Convert indirect calls to direct when possible.
[deliverable/binutils-gdb.git] / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "dwarf.h"
29 #include "parameters.h"
30 #include "reloc.h"
31 #include "x86_64.h"
32 #include "object.h"
33 #include "symtab.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "copy-relocs.h"
37 #include "target.h"
38 #include "target-reloc.h"
39 #include "target-select.h"
40 #include "tls.h"
41 #include "freebsd.h"
42 #include "nacl.h"
43 #include "gc.h"
44 #include "icf.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 // A class to handle the .got.plt section.
52
53 class Output_data_got_plt_x86_64 : public Output_section_data_build
54 {
55 public:
56 Output_data_got_plt_x86_64(Layout* layout)
57 : Output_section_data_build(8),
58 layout_(layout)
59 { }
60
61 Output_data_got_plt_x86_64(Layout* layout, off_t data_size)
62 : Output_section_data_build(data_size, 8),
63 layout_(layout)
64 { }
65
66 protected:
67 // Write out the PLT data.
68 void
69 do_write(Output_file*);
70
71 // Write to a map file.
72 void
73 do_print_to_mapfile(Mapfile* mapfile) const
74 { mapfile->print_output_data(this, "** GOT PLT"); }
75
76 private:
77 // A pointer to the Layout class, so that we can find the .dynamic
78 // section when we write out the GOT PLT section.
79 Layout* layout_;
80 };
81
82 // A class to handle the PLT data.
83 // This is an abstract base class that handles most of the linker details
84 // but does not know the actual contents of PLT entries. The derived
85 // classes below fill in those details.
86
87 template<int size>
88 class Output_data_plt_x86_64 : public Output_section_data
89 {
90 public:
91 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
92
93 Output_data_plt_x86_64(Layout* layout, uint64_t addralign,
94 Output_data_got<64, false>* got,
95 Output_data_got_plt_x86_64* got_plt,
96 Output_data_space* got_irelative)
97 : Output_section_data(addralign), tlsdesc_rel_(NULL),
98 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
99 got_irelative_(got_irelative), count_(0), irelative_count_(0),
100 tlsdesc_got_offset_(-1U), free_list_()
101 { this->init(layout); }
102
103 Output_data_plt_x86_64(Layout* layout, uint64_t plt_entry_size,
104 Output_data_got<64, false>* got,
105 Output_data_got_plt_x86_64* got_plt,
106 Output_data_space* got_irelative,
107 unsigned int plt_count)
108 : Output_section_data((plt_count + 1) * plt_entry_size,
109 plt_entry_size, false),
110 tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
111 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
112 irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
113 {
114 this->init(layout);
115
116 // Initialize the free list and reserve the first entry.
117 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
118 this->free_list_.remove(0, plt_entry_size);
119 }
120
121 // Initialize the PLT section.
122 void
123 init(Layout* layout);
124
125 // Add an entry to the PLT.
126 void
127 add_entry(Symbol_table*, Layout*, Symbol* gsym);
128
129 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
130 unsigned int
131 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
132 Sized_relobj_file<size, false>* relobj,
133 unsigned int local_sym_index);
134
135 // Add the relocation for a PLT entry.
136 void
137 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
138 unsigned int got_offset);
139
140 // Add the reserved TLSDESC_PLT entry to the PLT.
141 void
142 reserve_tlsdesc_entry(unsigned int got_offset)
143 { this->tlsdesc_got_offset_ = got_offset; }
144
145 // Return true if a TLSDESC_PLT entry has been reserved.
146 bool
147 has_tlsdesc_entry() const
148 { return this->tlsdesc_got_offset_ != -1U; }
149
150 // Return the GOT offset for the reserved TLSDESC_PLT entry.
151 unsigned int
152 get_tlsdesc_got_offset() const
153 { return this->tlsdesc_got_offset_; }
154
155 // Return the offset of the reserved TLSDESC_PLT entry.
156 unsigned int
157 get_tlsdesc_plt_offset() const
158 {
159 return ((this->count_ + this->irelative_count_ + 1)
160 * this->get_plt_entry_size());
161 }
162
163 // Return the .rela.plt section data.
164 Reloc_section*
165 rela_plt()
166 { return this->rel_; }
167
168 // Return where the TLSDESC relocations should go.
169 Reloc_section*
170 rela_tlsdesc(Layout*);
171
172 // Return where the IRELATIVE relocations should go in the PLT
173 // relocations.
174 Reloc_section*
175 rela_irelative(Symbol_table*, Layout*);
176
177 // Return whether we created a section for IRELATIVE relocations.
178 bool
179 has_irelative_section() const
180 { return this->irelative_rel_ != NULL; }
181
182 // Return the number of PLT entries.
183 unsigned int
184 entry_count() const
185 { return this->count_ + this->irelative_count_; }
186
187 // Return the offset of the first non-reserved PLT entry.
188 unsigned int
189 first_plt_entry_offset()
190 { return this->get_plt_entry_size(); }
191
192 // Return the size of a PLT entry.
193 unsigned int
194 get_plt_entry_size() const
195 { return this->do_get_plt_entry_size(); }
196
197 // Reserve a slot in the PLT for an existing symbol in an incremental update.
198 void
199 reserve_slot(unsigned int plt_index)
200 {
201 this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
202 (plt_index + 2) * this->get_plt_entry_size());
203 }
204
205 // Return the PLT address to use for a global symbol.
206 uint64_t
207 address_for_global(const Symbol*);
208
209 // Return the PLT address to use for a local symbol.
210 uint64_t
211 address_for_local(const Relobj*, unsigned int symndx);
212
213 // Add .eh_frame information for the PLT.
214 void
215 add_eh_frame(Layout* layout)
216 { this->do_add_eh_frame(layout); }
217
218 protected:
219 // Fill in the first PLT entry.
220 void
221 fill_first_plt_entry(unsigned char* pov,
222 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
223 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
224 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
225
226 // Fill in a normal PLT entry. Returns the offset into the entry that
227 // should be the initial GOT slot value.
228 unsigned int
229 fill_plt_entry(unsigned char* pov,
230 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
231 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
232 unsigned int got_offset,
233 unsigned int plt_offset,
234 unsigned int plt_index)
235 {
236 return this->do_fill_plt_entry(pov, got_address, plt_address,
237 got_offset, plt_offset, plt_index);
238 }
239
240 // Fill in the reserved TLSDESC PLT entry.
241 void
242 fill_tlsdesc_entry(unsigned char* pov,
243 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
244 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
245 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
246 unsigned int tlsdesc_got_offset,
247 unsigned int plt_offset)
248 {
249 this->do_fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
250 tlsdesc_got_offset, plt_offset);
251 }
252
253 virtual unsigned int
254 do_get_plt_entry_size() const = 0;
255
256 virtual void
257 do_fill_first_plt_entry(unsigned char* pov,
258 typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
259 typename elfcpp::Elf_types<size>::Elf_Addr plt_addr)
260 = 0;
261
262 virtual unsigned int
263 do_fill_plt_entry(unsigned char* pov,
264 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
265 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
266 unsigned int got_offset,
267 unsigned int plt_offset,
268 unsigned int plt_index) = 0;
269
270 virtual void
271 do_fill_tlsdesc_entry(unsigned char* pov,
272 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
273 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
274 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
275 unsigned int tlsdesc_got_offset,
276 unsigned int plt_offset) = 0;
277
278 virtual void
279 do_add_eh_frame(Layout* layout) = 0;
280
281 void
282 do_adjust_output_section(Output_section* os);
283
284 // Write to a map file.
285 void
286 do_print_to_mapfile(Mapfile* mapfile) const
287 { mapfile->print_output_data(this, _("** PLT")); }
288
289 // The CIE of the .eh_frame unwind information for the PLT.
290 static const int plt_eh_frame_cie_size = 16;
291 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
292
293 private:
294 // Set the final size.
295 void
296 set_final_data_size();
297
298 // Write out the PLT data.
299 void
300 do_write(Output_file*);
301
302 // The reloc section.
303 Reloc_section* rel_;
304 // The TLSDESC relocs, if necessary. These must follow the regular
305 // PLT relocs.
306 Reloc_section* tlsdesc_rel_;
307 // The IRELATIVE relocs, if necessary. These must follow the
308 // regular PLT relocations and the TLSDESC relocations.
309 Reloc_section* irelative_rel_;
310 // The .got section.
311 Output_data_got<64, false>* got_;
312 // The .got.plt section.
313 Output_data_got_plt_x86_64* got_plt_;
314 // The part of the .got.plt section used for IRELATIVE relocs.
315 Output_data_space* got_irelative_;
316 // The number of PLT entries.
317 unsigned int count_;
318 // Number of PLT entries with R_X86_64_IRELATIVE relocs. These
319 // follow the regular PLT entries.
320 unsigned int irelative_count_;
321 // Offset of the reserved TLSDESC_GOT entry when needed.
322 unsigned int tlsdesc_got_offset_;
323 // List of available regions within the section, for incremental
324 // update links.
325 Free_list free_list_;
326 };
327
328 template<int size>
329 class Output_data_plt_x86_64_standard : public Output_data_plt_x86_64<size>
330 {
331 public:
332 Output_data_plt_x86_64_standard(Layout* layout,
333 Output_data_got<64, false>* got,
334 Output_data_got_plt_x86_64* got_plt,
335 Output_data_space* got_irelative)
336 : Output_data_plt_x86_64<size>(layout, plt_entry_size,
337 got, got_plt, got_irelative)
338 { }
339
340 Output_data_plt_x86_64_standard(Layout* layout,
341 Output_data_got<64, false>* got,
342 Output_data_got_plt_x86_64* got_plt,
343 Output_data_space* got_irelative,
344 unsigned int plt_count)
345 : Output_data_plt_x86_64<size>(layout, plt_entry_size,
346 got, got_plt, got_irelative,
347 plt_count)
348 { }
349
350 protected:
351 virtual unsigned int
352 do_get_plt_entry_size() const
353 { return plt_entry_size; }
354
355 virtual void
356 do_add_eh_frame(Layout* layout)
357 {
358 layout->add_eh_frame_for_plt(this,
359 this->plt_eh_frame_cie,
360 this->plt_eh_frame_cie_size,
361 plt_eh_frame_fde,
362 plt_eh_frame_fde_size);
363 }
364
365 virtual void
366 do_fill_first_plt_entry(unsigned char* pov,
367 typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
368 typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
369
370 virtual unsigned int
371 do_fill_plt_entry(unsigned char* pov,
372 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
373 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
374 unsigned int got_offset,
375 unsigned int plt_offset,
376 unsigned int plt_index);
377
378 virtual void
379 do_fill_tlsdesc_entry(unsigned char* pov,
380 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
381 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
382 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
383 unsigned int tlsdesc_got_offset,
384 unsigned int plt_offset);
385
386 private:
387 // The size of an entry in the PLT.
388 static const int plt_entry_size = 16;
389
390 // The first entry in the PLT.
391 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392 // procedure linkage table for both programs and shared objects."
393 static const unsigned char first_plt_entry[plt_entry_size];
394
395 // Other entries in the PLT for an executable.
396 static const unsigned char plt_entry[plt_entry_size];
397
398 // The reserved TLSDESC entry in the PLT for an executable.
399 static const unsigned char tlsdesc_plt_entry[plt_entry_size];
400
401 // The .eh_frame unwind information for the PLT.
402 static const int plt_eh_frame_fde_size = 32;
403 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
404 };
405
406 template<int size>
407 class Lazy_view
408 {
409 public:
410 Lazy_view(Sized_relobj_file<size, false>* object, unsigned int data_shndx)
411 : object_(object), data_shndx_(data_shndx), view_(NULL), view_size_(0)
412 { }
413
414 inline unsigned char
415 operator[](size_t offset)
416 {
417 if (this->view_ == NULL)
418 this->view_ = this->object_->section_contents(this->data_shndx_,
419 &this->view_size_,
420 true);
421 if (offset >= this->view_size_)
422 return 0;
423 return this->view_[offset];
424 }
425
426 private:
427 Sized_relobj_file<size, false>* object_;
428 unsigned int data_shndx_;
429 const unsigned char* view_;
430 section_size_type view_size_;
431 };
432
433 // The x86_64 target class.
434 // See the ABI at
435 // http://www.x86-64.org/documentation/abi.pdf
436 // TLS info comes from
437 // http://people.redhat.com/drepper/tls.pdf
438 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
439
440 template<int size>
441 class Target_x86_64 : public Sized_target<size, false>
442 {
443 public:
444 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
445 // uses only Elf64_Rela relocation entries with explicit addends."
446 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, false> Reloc_section;
447
448 Target_x86_64(const Target::Target_info* info = &x86_64_info)
449 : Sized_target<size, false>(info),
450 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
451 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
452 rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
453 got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
454 tls_base_symbol_defined_(false)
455 { }
456
457 // Hook for a new output section.
458 void
459 do_new_output_section(Output_section*) const;
460
461 // Scan the relocations to look for symbol adjustments.
462 void
463 gc_process_relocs(Symbol_table* symtab,
464 Layout* layout,
465 Sized_relobj_file<size, false>* object,
466 unsigned int data_shndx,
467 unsigned int sh_type,
468 const unsigned char* prelocs,
469 size_t reloc_count,
470 Output_section* output_section,
471 bool needs_special_offset_handling,
472 size_t local_symbol_count,
473 const unsigned char* plocal_symbols);
474
475 // Scan the relocations to look for symbol adjustments.
476 void
477 scan_relocs(Symbol_table* symtab,
478 Layout* layout,
479 Sized_relobj_file<size, false>* object,
480 unsigned int data_shndx,
481 unsigned int sh_type,
482 const unsigned char* prelocs,
483 size_t reloc_count,
484 Output_section* output_section,
485 bool needs_special_offset_handling,
486 size_t local_symbol_count,
487 const unsigned char* plocal_symbols);
488
489 // Finalize the sections.
490 void
491 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
492
493 // Return the value to use for a dynamic which requires special
494 // treatment.
495 uint64_t
496 do_dynsym_value(const Symbol*) const;
497
498 // Relocate a section.
499 void
500 relocate_section(const Relocate_info<size, false>*,
501 unsigned int sh_type,
502 const unsigned char* prelocs,
503 size_t reloc_count,
504 Output_section* output_section,
505 bool needs_special_offset_handling,
506 unsigned char* view,
507 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
508 section_size_type view_size,
509 const Reloc_symbol_changes*);
510
511 // Scan the relocs during a relocatable link.
512 void
513 scan_relocatable_relocs(Symbol_table* symtab,
514 Layout* layout,
515 Sized_relobj_file<size, false>* object,
516 unsigned int data_shndx,
517 unsigned int sh_type,
518 const unsigned char* prelocs,
519 size_t reloc_count,
520 Output_section* output_section,
521 bool needs_special_offset_handling,
522 size_t local_symbol_count,
523 const unsigned char* plocal_symbols,
524 Relocatable_relocs*);
525
526 // Scan the relocs for --emit-relocs.
527 void
528 emit_relocs_scan(Symbol_table* symtab,
529 Layout* layout,
530 Sized_relobj_file<size, false>* object,
531 unsigned int data_shndx,
532 unsigned int sh_type,
533 const unsigned char* prelocs,
534 size_t reloc_count,
535 Output_section* output_section,
536 bool needs_special_offset_handling,
537 size_t local_symbol_count,
538 const unsigned char* plocal_syms,
539 Relocatable_relocs* rr);
540
541 // Emit relocations for a section.
542 void
543 relocate_relocs(
544 const Relocate_info<size, false>*,
545 unsigned int sh_type,
546 const unsigned char* prelocs,
547 size_t reloc_count,
548 Output_section* output_section,
549 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
550 unsigned char* view,
551 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
552 section_size_type view_size,
553 unsigned char* reloc_view,
554 section_size_type reloc_view_size);
555
556 // Return a string used to fill a code section with nops.
557 std::string
558 do_code_fill(section_size_type length) const;
559
560 // Return whether SYM is defined by the ABI.
561 bool
562 do_is_defined_by_abi(const Symbol* sym) const
563 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
564
565 // Return the symbol index to use for a target specific relocation.
566 // The only target specific relocation is R_X86_64_TLSDESC for a
567 // local symbol, which is an absolute reloc.
568 unsigned int
569 do_reloc_symbol_index(void*, unsigned int r_type) const
570 {
571 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
572 return 0;
573 }
574
575 // Return the addend to use for a target specific relocation.
576 uint64_t
577 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
578
579 // Return the PLT section.
580 uint64_t
581 do_plt_address_for_global(const Symbol* gsym) const
582 { return this->plt_section()->address_for_global(gsym); }
583
584 uint64_t
585 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
586 { return this->plt_section()->address_for_local(relobj, symndx); }
587
588 // This function should be defined in targets that can use relocation
589 // types to determine (implemented in local_reloc_may_be_function_pointer
590 // and global_reloc_may_be_function_pointer)
591 // if a function's pointer is taken. ICF uses this in safe mode to only
592 // fold those functions whose pointer is defintely not taken. For x86_64
593 // pie binaries, safe ICF cannot be done by looking at relocation types.
594 bool
595 do_can_check_for_function_pointers() const
596 { return !parameters->options().pie(); }
597
598 // Return the base for a DW_EH_PE_datarel encoding.
599 uint64_t
600 do_ehframe_datarel_base() const;
601
602 // Adjust -fsplit-stack code which calls non-split-stack code.
603 void
604 do_calls_non_split(Relobj* object, unsigned int shndx,
605 section_offset_type fnoffset, section_size_type fnsize,
606 const unsigned char* prelocs, size_t reloc_count,
607 unsigned char* view, section_size_type view_size,
608 std::string* from, std::string* to) const;
609
610 // Return the size of the GOT section.
611 section_size_type
612 got_size() const
613 {
614 gold_assert(this->got_ != NULL);
615 return this->got_->data_size();
616 }
617
618 // Return the number of entries in the GOT.
619 unsigned int
620 got_entry_count() const
621 {
622 if (this->got_ == NULL)
623 return 0;
624 return this->got_size() / 8;
625 }
626
627 // Return the number of entries in the PLT.
628 unsigned int
629 plt_entry_count() const;
630
631 // Return the offset of the first non-reserved PLT entry.
632 unsigned int
633 first_plt_entry_offset() const;
634
635 // Return the size of each PLT entry.
636 unsigned int
637 plt_entry_size() const;
638
639 // Return the size of each GOT entry.
640 unsigned int
641 got_entry_size() const
642 { return 8; };
643
644 // Create the GOT section for an incremental update.
645 Output_data_got_base*
646 init_got_plt_for_update(Symbol_table* symtab,
647 Layout* layout,
648 unsigned int got_count,
649 unsigned int plt_count);
650
651 // Reserve a GOT entry for a local symbol, and regenerate any
652 // necessary dynamic relocations.
653 void
654 reserve_local_got_entry(unsigned int got_index,
655 Sized_relobj<size, false>* obj,
656 unsigned int r_sym,
657 unsigned int got_type);
658
659 // Reserve a GOT entry for a global symbol, and regenerate any
660 // necessary dynamic relocations.
661 void
662 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
663 unsigned int got_type);
664
665 // Register an existing PLT entry for a global symbol.
666 void
667 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
668 Symbol* gsym);
669
670 // Force a COPY relocation for a given symbol.
671 void
672 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
673
674 // Apply an incremental relocation.
675 void
676 apply_relocation(const Relocate_info<size, false>* relinfo,
677 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
678 unsigned int r_type,
679 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
680 const Symbol* gsym,
681 unsigned char* view,
682 typename elfcpp::Elf_types<size>::Elf_Addr address,
683 section_size_type view_size);
684
685 // Add a new reloc argument, returning the index in the vector.
686 size_t
687 add_tlsdesc_info(Sized_relobj_file<size, false>* object, unsigned int r_sym)
688 {
689 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
690 return this->tlsdesc_reloc_info_.size() - 1;
691 }
692
693 Output_data_plt_x86_64<size>*
694 make_data_plt(Layout* layout,
695 Output_data_got<64, false>* got,
696 Output_data_got_plt_x86_64* got_plt,
697 Output_data_space* got_irelative)
698 {
699 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
700 }
701
702 Output_data_plt_x86_64<size>*
703 make_data_plt(Layout* layout,
704 Output_data_got<64, false>* got,
705 Output_data_got_plt_x86_64* got_plt,
706 Output_data_space* got_irelative,
707 unsigned int plt_count)
708 {
709 return this->do_make_data_plt(layout, got, got_plt, got_irelative,
710 plt_count);
711 }
712
713 virtual Output_data_plt_x86_64<size>*
714 do_make_data_plt(Layout* layout,
715 Output_data_got<64, false>* got,
716 Output_data_got_plt_x86_64* got_plt,
717 Output_data_space* got_irelative)
718 {
719 return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
720 got_irelative);
721 }
722
723 virtual Output_data_plt_x86_64<size>*
724 do_make_data_plt(Layout* layout,
725 Output_data_got<64, false>* got,
726 Output_data_got_plt_x86_64* got_plt,
727 Output_data_space* got_irelative,
728 unsigned int plt_count)
729 {
730 return new Output_data_plt_x86_64_standard<size>(layout, got, got_plt,
731 got_irelative,
732 plt_count);
733 }
734
735 private:
736 // The class which scans relocations.
737 class Scan
738 {
739 public:
740 Scan()
741 : issued_non_pic_error_(false)
742 { }
743
744 static inline int
745 get_reference_flags(unsigned int r_type);
746
747 inline void
748 local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
749 Sized_relobj_file<size, false>* object,
750 unsigned int data_shndx,
751 Output_section* output_section,
752 const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
753 const elfcpp::Sym<size, false>& lsym,
754 bool is_discarded);
755
756 inline void
757 global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
758 Sized_relobj_file<size, false>* object,
759 unsigned int data_shndx,
760 Output_section* output_section,
761 const elfcpp::Rela<size, false>& reloc, unsigned int r_type,
762 Symbol* gsym);
763
764 inline bool
765 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
766 Target_x86_64* target,
767 Sized_relobj_file<size, false>* object,
768 unsigned int data_shndx,
769 Output_section* output_section,
770 const elfcpp::Rela<size, false>& reloc,
771 unsigned int r_type,
772 const elfcpp::Sym<size, false>& lsym);
773
774 inline bool
775 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
776 Target_x86_64* target,
777 Sized_relobj_file<size, false>* object,
778 unsigned int data_shndx,
779 Output_section* output_section,
780 const elfcpp::Rela<size, false>& reloc,
781 unsigned int r_type,
782 Symbol* gsym);
783
784 private:
785 static void
786 unsupported_reloc_local(Sized_relobj_file<size, false>*,
787 unsigned int r_type);
788
789 static void
790 unsupported_reloc_global(Sized_relobj_file<size, false>*,
791 unsigned int r_type, Symbol*);
792
793 void
794 check_non_pic(Relobj*, unsigned int r_type, Symbol*);
795
796 inline bool
797 possible_function_pointer_reloc(unsigned int r_type);
798
799 bool
800 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, false>*,
801 unsigned int r_type);
802
803 // Whether we have issued an error about a non-PIC compilation.
804 bool issued_non_pic_error_;
805 };
806
807 // The class which implements relocation.
808 class Relocate
809 {
810 public:
811 Relocate()
812 : skip_call_tls_get_addr_(false)
813 { }
814
815 ~Relocate()
816 {
817 if (this->skip_call_tls_get_addr_)
818 {
819 // FIXME: This needs to specify the location somehow.
820 gold_error(_("missing expected TLS relocation"));
821 }
822 }
823
824 // Do a relocation. Return false if the caller should not issue
825 // any warnings about this relocation.
826 inline bool
827 relocate(const Relocate_info<size, false>*, unsigned int,
828 Target_x86_64*, Output_section*, size_t, const unsigned char*,
829 const Sized_symbol<size>*, const Symbol_value<size>*,
830 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
831 section_size_type);
832
833 private:
834 // Do a TLS relocation.
835 inline void
836 relocate_tls(const Relocate_info<size, false>*, Target_x86_64*,
837 size_t relnum, const elfcpp::Rela<size, false>&,
838 unsigned int r_type, const Sized_symbol<size>*,
839 const Symbol_value<size>*,
840 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
841 section_size_type);
842
843 // Do a TLS General-Dynamic to Initial-Exec transition.
844 inline void
845 tls_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
846 const elfcpp::Rela<size, false>&, unsigned int r_type,
847 typename elfcpp::Elf_types<size>::Elf_Addr value,
848 unsigned char* view,
849 typename elfcpp::Elf_types<size>::Elf_Addr,
850 section_size_type view_size);
851
852 // Do a TLS General-Dynamic to Local-Exec transition.
853 inline void
854 tls_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
855 Output_segment* tls_segment,
856 const elfcpp::Rela<size, false>&, unsigned int r_type,
857 typename elfcpp::Elf_types<size>::Elf_Addr value,
858 unsigned char* view,
859 section_size_type view_size);
860
861 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
862 inline void
863 tls_desc_gd_to_ie(const Relocate_info<size, false>*, size_t relnum,
864 const elfcpp::Rela<size, false>&, unsigned int r_type,
865 typename elfcpp::Elf_types<size>::Elf_Addr value,
866 unsigned char* view,
867 typename elfcpp::Elf_types<size>::Elf_Addr,
868 section_size_type view_size);
869
870 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
871 inline void
872 tls_desc_gd_to_le(const Relocate_info<size, false>*, size_t relnum,
873 Output_segment* tls_segment,
874 const elfcpp::Rela<size, false>&, unsigned int r_type,
875 typename elfcpp::Elf_types<size>::Elf_Addr value,
876 unsigned char* view,
877 section_size_type view_size);
878
879 // Do a TLS Local-Dynamic to Local-Exec transition.
880 inline void
881 tls_ld_to_le(const Relocate_info<size, false>*, size_t relnum,
882 Output_segment* tls_segment,
883 const elfcpp::Rela<size, false>&, unsigned int r_type,
884 typename elfcpp::Elf_types<size>::Elf_Addr value,
885 unsigned char* view,
886 section_size_type view_size);
887
888 // Do a TLS Initial-Exec to Local-Exec transition.
889 static inline void
890 tls_ie_to_le(const Relocate_info<size, false>*, size_t relnum,
891 Output_segment* tls_segment,
892 const elfcpp::Rela<size, false>&, unsigned int r_type,
893 typename elfcpp::Elf_types<size>::Elf_Addr value,
894 unsigned char* view,
895 section_size_type view_size);
896
897 // This is set if we should skip the next reloc, which should be a
898 // PLT32 reloc against ___tls_get_addr.
899 bool skip_call_tls_get_addr_;
900 };
901
902 // Check if relocation against this symbol is a candidate for
903 // conversion from
904 // mov foo@GOTPCREL(%rip), %reg
905 // to lea foo(%rip), %reg.
906 template<class View_type>
907 static inline bool
908 can_convert_mov_to_lea(const Symbol* gsym, unsigned int r_type,
909 size_t r_offset, View_type* view)
910 {
911 gold_assert(gsym != NULL);
912 // We cannot do the conversion unless it's one of these relocations.
913 if (r_type != elfcpp::R_X86_64_GOTPCREL
914 && r_type != elfcpp::R_X86_64_GOTPCRELX
915 && r_type != elfcpp::R_X86_64_REX_GOTPCRELX)
916 return false;
917 // We cannot convert references to IFUNC symbols, or to symbols that
918 // are not local to the current module.
919 if (gsym->type() == elfcpp::STT_GNU_IFUNC
920 || gsym->is_undefined ()
921 || gsym->is_from_dynobj()
922 || gsym->is_preemptible())
923 return false;
924 // If we are building a shared object and the symbol is protected, we may
925 // need to go through the GOT.
926 if (parameters->options().shared()
927 && gsym->visibility() == elfcpp::STV_PROTECTED)
928 return false;
929 // We cannot convert references to the _DYNAMIC symbol.
930 if (strcmp(gsym->name(), "_DYNAMIC") == 0)
931 return false;
932 // Check for a MOV opcode.
933 return (*view)[r_offset - 2] == 0x8b;
934 }
935
936 // Convert
937 // callq *foo@GOTPCRELX(%rip) to
938 // addr32 callq foo
939 // and jmpq *foo@GOTPCRELX(%rip) to
940 // jmpq foo
941 // nop
942 template<class View_type>
943 static inline bool
944 can_convert_callq_to_direct(const Symbol* gsym, unsigned int r_type,
945 size_t r_offset, View_type* view)
946 {
947 gold_assert(gsym != NULL);
948 // We cannot do the conversion unless it's a GOTPCRELX relocation.
949 if (r_type != elfcpp::R_X86_64_GOTPCRELX)
950 return false;
951 // We cannot convert references to IFUNC symbols, or to symbols that
952 // are not local to the current module.
953 if (gsym->type() == elfcpp::STT_GNU_IFUNC
954 || gsym->is_undefined ()
955 || gsym->is_from_dynobj()
956 || gsym->is_preemptible())
957 return false;
958 // Check for a CALLQ or JMPQ opcode.
959 return ((*view)[r_offset - 2] == 0xff
960 && ((*view)[r_offset - 1] == 0x15
961 || (*view)[r_offset - 1] == 0x25));
962 }
963
964 // Adjust TLS relocation type based on the options and whether this
965 // is a local symbol.
966 static tls::Tls_optimization
967 optimize_tls_reloc(bool is_final, int r_type);
968
969 // Get the GOT section, creating it if necessary.
970 Output_data_got<64, false>*
971 got_section(Symbol_table*, Layout*);
972
973 // Get the GOT PLT section.
974 Output_data_got_plt_x86_64*
975 got_plt_section() const
976 {
977 gold_assert(this->got_plt_ != NULL);
978 return this->got_plt_;
979 }
980
981 // Get the GOT section for TLSDESC entries.
982 Output_data_got<64, false>*
983 got_tlsdesc_section() const
984 {
985 gold_assert(this->got_tlsdesc_ != NULL);
986 return this->got_tlsdesc_;
987 }
988
989 // Create the PLT section.
990 void
991 make_plt_section(Symbol_table* symtab, Layout* layout);
992
993 // Create a PLT entry for a global symbol.
994 void
995 make_plt_entry(Symbol_table*, Layout*, Symbol*);
996
997 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
998 void
999 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1000 Sized_relobj_file<size, false>* relobj,
1001 unsigned int local_sym_index);
1002
1003 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
1004 void
1005 define_tls_base_symbol(Symbol_table*, Layout*);
1006
1007 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
1008 void
1009 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
1010
1011 // Create a GOT entry for the TLS module index.
1012 unsigned int
1013 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1014 Sized_relobj_file<size, false>* object);
1015
1016 // Get the PLT section.
1017 Output_data_plt_x86_64<size>*
1018 plt_section() const
1019 {
1020 gold_assert(this->plt_ != NULL);
1021 return this->plt_;
1022 }
1023
1024 // Get the dynamic reloc section, creating it if necessary.
1025 Reloc_section*
1026 rela_dyn_section(Layout*);
1027
1028 // Get the section to use for TLSDESC relocations.
1029 Reloc_section*
1030 rela_tlsdesc_section(Layout*) const;
1031
1032 // Get the section to use for IRELATIVE relocations.
1033 Reloc_section*
1034 rela_irelative_section(Layout*);
1035
1036 // Add a potential copy relocation.
1037 void
1038 copy_reloc(Symbol_table* symtab, Layout* layout,
1039 Sized_relobj_file<size, false>* object,
1040 unsigned int shndx, Output_section* output_section,
1041 Symbol* sym, const elfcpp::Rela<size, false>& reloc)
1042 {
1043 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1044 this->copy_relocs_.copy_reloc(symtab, layout,
1045 symtab->get_sized_symbol<size>(sym),
1046 object, shndx, output_section,
1047 r_type, reloc.get_r_offset(),
1048 reloc.get_r_addend(),
1049 this->rela_dyn_section(layout));
1050 }
1051
1052 // Information about this specific target which we pass to the
1053 // general Target structure.
1054 static const Target::Target_info x86_64_info;
1055
1056 // The types of GOT entries needed for this platform.
1057 // These values are exposed to the ABI in an incremental link.
1058 // Do not renumber existing values without changing the version
1059 // number of the .gnu_incremental_inputs section.
1060 enum Got_type
1061 {
1062 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
1063 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
1064 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
1065 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
1066 };
1067
1068 // This type is used as the argument to the target specific
1069 // relocation routines. The only target specific reloc is
1070 // R_X86_64_TLSDESC against a local symbol.
1071 struct Tlsdesc_info
1072 {
1073 Tlsdesc_info(Sized_relobj_file<size, false>* a_object, unsigned int a_r_sym)
1074 : object(a_object), r_sym(a_r_sym)
1075 { }
1076
1077 // The object in which the local symbol is defined.
1078 Sized_relobj_file<size, false>* object;
1079 // The local symbol index in the object.
1080 unsigned int r_sym;
1081 };
1082
1083 // The GOT section.
1084 Output_data_got<64, false>* got_;
1085 // The PLT section.
1086 Output_data_plt_x86_64<size>* plt_;
1087 // The GOT PLT section.
1088 Output_data_got_plt_x86_64* got_plt_;
1089 // The GOT section for IRELATIVE relocations.
1090 Output_data_space* got_irelative_;
1091 // The GOT section for TLSDESC relocations.
1092 Output_data_got<64, false>* got_tlsdesc_;
1093 // The _GLOBAL_OFFSET_TABLE_ symbol.
1094 Symbol* global_offset_table_;
1095 // The dynamic reloc section.
1096 Reloc_section* rela_dyn_;
1097 // The section to use for IRELATIVE relocs.
1098 Reloc_section* rela_irelative_;
1099 // Relocs saved to avoid a COPY reloc.
1100 Copy_relocs<elfcpp::SHT_RELA, size, false> copy_relocs_;
1101 // Offset of the GOT entry for the TLS module index.
1102 unsigned int got_mod_index_offset_;
1103 // We handle R_X86_64_TLSDESC against a local symbol as a target
1104 // specific relocation. Here we store the object and local symbol
1105 // index for the relocation.
1106 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
1107 // True if the _TLS_MODULE_BASE_ symbol has been defined.
1108 bool tls_base_symbol_defined_;
1109 };
1110
1111 template<>
1112 const Target::Target_info Target_x86_64<64>::x86_64_info =
1113 {
1114 64, // size
1115 false, // is_big_endian
1116 elfcpp::EM_X86_64, // machine_code
1117 false, // has_make_symbol
1118 false, // has_resolve
1119 true, // has_code_fill
1120 true, // is_default_stack_executable
1121 true, // can_icf_inline_merge_sections
1122 '\0', // wrap_char
1123 "/lib/ld64.so.1", // program interpreter
1124 0x400000, // default_text_segment_address
1125 0x1000, // abi_pagesize (overridable by -z max-page-size)
1126 0x1000, // common_pagesize (overridable by -z common-page-size)
1127 false, // isolate_execinstr
1128 0, // rosegment_gap
1129 elfcpp::SHN_UNDEF, // small_common_shndx
1130 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
1131 0, // small_common_section_flags
1132 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
1133 NULL, // attributes_section
1134 NULL, // attributes_vendor
1135 "_start", // entry_symbol_name
1136 32, // hash_entry_size
1137 };
1138
1139 template<>
1140 const Target::Target_info Target_x86_64<32>::x86_64_info =
1141 {
1142 32, // size
1143 false, // is_big_endian
1144 elfcpp::EM_X86_64, // machine_code
1145 false, // has_make_symbol
1146 false, // has_resolve
1147 true, // has_code_fill
1148 true, // is_default_stack_executable
1149 true, // can_icf_inline_merge_sections
1150 '\0', // wrap_char
1151 "/libx32/ldx32.so.1", // program interpreter
1152 0x400000, // default_text_segment_address
1153 0x1000, // abi_pagesize (overridable by -z max-page-size)
1154 0x1000, // common_pagesize (overridable by -z common-page-size)
1155 false, // isolate_execinstr
1156 0, // rosegment_gap
1157 elfcpp::SHN_UNDEF, // small_common_shndx
1158 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
1159 0, // small_common_section_flags
1160 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
1161 NULL, // attributes_section
1162 NULL, // attributes_vendor
1163 "_start", // entry_symbol_name
1164 32, // hash_entry_size
1165 };
1166
1167 // This is called when a new output section is created. This is where
1168 // we handle the SHF_X86_64_LARGE.
1169
1170 template<int size>
1171 void
1172 Target_x86_64<size>::do_new_output_section(Output_section* os) const
1173 {
1174 if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
1175 os->set_is_large_section();
1176 }
1177
1178 // Get the GOT section, creating it if necessary.
1179
1180 template<int size>
1181 Output_data_got<64, false>*
1182 Target_x86_64<size>::got_section(Symbol_table* symtab, Layout* layout)
1183 {
1184 if (this->got_ == NULL)
1185 {
1186 gold_assert(symtab != NULL && layout != NULL);
1187
1188 // When using -z now, we can treat .got.plt as a relro section.
1189 // Without -z now, it is modified after program startup by lazy
1190 // PLT relocations.
1191 bool is_got_plt_relro = parameters->options().now();
1192 Output_section_order got_order = (is_got_plt_relro
1193 ? ORDER_RELRO
1194 : ORDER_RELRO_LAST);
1195 Output_section_order got_plt_order = (is_got_plt_relro
1196 ? ORDER_RELRO
1197 : ORDER_NON_RELRO_FIRST);
1198
1199 this->got_ = new Output_data_got<64, false>();
1200
1201 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1202 (elfcpp::SHF_ALLOC
1203 | elfcpp::SHF_WRITE),
1204 this->got_, got_order, true);
1205
1206 this->got_plt_ = new Output_data_got_plt_x86_64(layout);
1207 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1208 (elfcpp::SHF_ALLOC
1209 | elfcpp::SHF_WRITE),
1210 this->got_plt_, got_plt_order,
1211 is_got_plt_relro);
1212
1213 // The first three entries are reserved.
1214 this->got_plt_->set_current_data_size(3 * 8);
1215
1216 if (!is_got_plt_relro)
1217 {
1218 // Those bytes can go into the relro segment.
1219 layout->increase_relro(3 * 8);
1220 }
1221
1222 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1223 this->global_offset_table_ =
1224 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1225 Symbol_table::PREDEFINED,
1226 this->got_plt_,
1227 0, 0, elfcpp::STT_OBJECT,
1228 elfcpp::STB_LOCAL,
1229 elfcpp::STV_HIDDEN, 0,
1230 false, false);
1231
1232 // If there are any IRELATIVE relocations, they get GOT entries
1233 // in .got.plt after the jump slot entries.
1234 this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
1235 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1236 (elfcpp::SHF_ALLOC
1237 | elfcpp::SHF_WRITE),
1238 this->got_irelative_,
1239 got_plt_order, is_got_plt_relro);
1240
1241 // If there are any TLSDESC relocations, they get GOT entries in
1242 // .got.plt after the jump slot and IRELATIVE entries.
1243 this->got_tlsdesc_ = new Output_data_got<64, false>();
1244 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1245 (elfcpp::SHF_ALLOC
1246 | elfcpp::SHF_WRITE),
1247 this->got_tlsdesc_,
1248 got_plt_order, is_got_plt_relro);
1249 }
1250
1251 return this->got_;
1252 }
1253
1254 // Get the dynamic reloc section, creating it if necessary.
1255
1256 template<int size>
1257 typename Target_x86_64<size>::Reloc_section*
1258 Target_x86_64<size>::rela_dyn_section(Layout* layout)
1259 {
1260 if (this->rela_dyn_ == NULL)
1261 {
1262 gold_assert(layout != NULL);
1263 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1264 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1265 elfcpp::SHF_ALLOC, this->rela_dyn_,
1266 ORDER_DYNAMIC_RELOCS, false);
1267 }
1268 return this->rela_dyn_;
1269 }
1270
1271 // Get the section to use for IRELATIVE relocs, creating it if
1272 // necessary. These go in .rela.dyn, but only after all other dynamic
1273 // relocations. They need to follow the other dynamic relocations so
1274 // that they can refer to global variables initialized by those
1275 // relocs.
1276
1277 template<int size>
1278 typename Target_x86_64<size>::Reloc_section*
1279 Target_x86_64<size>::rela_irelative_section(Layout* layout)
1280 {
1281 if (this->rela_irelative_ == NULL)
1282 {
1283 // Make sure we have already created the dynamic reloc section.
1284 this->rela_dyn_section(layout);
1285 this->rela_irelative_ = new Reloc_section(false);
1286 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1287 elfcpp::SHF_ALLOC, this->rela_irelative_,
1288 ORDER_DYNAMIC_RELOCS, false);
1289 gold_assert(this->rela_dyn_->output_section()
1290 == this->rela_irelative_->output_section());
1291 }
1292 return this->rela_irelative_;
1293 }
1294
1295 // Write the first three reserved words of the .got.plt section.
1296 // The remainder of the section is written while writing the PLT
1297 // in Output_data_plt_i386::do_write.
1298
1299 void
1300 Output_data_got_plt_x86_64::do_write(Output_file* of)
1301 {
1302 // The first entry in the GOT is the address of the .dynamic section
1303 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1304 // We saved space for them when we created the section in
1305 // Target_x86_64::got_section.
1306 const off_t got_file_offset = this->offset();
1307 gold_assert(this->data_size() >= 24);
1308 unsigned char* const got_view = of->get_output_view(got_file_offset, 24);
1309 Output_section* dynamic = this->layout_->dynamic_section();
1310 uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1311 elfcpp::Swap<64, false>::writeval(got_view, dynamic_addr);
1312 memset(got_view + 8, 0, 16);
1313 of->write_output_view(got_file_offset, 24, got_view);
1314 }
1315
1316 // Initialize the PLT section.
1317
1318 template<int size>
1319 void
1320 Output_data_plt_x86_64<size>::init(Layout* layout)
1321 {
1322 this->rel_ = new Reloc_section(false);
1323 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1324 elfcpp::SHF_ALLOC, this->rel_,
1325 ORDER_DYNAMIC_PLT_RELOCS, false);
1326 }
1327
1328 template<int size>
1329 void
1330 Output_data_plt_x86_64<size>::do_adjust_output_section(Output_section* os)
1331 {
1332 os->set_entsize(this->get_plt_entry_size());
1333 }
1334
1335 // Add an entry to the PLT.
1336
1337 template<int size>
1338 void
1339 Output_data_plt_x86_64<size>::add_entry(Symbol_table* symtab, Layout* layout,
1340 Symbol* gsym)
1341 {
1342 gold_assert(!gsym->has_plt_offset());
1343
1344 unsigned int plt_index;
1345 off_t plt_offset;
1346 section_offset_type got_offset;
1347
1348 unsigned int* pcount;
1349 unsigned int offset;
1350 unsigned int reserved;
1351 Output_section_data_build* got;
1352 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1353 && gsym->can_use_relative_reloc(false))
1354 {
1355 pcount = &this->irelative_count_;
1356 offset = 0;
1357 reserved = 0;
1358 got = this->got_irelative_;
1359 }
1360 else
1361 {
1362 pcount = &this->count_;
1363 offset = 1;
1364 reserved = 3;
1365 got = this->got_plt_;
1366 }
1367
1368 if (!this->is_data_size_valid())
1369 {
1370 // Note that when setting the PLT offset for a non-IRELATIVE
1371 // entry we skip the initial reserved PLT entry.
1372 plt_index = *pcount + offset;
1373 plt_offset = plt_index * this->get_plt_entry_size();
1374
1375 ++*pcount;
1376
1377 got_offset = (plt_index - offset + reserved) * 8;
1378 gold_assert(got_offset == got->current_data_size());
1379
1380 // Every PLT entry needs a GOT entry which points back to the PLT
1381 // entry (this will be changed by the dynamic linker, normally
1382 // lazily when the function is called).
1383 got->set_current_data_size(got_offset + 8);
1384 }
1385 else
1386 {
1387 // FIXME: This is probably not correct for IRELATIVE relocs.
1388
1389 // For incremental updates, find an available slot.
1390 plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
1391 this->get_plt_entry_size(), 0);
1392 if (plt_offset == -1)
1393 gold_fallback(_("out of patch space (PLT);"
1394 " relink with --incremental-full"));
1395
1396 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1397 // can be calculated from the PLT index, adjusting for the three
1398 // reserved entries at the beginning of the GOT.
1399 plt_index = plt_offset / this->get_plt_entry_size() - 1;
1400 got_offset = (plt_index - offset + reserved) * 8;
1401 }
1402
1403 gsym->set_plt_offset(plt_offset);
1404
1405 // Every PLT entry needs a reloc.
1406 this->add_relocation(symtab, layout, gsym, got_offset);
1407
1408 // Note that we don't need to save the symbol. The contents of the
1409 // PLT are independent of which symbols are used. The symbols only
1410 // appear in the relocations.
1411 }
1412
1413 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1414 // the PLT offset.
1415
1416 template<int size>
1417 unsigned int
1418 Output_data_plt_x86_64<size>::add_local_ifunc_entry(
1419 Symbol_table* symtab,
1420 Layout* layout,
1421 Sized_relobj_file<size, false>* relobj,
1422 unsigned int local_sym_index)
1423 {
1424 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
1425 ++this->irelative_count_;
1426
1427 section_offset_type got_offset = this->got_irelative_->current_data_size();
1428
1429 // Every PLT entry needs a GOT entry which points back to the PLT
1430 // entry.
1431 this->got_irelative_->set_current_data_size(got_offset + 8);
1432
1433 // Every PLT entry needs a reloc.
1434 Reloc_section* rela = this->rela_irelative(symtab, layout);
1435 rela->add_symbolless_local_addend(relobj, local_sym_index,
1436 elfcpp::R_X86_64_IRELATIVE,
1437 this->got_irelative_, got_offset, 0);
1438
1439 return plt_offset;
1440 }
1441
1442 // Add the relocation for a PLT entry.
1443
1444 template<int size>
1445 void
1446 Output_data_plt_x86_64<size>::add_relocation(Symbol_table* symtab,
1447 Layout* layout,
1448 Symbol* gsym,
1449 unsigned int got_offset)
1450 {
1451 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1452 && gsym->can_use_relative_reloc(false))
1453 {
1454 Reloc_section* rela = this->rela_irelative(symtab, layout);
1455 rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
1456 this->got_irelative_, got_offset, 0);
1457 }
1458 else
1459 {
1460 gsym->set_needs_dynsym_entry();
1461 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
1462 got_offset, 0);
1463 }
1464 }
1465
1466 // Return where the TLSDESC relocations should go, creating it if
1467 // necessary. These follow the JUMP_SLOT relocations.
1468
1469 template<int size>
1470 typename Output_data_plt_x86_64<size>::Reloc_section*
1471 Output_data_plt_x86_64<size>::rela_tlsdesc(Layout* layout)
1472 {
1473 if (this->tlsdesc_rel_ == NULL)
1474 {
1475 this->tlsdesc_rel_ = new Reloc_section(false);
1476 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1477 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
1478 ORDER_DYNAMIC_PLT_RELOCS, false);
1479 gold_assert(this->tlsdesc_rel_->output_section()
1480 == this->rel_->output_section());
1481 }
1482 return this->tlsdesc_rel_;
1483 }
1484
1485 // Return where the IRELATIVE relocations should go in the PLT. These
1486 // follow the JUMP_SLOT and the TLSDESC relocations.
1487
1488 template<int size>
1489 typename Output_data_plt_x86_64<size>::Reloc_section*
1490 Output_data_plt_x86_64<size>::rela_irelative(Symbol_table* symtab,
1491 Layout* layout)
1492 {
1493 if (this->irelative_rel_ == NULL)
1494 {
1495 // Make sure we have a place for the TLSDESC relocations, in
1496 // case we see any later on.
1497 this->rela_tlsdesc(layout);
1498 this->irelative_rel_ = new Reloc_section(false);
1499 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1500 elfcpp::SHF_ALLOC, this->irelative_rel_,
1501 ORDER_DYNAMIC_PLT_RELOCS, false);
1502 gold_assert(this->irelative_rel_->output_section()
1503 == this->rel_->output_section());
1504
1505 if (parameters->doing_static_link())
1506 {
1507 // A statically linked executable will only have a .rela.plt
1508 // section to hold R_X86_64_IRELATIVE relocs for
1509 // STT_GNU_IFUNC symbols. The library will use these
1510 // symbols to locate the IRELATIVE relocs at program startup
1511 // time.
1512 symtab->define_in_output_data("__rela_iplt_start", NULL,
1513 Symbol_table::PREDEFINED,
1514 this->irelative_rel_, 0, 0,
1515 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1516 elfcpp::STV_HIDDEN, 0, false, true);
1517 symtab->define_in_output_data("__rela_iplt_end", NULL,
1518 Symbol_table::PREDEFINED,
1519 this->irelative_rel_, 0, 0,
1520 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1521 elfcpp::STV_HIDDEN, 0, true, true);
1522 }
1523 }
1524 return this->irelative_rel_;
1525 }
1526
1527 // Return the PLT address to use for a global symbol.
1528
1529 template<int size>
1530 uint64_t
1531 Output_data_plt_x86_64<size>::address_for_global(const Symbol* gsym)
1532 {
1533 uint64_t offset = 0;
1534 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1535 && gsym->can_use_relative_reloc(false))
1536 offset = (this->count_ + 1) * this->get_plt_entry_size();
1537 return this->address() + offset + gsym->plt_offset();
1538 }
1539
1540 // Return the PLT address to use for a local symbol. These are always
1541 // IRELATIVE relocs.
1542
1543 template<int size>
1544 uint64_t
1545 Output_data_plt_x86_64<size>::address_for_local(const Relobj* object,
1546 unsigned int r_sym)
1547 {
1548 return (this->address()
1549 + (this->count_ + 1) * this->get_plt_entry_size()
1550 + object->local_plt_offset(r_sym));
1551 }
1552
1553 // Set the final size.
1554 template<int size>
1555 void
1556 Output_data_plt_x86_64<size>::set_final_data_size()
1557 {
1558 unsigned int count = this->count_ + this->irelative_count_;
1559 if (this->has_tlsdesc_entry())
1560 ++count;
1561 this->set_data_size((count + 1) * this->get_plt_entry_size());
1562 }
1563
1564 // The first entry in the PLT for an executable.
1565
1566 template<int size>
1567 const unsigned char
1568 Output_data_plt_x86_64_standard<size>::first_plt_entry[plt_entry_size] =
1569 {
1570 // From AMD64 ABI Draft 0.98, page 76
1571 0xff, 0x35, // pushq contents of memory address
1572 0, 0, 0, 0, // replaced with address of .got + 8
1573 0xff, 0x25, // jmp indirect
1574 0, 0, 0, 0, // replaced with address of .got + 16
1575 0x90, 0x90, 0x90, 0x90 // noop (x4)
1576 };
1577
1578 template<int size>
1579 void
1580 Output_data_plt_x86_64_standard<size>::do_fill_first_plt_entry(
1581 unsigned char* pov,
1582 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1583 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1584 {
1585 memcpy(pov, first_plt_entry, plt_entry_size);
1586 // We do a jmp relative to the PC at the end of this instruction.
1587 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1588 (got_address + 8
1589 - (plt_address + 6)));
1590 elfcpp::Swap<32, false>::writeval(pov + 8,
1591 (got_address + 16
1592 - (plt_address + 12)));
1593 }
1594
1595 // Subsequent entries in the PLT for an executable.
1596
1597 template<int size>
1598 const unsigned char
1599 Output_data_plt_x86_64_standard<size>::plt_entry[plt_entry_size] =
1600 {
1601 // From AMD64 ABI Draft 0.98, page 76
1602 0xff, 0x25, // jmpq indirect
1603 0, 0, 0, 0, // replaced with address of symbol in .got
1604 0x68, // pushq immediate
1605 0, 0, 0, 0, // replaced with offset into relocation table
1606 0xe9, // jmpq relative
1607 0, 0, 0, 0 // replaced with offset to start of .plt
1608 };
1609
1610 template<int size>
1611 unsigned int
1612 Output_data_plt_x86_64_standard<size>::do_fill_plt_entry(
1613 unsigned char* pov,
1614 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1615 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1616 unsigned int got_offset,
1617 unsigned int plt_offset,
1618 unsigned int plt_index)
1619 {
1620 // Check PC-relative offset overflow in PLT entry.
1621 uint64_t plt_got_pcrel_offset = (got_address + got_offset
1622 - (plt_address + plt_offset + 6));
1623 if (Bits<32>::has_overflow(plt_got_pcrel_offset))
1624 gold_error(_("PC-relative offset overflow in PLT entry %d"),
1625 plt_index + 1);
1626
1627 memcpy(pov, plt_entry, plt_entry_size);
1628 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1629 plt_got_pcrel_offset);
1630
1631 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
1632 elfcpp::Swap<32, false>::writeval(pov + 12,
1633 - (plt_offset + plt_entry_size));
1634
1635 return 6;
1636 }
1637
1638 // The reserved TLSDESC entry in the PLT for an executable.
1639
1640 template<int size>
1641 const unsigned char
1642 Output_data_plt_x86_64_standard<size>::tlsdesc_plt_entry[plt_entry_size] =
1643 {
1644 // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
1645 // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
1646 0xff, 0x35, // pushq x(%rip)
1647 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
1648 0xff, 0x25, // jmpq *y(%rip)
1649 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
1650 0x0f, 0x1f, // nop
1651 0x40, 0
1652 };
1653
1654 template<int size>
1655 void
1656 Output_data_plt_x86_64_standard<size>::do_fill_tlsdesc_entry(
1657 unsigned char* pov,
1658 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1659 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1660 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
1661 unsigned int tlsdesc_got_offset,
1662 unsigned int plt_offset)
1663 {
1664 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
1665 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
1666 (got_address + 8
1667 - (plt_address + plt_offset
1668 + 6)));
1669 elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
1670 (got_base
1671 + tlsdesc_got_offset
1672 - (plt_address + plt_offset
1673 + 12)));
1674 }
1675
1676 // The .eh_frame unwind information for the PLT.
1677
1678 template<int size>
1679 const unsigned char
1680 Output_data_plt_x86_64<size>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1681 {
1682 1, // CIE version.
1683 'z', // Augmentation: augmentation size included.
1684 'R', // Augmentation: FDE encoding included.
1685 '\0', // End of augmentation string.
1686 1, // Code alignment factor.
1687 0x78, // Data alignment factor.
1688 16, // Return address column.
1689 1, // Augmentation size.
1690 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1691 | elfcpp::DW_EH_PE_sdata4),
1692 elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
1693 elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
1694 elfcpp::DW_CFA_nop, // Align to 16 bytes.
1695 elfcpp::DW_CFA_nop
1696 };
1697
1698 template<int size>
1699 const unsigned char
1700 Output_data_plt_x86_64_standard<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1701 {
1702 0, 0, 0, 0, // Replaced with offset to .plt.
1703 0, 0, 0, 0, // Replaced with size of .plt.
1704 0, // Augmentation size.
1705 elfcpp::DW_CFA_def_cfa_offset, 16, // DW_CFA_def_cfa_offset: 16.
1706 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
1707 elfcpp::DW_CFA_def_cfa_offset, 24, // DW_CFA_def_cfa_offset: 24.
1708 elfcpp::DW_CFA_advance_loc + 10, // Advance 10 to __PLT__ + 16.
1709 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
1710 11, // Block length.
1711 elfcpp::DW_OP_breg7, 8, // Push %rsp + 8.
1712 elfcpp::DW_OP_breg16, 0, // Push %rip.
1713 elfcpp::DW_OP_lit15, // Push 0xf.
1714 elfcpp::DW_OP_and, // & (%rip & 0xf).
1715 elfcpp::DW_OP_lit11, // Push 0xb.
1716 elfcpp::DW_OP_ge, // >= ((%rip & 0xf) >= 0xb)
1717 elfcpp::DW_OP_lit3, // Push 3.
1718 elfcpp::DW_OP_shl, // << (((%rip & 0xf) >= 0xb) << 3)
1719 elfcpp::DW_OP_plus, // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
1720 elfcpp::DW_CFA_nop, // Align to 32 bytes.
1721 elfcpp::DW_CFA_nop,
1722 elfcpp::DW_CFA_nop,
1723 elfcpp::DW_CFA_nop
1724 };
1725
1726 // Write out the PLT. This uses the hand-coded instructions above,
1727 // and adjusts them as needed. This is specified by the AMD64 ABI.
1728
1729 template<int size>
1730 void
1731 Output_data_plt_x86_64<size>::do_write(Output_file* of)
1732 {
1733 const off_t offset = this->offset();
1734 const section_size_type oview_size =
1735 convert_to_section_size_type(this->data_size());
1736 unsigned char* const oview = of->get_output_view(offset, oview_size);
1737
1738 const off_t got_file_offset = this->got_plt_->offset();
1739 gold_assert(parameters->incremental_update()
1740 || (got_file_offset + this->got_plt_->data_size()
1741 == this->got_irelative_->offset()));
1742 const section_size_type got_size =
1743 convert_to_section_size_type(this->got_plt_->data_size()
1744 + this->got_irelative_->data_size());
1745 unsigned char* const got_view = of->get_output_view(got_file_offset,
1746 got_size);
1747
1748 unsigned char* pov = oview;
1749
1750 // The base address of the .plt section.
1751 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1752 // The base address of the .got section.
1753 typename elfcpp::Elf_types<size>::Elf_Addr got_base = this->got_->address();
1754 // The base address of the PLT portion of the .got section,
1755 // which is where the GOT pointer will point, and where the
1756 // three reserved GOT entries are located.
1757 typename elfcpp::Elf_types<size>::Elf_Addr got_address
1758 = this->got_plt_->address();
1759
1760 this->fill_first_plt_entry(pov, got_address, plt_address);
1761 pov += this->get_plt_entry_size();
1762
1763 // The first three entries in the GOT are reserved, and are written
1764 // by Output_data_got_plt_x86_64::do_write.
1765 unsigned char* got_pov = got_view + 24;
1766
1767 unsigned int plt_offset = this->get_plt_entry_size();
1768 unsigned int got_offset = 24;
1769 const unsigned int count = this->count_ + this->irelative_count_;
1770 for (unsigned int plt_index = 0;
1771 plt_index < count;
1772 ++plt_index,
1773 pov += this->get_plt_entry_size(),
1774 got_pov += 8,
1775 plt_offset += this->get_plt_entry_size(),
1776 got_offset += 8)
1777 {
1778 // Set and adjust the PLT entry itself.
1779 unsigned int lazy_offset = this->fill_plt_entry(pov,
1780 got_address, plt_address,
1781 got_offset, plt_offset,
1782 plt_index);
1783
1784 // Set the entry in the GOT.
1785 elfcpp::Swap<64, false>::writeval(got_pov,
1786 plt_address + plt_offset + lazy_offset);
1787 }
1788
1789 if (this->has_tlsdesc_entry())
1790 {
1791 // Set and adjust the reserved TLSDESC PLT entry.
1792 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
1793 this->fill_tlsdesc_entry(pov, got_address, plt_address, got_base,
1794 tlsdesc_got_offset, plt_offset);
1795 pov += this->get_plt_entry_size();
1796 }
1797
1798 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1799 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1800
1801 of->write_output_view(offset, oview_size, oview);
1802 of->write_output_view(got_file_offset, got_size, got_view);
1803 }
1804
1805 // Create the PLT section.
1806
1807 template<int size>
1808 void
1809 Target_x86_64<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1810 {
1811 if (this->plt_ == NULL)
1812 {
1813 // Create the GOT sections first.
1814 this->got_section(symtab, layout);
1815
1816 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
1817 this->got_irelative_);
1818
1819 // Add unwind information if requested.
1820 if (parameters->options().ld_generated_unwind_info())
1821 this->plt_->add_eh_frame(layout);
1822
1823 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1824 (elfcpp::SHF_ALLOC
1825 | elfcpp::SHF_EXECINSTR),
1826 this->plt_, ORDER_PLT, false);
1827
1828 // Make the sh_info field of .rela.plt point to .plt.
1829 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1830 rela_plt_os->set_info_section(this->plt_->output_section());
1831 }
1832 }
1833
1834 // Return the section for TLSDESC relocations.
1835
1836 template<int size>
1837 typename Target_x86_64<size>::Reloc_section*
1838 Target_x86_64<size>::rela_tlsdesc_section(Layout* layout) const
1839 {
1840 return this->plt_section()->rela_tlsdesc(layout);
1841 }
1842
1843 // Create a PLT entry for a global symbol.
1844
1845 template<int size>
1846 void
1847 Target_x86_64<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1848 Symbol* gsym)
1849 {
1850 if (gsym->has_plt_offset())
1851 return;
1852
1853 if (this->plt_ == NULL)
1854 this->make_plt_section(symtab, layout);
1855
1856 this->plt_->add_entry(symtab, layout, gsym);
1857 }
1858
1859 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
1860
1861 template<int size>
1862 void
1863 Target_x86_64<size>::make_local_ifunc_plt_entry(
1864 Symbol_table* symtab, Layout* layout,
1865 Sized_relobj_file<size, false>* relobj,
1866 unsigned int local_sym_index)
1867 {
1868 if (relobj->local_has_plt_offset(local_sym_index))
1869 return;
1870 if (this->plt_ == NULL)
1871 this->make_plt_section(symtab, layout);
1872 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1873 relobj,
1874 local_sym_index);
1875 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1876 }
1877
1878 // Return the number of entries in the PLT.
1879
1880 template<int size>
1881 unsigned int
1882 Target_x86_64<size>::plt_entry_count() const
1883 {
1884 if (this->plt_ == NULL)
1885 return 0;
1886 return this->plt_->entry_count();
1887 }
1888
1889 // Return the offset of the first non-reserved PLT entry.
1890
1891 template<int size>
1892 unsigned int
1893 Target_x86_64<size>::first_plt_entry_offset() const
1894 {
1895 if (this->plt_ == NULL)
1896 return 0;
1897 return this->plt_->first_plt_entry_offset();
1898 }
1899
1900 // Return the size of each PLT entry.
1901
1902 template<int size>
1903 unsigned int
1904 Target_x86_64<size>::plt_entry_size() const
1905 {
1906 if (this->plt_ == NULL)
1907 return 0;
1908 return this->plt_->get_plt_entry_size();
1909 }
1910
1911 // Create the GOT and PLT sections for an incremental update.
1912
1913 template<int size>
1914 Output_data_got_base*
1915 Target_x86_64<size>::init_got_plt_for_update(Symbol_table* symtab,
1916 Layout* layout,
1917 unsigned int got_count,
1918 unsigned int plt_count)
1919 {
1920 gold_assert(this->got_ == NULL);
1921
1922 this->got_ = new Output_data_got<64, false>(got_count * 8);
1923 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1924 (elfcpp::SHF_ALLOC
1925 | elfcpp::SHF_WRITE),
1926 this->got_, ORDER_RELRO_LAST,
1927 true);
1928
1929 // Add the three reserved entries.
1930 this->got_plt_ = new Output_data_got_plt_x86_64(layout, (plt_count + 3) * 8);
1931 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1932 (elfcpp::SHF_ALLOC
1933 | elfcpp::SHF_WRITE),
1934 this->got_plt_, ORDER_NON_RELRO_FIRST,
1935 false);
1936
1937 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1938 this->global_offset_table_ =
1939 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1940 Symbol_table::PREDEFINED,
1941 this->got_plt_,
1942 0, 0, elfcpp::STT_OBJECT,
1943 elfcpp::STB_LOCAL,
1944 elfcpp::STV_HIDDEN, 0,
1945 false, false);
1946
1947 // If there are any TLSDESC relocations, they get GOT entries in
1948 // .got.plt after the jump slot entries.
1949 // FIXME: Get the count for TLSDESC entries.
1950 this->got_tlsdesc_ = new Output_data_got<64, false>(0);
1951 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1952 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1953 this->got_tlsdesc_,
1954 ORDER_NON_RELRO_FIRST, false);
1955
1956 // If there are any IRELATIVE relocations, they get GOT entries in
1957 // .got.plt after the jump slot and TLSDESC entries.
1958 this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
1959 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1960 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1961 this->got_irelative_,
1962 ORDER_NON_RELRO_FIRST, false);
1963
1964 // Create the PLT section.
1965 this->plt_ = this->make_data_plt(layout, this->got_,
1966 this->got_plt_,
1967 this->got_irelative_,
1968 plt_count);
1969
1970 // Add unwind information if requested.
1971 if (parameters->options().ld_generated_unwind_info())
1972 this->plt_->add_eh_frame(layout);
1973
1974 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1975 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1976 this->plt_, ORDER_PLT, false);
1977
1978 // Make the sh_info field of .rela.plt point to .plt.
1979 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1980 rela_plt_os->set_info_section(this->plt_->output_section());
1981
1982 // Create the rela_dyn section.
1983 this->rela_dyn_section(layout);
1984
1985 return this->got_;
1986 }
1987
1988 // Reserve a GOT entry for a local symbol, and regenerate any
1989 // necessary dynamic relocations.
1990
1991 template<int size>
1992 void
1993 Target_x86_64<size>::reserve_local_got_entry(
1994 unsigned int got_index,
1995 Sized_relobj<size, false>* obj,
1996 unsigned int r_sym,
1997 unsigned int got_type)
1998 {
1999 unsigned int got_offset = got_index * 8;
2000 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2001
2002 this->got_->reserve_local(got_index, obj, r_sym, got_type);
2003 switch (got_type)
2004 {
2005 case GOT_TYPE_STANDARD:
2006 if (parameters->options().output_is_position_independent())
2007 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
2008 this->got_, got_offset, 0, false);
2009 break;
2010 case GOT_TYPE_TLS_OFFSET:
2011 rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
2012 this->got_, got_offset, 0);
2013 break;
2014 case GOT_TYPE_TLS_PAIR:
2015 this->got_->reserve_slot(got_index + 1);
2016 rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
2017 this->got_, got_offset, 0);
2018 break;
2019 case GOT_TYPE_TLS_DESC:
2020 gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
2021 // this->got_->reserve_slot(got_index + 1);
2022 // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2023 // this->got_, got_offset, 0);
2024 break;
2025 default:
2026 gold_unreachable();
2027 }
2028 }
2029
2030 // Reserve a GOT entry for a global symbol, and regenerate any
2031 // necessary dynamic relocations.
2032
2033 template<int size>
2034 void
2035 Target_x86_64<size>::reserve_global_got_entry(unsigned int got_index,
2036 Symbol* gsym,
2037 unsigned int got_type)
2038 {
2039 unsigned int got_offset = got_index * 8;
2040 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2041
2042 this->got_->reserve_global(got_index, gsym, got_type);
2043 switch (got_type)
2044 {
2045 case GOT_TYPE_STANDARD:
2046 if (!gsym->final_value_is_known())
2047 {
2048 if (gsym->is_from_dynobj()
2049 || gsym->is_undefined()
2050 || gsym->is_preemptible()
2051 || gsym->type() == elfcpp::STT_GNU_IFUNC)
2052 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
2053 this->got_, got_offset, 0);
2054 else
2055 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2056 this->got_, got_offset, 0, false);
2057 }
2058 break;
2059 case GOT_TYPE_TLS_OFFSET:
2060 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
2061 this->got_, got_offset, 0, false);
2062 break;
2063 case GOT_TYPE_TLS_PAIR:
2064 this->got_->reserve_slot(got_index + 1);
2065 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
2066 this->got_, got_offset, 0, false);
2067 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
2068 this->got_, got_offset + 8, 0, false);
2069 break;
2070 case GOT_TYPE_TLS_DESC:
2071 this->got_->reserve_slot(got_index + 1);
2072 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
2073 this->got_, got_offset, 0, false);
2074 break;
2075 default:
2076 gold_unreachable();
2077 }
2078 }
2079
2080 // Register an existing PLT entry for a global symbol.
2081
2082 template<int size>
2083 void
2084 Target_x86_64<size>::register_global_plt_entry(Symbol_table* symtab,
2085 Layout* layout,
2086 unsigned int plt_index,
2087 Symbol* gsym)
2088 {
2089 gold_assert(this->plt_ != NULL);
2090 gold_assert(!gsym->has_plt_offset());
2091
2092 this->plt_->reserve_slot(plt_index);
2093
2094 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2095
2096 unsigned int got_offset = (plt_index + 3) * 8;
2097 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2098 }
2099
2100 // Force a COPY relocation for a given symbol.
2101
2102 template<int size>
2103 void
2104 Target_x86_64<size>::emit_copy_reloc(
2105 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2106 {
2107 this->copy_relocs_.emit_copy_reloc(symtab,
2108 symtab->get_sized_symbol<size>(sym),
2109 os,
2110 offset,
2111 this->rela_dyn_section(NULL));
2112 }
2113
2114 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2115
2116 template<int size>
2117 void
2118 Target_x86_64<size>::define_tls_base_symbol(Symbol_table* symtab,
2119 Layout* layout)
2120 {
2121 if (this->tls_base_symbol_defined_)
2122 return;
2123
2124 Output_segment* tls_segment = layout->tls_segment();
2125 if (tls_segment != NULL)
2126 {
2127 bool is_exec = parameters->options().output_is_executable();
2128 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
2129 Symbol_table::PREDEFINED,
2130 tls_segment, 0, 0,
2131 elfcpp::STT_TLS,
2132 elfcpp::STB_LOCAL,
2133 elfcpp::STV_HIDDEN, 0,
2134 (is_exec
2135 ? Symbol::SEGMENT_END
2136 : Symbol::SEGMENT_START),
2137 true);
2138 }
2139 this->tls_base_symbol_defined_ = true;
2140 }
2141
2142 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2143
2144 template<int size>
2145 void
2146 Target_x86_64<size>::reserve_tlsdesc_entries(Symbol_table* symtab,
2147 Layout* layout)
2148 {
2149 if (this->plt_ == NULL)
2150 this->make_plt_section(symtab, layout);
2151
2152 if (!this->plt_->has_tlsdesc_entry())
2153 {
2154 // Allocate the TLSDESC_GOT entry.
2155 Output_data_got<64, false>* got = this->got_section(symtab, layout);
2156 unsigned int got_offset = got->add_constant(0);
2157
2158 // Allocate the TLSDESC_PLT entry.
2159 this->plt_->reserve_tlsdesc_entry(got_offset);
2160 }
2161 }
2162
2163 // Create a GOT entry for the TLS module index.
2164
2165 template<int size>
2166 unsigned int
2167 Target_x86_64<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2168 Sized_relobj_file<size, false>* object)
2169 {
2170 if (this->got_mod_index_offset_ == -1U)
2171 {
2172 gold_assert(symtab != NULL && layout != NULL && object != NULL);
2173 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2174 Output_data_got<64, false>* got = this->got_section(symtab, layout);
2175 unsigned int got_offset = got->add_constant(0);
2176 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
2177 got_offset, 0);
2178 got->add_constant(0);
2179 this->got_mod_index_offset_ = got_offset;
2180 }
2181 return this->got_mod_index_offset_;
2182 }
2183
2184 // Optimize the TLS relocation type based on what we know about the
2185 // symbol. IS_FINAL is true if the final address of this symbol is
2186 // known at link time.
2187
2188 template<int size>
2189 tls::Tls_optimization
2190 Target_x86_64<size>::optimize_tls_reloc(bool is_final, int r_type)
2191 {
2192 // If we are generating a shared library, then we can't do anything
2193 // in the linker.
2194 if (parameters->options().shared())
2195 return tls::TLSOPT_NONE;
2196
2197 switch (r_type)
2198 {
2199 case elfcpp::R_X86_64_TLSGD:
2200 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2201 case elfcpp::R_X86_64_TLSDESC_CALL:
2202 // These are General-Dynamic which permits fully general TLS
2203 // access. Since we know that we are generating an executable,
2204 // we can convert this to Initial-Exec. If we also know that
2205 // this is a local symbol, we can further switch to Local-Exec.
2206 if (is_final)
2207 return tls::TLSOPT_TO_LE;
2208 return tls::TLSOPT_TO_IE;
2209
2210 case elfcpp::R_X86_64_TLSLD:
2211 // This is Local-Dynamic, which refers to a local symbol in the
2212 // dynamic TLS block. Since we know that we generating an
2213 // executable, we can switch to Local-Exec.
2214 return tls::TLSOPT_TO_LE;
2215
2216 case elfcpp::R_X86_64_DTPOFF32:
2217 case elfcpp::R_X86_64_DTPOFF64:
2218 // Another Local-Dynamic reloc.
2219 return tls::TLSOPT_TO_LE;
2220
2221 case elfcpp::R_X86_64_GOTTPOFF:
2222 // These are Initial-Exec relocs which get the thread offset
2223 // from the GOT. If we know that we are linking against the
2224 // local symbol, we can switch to Local-Exec, which links the
2225 // thread offset into the instruction.
2226 if (is_final)
2227 return tls::TLSOPT_TO_LE;
2228 return tls::TLSOPT_NONE;
2229
2230 case elfcpp::R_X86_64_TPOFF32:
2231 // When we already have Local-Exec, there is nothing further we
2232 // can do.
2233 return tls::TLSOPT_NONE;
2234
2235 default:
2236 gold_unreachable();
2237 }
2238 }
2239
2240 // Get the Reference_flags for a particular relocation.
2241
2242 template<int size>
2243 int
2244 Target_x86_64<size>::Scan::get_reference_flags(unsigned int r_type)
2245 {
2246 switch (r_type)
2247 {
2248 case elfcpp::R_X86_64_NONE:
2249 case elfcpp::R_X86_64_GNU_VTINHERIT:
2250 case elfcpp::R_X86_64_GNU_VTENTRY:
2251 case elfcpp::R_X86_64_GOTPC32:
2252 case elfcpp::R_X86_64_GOTPC64:
2253 // No symbol reference.
2254 return 0;
2255
2256 case elfcpp::R_X86_64_64:
2257 case elfcpp::R_X86_64_32:
2258 case elfcpp::R_X86_64_32S:
2259 case elfcpp::R_X86_64_16:
2260 case elfcpp::R_X86_64_8:
2261 return Symbol::ABSOLUTE_REF;
2262
2263 case elfcpp::R_X86_64_PC64:
2264 case elfcpp::R_X86_64_PC32:
2265 case elfcpp::R_X86_64_PC32_BND:
2266 case elfcpp::R_X86_64_PC16:
2267 case elfcpp::R_X86_64_PC8:
2268 case elfcpp::R_X86_64_GOTOFF64:
2269 return Symbol::RELATIVE_REF;
2270
2271 case elfcpp::R_X86_64_PLT32:
2272 case elfcpp::R_X86_64_PLT32_BND:
2273 case elfcpp::R_X86_64_PLTOFF64:
2274 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2275
2276 case elfcpp::R_X86_64_GOT64:
2277 case elfcpp::R_X86_64_GOT32:
2278 case elfcpp::R_X86_64_GOTPCREL64:
2279 case elfcpp::R_X86_64_GOTPCREL:
2280 case elfcpp::R_X86_64_GOTPCRELX:
2281 case elfcpp::R_X86_64_REX_GOTPCRELX:
2282 case elfcpp::R_X86_64_GOTPLT64:
2283 // Absolute in GOT.
2284 return Symbol::ABSOLUTE_REF;
2285
2286 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2287 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2288 case elfcpp::R_X86_64_TLSDESC_CALL:
2289 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2290 case elfcpp::R_X86_64_DTPOFF32:
2291 case elfcpp::R_X86_64_DTPOFF64:
2292 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2293 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2294 return Symbol::TLS_REF;
2295
2296 case elfcpp::R_X86_64_COPY:
2297 case elfcpp::R_X86_64_GLOB_DAT:
2298 case elfcpp::R_X86_64_JUMP_SLOT:
2299 case elfcpp::R_X86_64_RELATIVE:
2300 case elfcpp::R_X86_64_IRELATIVE:
2301 case elfcpp::R_X86_64_TPOFF64:
2302 case elfcpp::R_X86_64_DTPMOD64:
2303 case elfcpp::R_X86_64_TLSDESC:
2304 case elfcpp::R_X86_64_SIZE32:
2305 case elfcpp::R_X86_64_SIZE64:
2306 default:
2307 // Not expected. We will give an error later.
2308 return 0;
2309 }
2310 }
2311
2312 // Report an unsupported relocation against a local symbol.
2313
2314 template<int size>
2315 void
2316 Target_x86_64<size>::Scan::unsupported_reloc_local(
2317 Sized_relobj_file<size, false>* object,
2318 unsigned int r_type)
2319 {
2320 gold_error(_("%s: unsupported reloc %u against local symbol"),
2321 object->name().c_str(), r_type);
2322 }
2323
2324 // We are about to emit a dynamic relocation of type R_TYPE. If the
2325 // dynamic linker does not support it, issue an error. The GNU linker
2326 // only issues a non-PIC error for an allocated read-only section.
2327 // Here we know the section is allocated, but we don't know that it is
2328 // read-only. But we check for all the relocation types which the
2329 // glibc dynamic linker supports, so it seems appropriate to issue an
2330 // error even if the section is not read-only. If GSYM is not NULL,
2331 // it is the symbol the relocation is against; if it is NULL, the
2332 // relocation is against a local symbol.
2333
2334 template<int size>
2335 void
2336 Target_x86_64<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type,
2337 Symbol* gsym)
2338 {
2339 switch (r_type)
2340 {
2341 // These are the relocation types supported by glibc for x86_64
2342 // which should always work.
2343 case elfcpp::R_X86_64_RELATIVE:
2344 case elfcpp::R_X86_64_IRELATIVE:
2345 case elfcpp::R_X86_64_GLOB_DAT:
2346 case elfcpp::R_X86_64_JUMP_SLOT:
2347 case elfcpp::R_X86_64_DTPMOD64:
2348 case elfcpp::R_X86_64_DTPOFF64:
2349 case elfcpp::R_X86_64_TPOFF64:
2350 case elfcpp::R_X86_64_64:
2351 case elfcpp::R_X86_64_COPY:
2352 return;
2353
2354 // glibc supports these reloc types, but they can overflow.
2355 case elfcpp::R_X86_64_PC32:
2356 case elfcpp::R_X86_64_PC32_BND:
2357 // A PC relative reference is OK against a local symbol or if
2358 // the symbol is defined locally.
2359 if (gsym == NULL
2360 || (!gsym->is_from_dynobj()
2361 && !gsym->is_undefined()
2362 && !gsym->is_preemptible()))
2363 return;
2364 /* Fall through. */
2365 case elfcpp::R_X86_64_32:
2366 // R_X86_64_32 is OK for x32.
2367 if (size == 32 && r_type == elfcpp::R_X86_64_32)
2368 return;
2369 if (this->issued_non_pic_error_)
2370 return;
2371 gold_assert(parameters->options().output_is_position_independent());
2372 if (gsym == NULL)
2373 object->error(_("requires dynamic R_X86_64_32 reloc which may "
2374 "overflow at runtime; recompile with -fPIC"));
2375 else
2376 {
2377 const char *r_name;
2378 switch (r_type)
2379 {
2380 case elfcpp::R_X86_64_32:
2381 r_name = "R_X86_64_32";
2382 break;
2383 case elfcpp::R_X86_64_PC32:
2384 r_name = "R_X86_64_PC32";
2385 break;
2386 case elfcpp::R_X86_64_PC32_BND:
2387 r_name = "R_X86_64_PC32_BND";
2388 break;
2389 default:
2390 gold_unreachable();
2391 break;
2392 }
2393 object->error(_("requires dynamic %s reloc against '%s' "
2394 "which may overflow at runtime; recompile "
2395 "with -fPIC"),
2396 r_name, gsym->name());
2397 }
2398 this->issued_non_pic_error_ = true;
2399 return;
2400
2401 default:
2402 // This prevents us from issuing more than one error per reloc
2403 // section. But we can still wind up issuing more than one
2404 // error per object file.
2405 if (this->issued_non_pic_error_)
2406 return;
2407 gold_assert(parameters->options().output_is_position_independent());
2408 object->error(_("requires unsupported dynamic reloc %u; "
2409 "recompile with -fPIC"),
2410 r_type);
2411 this->issued_non_pic_error_ = true;
2412 return;
2413
2414 case elfcpp::R_X86_64_NONE:
2415 gold_unreachable();
2416 }
2417 }
2418
2419 // Return whether we need to make a PLT entry for a relocation of the
2420 // given type against a STT_GNU_IFUNC symbol.
2421
2422 template<int size>
2423 bool
2424 Target_x86_64<size>::Scan::reloc_needs_plt_for_ifunc(
2425 Sized_relobj_file<size, false>* object,
2426 unsigned int r_type)
2427 {
2428 int flags = Scan::get_reference_flags(r_type);
2429 if (flags & Symbol::TLS_REF)
2430 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2431 object->name().c_str(), r_type);
2432 return flags != 0;
2433 }
2434
2435 // Scan a relocation for a local symbol.
2436
2437 template<int size>
2438 inline void
2439 Target_x86_64<size>::Scan::local(Symbol_table* symtab,
2440 Layout* layout,
2441 Target_x86_64<size>* target,
2442 Sized_relobj_file<size, false>* object,
2443 unsigned int data_shndx,
2444 Output_section* output_section,
2445 const elfcpp::Rela<size, false>& reloc,
2446 unsigned int r_type,
2447 const elfcpp::Sym<size, false>& lsym,
2448 bool is_discarded)
2449 {
2450 if (is_discarded)
2451 return;
2452
2453 // A local STT_GNU_IFUNC symbol may require a PLT entry.
2454 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2455 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2456 {
2457 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2458 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2459 }
2460
2461 switch (r_type)
2462 {
2463 case elfcpp::R_X86_64_NONE:
2464 case elfcpp::R_X86_64_GNU_VTINHERIT:
2465 case elfcpp::R_X86_64_GNU_VTENTRY:
2466 break;
2467
2468 case elfcpp::R_X86_64_64:
2469 // If building a shared library (or a position-independent
2470 // executable), we need to create a dynamic relocation for this
2471 // location. The relocation applied at link time will apply the
2472 // link-time value, so we flag the location with an
2473 // R_X86_64_RELATIVE relocation so the dynamic loader can
2474 // relocate it easily.
2475 if (parameters->options().output_is_position_independent())
2476 {
2477 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2478 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2479 rela_dyn->add_local_relative(object, r_sym,
2480 (size == 32
2481 ? elfcpp::R_X86_64_RELATIVE64
2482 : elfcpp::R_X86_64_RELATIVE),
2483 output_section, data_shndx,
2484 reloc.get_r_offset(),
2485 reloc.get_r_addend(), is_ifunc);
2486 }
2487 break;
2488
2489 case elfcpp::R_X86_64_32:
2490 case elfcpp::R_X86_64_32S:
2491 case elfcpp::R_X86_64_16:
2492 case elfcpp::R_X86_64_8:
2493 // If building a shared library (or a position-independent
2494 // executable), we need to create a dynamic relocation for this
2495 // location. We can't use an R_X86_64_RELATIVE relocation
2496 // because that is always a 64-bit relocation.
2497 if (parameters->options().output_is_position_independent())
2498 {
2499 // Use R_X86_64_RELATIVE relocation for R_X86_64_32 under x32.
2500 if (size == 32 && r_type == elfcpp::R_X86_64_32)
2501 {
2502 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2503 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2504 rela_dyn->add_local_relative(object, r_sym,
2505 elfcpp::R_X86_64_RELATIVE,
2506 output_section, data_shndx,
2507 reloc.get_r_offset(),
2508 reloc.get_r_addend(), is_ifunc);
2509 break;
2510 }
2511
2512 this->check_non_pic(object, r_type, NULL);
2513
2514 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2515 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2516 if (lsym.get_st_type() != elfcpp::STT_SECTION)
2517 rela_dyn->add_local(object, r_sym, r_type, output_section,
2518 data_shndx, reloc.get_r_offset(),
2519 reloc.get_r_addend());
2520 else
2521 {
2522 gold_assert(lsym.get_st_value() == 0);
2523 unsigned int shndx = lsym.get_st_shndx();
2524 bool is_ordinary;
2525 shndx = object->adjust_sym_shndx(r_sym, shndx,
2526 &is_ordinary);
2527 if (!is_ordinary)
2528 object->error(_("section symbol %u has bad shndx %u"),
2529 r_sym, shndx);
2530 else
2531 rela_dyn->add_local_section(object, shndx,
2532 r_type, output_section,
2533 data_shndx, reloc.get_r_offset(),
2534 reloc.get_r_addend());
2535 }
2536 }
2537 break;
2538
2539 case elfcpp::R_X86_64_PC64:
2540 case elfcpp::R_X86_64_PC32:
2541 case elfcpp::R_X86_64_PC32_BND:
2542 case elfcpp::R_X86_64_PC16:
2543 case elfcpp::R_X86_64_PC8:
2544 break;
2545
2546 case elfcpp::R_X86_64_PLT32:
2547 case elfcpp::R_X86_64_PLT32_BND:
2548 // Since we know this is a local symbol, we can handle this as a
2549 // PC32 reloc.
2550 break;
2551
2552 case elfcpp::R_X86_64_GOTPC32:
2553 case elfcpp::R_X86_64_GOTOFF64:
2554 case elfcpp::R_X86_64_GOTPC64:
2555 case elfcpp::R_X86_64_PLTOFF64:
2556 // We need a GOT section.
2557 target->got_section(symtab, layout);
2558 // For PLTOFF64, we'd normally want a PLT section, but since we
2559 // know this is a local symbol, no PLT is needed.
2560 break;
2561
2562 case elfcpp::R_X86_64_GOT64:
2563 case elfcpp::R_X86_64_GOT32:
2564 case elfcpp::R_X86_64_GOTPCREL64:
2565 case elfcpp::R_X86_64_GOTPCREL:
2566 case elfcpp::R_X86_64_GOTPCRELX:
2567 case elfcpp::R_X86_64_REX_GOTPCRELX:
2568 case elfcpp::R_X86_64_GOTPLT64:
2569 {
2570 // The symbol requires a GOT section.
2571 Output_data_got<64, false>* got = target->got_section(symtab, layout);
2572
2573 // If the relocation symbol isn't IFUNC,
2574 // and is local, then we will convert
2575 // mov foo@GOTPCREL(%rip), %reg
2576 // to lea foo(%rip), %reg.
2577 // in Relocate::relocate.
2578 if ((r_type == elfcpp::R_X86_64_GOTPCREL
2579 || r_type == elfcpp::R_X86_64_GOTPCRELX
2580 || r_type == elfcpp::R_X86_64_REX_GOTPCRELX)
2581 && reloc.get_r_offset() >= 2
2582 && !is_ifunc)
2583 {
2584 section_size_type stype;
2585 const unsigned char* view = object->section_contents(data_shndx,
2586 &stype, true);
2587 if (view[reloc.get_r_offset() - 2] == 0x8b)
2588 break;
2589 }
2590
2591
2592 // The symbol requires a GOT entry.
2593 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2594
2595 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2596 // lets function pointers compare correctly with shared
2597 // libraries. Otherwise we would need an IRELATIVE reloc.
2598 bool is_new;
2599 if (is_ifunc)
2600 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2601 else
2602 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2603 if (is_new)
2604 {
2605 // If we are generating a shared object, we need to add a
2606 // dynamic relocation for this symbol's GOT entry.
2607 if (parameters->options().output_is_position_independent())
2608 {
2609 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2610 // R_X86_64_RELATIVE assumes a 64-bit relocation.
2611 if (r_type != elfcpp::R_X86_64_GOT32)
2612 {
2613 unsigned int got_offset =
2614 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2615 rela_dyn->add_local_relative(object, r_sym,
2616 elfcpp::R_X86_64_RELATIVE,
2617 got, got_offset, 0, is_ifunc);
2618 }
2619 else
2620 {
2621 this->check_non_pic(object, r_type, NULL);
2622
2623 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2624 rela_dyn->add_local(
2625 object, r_sym, r_type, got,
2626 object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
2627 }
2628 }
2629 }
2630 // For GOTPLT64, we'd normally want a PLT section, but since
2631 // we know this is a local symbol, no PLT is needed.
2632 }
2633 break;
2634
2635 case elfcpp::R_X86_64_COPY:
2636 case elfcpp::R_X86_64_GLOB_DAT:
2637 case elfcpp::R_X86_64_JUMP_SLOT:
2638 case elfcpp::R_X86_64_RELATIVE:
2639 case elfcpp::R_X86_64_IRELATIVE:
2640 // These are outstanding tls relocs, which are unexpected when linking
2641 case elfcpp::R_X86_64_TPOFF64:
2642 case elfcpp::R_X86_64_DTPMOD64:
2643 case elfcpp::R_X86_64_TLSDESC:
2644 gold_error(_("%s: unexpected reloc %u in object file"),
2645 object->name().c_str(), r_type);
2646 break;
2647
2648 // These are initial tls relocs, which are expected when linking
2649 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
2650 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
2651 case elfcpp::R_X86_64_TLSDESC_CALL:
2652 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2653 case elfcpp::R_X86_64_DTPOFF32:
2654 case elfcpp::R_X86_64_DTPOFF64:
2655 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2656 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2657 {
2658 bool output_is_shared = parameters->options().shared();
2659 const tls::Tls_optimization optimized_type
2660 = Target_x86_64<size>::optimize_tls_reloc(!output_is_shared,
2661 r_type);
2662 switch (r_type)
2663 {
2664 case elfcpp::R_X86_64_TLSGD: // General-dynamic
2665 if (optimized_type == tls::TLSOPT_NONE)
2666 {
2667 // Create a pair of GOT entries for the module index and
2668 // dtv-relative offset.
2669 Output_data_got<64, false>* got
2670 = target->got_section(symtab, layout);
2671 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2672 unsigned int shndx = lsym.get_st_shndx();
2673 bool is_ordinary;
2674 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2675 if (!is_ordinary)
2676 object->error(_("local symbol %u has bad shndx %u"),
2677 r_sym, shndx);
2678 else
2679 got->add_local_pair_with_rel(object, r_sym,
2680 shndx,
2681 GOT_TYPE_TLS_PAIR,
2682 target->rela_dyn_section(layout),
2683 elfcpp::R_X86_64_DTPMOD64);
2684 }
2685 else if (optimized_type != tls::TLSOPT_TO_LE)
2686 unsupported_reloc_local(object, r_type);
2687 break;
2688
2689 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
2690 target->define_tls_base_symbol(symtab, layout);
2691 if (optimized_type == tls::TLSOPT_NONE)
2692 {
2693 // Create reserved PLT and GOT entries for the resolver.
2694 target->reserve_tlsdesc_entries(symtab, layout);
2695
2696 // Generate a double GOT entry with an
2697 // R_X86_64_TLSDESC reloc. The R_X86_64_TLSDESC reloc
2698 // is resolved lazily, so the GOT entry needs to be in
2699 // an area in .got.plt, not .got. Call got_section to
2700 // make sure the section has been created.
2701 target->got_section(symtab, layout);
2702 Output_data_got<64, false>* got = target->got_tlsdesc_section();
2703 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2704 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
2705 {
2706 unsigned int got_offset = got->add_constant(0);
2707 got->add_constant(0);
2708 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
2709 got_offset);
2710 Reloc_section* rt = target->rela_tlsdesc_section(layout);
2711 // We store the arguments we need in a vector, and
2712 // use the index into the vector as the parameter
2713 // to pass to the target specific routines.
2714 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
2715 void* arg = reinterpret_cast<void*>(intarg);
2716 rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
2717 got, got_offset, 0);
2718 }
2719 }
2720 else if (optimized_type != tls::TLSOPT_TO_LE)
2721 unsupported_reloc_local(object, r_type);
2722 break;
2723
2724 case elfcpp::R_X86_64_TLSDESC_CALL:
2725 break;
2726
2727 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
2728 if (optimized_type == tls::TLSOPT_NONE)
2729 {
2730 // Create a GOT entry for the module index.
2731 target->got_mod_index_entry(symtab, layout, object);
2732 }
2733 else if (optimized_type != tls::TLSOPT_TO_LE)
2734 unsupported_reloc_local(object, r_type);
2735 break;
2736
2737 case elfcpp::R_X86_64_DTPOFF32:
2738 case elfcpp::R_X86_64_DTPOFF64:
2739 break;
2740
2741 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
2742 layout->set_has_static_tls();
2743 if (optimized_type == tls::TLSOPT_NONE)
2744 {
2745 // Create a GOT entry for the tp-relative offset.
2746 Output_data_got<64, false>* got
2747 = target->got_section(symtab, layout);
2748 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2749 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2750 target->rela_dyn_section(layout),
2751 elfcpp::R_X86_64_TPOFF64);
2752 }
2753 else if (optimized_type != tls::TLSOPT_TO_LE)
2754 unsupported_reloc_local(object, r_type);
2755 break;
2756
2757 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2758 layout->set_has_static_tls();
2759 if (output_is_shared)
2760 unsupported_reloc_local(object, r_type);
2761 break;
2762
2763 default:
2764 gold_unreachable();
2765 }
2766 }
2767 break;
2768
2769 case elfcpp::R_X86_64_SIZE32:
2770 case elfcpp::R_X86_64_SIZE64:
2771 default:
2772 gold_error(_("%s: unsupported reloc %u against local symbol"),
2773 object->name().c_str(), r_type);
2774 break;
2775 }
2776 }
2777
2778
2779 // Report an unsupported relocation against a global symbol.
2780
2781 template<int size>
2782 void
2783 Target_x86_64<size>::Scan::unsupported_reloc_global(
2784 Sized_relobj_file<size, false>* object,
2785 unsigned int r_type,
2786 Symbol* gsym)
2787 {
2788 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2789 object->name().c_str(), r_type, gsym->demangled_name().c_str());
2790 }
2791
2792 // Returns true if this relocation type could be that of a function pointer.
2793 template<int size>
2794 inline bool
2795 Target_x86_64<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
2796 {
2797 switch (r_type)
2798 {
2799 case elfcpp::R_X86_64_64:
2800 case elfcpp::R_X86_64_32:
2801 case elfcpp::R_X86_64_32S:
2802 case elfcpp::R_X86_64_16:
2803 case elfcpp::R_X86_64_8:
2804 case elfcpp::R_X86_64_GOT64:
2805 case elfcpp::R_X86_64_GOT32:
2806 case elfcpp::R_X86_64_GOTPCREL64:
2807 case elfcpp::R_X86_64_GOTPCREL:
2808 case elfcpp::R_X86_64_GOTPCRELX:
2809 case elfcpp::R_X86_64_REX_GOTPCRELX:
2810 case elfcpp::R_X86_64_GOTPLT64:
2811 {
2812 return true;
2813 }
2814 }
2815 return false;
2816 }
2817
2818 // For safe ICF, scan a relocation for a local symbol to check if it
2819 // corresponds to a function pointer being taken. In that case mark
2820 // the function whose pointer was taken as not foldable.
2821
2822 template<int size>
2823 inline bool
2824 Target_x86_64<size>::Scan::local_reloc_may_be_function_pointer(
2825 Symbol_table* ,
2826 Layout* ,
2827 Target_x86_64<size>* ,
2828 Sized_relobj_file<size, false>* ,
2829 unsigned int ,
2830 Output_section* ,
2831 const elfcpp::Rela<size, false>& ,
2832 unsigned int r_type,
2833 const elfcpp::Sym<size, false>&)
2834 {
2835 // When building a shared library, do not fold any local symbols as it is
2836 // not possible to distinguish pointer taken versus a call by looking at
2837 // the relocation types.
2838 return (parameters->options().shared()
2839 || possible_function_pointer_reloc(r_type));
2840 }
2841
2842 // For safe ICF, scan a relocation for a global symbol to check if it
2843 // corresponds to a function pointer being taken. In that case mark
2844 // the function whose pointer was taken as not foldable.
2845
2846 template<int size>
2847 inline bool
2848 Target_x86_64<size>::Scan::global_reloc_may_be_function_pointer(
2849 Symbol_table*,
2850 Layout* ,
2851 Target_x86_64<size>* ,
2852 Sized_relobj_file<size, false>* ,
2853 unsigned int ,
2854 Output_section* ,
2855 const elfcpp::Rela<size, false>& ,
2856 unsigned int r_type,
2857 Symbol* gsym)
2858 {
2859 // When building a shared library, do not fold symbols whose visibility
2860 // is hidden, internal or protected.
2861 return ((parameters->options().shared()
2862 && (gsym->visibility() == elfcpp::STV_INTERNAL
2863 || gsym->visibility() == elfcpp::STV_PROTECTED
2864 || gsym->visibility() == elfcpp::STV_HIDDEN))
2865 || possible_function_pointer_reloc(r_type));
2866 }
2867
2868 // Scan a relocation for a global symbol.
2869
2870 template<int size>
2871 inline void
2872 Target_x86_64<size>::Scan::global(Symbol_table* symtab,
2873 Layout* layout,
2874 Target_x86_64<size>* target,
2875 Sized_relobj_file<size, false>* object,
2876 unsigned int data_shndx,
2877 Output_section* output_section,
2878 const elfcpp::Rela<size, false>& reloc,
2879 unsigned int r_type,
2880 Symbol* gsym)
2881 {
2882 // A STT_GNU_IFUNC symbol may require a PLT entry.
2883 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2884 && this->reloc_needs_plt_for_ifunc(object, r_type))
2885 target->make_plt_entry(symtab, layout, gsym);
2886
2887 switch (r_type)
2888 {
2889 case elfcpp::R_X86_64_NONE:
2890 case elfcpp::R_X86_64_GNU_VTINHERIT:
2891 case elfcpp::R_X86_64_GNU_VTENTRY:
2892 break;
2893
2894 case elfcpp::R_X86_64_64:
2895 case elfcpp::R_X86_64_32:
2896 case elfcpp::R_X86_64_32S:
2897 case elfcpp::R_X86_64_16:
2898 case elfcpp::R_X86_64_8:
2899 {
2900 // Make a PLT entry if necessary.
2901 if (gsym->needs_plt_entry())
2902 {
2903 target->make_plt_entry(symtab, layout, gsym);
2904 // Since this is not a PC-relative relocation, we may be
2905 // taking the address of a function. In that case we need to
2906 // set the entry in the dynamic symbol table to the address of
2907 // the PLT entry.
2908 if (gsym->is_from_dynobj() && !parameters->options().shared())
2909 gsym->set_needs_dynsym_value();
2910 }
2911 // Make a dynamic relocation if necessary.
2912 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2913 {
2914 if (!parameters->options().output_is_position_independent()
2915 && gsym->may_need_copy_reloc())
2916 {
2917 target->copy_reloc(symtab, layout, object,
2918 data_shndx, output_section, gsym, reloc);
2919 }
2920 else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2921 || (size == 32 && r_type == elfcpp::R_X86_64_32))
2922 && gsym->type() == elfcpp::STT_GNU_IFUNC
2923 && gsym->can_use_relative_reloc(false)
2924 && !gsym->is_from_dynobj()
2925 && !gsym->is_undefined()
2926 && !gsym->is_preemptible())
2927 {
2928 // Use an IRELATIVE reloc for a locally defined
2929 // STT_GNU_IFUNC symbol. This makes a function
2930 // address in a PIE executable match the address in a
2931 // shared library that it links against.
2932 Reloc_section* rela_dyn =
2933 target->rela_irelative_section(layout);
2934 unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
2935 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2936 output_section, object,
2937 data_shndx,
2938 reloc.get_r_offset(),
2939 reloc.get_r_addend());
2940 }
2941 else if (((size == 64 && r_type == elfcpp::R_X86_64_64)
2942 || (size == 32 && r_type == elfcpp::R_X86_64_32))
2943 && gsym->can_use_relative_reloc(false))
2944 {
2945 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2946 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
2947 output_section, object,
2948 data_shndx,
2949 reloc.get_r_offset(),
2950 reloc.get_r_addend(), false);
2951 }
2952 else
2953 {
2954 this->check_non_pic(object, r_type, gsym);
2955 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2956 rela_dyn->add_global(gsym, r_type, output_section, object,
2957 data_shndx, reloc.get_r_offset(),
2958 reloc.get_r_addend());
2959 }
2960 }
2961 }
2962 break;
2963
2964 case elfcpp::R_X86_64_PC64:
2965 case elfcpp::R_X86_64_PC32:
2966 case elfcpp::R_X86_64_PC32_BND:
2967 case elfcpp::R_X86_64_PC16:
2968 case elfcpp::R_X86_64_PC8:
2969 {
2970 // Make a PLT entry if necessary.
2971 if (gsym->needs_plt_entry())
2972 target->make_plt_entry(symtab, layout, gsym);
2973 // Make a dynamic relocation if necessary.
2974 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2975 {
2976 if (parameters->options().output_is_executable()
2977 && gsym->may_need_copy_reloc())
2978 {
2979 target->copy_reloc(symtab, layout, object,
2980 data_shndx, output_section, gsym, reloc);
2981 }
2982 else
2983 {
2984 this->check_non_pic(object, r_type, gsym);
2985 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2986 rela_dyn->add_global(gsym, r_type, output_section, object,
2987 data_shndx, reloc.get_r_offset(),
2988 reloc.get_r_addend());
2989 }
2990 }
2991 }
2992 break;
2993
2994 case elfcpp::R_X86_64_GOT64:
2995 case elfcpp::R_X86_64_GOT32:
2996 case elfcpp::R_X86_64_GOTPCREL64:
2997 case elfcpp::R_X86_64_GOTPCREL:
2998 case elfcpp::R_X86_64_GOTPCRELX:
2999 case elfcpp::R_X86_64_REX_GOTPCRELX:
3000 case elfcpp::R_X86_64_GOTPLT64:
3001 {
3002 // The symbol requires a GOT entry.
3003 Output_data_got<64, false>* got = target->got_section(symtab, layout);
3004
3005 // If we convert this from
3006 // mov foo@GOTPCREL(%rip), %reg
3007 // to lea foo(%rip), %reg.
3008 // OR
3009 // if we convert
3010 // (callq|jmpq) *foo@GOTPCRELX(%rip) to
3011 // (callq|jmpq) foo
3012 // in Relocate::relocate, then there is nothing to do here.
3013
3014 Lazy_view<size> view(object, data_shndx);
3015 size_t r_offset = reloc.get_r_offset();
3016 if (r_offset >= 2
3017 && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
3018 r_offset, &view))
3019 break;
3020
3021 if (r_offset >= 2
3022 && Target_x86_64<size>::can_convert_callq_to_direct(gsym, r_type,
3023 r_offset,
3024 &view))
3025 break;
3026
3027 if (gsym->final_value_is_known())
3028 {
3029 // For a STT_GNU_IFUNC symbol we want the PLT address.
3030 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3031 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3032 else
3033 got->add_global(gsym, GOT_TYPE_STANDARD);
3034 }
3035 else
3036 {
3037 // If this symbol is not fully resolved, we need to add a
3038 // dynamic relocation for it.
3039 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3040
3041 // Use a GLOB_DAT rather than a RELATIVE reloc if:
3042 //
3043 // 1) The symbol may be defined in some other module.
3044 //
3045 // 2) We are building a shared library and this is a
3046 // protected symbol; using GLOB_DAT means that the dynamic
3047 // linker can use the address of the PLT in the main
3048 // executable when appropriate so that function address
3049 // comparisons work.
3050 //
3051 // 3) This is a STT_GNU_IFUNC symbol in position dependent
3052 // code, again so that function address comparisons work.
3053 if (gsym->is_from_dynobj()
3054 || gsym->is_undefined()
3055 || gsym->is_preemptible()
3056 || (gsym->visibility() == elfcpp::STV_PROTECTED
3057 && parameters->options().shared())
3058 || (gsym->type() == elfcpp::STT_GNU_IFUNC
3059 && parameters->options().output_is_position_independent()))
3060 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
3061 elfcpp::R_X86_64_GLOB_DAT);
3062 else
3063 {
3064 // For a STT_GNU_IFUNC symbol we want to write the PLT
3065 // offset into the GOT, so that function pointer
3066 // comparisons work correctly.
3067 bool is_new;
3068 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
3069 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
3070 else
3071 {
3072 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3073 // Tell the dynamic linker to use the PLT address
3074 // when resolving relocations.
3075 if (gsym->is_from_dynobj()
3076 && !parameters->options().shared())
3077 gsym->set_needs_dynsym_value();
3078 }
3079 if (is_new)
3080 {
3081 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
3082 rela_dyn->add_global_relative(gsym,
3083 elfcpp::R_X86_64_RELATIVE,
3084 got, got_off, 0, false);
3085 }
3086 }
3087 }
3088 }
3089 break;
3090
3091 case elfcpp::R_X86_64_PLT32:
3092 case elfcpp::R_X86_64_PLT32_BND:
3093 // If the symbol is fully resolved, this is just a PC32 reloc.
3094 // Otherwise we need a PLT entry.
3095 if (gsym->final_value_is_known())
3096 break;
3097 // If building a shared library, we can also skip the PLT entry
3098 // if the symbol is defined in the output file and is protected
3099 // or hidden.
3100 if (gsym->is_defined()
3101 && !gsym->is_from_dynobj()
3102 && !gsym->is_preemptible())
3103 break;
3104 target->make_plt_entry(symtab, layout, gsym);
3105 break;
3106
3107 case elfcpp::R_X86_64_GOTPC32:
3108 case elfcpp::R_X86_64_GOTOFF64:
3109 case elfcpp::R_X86_64_GOTPC64:
3110 case elfcpp::R_X86_64_PLTOFF64:
3111 // We need a GOT section.
3112 target->got_section(symtab, layout);
3113 // For PLTOFF64, we also need a PLT entry (but only if the
3114 // symbol is not fully resolved).
3115 if (r_type == elfcpp::R_X86_64_PLTOFF64
3116 && !gsym->final_value_is_known())
3117 target->make_plt_entry(symtab, layout, gsym);
3118 break;
3119
3120 case elfcpp::R_X86_64_COPY:
3121 case elfcpp::R_X86_64_GLOB_DAT:
3122 case elfcpp::R_X86_64_JUMP_SLOT:
3123 case elfcpp::R_X86_64_RELATIVE:
3124 case elfcpp::R_X86_64_IRELATIVE:
3125 // These are outstanding tls relocs, which are unexpected when linking
3126 case elfcpp::R_X86_64_TPOFF64:
3127 case elfcpp::R_X86_64_DTPMOD64:
3128 case elfcpp::R_X86_64_TLSDESC:
3129 gold_error(_("%s: unexpected reloc %u in object file"),
3130 object->name().c_str(), r_type);
3131 break;
3132
3133 // These are initial tls relocs, which are expected for global()
3134 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
3135 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
3136 case elfcpp::R_X86_64_TLSDESC_CALL:
3137 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3138 case elfcpp::R_X86_64_DTPOFF32:
3139 case elfcpp::R_X86_64_DTPOFF64:
3140 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3141 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3142 {
3143 // For the Initial-Exec model, we can treat undef symbols as final
3144 // when building an executable.
3145 const bool is_final = (gsym->final_value_is_known() ||
3146 (r_type == elfcpp::R_X86_64_GOTTPOFF &&
3147 gsym->is_undefined() &&
3148 parameters->options().output_is_executable()));
3149 const tls::Tls_optimization optimized_type
3150 = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3151 switch (r_type)
3152 {
3153 case elfcpp::R_X86_64_TLSGD: // General-dynamic
3154 if (optimized_type == tls::TLSOPT_NONE)
3155 {
3156 // Create a pair of GOT entries for the module index and
3157 // dtv-relative offset.
3158 Output_data_got<64, false>* got
3159 = target->got_section(symtab, layout);
3160 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
3161 target->rela_dyn_section(layout),
3162 elfcpp::R_X86_64_DTPMOD64,
3163 elfcpp::R_X86_64_DTPOFF64);
3164 }
3165 else if (optimized_type == tls::TLSOPT_TO_IE)
3166 {
3167 // Create a GOT entry for the tp-relative offset.
3168 Output_data_got<64, false>* got
3169 = target->got_section(symtab, layout);
3170 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3171 target->rela_dyn_section(layout),
3172 elfcpp::R_X86_64_TPOFF64);
3173 }
3174 else if (optimized_type != tls::TLSOPT_TO_LE)
3175 unsupported_reloc_global(object, r_type, gsym);
3176 break;
3177
3178 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
3179 target->define_tls_base_symbol(symtab, layout);
3180 if (optimized_type == tls::TLSOPT_NONE)
3181 {
3182 // Create reserved PLT and GOT entries for the resolver.
3183 target->reserve_tlsdesc_entries(symtab, layout);
3184
3185 // Create a double GOT entry with an R_X86_64_TLSDESC
3186 // reloc. The R_X86_64_TLSDESC reloc is resolved
3187 // lazily, so the GOT entry needs to be in an area in
3188 // .got.plt, not .got. Call got_section to make sure
3189 // the section has been created.
3190 target->got_section(symtab, layout);
3191 Output_data_got<64, false>* got = target->got_tlsdesc_section();
3192 Reloc_section* rt = target->rela_tlsdesc_section(layout);
3193 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
3194 elfcpp::R_X86_64_TLSDESC, 0);
3195 }
3196 else if (optimized_type == tls::TLSOPT_TO_IE)
3197 {
3198 // Create a GOT entry for the tp-relative offset.
3199 Output_data_got<64, false>* got
3200 = target->got_section(symtab, layout);
3201 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3202 target->rela_dyn_section(layout),
3203 elfcpp::R_X86_64_TPOFF64);
3204 }
3205 else if (optimized_type != tls::TLSOPT_TO_LE)
3206 unsupported_reloc_global(object, r_type, gsym);
3207 break;
3208
3209 case elfcpp::R_X86_64_TLSDESC_CALL:
3210 break;
3211
3212 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3213 if (optimized_type == tls::TLSOPT_NONE)
3214 {
3215 // Create a GOT entry for the module index.
3216 target->got_mod_index_entry(symtab, layout, object);
3217 }
3218 else if (optimized_type != tls::TLSOPT_TO_LE)
3219 unsupported_reloc_global(object, r_type, gsym);
3220 break;
3221
3222 case elfcpp::R_X86_64_DTPOFF32:
3223 case elfcpp::R_X86_64_DTPOFF64:
3224 break;
3225
3226 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3227 layout->set_has_static_tls();
3228 if (optimized_type == tls::TLSOPT_NONE)
3229 {
3230 // Create a GOT entry for the tp-relative offset.
3231 Output_data_got<64, false>* got
3232 = target->got_section(symtab, layout);
3233 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3234 target->rela_dyn_section(layout),
3235 elfcpp::R_X86_64_TPOFF64);
3236 }
3237 else if (optimized_type != tls::TLSOPT_TO_LE)
3238 unsupported_reloc_global(object, r_type, gsym);
3239 break;
3240
3241 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3242 layout->set_has_static_tls();
3243 if (parameters->options().shared())
3244 unsupported_reloc_global(object, r_type, gsym);
3245 break;
3246
3247 default:
3248 gold_unreachable();
3249 }
3250 }
3251 break;
3252
3253 case elfcpp::R_X86_64_SIZE32:
3254 case elfcpp::R_X86_64_SIZE64:
3255 default:
3256 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3257 object->name().c_str(), r_type,
3258 gsym->demangled_name().c_str());
3259 break;
3260 }
3261 }
3262
3263 template<int size>
3264 void
3265 Target_x86_64<size>::gc_process_relocs(Symbol_table* symtab,
3266 Layout* layout,
3267 Sized_relobj_file<size, false>* object,
3268 unsigned int data_shndx,
3269 unsigned int sh_type,
3270 const unsigned char* prelocs,
3271 size_t reloc_count,
3272 Output_section* output_section,
3273 bool needs_special_offset_handling,
3274 size_t local_symbol_count,
3275 const unsigned char* plocal_symbols)
3276 {
3277 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
3278 Classify_reloc;
3279
3280 if (sh_type == elfcpp::SHT_REL)
3281 {
3282 return;
3283 }
3284
3285 gold::gc_process_relocs<size, false, Target_x86_64<size>, Scan,
3286 Classify_reloc>(
3287 symtab,
3288 layout,
3289 this,
3290 object,
3291 data_shndx,
3292 prelocs,
3293 reloc_count,
3294 output_section,
3295 needs_special_offset_handling,
3296 local_symbol_count,
3297 plocal_symbols);
3298
3299 }
3300 // Scan relocations for a section.
3301
3302 template<int size>
3303 void
3304 Target_x86_64<size>::scan_relocs(Symbol_table* symtab,
3305 Layout* layout,
3306 Sized_relobj_file<size, false>* object,
3307 unsigned int data_shndx,
3308 unsigned int sh_type,
3309 const unsigned char* prelocs,
3310 size_t reloc_count,
3311 Output_section* output_section,
3312 bool needs_special_offset_handling,
3313 size_t local_symbol_count,
3314 const unsigned char* plocal_symbols)
3315 {
3316 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
3317 Classify_reloc;
3318
3319 if (sh_type == elfcpp::SHT_REL)
3320 {
3321 gold_error(_("%s: unsupported REL reloc section"),
3322 object->name().c_str());
3323 return;
3324 }
3325
3326 gold::scan_relocs<size, false, Target_x86_64<size>, Scan, Classify_reloc>(
3327 symtab,
3328 layout,
3329 this,
3330 object,
3331 data_shndx,
3332 prelocs,
3333 reloc_count,
3334 output_section,
3335 needs_special_offset_handling,
3336 local_symbol_count,
3337 plocal_symbols);
3338 }
3339
3340 // Finalize the sections.
3341
3342 template<int size>
3343 void
3344 Target_x86_64<size>::do_finalize_sections(
3345 Layout* layout,
3346 const Input_objects*,
3347 Symbol_table* symtab)
3348 {
3349 const Reloc_section* rel_plt = (this->plt_ == NULL
3350 ? NULL
3351 : this->plt_->rela_plt());
3352 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3353 this->rela_dyn_, true, false);
3354
3355 // Fill in some more dynamic tags.
3356 Output_data_dynamic* const odyn = layout->dynamic_data();
3357 if (odyn != NULL)
3358 {
3359 if (this->plt_ != NULL
3360 && this->plt_->output_section() != NULL
3361 && this->plt_->has_tlsdesc_entry())
3362 {
3363 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
3364 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
3365 this->got_->finalize_data_size();
3366 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
3367 this->plt_, plt_offset);
3368 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
3369 this->got_, got_offset);
3370 }
3371 }
3372
3373 // Emit any relocs we saved in an attempt to avoid generating COPY
3374 // relocs.
3375 if (this->copy_relocs_.any_saved_relocs())
3376 this->copy_relocs_.emit(this->rela_dyn_section(layout));
3377
3378 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3379 // the .got.plt section.
3380 Symbol* sym = this->global_offset_table_;
3381 if (sym != NULL)
3382 {
3383 uint64_t data_size = this->got_plt_->current_data_size();
3384 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3385 }
3386
3387 if (parameters->doing_static_link()
3388 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3389 {
3390 // If linking statically, make sure that the __rela_iplt symbols
3391 // were defined if necessary, even if we didn't create a PLT.
3392 static const Define_symbol_in_segment syms[] =
3393 {
3394 {
3395 "__rela_iplt_start", // name
3396 elfcpp::PT_LOAD, // segment_type
3397 elfcpp::PF_W, // segment_flags_set
3398 elfcpp::PF(0), // segment_flags_clear
3399 0, // value
3400 0, // size
3401 elfcpp::STT_NOTYPE, // type
3402 elfcpp::STB_GLOBAL, // binding
3403 elfcpp::STV_HIDDEN, // visibility
3404 0, // nonvis
3405 Symbol::SEGMENT_START, // offset_from_base
3406 true // only_if_ref
3407 },
3408 {
3409 "__rela_iplt_end", // name
3410 elfcpp::PT_LOAD, // segment_type
3411 elfcpp::PF_W, // segment_flags_set
3412 elfcpp::PF(0), // segment_flags_clear
3413 0, // value
3414 0, // size
3415 elfcpp::STT_NOTYPE, // type
3416 elfcpp::STB_GLOBAL, // binding
3417 elfcpp::STV_HIDDEN, // visibility
3418 0, // nonvis
3419 Symbol::SEGMENT_START, // offset_from_base
3420 true // only_if_ref
3421 }
3422 };
3423
3424 symtab->define_symbols(layout, 2, syms,
3425 layout->script_options()->saw_sections_clause());
3426 }
3427 }
3428
3429 // For x32, we need to handle PC-relative relocations using full 64-bit
3430 // arithmetic, so that we can detect relocation overflows properly.
3431 // This class overrides the pcrela32_check methods from the defaults in
3432 // Relocate_functions in reloc.h.
3433
3434 template<int size>
3435 class X86_64_relocate_functions : public Relocate_functions<size, false>
3436 {
3437 public:
3438 typedef Relocate_functions<size, false> Base;
3439
3440 // Do a simple PC relative relocation with the addend in the
3441 // relocation.
3442 static inline typename Base::Reloc_status
3443 pcrela32_check(unsigned char* view,
3444 typename elfcpp::Elf_types<64>::Elf_Addr value,
3445 typename elfcpp::Elf_types<64>::Elf_Swxword addend,
3446 typename elfcpp::Elf_types<64>::Elf_Addr address)
3447 {
3448 typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
3449 Valtype* wv = reinterpret_cast<Valtype*>(view);
3450 value = value + addend - address;
3451 elfcpp::Swap<32, false>::writeval(wv, value);
3452 return (Bits<32>::has_overflow(value)
3453 ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
3454 }
3455
3456 // Do a simple PC relative relocation with a Symbol_value with the
3457 // addend in the relocation.
3458 static inline typename Base::Reloc_status
3459 pcrela32_check(unsigned char* view,
3460 const Sized_relobj_file<size, false>* object,
3461 const Symbol_value<size>* psymval,
3462 typename elfcpp::Elf_types<64>::Elf_Swxword addend,
3463 typename elfcpp::Elf_types<64>::Elf_Addr address)
3464 {
3465 typedef typename elfcpp::Swap<32, false>::Valtype Valtype;
3466 Valtype* wv = reinterpret_cast<Valtype*>(view);
3467 typename elfcpp::Elf_types<64>::Elf_Addr value;
3468 if (addend >= 0)
3469 value = psymval->value(object, addend);
3470 else
3471 {
3472 // For negative addends, get the symbol value without
3473 // the addend, then add the addend using 64-bit arithmetic.
3474 value = psymval->value(object, 0);
3475 value += addend;
3476 }
3477 value -= address;
3478 elfcpp::Swap<32, false>::writeval(wv, value);
3479 return (Bits<32>::has_overflow(value)
3480 ? Base::RELOC_OVERFLOW : Base::RELOC_OK);
3481 }
3482 };
3483
3484 // Perform a relocation.
3485
3486 template<int size>
3487 inline bool
3488 Target_x86_64<size>::Relocate::relocate(
3489 const Relocate_info<size, false>* relinfo,
3490 unsigned int,
3491 Target_x86_64<size>* target,
3492 Output_section*,
3493 size_t relnum,
3494 const unsigned char* preloc,
3495 const Sized_symbol<size>* gsym,
3496 const Symbol_value<size>* psymval,
3497 unsigned char* view,
3498 typename elfcpp::Elf_types<size>::Elf_Addr address,
3499 section_size_type view_size)
3500 {
3501 typedef X86_64_relocate_functions<size> Reloc_funcs;
3502 const elfcpp::Rela<size, false> rela(preloc);
3503 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
3504
3505 if (this->skip_call_tls_get_addr_)
3506 {
3507 if ((r_type != elfcpp::R_X86_64_PLT32
3508 && r_type != elfcpp::R_X86_64_PLT32_BND
3509 && r_type != elfcpp::R_X86_64_PC32_BND
3510 && r_type != elfcpp::R_X86_64_PC32)
3511 || gsym == NULL
3512 || strcmp(gsym->name(), "__tls_get_addr") != 0)
3513 {
3514 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3515 _("missing expected TLS relocation"));
3516 }
3517 else
3518 {
3519 this->skip_call_tls_get_addr_ = false;
3520 return false;
3521 }
3522 }
3523
3524 if (view == NULL)
3525 return true;
3526
3527 const Sized_relobj_file<size, false>* object = relinfo->object;
3528
3529 // Pick the value to use for symbols defined in the PLT.
3530 Symbol_value<size> symval;
3531 if (gsym != NULL
3532 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3533 {
3534 symval.set_output_value(target->plt_address_for_global(gsym));
3535 psymval = &symval;
3536 }
3537 else if (gsym == NULL && psymval->is_ifunc_symbol())
3538 {
3539 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3540 if (object->local_has_plt_offset(r_sym))
3541 {
3542 symval.set_output_value(target->plt_address_for_local(object, r_sym));
3543 psymval = &symval;
3544 }
3545 }
3546
3547 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3548
3549 // Get the GOT offset if needed.
3550 // The GOT pointer points to the end of the GOT section.
3551 // We need to subtract the size of the GOT section to get
3552 // the actual offset to use in the relocation.
3553 bool have_got_offset = false;
3554 // Since the actual offset is always negative, we use signed int to
3555 // support 64-bit GOT relocations.
3556 int got_offset = 0;
3557 switch (r_type)
3558 {
3559 case elfcpp::R_X86_64_GOT32:
3560 case elfcpp::R_X86_64_GOT64:
3561 case elfcpp::R_X86_64_GOTPLT64:
3562 case elfcpp::R_X86_64_GOTPCREL64:
3563 if (gsym != NULL)
3564 {
3565 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3566 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3567 }
3568 else
3569 {
3570 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3571 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3572 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3573 - target->got_size());
3574 }
3575 have_got_offset = true;
3576 break;
3577
3578 default:
3579 break;
3580 }
3581
3582 typename Reloc_funcs::Reloc_status rstatus = Reloc_funcs::RELOC_OK;
3583
3584 switch (r_type)
3585 {
3586 case elfcpp::R_X86_64_NONE:
3587 case elfcpp::R_X86_64_GNU_VTINHERIT:
3588 case elfcpp::R_X86_64_GNU_VTENTRY:
3589 break;
3590
3591 case elfcpp::R_X86_64_64:
3592 Reloc_funcs::rela64(view, object, psymval, addend);
3593 break;
3594
3595 case elfcpp::R_X86_64_PC64:
3596 Reloc_funcs::pcrela64(view, object, psymval, addend,
3597 address);
3598 break;
3599
3600 case elfcpp::R_X86_64_32:
3601 rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
3602 Reloc_funcs::CHECK_UNSIGNED);
3603 break;
3604
3605 case elfcpp::R_X86_64_32S:
3606 rstatus = Reloc_funcs::rela32_check(view, object, psymval, addend,
3607 Reloc_funcs::CHECK_SIGNED);
3608 break;
3609
3610 case elfcpp::R_X86_64_PC32:
3611 case elfcpp::R_X86_64_PC32_BND:
3612 rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
3613 address);
3614 break;
3615
3616 case elfcpp::R_X86_64_16:
3617 Reloc_funcs::rela16(view, object, psymval, addend);
3618 break;
3619
3620 case elfcpp::R_X86_64_PC16:
3621 Reloc_funcs::pcrela16(view, object, psymval, addend, address);
3622 break;
3623
3624 case elfcpp::R_X86_64_8:
3625 Reloc_funcs::rela8(view, object, psymval, addend);
3626 break;
3627
3628 case elfcpp::R_X86_64_PC8:
3629 Reloc_funcs::pcrela8(view, object, psymval, addend, address);
3630 break;
3631
3632 case elfcpp::R_X86_64_PLT32:
3633 case elfcpp::R_X86_64_PLT32_BND:
3634 gold_assert(gsym == NULL
3635 || gsym->has_plt_offset()
3636 || gsym->final_value_is_known()
3637 || (gsym->is_defined()
3638 && !gsym->is_from_dynobj()
3639 && !gsym->is_preemptible()));
3640 // Note: while this code looks the same as for R_X86_64_PC32, it
3641 // behaves differently because psymval was set to point to
3642 // the PLT entry, rather than the symbol, in Scan::global().
3643 rstatus = Reloc_funcs::pcrela32_check(view, object, psymval, addend,
3644 address);
3645 break;
3646
3647 case elfcpp::R_X86_64_PLTOFF64:
3648 {
3649 gold_assert(gsym);
3650 gold_assert(gsym->has_plt_offset()
3651 || gsym->final_value_is_known());
3652 typename elfcpp::Elf_types<size>::Elf_Addr got_address;
3653 // This is the address of GLOBAL_OFFSET_TABLE.
3654 got_address = target->got_plt_section()->address();
3655 Reloc_funcs::rela64(view, object, psymval, addend - got_address);
3656 }
3657 break;
3658
3659 case elfcpp::R_X86_64_GOT32:
3660 gold_assert(have_got_offset);
3661 Reloc_funcs::rela32(view, got_offset, addend);
3662 break;
3663
3664 case elfcpp::R_X86_64_GOTPC32:
3665 {
3666 gold_assert(gsym);
3667 typename elfcpp::Elf_types<size>::Elf_Addr value;
3668 value = target->got_plt_section()->address();
3669 Reloc_funcs::pcrela32_check(view, value, addend, address);
3670 }
3671 break;
3672
3673 case elfcpp::R_X86_64_GOT64:
3674 case elfcpp::R_X86_64_GOTPLT64:
3675 // R_X86_64_GOTPLT64 is obsolete and treated the the same as
3676 // GOT64.
3677 gold_assert(have_got_offset);
3678 Reloc_funcs::rela64(view, got_offset, addend);
3679 break;
3680
3681 case elfcpp::R_X86_64_GOTPC64:
3682 {
3683 gold_assert(gsym);
3684 typename elfcpp::Elf_types<size>::Elf_Addr value;
3685 value = target->got_plt_section()->address();
3686 Reloc_funcs::pcrela64(view, value, addend, address);
3687 }
3688 break;
3689
3690 case elfcpp::R_X86_64_GOTOFF64:
3691 {
3692 typename elfcpp::Elf_types<size>::Elf_Addr value;
3693 value = (psymval->value(object, 0)
3694 - target->got_plt_section()->address());
3695 Reloc_funcs::rela64(view, value, addend);
3696 }
3697 break;
3698
3699 case elfcpp::R_X86_64_GOTPCREL:
3700 case elfcpp::R_X86_64_GOTPCRELX:
3701 case elfcpp::R_X86_64_REX_GOTPCRELX:
3702 {
3703 // Convert
3704 // mov foo@GOTPCREL(%rip), %reg
3705 // to lea foo(%rip), %reg.
3706 // if possible.
3707 if ((gsym == NULL
3708 && rela.get_r_offset() >= 2
3709 && view[-2] == 0x8b
3710 && !psymval->is_ifunc_symbol())
3711 || (gsym != NULL
3712 && rela.get_r_offset() >= 2
3713 && Target_x86_64<size>::can_convert_mov_to_lea(gsym, r_type,
3714 0, &view)))
3715 {
3716 view[-2] = 0x8d;
3717 Reloc_funcs::pcrela32(view, object, psymval, addend, address);
3718 }
3719 // Convert
3720 // callq *foo@GOTPCRELX(%rip) to
3721 // addr32 callq foo
3722 // and jmpq *foo@GOTPCRELX(%rip) to
3723 // jmpq foo
3724 // nop
3725 else if (gsym != NULL
3726 && rela.get_r_offset() >= 2
3727 && Target_x86_64<size>::can_convert_callq_to_direct(gsym,
3728 r_type,
3729 0, &view))
3730 {
3731 if (view[-1] == 0x15)
3732 {
3733 // Convert callq *foo@GOTPCRELX(%rip) to addr32 callq.
3734 // Opcode of addr32 is 0x67 and opcode of direct callq is 0xe8.
3735 view[-2] = 0x67;
3736 view[-1] = 0xe8;
3737 // Convert GOTPCRELX to 32-bit pc relative reloc.
3738 Reloc_funcs::pcrela32(view, object, psymval, addend, address);
3739 }
3740 else
3741 {
3742 // Convert jmpq *foo@GOTPCRELX(%rip) to
3743 // jmpq foo
3744 // nop
3745 // The opcode of direct jmpq is 0xe9.
3746 view[-2] = 0xe9;
3747 // The opcode of nop is 0x90.
3748 view[3] = 0x90;
3749 // Convert GOTPCRELX to 32-bit pc relative reloc. jmpq is rip
3750 // relative and since the instruction following the jmpq is now
3751 // the nop, offset the address by 1 byte. The start of the
3752 // relocation also moves ahead by 1 byte.
3753 Reloc_funcs::pcrela32(&view[-1], object, psymval, addend,
3754 address - 1);
3755 }
3756 }
3757 else
3758 {
3759 if (gsym != NULL)
3760 {
3761 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3762 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
3763 }
3764 else
3765 {
3766 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3767 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3768 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
3769 - target->got_size());
3770 }
3771 typename elfcpp::Elf_types<size>::Elf_Addr value;
3772 value = target->got_plt_section()->address() + got_offset;
3773 Reloc_funcs::pcrela32_check(view, value, addend, address);
3774 }
3775 }
3776 break;
3777
3778 case elfcpp::R_X86_64_GOTPCREL64:
3779 {
3780 gold_assert(have_got_offset);
3781 typename elfcpp::Elf_types<size>::Elf_Addr value;
3782 value = target->got_plt_section()->address() + got_offset;
3783 Reloc_funcs::pcrela64(view, value, addend, address);
3784 }
3785 break;
3786
3787 case elfcpp::R_X86_64_COPY:
3788 case elfcpp::R_X86_64_GLOB_DAT:
3789 case elfcpp::R_X86_64_JUMP_SLOT:
3790 case elfcpp::R_X86_64_RELATIVE:
3791 case elfcpp::R_X86_64_IRELATIVE:
3792 // These are outstanding tls relocs, which are unexpected when linking
3793 case elfcpp::R_X86_64_TPOFF64:
3794 case elfcpp::R_X86_64_DTPMOD64:
3795 case elfcpp::R_X86_64_TLSDESC:
3796 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3797 _("unexpected reloc %u in object file"),
3798 r_type);
3799 break;
3800
3801 // These are initial tls relocs, which are expected when linking
3802 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
3803 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
3804 case elfcpp::R_X86_64_TLSDESC_CALL:
3805 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
3806 case elfcpp::R_X86_64_DTPOFF32:
3807 case elfcpp::R_X86_64_DTPOFF64:
3808 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
3809 case elfcpp::R_X86_64_TPOFF32: // Local-exec
3810 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3811 view, address, view_size);
3812 break;
3813
3814 case elfcpp::R_X86_64_SIZE32:
3815 case elfcpp::R_X86_64_SIZE64:
3816 default:
3817 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3818 _("unsupported reloc %u"),
3819 r_type);
3820 break;
3821 }
3822
3823 if (rstatus == Reloc_funcs::RELOC_OVERFLOW)
3824 {
3825 if (gsym == NULL)
3826 {
3827 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3828 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3829 _("relocation overflow: "
3830 "reference to local symbol %u in %s"),
3831 r_sym, object->name().c_str());
3832 }
3833 else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
3834 {
3835 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3836 _("relocation overflow: "
3837 "reference to '%s' defined in %s"),
3838 gsym->name(),
3839 gsym->object()->name().c_str());
3840 }
3841 else
3842 {
3843 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3844 _("relocation overflow: reference to '%s'"),
3845 gsym->name());
3846 }
3847 }
3848
3849 return true;
3850 }
3851
3852 // Perform a TLS relocation.
3853
3854 template<int size>
3855 inline void
3856 Target_x86_64<size>::Relocate::relocate_tls(
3857 const Relocate_info<size, false>* relinfo,
3858 Target_x86_64<size>* target,
3859 size_t relnum,
3860 const elfcpp::Rela<size, false>& rela,
3861 unsigned int r_type,
3862 const Sized_symbol<size>* gsym,
3863 const Symbol_value<size>* psymval,
3864 unsigned char* view,
3865 typename elfcpp::Elf_types<size>::Elf_Addr address,
3866 section_size_type view_size)
3867 {
3868 Output_segment* tls_segment = relinfo->layout->tls_segment();
3869
3870 const Sized_relobj_file<size, false>* object = relinfo->object;
3871 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3872 elfcpp::Shdr<size, false> data_shdr(relinfo->data_shdr);
3873 bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
3874
3875 typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0);
3876
3877 const bool is_final = (gsym == NULL
3878 ? !parameters->options().shared()
3879 : gsym->final_value_is_known());
3880 tls::Tls_optimization optimized_type
3881 = Target_x86_64<size>::optimize_tls_reloc(is_final, r_type);
3882 switch (r_type)
3883 {
3884 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
3885 if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3886 {
3887 // If this code sequence is used in a non-executable section,
3888 // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
3889 // on the assumption that it's being used by itself in a debug
3890 // section. Therefore, in the unlikely event that the code
3891 // sequence appears in a non-executable section, we simply
3892 // leave it unoptimized.
3893 optimized_type = tls::TLSOPT_NONE;
3894 }
3895 if (optimized_type == tls::TLSOPT_TO_LE)
3896 {
3897 if (tls_segment == NULL)
3898 {
3899 gold_assert(parameters->errors()->error_count() > 0
3900 || issue_undefined_symbol_error(gsym));
3901 return;
3902 }
3903 this->tls_gd_to_le(relinfo, relnum, tls_segment,
3904 rela, r_type, value, view,
3905 view_size);
3906 break;
3907 }
3908 else
3909 {
3910 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3911 ? GOT_TYPE_TLS_OFFSET
3912 : GOT_TYPE_TLS_PAIR);
3913 unsigned int got_offset;
3914 if (gsym != NULL)
3915 {
3916 gold_assert(gsym->has_got_offset(got_type));
3917 got_offset = gsym->got_offset(got_type) - target->got_size();
3918 }
3919 else
3920 {
3921 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3922 gold_assert(object->local_has_got_offset(r_sym, got_type));
3923 got_offset = (object->local_got_offset(r_sym, got_type)
3924 - target->got_size());
3925 }
3926 if (optimized_type == tls::TLSOPT_TO_IE)
3927 {
3928 value = target->got_plt_section()->address() + got_offset;
3929 this->tls_gd_to_ie(relinfo, relnum, rela, r_type,
3930 value, view, address, view_size);
3931 break;
3932 }
3933 else if (optimized_type == tls::TLSOPT_NONE)
3934 {
3935 // Relocate the field with the offset of the pair of GOT
3936 // entries.
3937 value = target->got_plt_section()->address() + got_offset;
3938 Relocate_functions<size, false>::pcrela32(view, value, addend,
3939 address);
3940 break;
3941 }
3942 }
3943 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3944 _("unsupported reloc %u"), r_type);
3945 break;
3946
3947 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
3948 case elfcpp::R_X86_64_TLSDESC_CALL:
3949 if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
3950 {
3951 // See above comment for R_X86_64_TLSGD.
3952 optimized_type = tls::TLSOPT_NONE;
3953 }
3954 if (optimized_type == tls::TLSOPT_TO_LE)
3955 {
3956 if (tls_segment == NULL)
3957 {
3958 gold_assert(parameters->errors()->error_count() > 0
3959 || issue_undefined_symbol_error(gsym));
3960 return;
3961 }
3962 this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
3963 rela, r_type, value, view,
3964 view_size);
3965 break;
3966 }
3967 else
3968 {
3969 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3970 ? GOT_TYPE_TLS_OFFSET
3971 : GOT_TYPE_TLS_DESC);
3972 unsigned int got_offset = 0;
3973 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
3974 && optimized_type == tls::TLSOPT_NONE)
3975 {
3976 // We created GOT entries in the .got.tlsdesc portion of
3977 // the .got.plt section, but the offset stored in the
3978 // symbol is the offset within .got.tlsdesc.
3979 got_offset = (target->got_size()
3980 + target->got_plt_section()->data_size());
3981 }
3982 if (gsym != NULL)
3983 {
3984 gold_assert(gsym->has_got_offset(got_type));
3985 got_offset += gsym->got_offset(got_type) - target->got_size();
3986 }
3987 else
3988 {
3989 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3990 gold_assert(object->local_has_got_offset(r_sym, got_type));
3991 got_offset += (object->local_got_offset(r_sym, got_type)
3992 - target->got_size());
3993 }
3994 if (optimized_type == tls::TLSOPT_TO_IE)
3995 {
3996 value = target->got_plt_section()->address() + got_offset;
3997 this->tls_desc_gd_to_ie(relinfo, relnum,
3998 rela, r_type, value, view, address,
3999 view_size);
4000 break;
4001 }
4002 else if (optimized_type == tls::TLSOPT_NONE)
4003 {
4004 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4005 {
4006 // Relocate the field with the offset of the pair of GOT
4007 // entries.
4008 value = target->got_plt_section()->address() + got_offset;
4009 Relocate_functions<size, false>::pcrela32(view, value, addend,
4010 address);
4011 }
4012 break;
4013 }
4014 }
4015 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4016 _("unsupported reloc %u"), r_type);
4017 break;
4018
4019 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
4020 if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
4021 {
4022 // See above comment for R_X86_64_TLSGD.
4023 optimized_type = tls::TLSOPT_NONE;
4024 }
4025 if (optimized_type == tls::TLSOPT_TO_LE)
4026 {
4027 if (tls_segment == NULL)
4028 {
4029 gold_assert(parameters->errors()->error_count() > 0
4030 || issue_undefined_symbol_error(gsym));
4031 return;
4032 }
4033 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
4034 value, view, view_size);
4035 break;
4036 }
4037 else if (optimized_type == tls::TLSOPT_NONE)
4038 {
4039 // Relocate the field with the offset of the GOT entry for
4040 // the module index.
4041 unsigned int got_offset;
4042 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
4043 - target->got_size());
4044 value = target->got_plt_section()->address() + got_offset;
4045 Relocate_functions<size, false>::pcrela32(view, value, addend,
4046 address);
4047 break;
4048 }
4049 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4050 _("unsupported reloc %u"), r_type);
4051 break;
4052
4053 case elfcpp::R_X86_64_DTPOFF32:
4054 // This relocation type is used in debugging information.
4055 // In that case we need to not optimize the value. If the
4056 // section is not executable, then we assume we should not
4057 // optimize this reloc. See comments above for R_X86_64_TLSGD,
4058 // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
4059 // R_X86_64_TLSLD.
4060 if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
4061 {
4062 if (tls_segment == NULL)
4063 {
4064 gold_assert(parameters->errors()->error_count() > 0
4065 || issue_undefined_symbol_error(gsym));
4066 return;
4067 }
4068 value -= tls_segment->memsz();
4069 }
4070 Relocate_functions<size, false>::rela32(view, value, addend);
4071 break;
4072
4073 case elfcpp::R_X86_64_DTPOFF64:
4074 // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
4075 if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
4076 {
4077 if (tls_segment == NULL)
4078 {
4079 gold_assert(parameters->errors()->error_count() > 0
4080 || issue_undefined_symbol_error(gsym));
4081 return;
4082 }
4083 value -= tls_segment->memsz();
4084 }
4085 Relocate_functions<size, false>::rela64(view, value, addend);
4086 break;
4087
4088 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
4089 if (gsym != NULL
4090 && gsym->is_undefined()
4091 && parameters->options().output_is_executable())
4092 {
4093 Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
4094 NULL, rela,
4095 r_type, value, view,
4096 view_size);
4097 break;
4098 }
4099 else if (optimized_type == tls::TLSOPT_TO_LE)
4100 {
4101 if (tls_segment == NULL)
4102 {
4103 gold_assert(parameters->errors()->error_count() > 0
4104 || issue_undefined_symbol_error(gsym));
4105 return;
4106 }
4107 Target_x86_64<size>::Relocate::tls_ie_to_le(relinfo, relnum,
4108 tls_segment, rela,
4109 r_type, value, view,
4110 view_size);
4111 break;
4112 }
4113 else if (optimized_type == tls::TLSOPT_NONE)
4114 {
4115 // Relocate the field with the offset of the GOT entry for
4116 // the tp-relative offset of the symbol.
4117 unsigned int got_offset;
4118 if (gsym != NULL)
4119 {
4120 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
4121 got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
4122 - target->got_size());
4123 }
4124 else
4125 {
4126 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4127 gold_assert(object->local_has_got_offset(r_sym,
4128 GOT_TYPE_TLS_OFFSET));
4129 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
4130 - target->got_size());
4131 }
4132 value = target->got_plt_section()->address() + got_offset;
4133 Relocate_functions<size, false>::pcrela32(view, value, addend,
4134 address);
4135 break;
4136 }
4137 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4138 _("unsupported reloc type %u"),
4139 r_type);
4140 break;
4141
4142 case elfcpp::R_X86_64_TPOFF32: // Local-exec
4143 if (tls_segment == NULL)
4144 {
4145 gold_assert(parameters->errors()->error_count() > 0
4146 || issue_undefined_symbol_error(gsym));
4147 return;
4148 }
4149 value -= tls_segment->memsz();
4150 Relocate_functions<size, false>::rela32(view, value, addend);
4151 break;
4152 }
4153 }
4154
4155 // Do a relocation in which we convert a TLS General-Dynamic to an
4156 // Initial-Exec.
4157
4158 template<int size>
4159 inline void
4160 Target_x86_64<size>::Relocate::tls_gd_to_ie(
4161 const Relocate_info<size, false>* relinfo,
4162 size_t relnum,
4163 const elfcpp::Rela<size, false>& rela,
4164 unsigned int,
4165 typename elfcpp::Elf_types<size>::Elf_Addr value,
4166 unsigned char* view,
4167 typename elfcpp::Elf_types<size>::Elf_Addr address,
4168 section_size_type view_size)
4169 {
4170 // For SIZE == 64:
4171 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4172 // .word 0x6666; rex64; call __tls_get_addr
4173 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
4174 // For SIZE == 32:
4175 // leaq foo@tlsgd(%rip),%rdi;
4176 // .word 0x6666; rex64; call __tls_get_addr
4177 // ==> movl %fs:0,%eax; addq x@gottpoff(%rip),%rax
4178
4179 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4180 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4181 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
4182
4183 if (size == 64)
4184 {
4185 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4186 -4);
4187 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4188 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4189 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
4190 16);
4191 }
4192 else
4193 {
4194 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4195 -3);
4196 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4197 (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4198 memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0",
4199 15);
4200 }
4201
4202 const elfcpp::Elf_Xword addend = rela.get_r_addend();
4203 Relocate_functions<size, false>::pcrela32(view + 8, value, addend - 8,
4204 address);
4205
4206 // The next reloc should be a PLT32 reloc against __tls_get_addr.
4207 // We can skip it.
4208 this->skip_call_tls_get_addr_ = true;
4209 }
4210
4211 // Do a relocation in which we convert a TLS General-Dynamic to a
4212 // Local-Exec.
4213
4214 template<int size>
4215 inline void
4216 Target_x86_64<size>::Relocate::tls_gd_to_le(
4217 const Relocate_info<size, false>* relinfo,
4218 size_t relnum,
4219 Output_segment* tls_segment,
4220 const elfcpp::Rela<size, false>& rela,
4221 unsigned int,
4222 typename elfcpp::Elf_types<size>::Elf_Addr value,
4223 unsigned char* view,
4224 section_size_type view_size)
4225 {
4226 // For SIZE == 64:
4227 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
4228 // .word 0x6666; rex64; call __tls_get_addr
4229 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
4230 // For SIZE == 32:
4231 // leaq foo@tlsgd(%rip),%rdi;
4232 // .word 0x6666; rex64; call __tls_get_addr
4233 // ==> movl %fs:0,%eax; leaq x@tpoff(%rax),%rax
4234
4235 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
4236 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4237 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
4238
4239 if (size == 64)
4240 {
4241 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4242 -4);
4243 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4244 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
4245 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4246 16);
4247 }
4248 else
4249 {
4250 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size,
4251 -3);
4252 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4253 (memcmp(view - 3, "\x48\x8d\x3d", 3) == 0));
4254
4255 memcpy(view - 3, "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0",
4256 15);
4257 }
4258
4259 value -= tls_segment->memsz();
4260 Relocate_functions<size, false>::rela32(view + 8, value, 0);
4261
4262 // The next reloc should be a PLT32 reloc against __tls_get_addr.
4263 // We can skip it.
4264 this->skip_call_tls_get_addr_ = true;
4265 }
4266
4267 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
4268
4269 template<int size>
4270 inline void
4271 Target_x86_64<size>::Relocate::tls_desc_gd_to_ie(
4272 const Relocate_info<size, false>* relinfo,
4273 size_t relnum,
4274 const elfcpp::Rela<size, false>& rela,
4275 unsigned int r_type,
4276 typename elfcpp::Elf_types<size>::Elf_Addr value,
4277 unsigned char* view,
4278 typename elfcpp::Elf_types<size>::Elf_Addr address,
4279 section_size_type view_size)
4280 {
4281 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4282 {
4283 // leaq foo@tlsdesc(%rip), %rax
4284 // ==> movq foo@gottpoff(%rip), %rax
4285 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4286 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4287 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4288 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4289 view[-2] = 0x8b;
4290 const elfcpp::Elf_Xword addend = rela.get_r_addend();
4291 Relocate_functions<size, false>::pcrela32(view, value, addend, address);
4292 }
4293 else
4294 {
4295 // call *foo@tlscall(%rax)
4296 // ==> nop; nop
4297 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4298 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4299 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4300 view[0] == 0xff && view[1] == 0x10);
4301 view[0] = 0x66;
4302 view[1] = 0x90;
4303 }
4304 }
4305
4306 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
4307
4308 template<int size>
4309 inline void
4310 Target_x86_64<size>::Relocate::tls_desc_gd_to_le(
4311 const Relocate_info<size, false>* relinfo,
4312 size_t relnum,
4313 Output_segment* tls_segment,
4314 const elfcpp::Rela<size, false>& rela,
4315 unsigned int r_type,
4316 typename elfcpp::Elf_types<size>::Elf_Addr value,
4317 unsigned char* view,
4318 section_size_type view_size)
4319 {
4320 if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
4321 {
4322 // leaq foo@tlsdesc(%rip), %rax
4323 // ==> movq foo@tpoff, %rax
4324 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4325 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4326 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4327 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
4328 view[-2] = 0xc7;
4329 view[-1] = 0xc0;
4330 value -= tls_segment->memsz();
4331 Relocate_functions<size, false>::rela32(view, value, 0);
4332 }
4333 else
4334 {
4335 // call *foo@tlscall(%rax)
4336 // ==> nop; nop
4337 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
4338 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
4339 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4340 view[0] == 0xff && view[1] == 0x10);
4341 view[0] = 0x66;
4342 view[1] = 0x90;
4343 }
4344 }
4345
4346 template<int size>
4347 inline void
4348 Target_x86_64<size>::Relocate::tls_ld_to_le(
4349 const Relocate_info<size, false>* relinfo,
4350 size_t relnum,
4351 Output_segment*,
4352 const elfcpp::Rela<size, false>& rela,
4353 unsigned int,
4354 typename elfcpp::Elf_types<size>::Elf_Addr,
4355 unsigned char* view,
4356 section_size_type view_size)
4357 {
4358 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
4359 // For SIZE == 64:
4360 // ... leq foo@dtpoff(%rax),%reg
4361 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
4362 // For SIZE == 32:
4363 // ... leq foo@dtpoff(%rax),%reg
4364 // ==> nopl 0x0(%rax); movl %fs:0,%eax ... leaq x@tpoff(%rax),%rdx
4365
4366 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4367 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
4368
4369 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
4370 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
4371
4372 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
4373
4374 if (size == 64)
4375 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
4376 else
4377 memcpy(view - 3, "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0\0", 12);
4378
4379 // The next reloc should be a PLT32 reloc against __tls_get_addr.
4380 // We can skip it.
4381 this->skip_call_tls_get_addr_ = true;
4382 }
4383
4384 // Do a relocation in which we convert a TLS Initial-Exec to a
4385 // Local-Exec.
4386
4387 template<int size>
4388 inline void
4389 Target_x86_64<size>::Relocate::tls_ie_to_le(
4390 const Relocate_info<size, false>* relinfo,
4391 size_t relnum,
4392 Output_segment* tls_segment,
4393 const elfcpp::Rela<size, false>& rela,
4394 unsigned int,
4395 typename elfcpp::Elf_types<size>::Elf_Addr value,
4396 unsigned char* view,
4397 section_size_type view_size)
4398 {
4399 // We need to examine the opcodes to figure out which instruction we
4400 // are looking at.
4401
4402 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
4403 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
4404
4405 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
4406 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
4407
4408 unsigned char op1 = view[-3];
4409 unsigned char op2 = view[-2];
4410 unsigned char op3 = view[-1];
4411 unsigned char reg = op3 >> 3;
4412
4413 if (op2 == 0x8b)
4414 {
4415 // movq
4416 if (op1 == 0x4c)
4417 view[-3] = 0x49;
4418 else if (size == 32 && op1 == 0x44)
4419 view[-3] = 0x41;
4420 view[-2] = 0xc7;
4421 view[-1] = 0xc0 | reg;
4422 }
4423 else if (reg == 4)
4424 {
4425 // Special handling for %rsp.
4426 if (op1 == 0x4c)
4427 view[-3] = 0x49;
4428 else if (size == 32 && op1 == 0x44)
4429 view[-3] = 0x41;
4430 view[-2] = 0x81;
4431 view[-1] = 0xc0 | reg;
4432 }
4433 else
4434 {
4435 // addq
4436 if (op1 == 0x4c)
4437 view[-3] = 0x4d;
4438 else if (size == 32 && op1 == 0x44)
4439 view[-3] = 0x45;
4440 view[-2] = 0x8d;
4441 view[-1] = 0x80 | reg | (reg << 3);
4442 }
4443
4444 if (tls_segment != NULL)
4445 value -= tls_segment->memsz();
4446 Relocate_functions<size, false>::rela32(view, value, 0);
4447 }
4448
4449 // Relocate section data.
4450
4451 template<int size>
4452 void
4453 Target_x86_64<size>::relocate_section(
4454 const Relocate_info<size, false>* relinfo,
4455 unsigned int sh_type,
4456 const unsigned char* prelocs,
4457 size_t reloc_count,
4458 Output_section* output_section,
4459 bool needs_special_offset_handling,
4460 unsigned char* view,
4461 typename elfcpp::Elf_types<size>::Elf_Addr address,
4462 section_size_type view_size,
4463 const Reloc_symbol_changes* reloc_symbol_changes)
4464 {
4465 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4466 Classify_reloc;
4467
4468 gold_assert(sh_type == elfcpp::SHT_RELA);
4469
4470 gold::relocate_section<size, false, Target_x86_64<size>, Relocate,
4471 gold::Default_comdat_behavior, Classify_reloc>(
4472 relinfo,
4473 this,
4474 prelocs,
4475 reloc_count,
4476 output_section,
4477 needs_special_offset_handling,
4478 view,
4479 address,
4480 view_size,
4481 reloc_symbol_changes);
4482 }
4483
4484 // Apply an incremental relocation. Incremental relocations always refer
4485 // to global symbols.
4486
4487 template<int size>
4488 void
4489 Target_x86_64<size>::apply_relocation(
4490 const Relocate_info<size, false>* relinfo,
4491 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4492 unsigned int r_type,
4493 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4494 const Symbol* gsym,
4495 unsigned char* view,
4496 typename elfcpp::Elf_types<size>::Elf_Addr address,
4497 section_size_type view_size)
4498 {
4499 gold::apply_relocation<size, false, Target_x86_64<size>,
4500 typename Target_x86_64<size>::Relocate>(
4501 relinfo,
4502 this,
4503 r_offset,
4504 r_type,
4505 r_addend,
4506 gsym,
4507 view,
4508 address,
4509 view_size);
4510 }
4511
4512 // Scan the relocs during a relocatable link.
4513
4514 template<int size>
4515 void
4516 Target_x86_64<size>::scan_relocatable_relocs(
4517 Symbol_table* symtab,
4518 Layout* layout,
4519 Sized_relobj_file<size, false>* object,
4520 unsigned int data_shndx,
4521 unsigned int sh_type,
4522 const unsigned char* prelocs,
4523 size_t reloc_count,
4524 Output_section* output_section,
4525 bool needs_special_offset_handling,
4526 size_t local_symbol_count,
4527 const unsigned char* plocal_symbols,
4528 Relocatable_relocs* rr)
4529 {
4530 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4531 Classify_reloc;
4532 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
4533 Scan_relocatable_relocs;
4534
4535 gold_assert(sh_type == elfcpp::SHT_RELA);
4536
4537 gold::scan_relocatable_relocs<size, false, Scan_relocatable_relocs>(
4538 symtab,
4539 layout,
4540 object,
4541 data_shndx,
4542 prelocs,
4543 reloc_count,
4544 output_section,
4545 needs_special_offset_handling,
4546 local_symbol_count,
4547 plocal_symbols,
4548 rr);
4549 }
4550
4551 // Scan the relocs for --emit-relocs.
4552
4553 template<int size>
4554 void
4555 Target_x86_64<size>::emit_relocs_scan(
4556 Symbol_table* symtab,
4557 Layout* layout,
4558 Sized_relobj_file<size, false>* object,
4559 unsigned int data_shndx,
4560 unsigned int sh_type,
4561 const unsigned char* prelocs,
4562 size_t reloc_count,
4563 Output_section* output_section,
4564 bool needs_special_offset_handling,
4565 size_t local_symbol_count,
4566 const unsigned char* plocal_syms,
4567 Relocatable_relocs* rr)
4568 {
4569 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4570 Classify_reloc;
4571 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
4572 Emit_relocs_strategy;
4573
4574 gold_assert(sh_type == elfcpp::SHT_RELA);
4575
4576 gold::scan_relocatable_relocs<size, false, Emit_relocs_strategy>(
4577 symtab,
4578 layout,
4579 object,
4580 data_shndx,
4581 prelocs,
4582 reloc_count,
4583 output_section,
4584 needs_special_offset_handling,
4585 local_symbol_count,
4586 plocal_syms,
4587 rr);
4588 }
4589
4590 // Relocate a section during a relocatable link.
4591
4592 template<int size>
4593 void
4594 Target_x86_64<size>::relocate_relocs(
4595 const Relocate_info<size, false>* relinfo,
4596 unsigned int sh_type,
4597 const unsigned char* prelocs,
4598 size_t reloc_count,
4599 Output_section* output_section,
4600 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4601 unsigned char* view,
4602 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4603 section_size_type view_size,
4604 unsigned char* reloc_view,
4605 section_size_type reloc_view_size)
4606 {
4607 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, false>
4608 Classify_reloc;
4609
4610 gold_assert(sh_type == elfcpp::SHT_RELA);
4611
4612 gold::relocate_relocs<size, false, Classify_reloc>(
4613 relinfo,
4614 prelocs,
4615 reloc_count,
4616 output_section,
4617 offset_in_output_section,
4618 view,
4619 view_address,
4620 view_size,
4621 reloc_view,
4622 reloc_view_size);
4623 }
4624
4625 // Return the value to use for a dynamic which requires special
4626 // treatment. This is how we support equality comparisons of function
4627 // pointers across shared library boundaries, as described in the
4628 // processor specific ABI supplement.
4629
4630 template<int size>
4631 uint64_t
4632 Target_x86_64<size>::do_dynsym_value(const Symbol* gsym) const
4633 {
4634 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4635 return this->plt_address_for_global(gsym);
4636 }
4637
4638 // Return a string used to fill a code section with nops to take up
4639 // the specified length.
4640
4641 template<int size>
4642 std::string
4643 Target_x86_64<size>::do_code_fill(section_size_type length) const
4644 {
4645 if (length >= 16)
4646 {
4647 // Build a jmpq instruction to skip over the bytes.
4648 unsigned char jmp[5];
4649 jmp[0] = 0xe9;
4650 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
4651 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
4652 + std::string(length - 5, static_cast<char>(0x90)));
4653 }
4654
4655 // Nop sequences of various lengths.
4656 const char nop1[1] = { '\x90' }; // nop
4657 const char nop2[2] = { '\x66', '\x90' }; // xchg %ax %ax
4658 const char nop3[3] = { '\x0f', '\x1f', '\x00' }; // nop (%rax)
4659 const char nop4[4] = { '\x0f', '\x1f', '\x40', // nop 0(%rax)
4660 '\x00'};
4661 const char nop5[5] = { '\x0f', '\x1f', '\x44', // nop 0(%rax,%rax,1)
4662 '\x00', '\x00' };
4663 const char nop6[6] = { '\x66', '\x0f', '\x1f', // nopw 0(%rax,%rax,1)
4664 '\x44', '\x00', '\x00' };
4665 const char nop7[7] = { '\x0f', '\x1f', '\x80', // nopl 0L(%rax)
4666 '\x00', '\x00', '\x00',
4667 '\x00' };
4668 const char nop8[8] = { '\x0f', '\x1f', '\x84', // nopl 0L(%rax,%rax,1)
4669 '\x00', '\x00', '\x00',
4670 '\x00', '\x00' };
4671 const char nop9[9] = { '\x66', '\x0f', '\x1f', // nopw 0L(%rax,%rax,1)
4672 '\x84', '\x00', '\x00',
4673 '\x00', '\x00', '\x00' };
4674 const char nop10[10] = { '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4675 '\x1f', '\x84', '\x00',
4676 '\x00', '\x00', '\x00',
4677 '\x00' };
4678 const char nop11[11] = { '\x66', '\x66', '\x2e', // data16
4679 '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4680 '\x00', '\x00', '\x00',
4681 '\x00', '\x00' };
4682 const char nop12[12] = { '\x66', '\x66', '\x66', // data16; data16
4683 '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4684 '\x84', '\x00', '\x00',
4685 '\x00', '\x00', '\x00' };
4686 const char nop13[13] = { '\x66', '\x66', '\x66', // data16; data16; data16
4687 '\x66', '\x2e', '\x0f', // nopw %cs:0L(%rax,%rax,1)
4688 '\x1f', '\x84', '\x00',
4689 '\x00', '\x00', '\x00',
4690 '\x00' };
4691 const char nop14[14] = { '\x66', '\x66', '\x66', // data16; data16; data16
4692 '\x66', '\x66', '\x2e', // data16
4693 '\x0f', '\x1f', '\x84', // nopw %cs:0L(%rax,%rax,1)
4694 '\x00', '\x00', '\x00',
4695 '\x00', '\x00' };
4696 const char nop15[15] = { '\x66', '\x66', '\x66', // data16; data16; data16
4697 '\x66', '\x66', '\x66', // data16; data16
4698 '\x2e', '\x0f', '\x1f', // nopw %cs:0L(%rax,%rax,1)
4699 '\x84', '\x00', '\x00',
4700 '\x00', '\x00', '\x00' };
4701
4702 const char* nops[16] = {
4703 NULL,
4704 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
4705 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
4706 };
4707
4708 return std::string(nops[length], length);
4709 }
4710
4711 // Return the addend to use for a target specific relocation. The
4712 // only target specific relocation is R_X86_64_TLSDESC for a local
4713 // symbol. We want to set the addend is the offset of the local
4714 // symbol in the TLS segment.
4715
4716 template<int size>
4717 uint64_t
4718 Target_x86_64<size>::do_reloc_addend(void* arg, unsigned int r_type,
4719 uint64_t) const
4720 {
4721 gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
4722 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4723 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4724 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4725 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4726 gold_assert(psymval->is_tls_symbol());
4727 // The value of a TLS symbol is the offset in the TLS segment.
4728 return psymval->value(ti.object, 0);
4729 }
4730
4731 // Return the value to use for the base of a DW_EH_PE_datarel offset
4732 // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
4733 // assembler can not write out the difference between two labels in
4734 // different sections, so instead of using a pc-relative value they
4735 // use an offset from the GOT.
4736
4737 template<int size>
4738 uint64_t
4739 Target_x86_64<size>::do_ehframe_datarel_base() const
4740 {
4741 gold_assert(this->global_offset_table_ != NULL);
4742 Symbol* sym = this->global_offset_table_;
4743 Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4744 return ssym->value();
4745 }
4746
4747 // FNOFFSET in section SHNDX in OBJECT is the start of a function
4748 // compiled with -fsplit-stack. The function calls non-split-stack
4749 // code. We have to change the function so that it always ensures
4750 // that it has enough stack space to run some random function.
4751
4752 static const unsigned char cmp_insn_32[] = { 0x64, 0x3b, 0x24, 0x25 };
4753 static const unsigned char lea_r10_insn_32[] = { 0x44, 0x8d, 0x94, 0x24 };
4754 static const unsigned char lea_r11_insn_32[] = { 0x44, 0x8d, 0x9c, 0x24 };
4755
4756 static const unsigned char cmp_insn_64[] = { 0x64, 0x48, 0x3b, 0x24, 0x25 };
4757 static const unsigned char lea_r10_insn_64[] = { 0x4c, 0x8d, 0x94, 0x24 };
4758 static const unsigned char lea_r11_insn_64[] = { 0x4c, 0x8d, 0x9c, 0x24 };
4759
4760 template<int size>
4761 void
4762 Target_x86_64<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4763 section_offset_type fnoffset,
4764 section_size_type fnsize,
4765 const unsigned char*,
4766 size_t,
4767 unsigned char* view,
4768 section_size_type view_size,
4769 std::string* from,
4770 std::string* to) const
4771 {
4772 const char* const cmp_insn = reinterpret_cast<const char*>
4773 (size == 32 ? cmp_insn_32 : cmp_insn_64);
4774 const char* const lea_r10_insn = reinterpret_cast<const char*>
4775 (size == 32 ? lea_r10_insn_32 : lea_r10_insn_64);
4776 const char* const lea_r11_insn = reinterpret_cast<const char*>
4777 (size == 32 ? lea_r11_insn_32 : lea_r11_insn_64);
4778
4779 const size_t cmp_insn_len =
4780 (size == 32 ? sizeof(cmp_insn_32) : sizeof(cmp_insn_64));
4781 const size_t lea_r10_insn_len =
4782 (size == 32 ? sizeof(lea_r10_insn_32) : sizeof(lea_r10_insn_64));
4783 const size_t lea_r11_insn_len =
4784 (size == 32 ? sizeof(lea_r11_insn_32) : sizeof(lea_r11_insn_64));
4785 const size_t nop_len = (size == 32 ? 7 : 8);
4786
4787 // The function starts with a comparison of the stack pointer and a
4788 // field in the TCB. This is followed by a jump.
4789
4790 // cmp %fs:NN,%rsp
4791 if (this->match_view(view, view_size, fnoffset, cmp_insn, cmp_insn_len)
4792 && fnsize > nop_len + 1)
4793 {
4794 // We will call __morestack if the carry flag is set after this
4795 // comparison. We turn the comparison into an stc instruction
4796 // and some nops.
4797 view[fnoffset] = '\xf9';
4798 this->set_view_to_nop(view, view_size, fnoffset + 1, nop_len);
4799 }
4800 // lea NN(%rsp),%r10
4801 // lea NN(%rsp),%r11
4802 else if ((this->match_view(view, view_size, fnoffset,
4803 lea_r10_insn, lea_r10_insn_len)
4804 || this->match_view(view, view_size, fnoffset,
4805 lea_r11_insn, lea_r11_insn_len))
4806 && fnsize > 8)
4807 {
4808 // This is loading an offset from the stack pointer for a
4809 // comparison. The offset is negative, so we decrease the
4810 // offset by the amount of space we need for the stack. This
4811 // means we will avoid calling __morestack if there happens to
4812 // be plenty of space on the stack already.
4813 unsigned char* pval = view + fnoffset + 4;
4814 uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
4815 val -= parameters->options().split_stack_adjust_size();
4816 elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
4817 }
4818 else
4819 {
4820 if (!object->has_no_split_stack())
4821 object->error(_("failed to match split-stack sequence at "
4822 "section %u offset %0zx"),
4823 shndx, static_cast<size_t>(fnoffset));
4824 return;
4825 }
4826
4827 // We have to change the function so that it calls
4828 // __morestack_non_split instead of __morestack. The former will
4829 // allocate additional stack space.
4830 *from = "__morestack";
4831 *to = "__morestack_non_split";
4832 }
4833
4834 // The selector for x86_64 object files. Note this is never instantiated
4835 // directly. It's only used in Target_selector_x86_64_nacl, below.
4836
4837 template<int size>
4838 class Target_selector_x86_64 : public Target_selector_freebsd
4839 {
4840 public:
4841 Target_selector_x86_64()
4842 : Target_selector_freebsd(elfcpp::EM_X86_64, size, false,
4843 (size == 64
4844 ? "elf64-x86-64" : "elf32-x86-64"),
4845 (size == 64
4846 ? "elf64-x86-64-freebsd"
4847 : "elf32-x86-64-freebsd"),
4848 (size == 64 ? "elf_x86_64" : "elf32_x86_64"))
4849 { }
4850
4851 Target*
4852 do_instantiate_target()
4853 { return new Target_x86_64<size>(); }
4854
4855 };
4856
4857 // NaCl variant. It uses different PLT contents.
4858
4859 template<int size>
4860 class Output_data_plt_x86_64_nacl : public Output_data_plt_x86_64<size>
4861 {
4862 public:
4863 Output_data_plt_x86_64_nacl(Layout* layout,
4864 Output_data_got<64, false>* got,
4865 Output_data_got_plt_x86_64* got_plt,
4866 Output_data_space* got_irelative)
4867 : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4868 got, got_plt, got_irelative)
4869 { }
4870
4871 Output_data_plt_x86_64_nacl(Layout* layout,
4872 Output_data_got<64, false>* got,
4873 Output_data_got_plt_x86_64* got_plt,
4874 Output_data_space* got_irelative,
4875 unsigned int plt_count)
4876 : Output_data_plt_x86_64<size>(layout, plt_entry_size,
4877 got, got_plt, got_irelative,
4878 plt_count)
4879 { }
4880
4881 protected:
4882 virtual unsigned int
4883 do_get_plt_entry_size() const
4884 { return plt_entry_size; }
4885
4886 virtual void
4887 do_add_eh_frame(Layout* layout)
4888 {
4889 layout->add_eh_frame_for_plt(this,
4890 this->plt_eh_frame_cie,
4891 this->plt_eh_frame_cie_size,
4892 plt_eh_frame_fde,
4893 plt_eh_frame_fde_size);
4894 }
4895
4896 virtual void
4897 do_fill_first_plt_entry(unsigned char* pov,
4898 typename elfcpp::Elf_types<size>::Elf_Addr got_addr,
4899 typename elfcpp::Elf_types<size>::Elf_Addr plt_addr);
4900
4901 virtual unsigned int
4902 do_fill_plt_entry(unsigned char* pov,
4903 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4904 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4905 unsigned int got_offset,
4906 unsigned int plt_offset,
4907 unsigned int plt_index);
4908
4909 virtual void
4910 do_fill_tlsdesc_entry(unsigned char* pov,
4911 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
4912 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
4913 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
4914 unsigned int tlsdesc_got_offset,
4915 unsigned int plt_offset);
4916
4917 private:
4918 // The size of an entry in the PLT.
4919 static const int plt_entry_size = 64;
4920
4921 // The first entry in the PLT.
4922 static const unsigned char first_plt_entry[plt_entry_size];
4923
4924 // Other entries in the PLT for an executable.
4925 static const unsigned char plt_entry[plt_entry_size];
4926
4927 // The reserved TLSDESC entry in the PLT for an executable.
4928 static const unsigned char tlsdesc_plt_entry[plt_entry_size];
4929
4930 // The .eh_frame unwind information for the PLT.
4931 static const int plt_eh_frame_fde_size = 32;
4932 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
4933 };
4934
4935 template<int size>
4936 class Target_x86_64_nacl : public Target_x86_64<size>
4937 {
4938 public:
4939 Target_x86_64_nacl()
4940 : Target_x86_64<size>(&x86_64_nacl_info)
4941 { }
4942
4943 virtual Output_data_plt_x86_64<size>*
4944 do_make_data_plt(Layout* layout,
4945 Output_data_got<64, false>* got,
4946 Output_data_got_plt_x86_64* got_plt,
4947 Output_data_space* got_irelative)
4948 {
4949 return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4950 got_irelative);
4951 }
4952
4953 virtual Output_data_plt_x86_64<size>*
4954 do_make_data_plt(Layout* layout,
4955 Output_data_got<64, false>* got,
4956 Output_data_got_plt_x86_64* got_plt,
4957 Output_data_space* got_irelative,
4958 unsigned int plt_count)
4959 {
4960 return new Output_data_plt_x86_64_nacl<size>(layout, got, got_plt,
4961 got_irelative,
4962 plt_count);
4963 }
4964
4965 virtual std::string
4966 do_code_fill(section_size_type length) const;
4967
4968 private:
4969 static const Target::Target_info x86_64_nacl_info;
4970 };
4971
4972 template<>
4973 const Target::Target_info Target_x86_64_nacl<64>::x86_64_nacl_info =
4974 {
4975 64, // size
4976 false, // is_big_endian
4977 elfcpp::EM_X86_64, // machine_code
4978 false, // has_make_symbol
4979 false, // has_resolve
4980 true, // has_code_fill
4981 true, // is_default_stack_executable
4982 true, // can_icf_inline_merge_sections
4983 '\0', // wrap_char
4984 "/lib64/ld-nacl-x86-64.so.1", // dynamic_linker
4985 0x20000, // default_text_segment_address
4986 0x10000, // abi_pagesize (overridable by -z max-page-size)
4987 0x10000, // common_pagesize (overridable by -z common-page-size)
4988 true, // isolate_execinstr
4989 0x10000000, // rosegment_gap
4990 elfcpp::SHN_UNDEF, // small_common_shndx
4991 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
4992 0, // small_common_section_flags
4993 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
4994 NULL, // attributes_section
4995 NULL, // attributes_vendor
4996 "_start", // entry_symbol_name
4997 32, // hash_entry_size
4998 };
4999
5000 template<>
5001 const Target::Target_info Target_x86_64_nacl<32>::x86_64_nacl_info =
5002 {
5003 32, // size
5004 false, // is_big_endian
5005 elfcpp::EM_X86_64, // machine_code
5006 false, // has_make_symbol
5007 false, // has_resolve
5008 true, // has_code_fill
5009 true, // is_default_stack_executable
5010 true, // can_icf_inline_merge_sections
5011 '\0', // wrap_char
5012 "/lib/ld-nacl-x86-64.so.1", // dynamic_linker
5013 0x20000, // default_text_segment_address
5014 0x10000, // abi_pagesize (overridable by -z max-page-size)
5015 0x10000, // common_pagesize (overridable by -z common-page-size)
5016 true, // isolate_execinstr
5017 0x10000000, // rosegment_gap
5018 elfcpp::SHN_UNDEF, // small_common_shndx
5019 elfcpp::SHN_X86_64_LCOMMON, // large_common_shndx
5020 0, // small_common_section_flags
5021 elfcpp::SHF_X86_64_LARGE, // large_common_section_flags
5022 NULL, // attributes_section
5023 NULL, // attributes_vendor
5024 "_start", // entry_symbol_name
5025 32, // hash_entry_size
5026 };
5027
5028 #define NACLMASK 0xe0 // 32-byte alignment mask.
5029
5030 // The first entry in the PLT.
5031
5032 template<int size>
5033 const unsigned char
5034 Output_data_plt_x86_64_nacl<size>::first_plt_entry[plt_entry_size] =
5035 {
5036 0xff, 0x35, // pushq contents of memory address
5037 0, 0, 0, 0, // replaced with address of .got + 8
5038 0x4c, 0x8b, 0x1d, // mov GOT+16(%rip), %r11
5039 0, 0, 0, 0, // replaced with address of .got + 16
5040 0x41, 0x83, 0xe3, NACLMASK, // and $-32, %r11d
5041 0x4d, 0x01, 0xfb, // add %r15, %r11
5042 0x41, 0xff, 0xe3, // jmpq *%r11
5043
5044 // 9-byte nop sequence to pad out to the next 32-byte boundary.
5045 0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw 0x0(%rax,%rax,1)
5046
5047 // 32 bytes of nop to pad out to the standard size
5048 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
5049 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5050 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
5051 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5052 0x66, // excess data32 prefix
5053 0x90 // nop
5054 };
5055
5056 template<int size>
5057 void
5058 Output_data_plt_x86_64_nacl<size>::do_fill_first_plt_entry(
5059 unsigned char* pov,
5060 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5061 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
5062 {
5063 memcpy(pov, first_plt_entry, plt_entry_size);
5064 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
5065 (got_address + 8
5066 - (plt_address + 2 + 4)));
5067 elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
5068 (got_address + 16
5069 - (plt_address + 9 + 4)));
5070 }
5071
5072 // Subsequent entries in the PLT.
5073
5074 template<int size>
5075 const unsigned char
5076 Output_data_plt_x86_64_nacl<size>::plt_entry[plt_entry_size] =
5077 {
5078 0x4c, 0x8b, 0x1d, // mov name@GOTPCREL(%rip),%r11
5079 0, 0, 0, 0, // replaced with address of symbol in .got
5080 0x41, 0x83, 0xe3, NACLMASK, // and $-32, %r11d
5081 0x4d, 0x01, 0xfb, // add %r15, %r11
5082 0x41, 0xff, 0xe3, // jmpq *%r11
5083
5084 // 15-byte nop sequence to pad out to the next 32-byte boundary.
5085 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
5086 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5087
5088 // Lazy GOT entries point here (32-byte aligned).
5089 0x68, // pushq immediate
5090 0, 0, 0, 0, // replaced with index into relocation table
5091 0xe9, // jmp relative
5092 0, 0, 0, 0, // replaced with offset to start of .plt0
5093
5094 // 22 bytes of nop to pad out to the standard size.
5095 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
5096 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5097 0x0f, 0x1f, 0x80, 0, 0, 0, 0, // nopl 0x0(%rax)
5098 };
5099
5100 template<int size>
5101 unsigned int
5102 Output_data_plt_x86_64_nacl<size>::do_fill_plt_entry(
5103 unsigned char* pov,
5104 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5105 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5106 unsigned int got_offset,
5107 unsigned int plt_offset,
5108 unsigned int plt_index)
5109 {
5110 memcpy(pov, plt_entry, plt_entry_size);
5111 elfcpp::Swap_unaligned<32, false>::writeval(pov + 3,
5112 (got_address + got_offset
5113 - (plt_address + plt_offset
5114 + 3 + 4)));
5115
5116 elfcpp::Swap_unaligned<32, false>::writeval(pov + 33, plt_index);
5117 elfcpp::Swap_unaligned<32, false>::writeval(pov + 38,
5118 - (plt_offset + 38 + 4));
5119
5120 return 32;
5121 }
5122
5123 // The reserved TLSDESC entry in the PLT.
5124
5125 template<int size>
5126 const unsigned char
5127 Output_data_plt_x86_64_nacl<size>::tlsdesc_plt_entry[plt_entry_size] =
5128 {
5129 0xff, 0x35, // pushq x(%rip)
5130 0, 0, 0, 0, // replaced with address of linkmap GOT entry (at PLTGOT + 8)
5131 0x4c, 0x8b, 0x1d, // mov y(%rip),%r11
5132 0, 0, 0, 0, // replaced with offset of reserved TLSDESC_GOT entry
5133 0x41, 0x83, 0xe3, NACLMASK, // and $-32, %r11d
5134 0x4d, 0x01, 0xfb, // add %r15, %r11
5135 0x41, 0xff, 0xe3, // jmpq *%r11
5136
5137 // 41 bytes of nop to pad out to the standard size.
5138 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
5139 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5140 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, // excess data32 prefixes
5141 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5142 0x66, 0x66, // excess data32 prefixes
5143 0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, // nopw %cs:0x0(%rax,%rax,1)
5144 };
5145
5146 template<int size>
5147 void
5148 Output_data_plt_x86_64_nacl<size>::do_fill_tlsdesc_entry(
5149 unsigned char* pov,
5150 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
5151 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
5152 typename elfcpp::Elf_types<size>::Elf_Addr got_base,
5153 unsigned int tlsdesc_got_offset,
5154 unsigned int plt_offset)
5155 {
5156 memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
5157 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
5158 (got_address + 8
5159 - (plt_address + plt_offset
5160 + 2 + 4)));
5161 elfcpp::Swap_unaligned<32, false>::writeval(pov + 9,
5162 (got_base
5163 + tlsdesc_got_offset
5164 - (plt_address + plt_offset
5165 + 9 + 4)));
5166 }
5167
5168 // The .eh_frame unwind information for the PLT.
5169
5170 template<int size>
5171 const unsigned char
5172 Output_data_plt_x86_64_nacl<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
5173 {
5174 0, 0, 0, 0, // Replaced with offset to .plt.
5175 0, 0, 0, 0, // Replaced with size of .plt.
5176 0, // Augmentation size.
5177 elfcpp::DW_CFA_def_cfa_offset, 16, // DW_CFA_def_cfa_offset: 16.
5178 elfcpp::DW_CFA_advance_loc + 6, // Advance 6 to __PLT__ + 6.
5179 elfcpp::DW_CFA_def_cfa_offset, 24, // DW_CFA_def_cfa_offset: 24.
5180 elfcpp::DW_CFA_advance_loc + 58, // Advance 58 to __PLT__ + 64.
5181 elfcpp::DW_CFA_def_cfa_expression, // DW_CFA_def_cfa_expression.
5182 13, // Block length.
5183 elfcpp::DW_OP_breg7, 8, // Push %rsp + 8.
5184 elfcpp::DW_OP_breg16, 0, // Push %rip.
5185 elfcpp::DW_OP_const1u, 63, // Push 0x3f.
5186 elfcpp::DW_OP_and, // & (%rip & 0x3f).
5187 elfcpp::DW_OP_const1u, 37, // Push 0x25.
5188 elfcpp::DW_OP_ge, // >= ((%rip & 0x3f) >= 0x25)
5189 elfcpp::DW_OP_lit3, // Push 3.
5190 elfcpp::DW_OP_shl, // << (((%rip & 0x3f) >= 0x25) << 3)
5191 elfcpp::DW_OP_plus, // + ((((%rip&0x3f)>=0x25)<<3)+%rsp+8
5192 elfcpp::DW_CFA_nop, // Align to 32 bytes.
5193 elfcpp::DW_CFA_nop
5194 };
5195
5196 // Return a string used to fill a code section with nops.
5197 // For NaCl, long NOPs are only valid if they do not cross
5198 // bundle alignment boundaries, so keep it simple with one-byte NOPs.
5199 template<int size>
5200 std::string
5201 Target_x86_64_nacl<size>::do_code_fill(section_size_type length) const
5202 {
5203 return std::string(length, static_cast<char>(0x90));
5204 }
5205
5206 // The selector for x86_64-nacl object files.
5207
5208 template<int size>
5209 class Target_selector_x86_64_nacl
5210 : public Target_selector_nacl<Target_selector_x86_64<size>,
5211 Target_x86_64_nacl<size> >
5212 {
5213 public:
5214 Target_selector_x86_64_nacl()
5215 : Target_selector_nacl<Target_selector_x86_64<size>,
5216 Target_x86_64_nacl<size> >("x86-64",
5217 size == 64
5218 ? "elf64-x86-64-nacl"
5219 : "elf32-x86-64-nacl",
5220 size == 64
5221 ? "elf_x86_64_nacl"
5222 : "elf32_x86_64_nacl")
5223 { }
5224 };
5225
5226 Target_selector_x86_64_nacl<64> target_selector_x86_64;
5227 Target_selector_x86_64_nacl<32> target_selector_x32;
5228
5229 } // End anonymous namespace.
This page took 0.178579 seconds and 5 git commands to generate.