3668 // For safe ICF, scan a relocation for a global symbol to check if it
3669 // corresponds to a function pointer being taken. In that case mark
3670 // the function whose pointer was taken as not foldable.
3671
3672 template<int size, bool big_endian>
3673 inline bool
3674 Target_tilegx<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
3675 Symbol_table*,
3676 Layout* ,
3677 Target_tilegx<size, big_endian>* ,
3678 Sized_relobj_file<size, big_endian>* ,
3679 unsigned int ,
3680 Output_section* ,
3681 const elfcpp::Rela<size, big_endian>& ,
3682 unsigned int r_type,
3683 Symbol* gsym)
3684 {
3685 // GOT is not a function.
3686 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
3687 return false;
3688
3689 // When building a shared library, do not fold symbols whose visibility
3690 // is hidden, internal or protected.
3691 return ((parameters->options().shared()
3692 && (gsym->visibility() == elfcpp::STV_INTERNAL
3693 || gsym->visibility() == elfcpp::STV_PROTECTED
3694 || gsym->visibility() == elfcpp::STV_HIDDEN))
3695 || possible_function_pointer_reloc(r_type));
3696 }
3697
3698 // Scan a relocation for a global symbol.
3699
3700 template<int size, bool big_endian>
3701 inline void
3702 Target_tilegx<size, big_endian>::Scan::global(Symbol_table* symtab,
3703 Layout* layout,
3704 Target_tilegx<size, big_endian>* target,
3705 Sized_relobj_file<size, big_endian>* object,
3706 unsigned int data_shndx,
3707 Output_section* output_section,
3708 const elfcpp::Rela<size, big_endian>& reloc,
3709 unsigned int r_type,
3710 Symbol* gsym)
3711 {
3712 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
3713 // section. We check here to avoid creating a dynamic reloc against
3714 // _GLOBAL_OFFSET_TABLE_.
3715 if (!target->has_got_section()
3716 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
3717 target->got_section(symtab, layout);
3718
3719 // A STT_GNU_IFUNC symbol may require a PLT entry.
3720 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3721 && this->reloc_needs_plt_for_ifunc(object, r_type))
3722 target->make_plt_entry(symtab, layout, gsym);
3723
3724 switch (r_type)
3725 {
3726 case elfcpp::R_TILEGX_NONE:
3727 case elfcpp::R_TILEGX_GNU_VTINHERIT:
3728 case elfcpp::R_TILEGX_GNU_VTENTRY:
3729 break;
3730
3731 case elfcpp::R_TILEGX_DEST_IMM8_X1:
3732 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3733 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3734 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3735 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3736 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3737 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3738 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3739 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3740 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3741 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3742 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3743 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3744 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3745 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3746 case elfcpp::R_TILEGX_64:
3747 case elfcpp::R_TILEGX_32:
3748 case elfcpp::R_TILEGX_16:
3749 case elfcpp::R_TILEGX_8:
3750 {
3751 // Make a PLT entry if necessary.
3752 if (gsym->needs_plt_entry())
3753 {
3754 target->make_plt_entry(symtab, layout, gsym);
3755 // Since this is not a PC-relative relocation, we may be
3756 // taking the address of a function. In that case we need to
3757 // set the entry in the dynamic symbol table to the address of
3758 // the PLT entry.
3759 if (gsym->is_from_dynobj() && !parameters->options().shared())
3760 gsym->set_needs_dynsym_value();
3761 }
3762 // Make a dynamic relocation if necessary.
3763 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3764 {
3765 if (!parameters->options().output_is_position_independent()
3766 && gsym->may_need_copy_reloc())
3767 {
3768 target->copy_reloc(symtab, layout, object,
3769 data_shndx, output_section, gsym, reloc);
3770 }
3771 else if (((size == 64 && r_type == elfcpp::R_TILEGX_64)
3772 || (size == 32 && r_type == elfcpp::R_TILEGX_32))
3773 && gsym->type() == elfcpp::STT_GNU_IFUNC
3774 && gsym->can_use_relative_reloc(false)
3775 && !gsym->is_from_dynobj()
3776 && !gsym->is_undefined()
3777 && !gsym->is_preemptible())
3778 {
3779 // Use an IRELATIVE reloc for a locally defined
3780 // STT_GNU_IFUNC symbol. This makes a function
3781 // address in a PIE executable match the address in a
3782 // shared library that it links against.
3783 Reloc_section* rela_dyn =
3784 target->rela_irelative_section(layout);
3785 unsigned int r_type = elfcpp::R_TILEGX_IRELATIVE;
3786 rela_dyn->add_symbolless_global_addend(gsym, r_type,
3787 output_section, object,
3788 data_shndx,
3789 reloc.get_r_offset(),
3790 reloc.get_r_addend());
3791 } else if ((r_type == elfcpp::R_TILEGX_64
3792 || r_type == elfcpp::R_TILEGX_32)
3793 && gsym->can_use_relative_reloc(false))
3794 {
3795 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3796 rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE,
3797 output_section, object,
3798 data_shndx,
3799 reloc.get_r_offset(),
3800 reloc.get_r_addend(), false);
3801 }
3802 else
3803 {
3804 this->check_non_pic(object, r_type);
3805 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3806 rela_dyn->add_global(gsym, r_type, output_section, object,
3807 data_shndx, reloc.get_r_offset(),
3808 reloc.get_r_addend());
3809 }
3810 }
3811 }
3812 break;
3813
3814 case elfcpp::R_TILEGX_BROFF_X1:
3815 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3816 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3817 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3818 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3819 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3820 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3821 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3822 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3823 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3824 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3825 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3826 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3827 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3828 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3829 case elfcpp::R_TILEGX_64_PCREL:
3830 case elfcpp::R_TILEGX_32_PCREL:
3831 case elfcpp::R_TILEGX_16_PCREL:
3832 case elfcpp::R_TILEGX_8_PCREL:
3833 {
3834 // Make a PLT entry if necessary.
3835 if (gsym->needs_plt_entry())
3836 target->make_plt_entry(symtab, layout, gsym);
3837 // Make a dynamic relocation if necessary.
3838 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3839 {
3840 if (parameters->options().output_is_executable()
3841 && gsym->may_need_copy_reloc())
3842 {
3843 target->copy_reloc(symtab, layout, object,
3844 data_shndx, output_section, gsym, reloc);
3845 }
3846 else
3847 {
3848 this->check_non_pic(object, r_type);
3849 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3850 rela_dyn->add_global(gsym, r_type, output_section, object,
3851 data_shndx, reloc.get_r_offset(),
3852 reloc.get_r_addend());
3853 }
3854 }
3855 }
3856 break;
3857
3858 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3859 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3860 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3861 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3862 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3863 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3864 {
3865 // The symbol requires a GOT entry.
3866 Output_data_got<size, big_endian>* got
3867 = target->got_section(symtab, layout);
3868 if (gsym->final_value_is_known())
3869 {
3870 // For a STT_GNU_IFUNC symbol we want the PLT address.
3871 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3872 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3873 else
3874 got->add_global(gsym, GOT_TYPE_STANDARD);
3875 }
3876 else
3877 {
3878 // If this symbol is not fully resolved, we need to add a
3879 // dynamic relocation for it.
3880 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3881
3882 // Use a GLOB_DAT rather than a RELATIVE reloc if:
3883 //
3884 // 1) The symbol may be defined in some other module.
3885 //
3886 // 2) We are building a shared library and this is a
3887 // protected symbol; using GLOB_DAT means that the dynamic
3888 // linker can use the address of the PLT in the main
3889 // executable when appropriate so that function address
3890 // comparisons work.
3891 //
3892 // 3) This is a STT_GNU_IFUNC symbol in position dependent
3893 // code, again so that function address comparisons work.
3894 if (gsym->is_from_dynobj()
3895 || gsym->is_undefined()
3896 || gsym->is_preemptible()
3897 || (gsym->visibility() == elfcpp::STV_PROTECTED
3898 && parameters->options().shared())
3899 || (gsym->type() == elfcpp::STT_GNU_IFUNC
3900 && parameters->options().output_is_position_independent()))
3901 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
3902 elfcpp::R_TILEGX_GLOB_DAT);
3903 else
3904 {
3905 // For a STT_GNU_IFUNC symbol we want to write the PLT
3906 // offset into the GOT, so that function pointer
3907 // comparisons work correctly.
3908 bool is_new;
3909 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
3910 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
3911 else
3912 {
3913 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3914 // Tell the dynamic linker to use the PLT address
3915 // when resolving relocations.
3916 if (gsym->is_from_dynobj()
3917 && !parameters->options().shared())
3918 gsym->set_needs_dynsym_value();
3919 }
3920 if (is_new)
3921 {
3922 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
3923 rela_dyn->add_global_relative(gsym,
3924 r_type,
3925 got, got_off, 0, false);
3926 }
3927 }
3928 }
3929 }
3930 break;
3931
3932 // a minor difference here for R_TILEGX_JUMPOFF_X1
3933 // between bfd linker and gold linker for gold, when
3934 // R_TILEGX_JUMPOFF_X1 against global symbol, we
3935 // turn it into JUMPOFF_X1_PLT, otherwise the distance
3936 // to the symbol function may overflow at runtime.
3937 case elfcpp::R_TILEGX_JUMPOFF_X1:
3938
3939 case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
3940 case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
3941 case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
3942 case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
3943 case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
3944 case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
3945 case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
3946 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
3947 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
3948 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
3949 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
3950 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
3951 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
3952 // If the symbol is fully resolved, this is just a PC32 reloc.
3953 // Otherwise we need a PLT entry.
3954 if (gsym->final_value_is_known())
3955 break;
3956 // If building a shared library, we can also skip the PLT entry
3957 // if the symbol is defined in the output file and is protected
3958 // or hidden.
3959 if (gsym->is_defined()
3960 && !gsym->is_from_dynobj()
3961 && !gsym->is_preemptible())
3962 break;
3963 target->make_plt_entry(symtab, layout, gsym);
3964 break;
3965
3966
3967 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3968 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3969 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3970 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3971 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3972 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3973 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3974 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3975 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3976 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3977 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3978 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3979 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3980 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3981 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3982 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3983 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3984 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3985 case elfcpp::R_TILEGX_TLS_GD_CALL:
3986 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3987 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3988 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3989 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3990 case elfcpp::R_TILEGX_TLS_IE_LOAD:
3991 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3992 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3993 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3994 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3995 {
3996 const bool is_final = gsym->final_value_is_known();
3997 const tls::Tls_optimization opt_t =
3998 Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final,
3999 r_type);
4000
4001 switch (r_type)
4002 {
4003 // only expand to plt against __tls_get_addr in GD model
4004 case elfcpp::R_TILEGX_TLS_GD_CALL:
4005 if (opt_t == tls::TLSOPT_NONE) {
4006 // FIXME: it's better '__tls_get_addr' referenced explictly
4007 if (!target->tls_get_addr_sym_defined_) {
4008 Symbol* sym = NULL;
4009 options::parse_set(NULL, "__tls_get_addr",
4010 (gold::options::String_set*)
4011 &parameters->options().undefined());
4012 symtab->add_undefined_symbols_from_command_line(layout);
4013 target->tls_get_addr_sym_defined_ = true;
4014 sym = symtab->lookup("__tls_get_addr");
4015 sym->set_in_reg();
4016 }
4017 target->make_plt_entry(symtab, layout,
4018 symtab->lookup("__tls_get_addr"));
4019 }
4020 break;
4021
4022 // only make effect when applying relocation
4023 case elfcpp::R_TILEGX_TLS_IE_LOAD:
4024 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4025 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4026 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4027 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4028 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
4029 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
4030 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
4031 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4032 break;
4033
4034 // GD: requires two GOT entry for module index and offset
4035 // IE: requires one GOT entry for tp-relative offset
4036 // LE: shouldn't happen for global symbol
4037 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
4038 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
4039 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
4040 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
4041 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
4042 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
4043 {
4044 if (opt_t == tls::TLSOPT_NONE) {
4045 Output_data_got<size, big_endian>* got
4046 = target->got_section(symtab, layout);
4047 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
4048 target->rela_dyn_section(layout),
4049 size == 32
4050 ? elfcpp::R_TILEGX_TLS_DTPMOD32
4051 : elfcpp::R_TILEGX_TLS_DTPMOD64,
4052 size == 32
4053 ? elfcpp::R_TILEGX_TLS_DTPOFF32
4054 : elfcpp::R_TILEGX_TLS_DTPOFF64);
4055 } else if (opt_t == tls::TLSOPT_TO_IE) {
4056 // Create a GOT entry for the tp-relative offset.
4057 Output_data_got<size, big_endian>* got
4058 = target->got_section(symtab, layout);
4059 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4060 target->rela_dyn_section(layout),
4061 size == 32
4062 ? elfcpp::R_TILEGX_TLS_TPOFF32
4063 : elfcpp::R_TILEGX_TLS_TPOFF64);
4064 } else if (opt_t != tls::TLSOPT_TO_LE)
4065 // exteranl symbol should not be optimized to TO_LE
4066 unsupported_reloc_global(object, r_type, gsym);
4067 }
4068 break;
4069
4070 // IE
4071 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
4072 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
4073 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
4074 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
4075 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
4076 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
4077 {
4078 layout->set_has_static_tls();
4079 if (opt_t == tls::TLSOPT_NONE) {
4080 // Create a GOT entry for the tp-relative offset.
4081 Output_data_got<size, big_endian>* got
4082 = target->got_section(symtab, layout);
4083 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4084 target->rela_dyn_section(layout),
4085 size == 32
4086 ? elfcpp::R_TILEGX_TLS_TPOFF32
4087 : elfcpp::R_TILEGX_TLS_TPOFF64);
4088 } else if (opt_t != tls::TLSOPT_TO_LE)
4089 unsupported_reloc_global(object, r_type, gsym);
4090 }
4091 break;
4092
4093 // LE
4094 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
4095 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
4096 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
4097 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
4098 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
4099 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
4100 layout->set_has_static_tls();
4101 if (parameters->options().shared()) {
4102 // defer to dynamic linker
4103 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4104 rela_dyn->add_symbolless_global_addend(gsym, r_type,
4105 output_section, object,
4106 data_shndx,
4107 reloc.get_r_offset(), 0);
4108 }
4109 break;
4110
4111 default:
4112 gold_unreachable();
4113 }
4114 }
4115 break;
4116
4117 // below are outstanding relocs
4118 // should not existed in static linking stage
4119 case elfcpp::R_TILEGX_COPY:
4120 case elfcpp::R_TILEGX_GLOB_DAT:
4121 case elfcpp::R_TILEGX_JMP_SLOT:
4122 case elfcpp::R_TILEGX_RELATIVE:
4123 case elfcpp::R_TILEGX_TLS_TPOFF32:
4124 case elfcpp::R_TILEGX_TLS_TPOFF64:
4125 case elfcpp::R_TILEGX_TLS_DTPMOD32:
4126 case elfcpp::R_TILEGX_TLS_DTPMOD64:
4127 case elfcpp::R_TILEGX_TLS_DTPOFF32:
4128 case elfcpp::R_TILEGX_TLS_DTPOFF64:
4129 gold_error(_("%s: unexpected reloc %u in object file"),
4130 object->name().c_str(), r_type);
4131 break;
4132
4133 default:
4134 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4135 object->name().c_str(), r_type,
4136 gsym->demangled_name().c_str());
4137 break;
4138 }
4139 }
4140
4141 template<int size, bool big_endian>
4142 void
4143 Target_tilegx<size, big_endian>::gc_process_relocs(Symbol_table* symtab,
4144 Layout* layout,
4145 Sized_relobj_file<size, big_endian>* object,
4146 unsigned int data_shndx,
4147 unsigned int sh_type,
4148 const unsigned char* prelocs,
4149 size_t reloc_count,
4150 Output_section* output_section,
4151 bool needs_special_offset_handling,
4152 size_t local_symbol_count,
4153 const unsigned char* plocal_symbols)
4154 {
4155 typedef Target_tilegx<size, big_endian> Tilegx;
4156 typedef typename Target_tilegx<size, big_endian>::Scan Scan;
4157
4158 if (sh_type == elfcpp::SHT_REL)
4159 {
4160 return;
4161 }
4162
4163 gold::gc_process_relocs<size, big_endian,
4164 Tilegx, elfcpp::SHT_RELA, Scan,
4165 typename Target_tilegx<size, big_endian>::Relocatable_size_for_reloc>(
4166 symtab,
4167 layout,
4168 this,
4169 object,
4170 data_shndx,
4171 prelocs,
4172 reloc_count,
4173 output_section,
4174 needs_special_offset_handling,
4175 local_symbol_count,
4176 plocal_symbols);
4177 }
4178 // Scan relocations for a section.
4179
4180 template<int size, bool big_endian>
4181 void
4182 Target_tilegx<size, big_endian>::scan_relocs(Symbol_table* symtab,
4183 Layout* layout,
4184 Sized_relobj_file<size, big_endian>* object,
4185 unsigned int data_shndx,
4186 unsigned int sh_type,
4187 const unsigned char* prelocs,
4188 size_t reloc_count,
4189 Output_section* output_section,
4190 bool needs_special_offset_handling,
4191 size_t local_symbol_count,
4192 const unsigned char* plocal_symbols)
4193 {
4194 typedef Target_tilegx<size, big_endian> Tilegx;
4195 typedef typename Target_tilegx<size, big_endian>::Scan Scan;
4196
4197 if (sh_type == elfcpp::SHT_REL)
4198 {
4199 gold_error(_("%s: unsupported REL reloc section"),
4200 object->name().c_str());
4201 return;
4202 }
4203
4204 gold::scan_relocs<size, big_endian, Tilegx, elfcpp::SHT_RELA, Scan>(
4205 symtab,
4206 layout,
4207 this,
4208 object,
4209 data_shndx,
4210 prelocs,
4211 reloc_count,
4212 output_section,
4213 needs_special_offset_handling,
4214 local_symbol_count,
4215 plocal_symbols);
4216 }
4217
4218 template<int size, bool big_endian>
4219 void
4220 Target_tilegx<size, big_endian>::do_define_standard_symbols(
4221 Symbol_table* symtab,
4222 Layout* layout)
4223 {
4224 Output_section* feedback_section = layout->find_output_section(".feedback");
4225
4226 if (feedback_section != NULL)
4227 {
4228 symtab->define_in_output_data("__feedback_section_end",
4229 NULL,
4230 Symbol_table::PREDEFINED,
4231 feedback_section,
4232 0,
4233 0,
4234 elfcpp::STT_NOTYPE,
4235 elfcpp::STB_GLOBAL,
4236 elfcpp::STV_HIDDEN,
4237 0,
4238 true, // offset_is_from_end
4239 false);
4240 }
4241 }
4242
4243 // Finalize the sections.
4244
4245 template<int size, bool big_endian>
4246 void
4247 Target_tilegx<size, big_endian>::do_finalize_sections(
4248 Layout* layout,
4249 const Input_objects*,
4250 Symbol_table* symtab)
4251 {
4252 const Reloc_section* rel_plt = (this->plt_ == NULL
4253 ? NULL
4254 : this->plt_->rela_plt());
4255 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4256 this->rela_dyn_, true, true);
4257
4258 // Emit any relocs we saved in an attempt to avoid generating COPY
4259 // relocs.
4260 if (this->copy_relocs_.any_saved_relocs())
4261 this->copy_relocs_.emit(this->rela_dyn_section(layout));
4262
4263 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4264 // the .got section.
4265 Symbol* sym = this->global_offset_table_;
4266 if (sym != NULL)
4267 {
4268 uint64_t data_size = this->got_->current_data_size();
4269 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4270
4271 // If the .got section is more than 0x8000 bytes, we add
4272 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
4273 // bit relocations have a greater chance of working.
4274 if (data_size >= 0x8000)
4275 symtab->get_sized_symbol<size>(sym)->set_value(
4276 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
4277 }
4278
4279 if (parameters->doing_static_link()
4280 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4281 {
4282 // If linking statically, make sure that the __rela_iplt symbols
4283 // were defined if necessary, even if we didn't create a PLT.
4284 static const Define_symbol_in_segment syms[] =
4285 {
4286 {
4287 "__rela_iplt_start", // name
4288 elfcpp::PT_LOAD, // segment_type
4289 elfcpp::PF_W, // segment_flags_set
4290 elfcpp::PF(0), // segment_flags_clear
4291 0, // value
4292 0, // size
4293 elfcpp::STT_NOTYPE, // type
4294 elfcpp::STB_GLOBAL, // binding
4295 elfcpp::STV_HIDDEN, // visibility
4296 0, // nonvis
4297 Symbol::SEGMENT_START, // offset_from_base
4298 true // only_if_ref
4299 },
4300 {
4301 "__rela_iplt_end", // name
4302 elfcpp::PT_LOAD, // segment_type
4303 elfcpp::PF_W, // segment_flags_set
4304 elfcpp::PF(0), // segment_flags_clear
4305 0, // value
4306 0, // size
4307 elfcpp::STT_NOTYPE, // type
4308 elfcpp::STB_GLOBAL, // binding
4309 elfcpp::STV_HIDDEN, // visibility
4310 0, // nonvis
4311 Symbol::SEGMENT_START, // offset_from_base
4312 true // only_if_ref
4313 }
4314 };
4315
4316 symtab->define_symbols(layout, 2, syms,
4317 layout->script_options()->saw_sections_clause());
4318 }
4319 }
4320
4321 // Perform a relocation.
4322
4323 template<int size, bool big_endian>
4324 inline bool
4325 Target_tilegx<size, big_endian>::Relocate::relocate(
4326 const Relocate_info<size, big_endian>* relinfo,
4327 unsigned int,
4328 Target_tilegx<size, big_endian>* target,
4329 Output_section*,
4330 size_t relnum,
4331 const unsigned char* preloc,
4332 const Sized_symbol<size>* gsym,
4333 const Symbol_value<size>* psymval,
4334 unsigned char* view,
4335 typename elfcpp::Elf_types<size>::Elf_Addr address,
4336 section_size_type)
4337 {
4338 if (view == NULL)
4339 return true;
4340
4341 typedef Tilegx_relocate_functions<size, big_endian> TilegxReloc;
4342 typename TilegxReloc::Tilegx_howto r_howto;
4343
4344 const elfcpp::Rela<size, big_endian> rela(preloc);
4345 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
4346 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
4347
4348 // Pick the value to use for symbols defined in the PLT.
4349 Symbol_value<size> symval;
4350 if (gsym != NULL
4351 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
4352 {
4353 symval.set_output_value(target->plt_address_for_global(gsym));
4354 psymval = &symval;
4355 }
4356 else if (gsym == NULL && psymval->is_ifunc_symbol())
4357 {
4358 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4359 if (object->local_has_plt_offset(r_sym))
4360 {
4361 symval.set_output_value(target->plt_address_for_local(object, r_sym));
4362 psymval = &symval;
4363 }
4364 }
4365
4366 elfcpp::Elf_Xword addend = rela.get_r_addend();
4367
4368 // Get the GOT offset if needed.
4369 // For tilegx, the GOT pointer points to the start of the GOT section.
4370 bool have_got_offset = false;
4371 int got_offset = 0;
4372 int got_base = target->got_ != NULL
4373 ? target->got_->current_data_size() >= 0x8000 ? 0x8000 : 0
4374 : 0;
4375 unsigned int got_type = GOT_TYPE_STANDARD;
4376 bool always_apply_relocation = false;
4377 switch (r_type)
4378 {
4379 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
4380 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
4381 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
4382 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
4383 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
4384 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
4385 if (gsym != NULL)
4386 {
4387 gold_assert(gsym->has_got_offset(got_type));
4388 got_offset = gsym->got_offset(got_type) - got_base;
4389 }
4390 else
4391 {
4392 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4393 gold_assert(object->local_has_got_offset(r_sym, got_type));
4394 got_offset =
4395 object->local_got_offset(r_sym, got_type) - got_base;
4396 }
4397 have_got_offset = true;
4398 break;
4399
4400 default:
4401 break;
4402 }
4403
4404 r_howto = TilegxReloc::howto[r_type];
4405 switch (r_type)
4406 {
4407 case elfcpp::R_TILEGX_NONE:
4408 case elfcpp::R_TILEGX_GNU_VTINHERIT:
4409 case elfcpp::R_TILEGX_GNU_VTENTRY:
4410 break;
4411
4412 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
4413 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
4414 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
4415 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
4416 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
4417 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
4418 gold_assert(have_got_offset);
4419 symval.set_output_value(got_offset);
4420 psymval = &symval;
4421 always_apply_relocation = true;
4422 addend = 0;
4423
4424 // when under PIC mode, these relocations are deferred to rtld
4425 case elfcpp::R_TILEGX_IMM16_X0_HW0:
4426 case elfcpp::R_TILEGX_IMM16_X1_HW0:
4427 case elfcpp::R_TILEGX_IMM16_X0_HW1:
4428 case elfcpp::R_TILEGX_IMM16_X1_HW1:
4429 case elfcpp::R_TILEGX_IMM16_X0_HW2:
4430 case elfcpp::R_TILEGX_IMM16_X1_HW2:
4431 case elfcpp::R_TILEGX_IMM16_X0_HW3:
4432 case elfcpp::R_TILEGX_IMM16_X1_HW3:
4433 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
4434 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
4435 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
4436 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
4437 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
4438 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
4439 if (always_apply_relocation
4440 || !parameters->options().output_is_position_independent())
4441 TilegxReloc::imm_x_general(view, object, psymval, addend, r_howto);
4442 break;
4443
4444 case elfcpp::R_TILEGX_JUMPOFF_X1:
4445 case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
4446 gold_assert(gsym == NULL
4447 || gsym->has_plt_offset()
4448 || gsym->final_value_is_known()
4449 || (gsym->is_defined()
4450 && !gsym->is_from_dynobj()
4451 && !gsym->is_preemptible()));
4452 TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend,
4453 address, r_howto);
4454 break;
4455
4456
4457 case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
4458 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
4459 case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
4460 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
4461 case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
4462 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
4463 case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
4464 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
4465 case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
4466 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
4467 case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
4468 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
4469 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
4470 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
4471 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
4472 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
4473 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
4474 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
4475 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
4476 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
4477 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
4478 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
4479 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
4480 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
4481 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
4482 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
4483 TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend,
4484 address, r_howto);
4485 break;
4486
4487 case elfcpp::R_TILEGX_BROFF_X1:
4488 case elfcpp::R_TILEGX_DEST_IMM8_X1:
4489 TilegxReloc::imm_x_two_part_general(view, object, psymval,
4490 addend, address, r_type);
4491 break;
4492
4493
4494 // below are general relocation types, which can be
4495 // handled by target-independent handlers
4496 case elfcpp::R_TILEGX_64:
4497 TilegxReloc::abs64(view, object, psymval, addend);
4498 break;
4499
4500 case elfcpp::R_TILEGX_64_PCREL:
4501 TilegxReloc::pc_abs64(view, object, psymval, addend, address);
4502 break;
4503
4504 case elfcpp::R_TILEGX_32:
4505 TilegxReloc::abs32(view, object, psymval, addend);
4506 break;
4507
4508 case elfcpp::R_TILEGX_32_PCREL:
4509 TilegxReloc::pc_abs32(view, object, psymval, addend, address);
4510 break;
4511
4512 case elfcpp::R_TILEGX_16:
4513 TilegxReloc::abs16(view, object, psymval, addend);
4514 break;
4515
4516 case elfcpp::R_TILEGX_16_PCREL:
4517 TilegxReloc::pc_abs16(view, object, psymval, addend, address);
4518 break;
4519
4520 case elfcpp::R_TILEGX_8:
4521 Relocate_functions<size, big_endian>::rela8(view, object,
4522 psymval, addend);
4523 break;
4524
4525 case elfcpp::R_TILEGX_8_PCREL:
4526 Relocate_functions<size, big_endian>::pcrela8(view, object,
4527 psymval, addend, address);
4528 break;
4529
4530 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
4531 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
4532 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
4533 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
4534 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
4535 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
4536 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
4537 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
4538 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
4539 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
4540 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
4541 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
4542 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
4543 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
4544 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
4545 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
4546 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
4547 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
4548 case elfcpp::R_TILEGX_TLS_GD_CALL:
4549 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
4550 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
4551 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
4552 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4553 case elfcpp::R_TILEGX_TLS_IE_LOAD:
4554 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4555 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4556 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4557 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4558 {
4559 const bool is_final = (gsym == NULL
4560 ? !parameters->options().shared()
4561 : gsym->final_value_is_known());
4562 tls::Tls_optimization opt_t =
4563 Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final,
4564 r_type);
4565
4566 switch (r_type)
4567 {
4568
4569 case elfcpp::R_TILEGX_TLS_GD_CALL:
4570 {
4571 if (opt_t == tls::TLSOPT_NONE) {
4572 Symbol *tls_sym = relinfo->symtab->lookup("__tls_get_addr");
4573 symval.set_output_value(
4574 target->plt_address_for_global(tls_sym));
4575 psymval = &symval;
4576 TilegxReloc::imm_x_pcrel_general(view, object, psymval,
4577 addend, address, r_howto);
4578 }
4579 else if (opt_t == tls::TLSOPT_TO_IE
4580 || opt_t == tls::TLSOPT_TO_LE)
4581 TilegxReloc::tls_relax(view, r_type, opt_t);
4582 }
4583 break;
4584
4585 // XX_TLS_GD is the same as normal X_GOT relocation
4586 // except allocating a got entry pair,
4587 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
4588 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
4589 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
4590 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
4591 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
4592 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
4593 if (opt_t == tls::TLSOPT_NONE) {
4594 got_type = GOT_TYPE_TLS_PAIR;
4595 have_got_offset = true;
4596 } else if (opt_t == tls::TLSOPT_TO_IE) {
4597 got_type = GOT_TYPE_TLS_OFFSET;
4598 have_got_offset = true;
4599 }
4600 goto do_update_value;
4601 // XX_TLS_IE is the same as normal X_GOT relocation
4602 // except allocating one additional runtime relocation
4603 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
4604 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
4605 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
4606 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
4607 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
4608 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
4609 if (opt_t == tls::TLSOPT_NONE) {
4610 got_type = GOT_TYPE_TLS_OFFSET;
4611 have_got_offset = true;
4612 }
4613 do_update_value:
4614 if (have_got_offset) {
4615 if (gsym != NULL) {
4616 gold_assert(gsym->has_got_offset(got_type));
4617 got_offset = gsym->got_offset(got_type) - got_base;
4618 } else {
4619 unsigned int r_sym
4620 = elfcpp::elf_r_sym<size>(rela.get_r_info());
4621 gold_assert(object->local_has_got_offset(r_sym, got_type));
4622 got_offset =
4623 object->local_got_offset(r_sym, got_type) - got_base;
4624 }
4625 }
4626
4627 if (opt_t == tls::TLSOPT_NONE
4628 || opt_t == tls::TLSOPT_TO_IE) {
4629 // for both GD/IE, these relocations
4630 // actually calculate got offset, so
4631 // there behavior are the same
4632 gold_assert(have_got_offset);
4633 symval.set_output_value(got_offset);
4634 psymval = &symval;
4635 addend = 0;
4636 TilegxReloc::imm_x_general(view, object, psymval,
4637 addend, r_howto);
4638 break;
4639 } // else if (opt_t == tls::TLSOPT_TO_LE)
4640 // both GD/IE are turned into LE, which
4641 // is absolute relocation.
4642 //
4643 // | go through
4644 // |
4645 // V
4646 // LE
4647 //
4648 // tp
4649 // |
4650 // V
4651 // t_var1 | t_var2 | t_var3 | ...
4652 // --------------------------------------------------
4653 //
4654 // so offset to tp should be negative, we get offset
4655 // from the following formular for LE
4656 //
4657 // t_var1_off = t_var1_sym_value - tls_section_start
4658 //
4659 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
4660 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
4661 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
4662 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
4663 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
4664 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
4665 {
4666 Output_segment *tls_segment = relinfo->layout->tls_segment();
4667 if (tls_segment == NULL) {
4668 gold_assert(parameters->errors()->error_count() > 0
4669 || issue_undefined_symbol_error(gsym));
4670 return false;
4671 }
4672
4673 typename elfcpp::Elf_types<size>::Elf_Addr value
4674 = psymval->value(relinfo->object, 0);
4675 symval.set_output_value(value);
4676 psymval = &symval;
4677 TilegxReloc::imm_x_general(view, object, psymval,
4678 addend, r_howto);
4679 }
4680 break;
4681
4682 // tls relaxation
4683 case elfcpp::R_TILEGX_TLS_IE_LOAD:
4684 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4685 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4686 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4687 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4688 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
4689 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
4690 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
4691 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4692 TilegxReloc::tls_relax(view, r_type, opt_t);
4693 break;
4694
4695 default:
4696 gold_unreachable();
4697 }
4698 }
4699 break;
4700
4701 // below are outstanding relocs
4702 // should not existed in static linking stage
4703 case elfcpp::R_TILEGX_COPY:
4704 case elfcpp::R_TILEGX_GLOB_DAT:
4705 case elfcpp::R_TILEGX_JMP_SLOT:
4706 case elfcpp::R_TILEGX_RELATIVE:
4707 case elfcpp::R_TILEGX_TLS_TPOFF32:
4708 case elfcpp::R_TILEGX_TLS_TPOFF64:
4709 case elfcpp::R_TILEGX_TLS_DTPMOD32:
4710 case elfcpp::R_TILEGX_TLS_DTPMOD64:
4711 case elfcpp::R_TILEGX_TLS_DTPOFF32:
4712 case elfcpp::R_TILEGX_TLS_DTPOFF64:
4713 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4714 _("unexpected reloc %u in object file"),
4715 r_type);
4716 break;
4717
4718 default:
4719 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4720 _("unsupported reloc %u"),
4721 r_type);
4722 break;
4723 }
4724
4725 return true;
4726 }
4727
4728 // Relocate section data.
4729
4730 template<int size, bool big_endian>
4731 void
4732 Target_tilegx<size, big_endian>::relocate_section(
4733 const Relocate_info<size, big_endian>* relinfo,
4734 unsigned int sh_type,
4735 const unsigned char* prelocs,
4736 size_t reloc_count,
4737 Output_section* output_section,
4738 bool needs_special_offset_handling,
4739 unsigned char* view,
4740 typename elfcpp::Elf_types<size>::Elf_Addr address,
4741 section_size_type view_size,
4742 const Reloc_symbol_changes* reloc_symbol_changes)
4743 {
4744 typedef Target_tilegx<size, big_endian> Tilegx;
4745 typedef typename Target_tilegx<size, big_endian>::Relocate Tilegx_relocate;
4746
4747 gold_assert(sh_type == elfcpp::SHT_RELA);
4748
4749 gold::relocate_section<size, big_endian, Tilegx, elfcpp::SHT_RELA,
4750 Tilegx_relocate, gold::Default_comdat_behavior>(
4751 relinfo,
4752 this,
4753 prelocs,
4754 reloc_count,
4755 output_section,
4756 needs_special_offset_handling,
4757 view,
4758 address,
4759 view_size,
4760 reloc_symbol_changes);
4761 }
4762
4763 // Apply an incremental relocation. Incremental relocations always refer
4764 // to global symbols.
4765
4766 template<int size, bool big_endian>
4767 void
4768 Target_tilegx<size, big_endian>::apply_relocation(
4769 const Relocate_info<size, big_endian>* relinfo,
4770 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4771 unsigned int r_type,
4772 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4773 const Symbol* gsym,
4774 unsigned char* view,
4775 typename elfcpp::Elf_types<size>::Elf_Addr address,
4776 section_size_type view_size)
4777 {
4778 gold::apply_relocation<size, big_endian, Target_tilegx<size, big_endian>,
4779 typename Target_tilegx<size, big_endian>::Relocate>(
4780 relinfo,
4781 this,
4782 r_offset,
4783 r_type,
4784 r_addend,
4785 gsym,
4786 view,
4787 address,
4788 view_size);
4789 }
4790
4791 // Return the size of a relocation while scanning during a relocatable
4792 // link.
4793
4794 template<int size, bool big_endian>
4795 unsigned int
4796 Target_tilegx<size,big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
4797 unsigned int, Relobj*)
4798 {
4799 // We are always SHT_RELA, so we should never get here.
4800 gold_unreachable();
4801 return 0;
4802 }
4803
4804 // Scan the relocs during a relocatable link.
4805
4806 template<int size, bool big_endian>
4807 void
4808 Target_tilegx<size, big_endian>::scan_relocatable_relocs(
4809 Symbol_table* symtab,
4810 Layout* layout,
4811 Sized_relobj_file<size, big_endian>* object,
4812 unsigned int data_shndx,
4813 unsigned int sh_type,
4814 const unsigned char* prelocs,
4815 size_t reloc_count,
4816 Output_section* output_section,
4817 bool needs_special_offset_handling,
4818 size_t local_symbol_count,
4819 const unsigned char* plocal_symbols,
4820 Relocatable_relocs* rr)
4821 {
4822 gold_assert(sh_type == elfcpp::SHT_RELA);
4823
4824 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4825 Relocatable_size_for_reloc> Scan_relocatable_relocs;
4826
4827 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
4828 Scan_relocatable_relocs>(
4829 symtab,
4830 layout,
4831 object,
4832 data_shndx,
4833 prelocs,
4834 reloc_count,
4835 output_section,
4836 needs_special_offset_handling,
4837 local_symbol_count,
4838 plocal_symbols,
4839 rr);
4840 }
4841
4842 // Relocate a section during a relocatable link.
4843
4844 template<int size, bool big_endian>
4845 void
4846 Target_tilegx<size, big_endian>::relocate_relocs(
4847 const Relocate_info<size, big_endian>* relinfo,
4848 unsigned int sh_type,
4849 const unsigned char* prelocs,
4850 size_t reloc_count,
4851 Output_section* output_section,
4852 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4853 unsigned char* view,
4854 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4855 section_size_type view_size,
4856 unsigned char* reloc_view,
4857 section_size_type reloc_view_size)
4858 {
4859 gold_assert(sh_type == elfcpp::SHT_RELA);
4860
4861 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
4862 relinfo,
4863 prelocs,
4864 reloc_count,
4865 output_section,
4866 offset_in_output_section,
4867 view,
4868 view_address,
4869 view_size,
4870 reloc_view,
4871 reloc_view_size);
4872 }
4873
4874 // Return the value to use for a dynamic which requires special
4875 // treatment. This is how we support equality comparisons of function
4876 // pointers across shared library boundaries, as described in the
4877 // processor specific ABI supplement.
4878
4879 template<int size, bool big_endian>
4880 uint64_t
4881 Target_tilegx<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
4882 {
4883 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4884 return this->plt_address_for_global(gsym);
4885 }
4886
4887 // Return the value to use for the base of a DW_EH_PE_datarel offset
4888 // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
4889 // assembler can not write out the difference between two labels in
4890 // different sections, so instead of using a pc-relative value they
4891 // use an offset from the GOT.
4892
4893 template<int size, bool big_endian>
4894 uint64_t
4895 Target_tilegx<size, big_endian>::do_ehframe_datarel_base() const
4896 {
4897 gold_assert(this->global_offset_table_ != NULL);
4898 Symbol* sym = this->global_offset_table_;
4899 Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4900 return ssym->value();
4901 }
4902
4903 // The selector for tilegx object files.
4904
4905 template<int size, bool big_endian>
4906 class Target_selector_tilegx : public Target_selector
4907 {
4908 public:
4909 Target_selector_tilegx()
4910 : Target_selector(elfcpp::EM_TILEGX, size, big_endian,
4911 (size == 64
4912 ? (big_endian ? "elf64-tilegx-be" : "elf64-tilegx-le")
4913 : (big_endian ? "elf32-tilegx-be"
4914 : "elf32-tilegx-le")),
4915 (size == 64
4916 ? (big_endian ? "elf64tilegx_be" : "elf64tilegx")
4917 : (big_endian ? "elf32tilegx_be" : "elf32tilegx")))
4918 { }
4919
4920 Target*
4921 do_instantiate_target()
4922 { return new Target_tilegx<size, big_endian>(); }
4923
4924 };
4925
4926 Target_selector_tilegx<64, false> target_selector_tilegx64_le;
4927 Target_selector_tilegx<32, false> target_selector_tilegx32_le;
4928 Target_selector_tilegx<64, true> target_selector_tilegx64_be;
4929 Target_selector_tilegx<32, true> target_selector_tilegx32_be;
4930 } // End anonymous namespace.
This page took 0.133568 seconds and 5 git commands to generate.