* basic_blocks.c: Replace bool with boolean, TRUE with true and
[deliverable/binutils-gdb.git] / gprof / cg_arcs.c
1 /*
2 * Copyright (c) 1983, 2001 Regents of the University of California.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms are permitted
6 * provided that: (1) source distributions retain this entire copyright
7 * notice and comment, and (2) distributions including binaries display
8 * the following acknowledgement: ``This product includes software
9 * developed by the University of California, Berkeley and its contributors''
10 * in the documentation or other materials provided with the distribution
11 * and in all advertising materials mentioning features or use of this
12 * software. Neither the name of the University nor the names of its
13 * contributors may be used to endorse or promote products derived
14 * from this software without specific prior written permission.
15 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
18 */
19 #include "libiberty.h"
20 #include "gprof.h"
21 #include "search_list.h"
22 #include "source.h"
23 #include "symtab.h"
24 #include "call_graph.h"
25 #include "cg_arcs.h"
26 #include "cg_dfn.h"
27 #include "cg_print.h"
28 #include "utils.h"
29 #include "sym_ids.h"
30
31 Sym *cycle_header;
32 unsigned int num_cycles;
33 Arc **arcs;
34 unsigned int numarcs;
35
36 /*
37 * Return TRUE iff PARENT has an arc to covers the address
38 * range covered by CHILD.
39 */
40 Arc *
41 DEFUN (arc_lookup, (parent, child), Sym * parent AND Sym * child)
42 {
43 Arc *arc;
44
45 if (!parent || !child)
46 {
47 printf ("[arc_lookup] parent == 0 || child == 0\n");
48 return 0;
49 }
50 DBG (LOOKUPDEBUG, printf ("[arc_lookup] parent %s child %s\n",
51 parent->name, child->name));
52 for (arc = parent->cg.children; arc; arc = arc->next_child)
53 {
54 DBG (LOOKUPDEBUG, printf ("[arc_lookup]\t parent %s child %s\n",
55 arc->parent->name, arc->child->name));
56 if (child->addr >= arc->child->addr
57 && child->end_addr <= arc->child->end_addr)
58 {
59 return arc;
60 }
61 }
62 return 0;
63 }
64
65
66 /*
67 * Add (or just increment) an arc:
68 */
69 void
70 DEFUN (arc_add, (parent, child, count),
71 Sym * parent AND Sym * child AND unsigned long count)
72 {
73 static unsigned int maxarcs = 0;
74 Arc *arc, **newarcs;
75
76 DBG (TALLYDEBUG, printf ("[arc_add] %lu arcs from %s to %s\n",
77 count, parent->name, child->name));
78 arc = arc_lookup (parent, child);
79 if (arc)
80 {
81 /*
82 * A hit: just increment the count.
83 */
84 DBG (TALLYDEBUG, printf ("[tally] hit %lu += %lu\n",
85 arc->count, count));
86 arc->count += count;
87 return;
88 }
89 arc = (Arc *) xmalloc (sizeof (*arc));
90 memset (arc, 0, sizeof (*arc));
91 arc->parent = parent;
92 arc->child = child;
93 arc->count = count;
94
95 /* If this isn't an arc for a recursive call to parent, then add it
96 to the array of arcs. */
97 if (parent != child)
98 {
99 /* If we've exhausted space in our current array, get a new one
100 and copy the contents. We might want to throttle the doubling
101 factor one day. */
102 if (numarcs == maxarcs)
103 {
104 /* Determine how much space we want to allocate. */
105 if (maxarcs == 0)
106 maxarcs = 1;
107 maxarcs *= 2;
108
109 /* Allocate the new array. */
110 newarcs = (Arc **)xmalloc(sizeof (Arc *) * maxarcs);
111
112 /* Copy the old array's contents into the new array. */
113 memcpy (newarcs, arcs, numarcs * sizeof (Arc *));
114
115 /* Free up the old array. */
116 free (arcs);
117
118 /* And make the new array be the current array. */
119 arcs = newarcs;
120 }
121
122 /* Place this arc in the arc array. */
123 arcs[numarcs++] = arc;
124 }
125
126 /* prepend this child to the children of this parent: */
127 arc->next_child = parent->cg.children;
128 parent->cg.children = arc;
129
130 /* prepend this parent to the parents of this child: */
131 arc->next_parent = child->cg.parents;
132 child->cg.parents = arc;
133 }
134
135
136 static int
137 DEFUN (cmp_topo, (lp, rp), const PTR lp AND const PTR rp)
138 {
139 const Sym *left = *(const Sym **) lp;
140 const Sym *right = *(const Sym **) rp;
141
142 return left->cg.top_order - right->cg.top_order;
143 }
144
145
146 static void
147 DEFUN (propagate_time, (parent), Sym * parent)
148 {
149 Arc *arc;
150 Sym *child;
151 double share, prop_share;
152
153 if (parent->cg.prop.fract == 0.0)
154 {
155 return;
156 }
157
158 /* gather time from children of this parent: */
159
160 for (arc = parent->cg.children; arc; arc = arc->next_child)
161 {
162 child = arc->child;
163 if (arc->count == 0 || child == parent || child->cg.prop.fract == 0)
164 {
165 continue;
166 }
167 if (child->cg.cyc.head != child)
168 {
169 if (parent->cg.cyc.num == child->cg.cyc.num)
170 {
171 continue;
172 }
173 if (parent->cg.top_order <= child->cg.top_order)
174 {
175 fprintf (stderr, "[propagate] toporder botches\n");
176 }
177 child = child->cg.cyc.head;
178 }
179 else
180 {
181 if (parent->cg.top_order <= child->cg.top_order)
182 {
183 fprintf (stderr, "[propagate] toporder botches\n");
184 continue;
185 }
186 }
187 if (child->ncalls == 0)
188 {
189 continue;
190 }
191
192 /* distribute time for this arc: */
193 arc->time = child->hist.time * (((double) arc->count)
194 / ((double) child->ncalls));
195 arc->child_time = child->cg.child_time
196 * (((double) arc->count) / ((double) child->ncalls));
197 share = arc->time + arc->child_time;
198 parent->cg.child_time += share;
199
200 /* (1 - cg.prop.fract) gets lost along the way: */
201 prop_share = parent->cg.prop.fract * share;
202
203 /* fix things for printing: */
204 parent->cg.prop.child += prop_share;
205 arc->time *= parent->cg.prop.fract;
206 arc->child_time *= parent->cg.prop.fract;
207
208 /* add this share to the parent's cycle header, if any: */
209 if (parent->cg.cyc.head != parent)
210 {
211 parent->cg.cyc.head->cg.child_time += share;
212 parent->cg.cyc.head->cg.prop.child += prop_share;
213 }
214 DBG (PROPDEBUG,
215 printf ("[prop_time] child \t");
216 print_name (child);
217 printf (" with %f %f %lu/%lu\n", child->hist.time,
218 child->cg.child_time, arc->count, child->ncalls);
219 printf ("[prop_time] parent\t");
220 print_name (parent);
221 printf ("\n[prop_time] share %f\n", share));
222 }
223 }
224
225
226 /*
227 * Compute the time of a cycle as the sum of the times of all
228 * its members.
229 */
230 static void
231 DEFUN_VOID (cycle_time)
232 {
233 Sym *member, *cyc;
234
235 for (cyc = &cycle_header[1]; cyc <= &cycle_header[num_cycles]; ++cyc)
236 {
237 for (member = cyc->cg.cyc.next; member; member = member->cg.cyc.next)
238 {
239 if (member->cg.prop.fract == 0.0)
240 {
241 /*
242 * All members have the same propfraction except those
243 * that were excluded with -E.
244 */
245 continue;
246 }
247 cyc->hist.time += member->hist.time;
248 }
249 cyc->cg.prop.self = cyc->cg.prop.fract * cyc->hist.time;
250 }
251 }
252
253
254 static void
255 DEFUN_VOID (cycle_link)
256 {
257 Sym *sym, *cyc, *member;
258 Arc *arc;
259 int num;
260
261 /* count the number of cycles, and initialize the cycle lists: */
262
263 num_cycles = 0;
264 for (sym = symtab.base; sym < symtab.limit; ++sym)
265 {
266 /* this is how you find unattached cycles: */
267 if (sym->cg.cyc.head == sym && sym->cg.cyc.next)
268 {
269 ++num_cycles;
270 }
271 }
272
273 /*
274 * cycle_header is indexed by cycle number: i.e. it is origin 1,
275 * not origin 0.
276 */
277 cycle_header = (Sym *) xmalloc ((num_cycles + 1) * sizeof (Sym));
278
279 /*
280 * Now link cycles to true cycle-heads, number them, accumulate
281 * the data for the cycle.
282 */
283 num = 0;
284 cyc = cycle_header;
285 for (sym = symtab.base; sym < symtab.limit; ++sym)
286 {
287 if (!(sym->cg.cyc.head == sym && sym->cg.cyc.next != 0))
288 {
289 continue;
290 }
291 ++num;
292 ++cyc;
293 sym_init (cyc);
294 cyc->cg.print_flag = true; /* should this be printed? */
295 cyc->cg.top_order = DFN_NAN; /* graph call chain top-sort order */
296 cyc->cg.cyc.num = num; /* internal number of cycle on */
297 cyc->cg.cyc.head = cyc; /* pointer to head of cycle */
298 cyc->cg.cyc.next = sym; /* pointer to next member of cycle */
299 DBG (CYCLEDEBUG, printf ("[cycle_link] ");
300 print_name (sym);
301 printf (" is the head of cycle %d\n", num));
302
303 /* link members to cycle header: */
304 for (member = sym; member; member = member->cg.cyc.next)
305 {
306 member->cg.cyc.num = num;
307 member->cg.cyc.head = cyc;
308 }
309
310 /*
311 * Count calls from outside the cycle and those among cycle
312 * members:
313 */
314 for (member = sym; member; member = member->cg.cyc.next)
315 {
316 for (arc = member->cg.parents; arc; arc = arc->next_parent)
317 {
318 if (arc->parent == member)
319 {
320 continue;
321 }
322 if (arc->parent->cg.cyc.num == num)
323 {
324 cyc->cg.self_calls += arc->count;
325 }
326 else
327 {
328 cyc->ncalls += arc->count;
329 }
330 }
331 }
332 }
333 }
334
335
336 /*
337 * Check if any parent of this child (or outside parents of this
338 * cycle) have their print flags on and set the print flag of the
339 * child (cycle) appropriately. Similarly, deal with propagation
340 * fractions from parents.
341 */
342 static void
343 DEFUN (inherit_flags, (child), Sym * child)
344 {
345 Sym *head, *parent, *member;
346 Arc *arc;
347
348 head = child->cg.cyc.head;
349 if (child == head)
350 {
351 /* just a regular child, check its parents: */
352 child->cg.print_flag = false;
353 child->cg.prop.fract = 0.0;
354 for (arc = child->cg.parents; arc; arc = arc->next_parent)
355 {
356 parent = arc->parent;
357 if (child == parent)
358 {
359 continue;
360 }
361 child->cg.print_flag |= parent->cg.print_flag;
362 /*
363 * If the child was never actually called (e.g., this arc
364 * is static (and all others are, too)) no time propagates
365 * along this arc.
366 */
367 if (child->ncalls != 0)
368 {
369 child->cg.prop.fract += parent->cg.prop.fract
370 * (((double) arc->count) / ((double) child->ncalls));
371 }
372 }
373 }
374 else
375 {
376 /*
377 * Its a member of a cycle, look at all parents from outside
378 * the cycle.
379 */
380 head->cg.print_flag = false;
381 head->cg.prop.fract = 0.0;
382 for (member = head->cg.cyc.next; member; member = member->cg.cyc.next)
383 {
384 for (arc = member->cg.parents; arc; arc = arc->next_parent)
385 {
386 if (arc->parent->cg.cyc.head == head)
387 {
388 continue;
389 }
390 parent = arc->parent;
391 head->cg.print_flag |= parent->cg.print_flag;
392 /*
393 * If the cycle was never actually called (e.g. this
394 * arc is static (and all others are, too)) no time
395 * propagates along this arc.
396 */
397 if (head->ncalls != 0)
398 {
399 head->cg.prop.fract += parent->cg.prop.fract
400 * (((double) arc->count) / ((double) head->ncalls));
401 }
402 }
403 }
404 for (member = head; member; member = member->cg.cyc.next)
405 {
406 member->cg.print_flag = head->cg.print_flag;
407 member->cg.prop.fract = head->cg.prop.fract;
408 }
409 }
410 }
411
412
413 /*
414 * In one top-to-bottom pass over the topologically sorted symbols
415 * propagate:
416 * cg.print_flag as the union of parents' print_flags
417 * propfraction as the sum of fractional parents' propfractions
418 * and while we're here, sum time for functions.
419 */
420 static void
421 DEFUN (propagate_flags, (symbols), Sym ** symbols)
422 {
423 int index;
424 Sym *old_head, *child;
425
426 old_head = 0;
427 for (index = symtab.len - 1; index >= 0; --index)
428 {
429 child = symbols[index];
430 /*
431 * If we haven't done this function or cycle, inherit things
432 * from parent. This way, we are linear in the number of arcs
433 * since we do all members of a cycle (and the cycle itself)
434 * as we hit the first member of the cycle.
435 */
436 if (child->cg.cyc.head != old_head)
437 {
438 old_head = child->cg.cyc.head;
439 inherit_flags (child);
440 }
441 DBG (PROPDEBUG,
442 printf ("[prop_flags] ");
443 print_name (child);
444 printf ("inherits print-flag %d and prop-fract %f\n",
445 child->cg.print_flag, child->cg.prop.fract));
446 if (!child->cg.print_flag)
447 {
448 /*
449 * Printflag is off. It gets turned on by being in the
450 * INCL_GRAPH table, or there being an empty INCL_GRAPH
451 * table and not being in the EXCL_GRAPH table.
452 */
453 if (sym_lookup (&syms[INCL_GRAPH], child->addr)
454 || (syms[INCL_GRAPH].len == 0
455 && !sym_lookup (&syms[EXCL_GRAPH], child->addr)))
456 {
457 child->cg.print_flag = true;
458 }
459 }
460 else
461 {
462 /*
463 * This function has printing parents: maybe someone wants
464 * to shut it up by putting it in the EXCL_GRAPH table.
465 * (But favor INCL_GRAPH over EXCL_GRAPH.)
466 */
467 if (!sym_lookup (&syms[INCL_GRAPH], child->addr)
468 && sym_lookup (&syms[EXCL_GRAPH], child->addr))
469 {
470 child->cg.print_flag = false;
471 }
472 }
473 if (child->cg.prop.fract == 0.0)
474 {
475 /*
476 * No parents to pass time to. Collect time from children
477 * if its in the INCL_TIME table, or there is an empty
478 * INCL_TIME table and its not in the EXCL_TIME table.
479 */
480 if (sym_lookup (&syms[INCL_TIME], child->addr)
481 || (syms[INCL_TIME].len == 0
482 && !sym_lookup (&syms[EXCL_TIME], child->addr)))
483 {
484 child->cg.prop.fract = 1.0;
485 }
486 }
487 else
488 {
489 /*
490 * It has parents to pass time to, but maybe someone wants
491 * to shut it up by puttting it in the EXCL_TIME table.
492 * (But favor being in INCL_TIME tabe over being in
493 * EXCL_TIME table.)
494 */
495 if (!sym_lookup (&syms[INCL_TIME], child->addr)
496 && sym_lookup (&syms[EXCL_TIME], child->addr))
497 {
498 child->cg.prop.fract = 0.0;
499 }
500 }
501 child->cg.prop.self = child->hist.time * child->cg.prop.fract;
502 print_time += child->cg.prop.self;
503 DBG (PROPDEBUG,
504 printf ("[prop_flags] ");
505 print_name (child);
506 printf (" ends up with printflag %d and prop-fract %f\n",
507 child->cg.print_flag, child->cg.prop.fract);
508 printf ("[prop_flags] time %f propself %f print_time %f\n",
509 child->hist.time, child->cg.prop.self, print_time));
510 }
511 }
512
513
514 /*
515 * Compare by decreasing propagated time. If times are equal, but one
516 * is a cycle header, say that's first (e.g. less, i.e. -1). If one's
517 * name doesn't have an underscore and the other does, say that one is
518 * first. All else being equal, compare by names.
519 */
520 static int
521 DEFUN (cmp_total, (lp, rp), const PTR lp AND const PTR rp)
522 {
523 const Sym *left = *(const Sym **) lp;
524 const Sym *right = *(const Sym **) rp;
525 double diff;
526
527 diff = (left->cg.prop.self + left->cg.prop.child)
528 - (right->cg.prop.self + right->cg.prop.child);
529 if (diff < 0.0)
530 {
531 return 1;
532 }
533 if (diff > 0.0)
534 {
535 return -1;
536 }
537 if (!left->name && left->cg.cyc.num != 0)
538 {
539 return -1;
540 }
541 if (!right->name && right->cg.cyc.num != 0)
542 {
543 return 1;
544 }
545 if (!left->name)
546 {
547 return -1;
548 }
549 if (!right->name)
550 {
551 return 1;
552 }
553 if (left->name[0] != '_' && right->name[0] == '_')
554 {
555 return -1;
556 }
557 if (left->name[0] == '_' && right->name[0] != '_')
558 {
559 return 1;
560 }
561 if (left->ncalls > right->ncalls)
562 {
563 return -1;
564 }
565 if (left->ncalls < right->ncalls)
566 {
567 return 1;
568 }
569 return strcmp (left->name, right->name);
570 }
571
572
573 /*
574 * Topologically sort the graph (collapsing cycles), and propagates
575 * time bottom up and flags top down.
576 */
577 Sym **
578 DEFUN_VOID (cg_assemble)
579 {
580 Sym *parent, **time_sorted_syms, **top_sorted_syms;
581 unsigned int index;
582 Arc *arc;
583
584 /*
585 * initialize various things:
586 * zero out child times.
587 * count self-recursive calls.
588 * indicate that nothing is on cycles.
589 */
590 for (parent = symtab.base; parent < symtab.limit; parent++)
591 {
592 parent->cg.child_time = 0.0;
593 arc = arc_lookup (parent, parent);
594 if (arc && parent == arc->child)
595 {
596 parent->ncalls -= arc->count;
597 parent->cg.self_calls = arc->count;
598 }
599 else
600 {
601 parent->cg.self_calls = 0;
602 }
603 parent->cg.prop.fract = 0.0;
604 parent->cg.prop.self = 0.0;
605 parent->cg.prop.child = 0.0;
606 parent->cg.print_flag = false;
607 parent->cg.top_order = DFN_NAN;
608 parent->cg.cyc.num = 0;
609 parent->cg.cyc.head = parent;
610 parent->cg.cyc.next = 0;
611 if (ignore_direct_calls)
612 {
613 find_call (parent, parent->addr, (parent + 1)->addr);
614 }
615 }
616 /*
617 * Topologically order things. If any node is unnumbered, number
618 * it and any of its descendents.
619 */
620 for (parent = symtab.base; parent < symtab.limit; parent++)
621 {
622 if (parent->cg.top_order == DFN_NAN)
623 {
624 cg_dfn (parent);
625 }
626 }
627
628 /* link together nodes on the same cycle: */
629 cycle_link ();
630
631 /* sort the symbol table in reverse topological order: */
632 top_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
633 for (index = 0; index < symtab.len; ++index)
634 {
635 top_sorted_syms[index] = &symtab.base[index];
636 }
637 qsort (top_sorted_syms, symtab.len, sizeof (Sym *), cmp_topo);
638 DBG (DFNDEBUG,
639 printf ("[cg_assemble] topological sort listing\n");
640 for (index = 0; index < symtab.len; ++index)
641 {
642 printf ("[cg_assemble] ");
643 printf ("%d:", top_sorted_syms[index]->cg.top_order);
644 print_name (top_sorted_syms[index]);
645 printf ("\n");
646 }
647 );
648 /*
649 * Starting from the topological top, propagate print flags to
650 * children. also, calculate propagation fractions. this happens
651 * before time propagation since time propagation uses the
652 * fractions.
653 */
654 propagate_flags (top_sorted_syms);
655
656 /*
657 * Starting from the topological bottom, propogate children times
658 * up to parents.
659 */
660 cycle_time ();
661 for (index = 0; index < symtab.len; ++index)
662 {
663 propagate_time (top_sorted_syms[index]);
664 }
665
666 free (top_sorted_syms);
667
668 /*
669 * Now, sort by CG.PROP.SELF + CG.PROP.CHILD. Sorting both the regular
670 * function names and cycle headers.
671 */
672 time_sorted_syms = (Sym **) xmalloc ((symtab.len + num_cycles) * sizeof (Sym *));
673 for (index = 0; index < symtab.len; index++)
674 {
675 time_sorted_syms[index] = &symtab.base[index];
676 }
677 for (index = 1; index <= num_cycles; index++)
678 {
679 time_sorted_syms[symtab.len + index - 1] = &cycle_header[index];
680 }
681 qsort (time_sorted_syms, symtab.len + num_cycles, sizeof (Sym *),
682 cmp_total);
683 for (index = 0; index < symtab.len + num_cycles; index++)
684 {
685 time_sorted_syms[index]->cg.index = index + 1;
686 }
687 return time_sorted_syms;
688 }
This page took 0.058154 seconds and 5 git commands to generate.