Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[deliverable/linux.git] / include / linux / dmaengine.h
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36
37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 return cookie < 0 ? cookie : 0;
40 }
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_COMPLETE,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_MEMSET_SG,
70 DMA_INTERRUPT,
71 DMA_SG,
72 DMA_PRIVATE,
73 DMA_ASYNC_TX,
74 DMA_SLAVE,
75 DMA_CYCLIC,
76 DMA_INTERLEAVE,
77 /* last transaction type for creation of the capabilities mask */
78 DMA_TX_TYPE_END,
79 };
80
81 /**
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87 */
88 enum dma_transfer_direction {
89 DMA_MEM_TO_MEM,
90 DMA_MEM_TO_DEV,
91 DMA_DEV_TO_MEM,
92 DMA_DEV_TO_DEV,
93 DMA_TRANS_NONE,
94 };
95
96 /**
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
106 *
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
110 *
111 *
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114 *
115 * == Chunk size
116 * ... ICG
117 */
118
119 /**
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
127 * @dst_icg: Number of bytes to jump after last dst address of this
128 * chunk and before the first dst address for next chunk.
129 * Ignored if dst_inc is true and dst_sgl is false.
130 * @src_icg: Number of bytes to jump after last src address of this
131 * chunk and before the first src address for next chunk.
132 * Ignored if src_inc is true and src_sgl is false.
133 */
134 struct data_chunk {
135 size_t size;
136 size_t icg;
137 size_t dst_icg;
138 size_t src_icg;
139 };
140
141 /**
142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143 * and attributes.
144 * @src_start: Bus address of source for the first chunk.
145 * @dst_start: Bus address of destination for the first chunk.
146 * @dir: Specifies the type of Source and Destination.
147 * @src_inc: If the source address increments after reading from it.
148 * @dst_inc: If the destination address increments after writing to it.
149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150 * Otherwise, source is read contiguously (icg ignored).
151 * Ignored if src_inc is false.
152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153 * Otherwise, destination is filled contiguously (icg ignored).
154 * Ignored if dst_inc is false.
155 * @numf: Number of frames in this template.
156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
158 */
159 struct dma_interleaved_template {
160 dma_addr_t src_start;
161 dma_addr_t dst_start;
162 enum dma_transfer_direction dir;
163 bool src_inc;
164 bool dst_inc;
165 bool src_sgl;
166 bool dst_sgl;
167 size_t numf;
168 size_t frame_size;
169 struct data_chunk sgl[0];
170 };
171
172 /**
173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
174 * control completion, and communicate status.
175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
176 * this transaction
177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
178 * acknowledges receipt, i.e. has has a chance to establish any dependency
179 * chains
180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183 * sources that were the result of a previous operation, in the case of a PQ
184 * operation it continues the calculation with new sources
185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186 * on the result of this operation
187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188 * cleared or freed
189 */
190 enum dma_ctrl_flags {
191 DMA_PREP_INTERRUPT = (1 << 0),
192 DMA_CTRL_ACK = (1 << 1),
193 DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 DMA_PREP_CONTINUE = (1 << 4),
196 DMA_PREP_FENCE = (1 << 5),
197 DMA_CTRL_REUSE = (1 << 6),
198 };
199
200 /**
201 * enum sum_check_bits - bit position of pq_check_flags
202 */
203 enum sum_check_bits {
204 SUM_CHECK_P = 0,
205 SUM_CHECK_Q = 1,
206 };
207
208 /**
209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212 */
213 enum sum_check_flags {
214 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216 };
217
218
219 /**
220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221 * See linux/cpumask.h
222 */
223 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224
225 /**
226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
227 * @memcpy_count: transaction counter
228 * @bytes_transferred: byte counter
229 */
230
231 struct dma_chan_percpu {
232 /* stats */
233 unsigned long memcpy_count;
234 unsigned long bytes_transferred;
235 };
236
237 /**
238 * struct dma_router - DMA router structure
239 * @dev: pointer to the DMA router device
240 * @route_free: function to be called when the route can be disconnected
241 */
242 struct dma_router {
243 struct device *dev;
244 void (*route_free)(struct device *dev, void *route_data);
245 };
246
247 /**
248 * struct dma_chan - devices supply DMA channels, clients use them
249 * @device: ptr to the dma device who supplies this channel, always !%NULL
250 * @cookie: last cookie value returned to client
251 * @completed_cookie: last completed cookie for this channel
252 * @chan_id: channel ID for sysfs
253 * @dev: class device for sysfs
254 * @device_node: used to add this to the device chan list
255 * @local: per-cpu pointer to a struct dma_chan_percpu
256 * @client_count: how many clients are using this channel
257 * @table_count: number of appearances in the mem-to-mem allocation table
258 * @router: pointer to the DMA router structure
259 * @route_data: channel specific data for the router
260 * @private: private data for certain client-channel associations
261 */
262 struct dma_chan {
263 struct dma_device *device;
264 dma_cookie_t cookie;
265 dma_cookie_t completed_cookie;
266
267 /* sysfs */
268 int chan_id;
269 struct dma_chan_dev *dev;
270
271 struct list_head device_node;
272 struct dma_chan_percpu __percpu *local;
273 int client_count;
274 int table_count;
275
276 /* DMA router */
277 struct dma_router *router;
278 void *route_data;
279
280 void *private;
281 };
282
283 /**
284 * struct dma_chan_dev - relate sysfs device node to backing channel device
285 * @chan: driver channel device
286 * @device: sysfs device
287 * @dev_id: parent dma_device dev_id
288 * @idr_ref: reference count to gate release of dma_device dev_id
289 */
290 struct dma_chan_dev {
291 struct dma_chan *chan;
292 struct device device;
293 int dev_id;
294 atomic_t *idr_ref;
295 };
296
297 /**
298 * enum dma_slave_buswidth - defines bus width of the DMA slave
299 * device, source or target buses
300 */
301 enum dma_slave_buswidth {
302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
305 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
308 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
311 };
312
313 /**
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
317 * legal values. DEPRECATED, drivers should use the direction argument
318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319 * the dir field in the dma_interleaved_template structure.
320 * @src_addr: this is the physical address where DMA slave data
321 * should be read (RX), if the source is memory this argument is
322 * ignored.
323 * @dst_addr: this is the physical address where DMA slave data
324 * should be written (TX), if the source is memory this argument
325 * is ignored.
326 * @src_addr_width: this is the width in bytes of the source (RX)
327 * register where DMA data shall be read. If the source
328 * is memory this may be ignored depending on architecture.
329 * Legal values: 1, 2, 4, 8.
330 * @dst_addr_width: same as src_addr_width but for destination
331 * target (TX) mutatis mutandis.
332 * @src_maxburst: the maximum number of words (note: words, as in
333 * units of the src_addr_width member, not bytes) that can be sent
334 * in one burst to the device. Typically something like half the
335 * FIFO depth on I/O peripherals so you don't overflow it. This
336 * may or may not be applicable on memory sources.
337 * @dst_maxburst: same as src_maxburst but for destination target
338 * mutatis mutandis.
339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
340 * with 'true' if peripheral should be flow controller. Direction will be
341 * selected at Runtime.
342 * @slave_id: Slave requester id. Only valid for slave channels. The dma
343 * slave peripheral will have unique id as dma requester which need to be
344 * pass as slave config.
345 *
346 * This struct is passed in as configuration data to a DMA engine
347 * in order to set up a certain channel for DMA transport at runtime.
348 * The DMA device/engine has to provide support for an additional
349 * callback in the dma_device structure, device_config and this struct
350 * will then be passed in as an argument to the function.
351 *
352 * The rationale for adding configuration information to this struct is as
353 * follows: if it is likely that more than one DMA slave controllers in
354 * the world will support the configuration option, then make it generic.
355 * If not: if it is fixed so that it be sent in static from the platform
356 * data, then prefer to do that.
357 */
358 struct dma_slave_config {
359 enum dma_transfer_direction direction;
360 phys_addr_t src_addr;
361 phys_addr_t dst_addr;
362 enum dma_slave_buswidth src_addr_width;
363 enum dma_slave_buswidth dst_addr_width;
364 u32 src_maxburst;
365 u32 dst_maxburst;
366 bool device_fc;
367 unsigned int slave_id;
368 };
369
370 /**
371 * enum dma_residue_granularity - Granularity of the reported transfer residue
372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
373 * DMA channel is only able to tell whether a descriptor has been completed or
374 * not, which means residue reporting is not supported by this channel. The
375 * residue field of the dma_tx_state field will always be 0.
376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
377 * completed segment of the transfer (For cyclic transfers this is after each
378 * period). This is typically implemented by having the hardware generate an
379 * interrupt after each transferred segment and then the drivers updates the
380 * outstanding residue by the size of the segment. Another possibility is if
381 * the hardware supports scatter-gather and the segment descriptor has a field
382 * which gets set after the segment has been completed. The driver then counts
383 * the number of segments without the flag set to compute the residue.
384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
385 * burst. This is typically only supported if the hardware has a progress
386 * register of some sort (E.g. a register with the current read/write address
387 * or a register with the amount of bursts/beats/bytes that have been
388 * transferred or still need to be transferred).
389 */
390 enum dma_residue_granularity {
391 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
392 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
393 DMA_RESIDUE_GRANULARITY_BURST = 2,
394 };
395
396 /* struct dma_slave_caps - expose capabilities of a slave channel only
397 *
398 * @src_addr_widths: bit mask of src addr widths the channel supports
399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
400 * @directions: bit mask of slave direction the channel supported
401 * since the enum dma_transfer_direction is not defined as bits for each
402 * type of direction, the dma controller should fill (1 << <TYPE>) and same
403 * should be checked by controller as well
404 * @max_burst: max burst capability per-transfer
405 * @cmd_pause: true, if pause and thereby resume is supported
406 * @cmd_terminate: true, if terminate cmd is supported
407 * @residue_granularity: granularity of the reported transfer residue
408 * @descriptor_reuse: if a descriptor can be reused by client and
409 * resubmitted multiple times
410 */
411 struct dma_slave_caps {
412 u32 src_addr_widths;
413 u32 dst_addr_widths;
414 u32 directions;
415 u32 max_burst;
416 bool cmd_pause;
417 bool cmd_terminate;
418 enum dma_residue_granularity residue_granularity;
419 bool descriptor_reuse;
420 };
421
422 static inline const char *dma_chan_name(struct dma_chan *chan)
423 {
424 return dev_name(&chan->dev->device);
425 }
426
427 void dma_chan_cleanup(struct kref *kref);
428
429 /**
430 * typedef dma_filter_fn - callback filter for dma_request_channel
431 * @chan: channel to be reviewed
432 * @filter_param: opaque parameter passed through dma_request_channel
433 *
434 * When this optional parameter is specified in a call to dma_request_channel a
435 * suitable channel is passed to this routine for further dispositioning before
436 * being returned. Where 'suitable' indicates a non-busy channel that
437 * satisfies the given capability mask. It returns 'true' to indicate that the
438 * channel is suitable.
439 */
440 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
441
442 typedef void (*dma_async_tx_callback)(void *dma_async_param);
443
444 struct dmaengine_unmap_data {
445 u8 map_cnt;
446 u8 to_cnt;
447 u8 from_cnt;
448 u8 bidi_cnt;
449 struct device *dev;
450 struct kref kref;
451 size_t len;
452 dma_addr_t addr[0];
453 };
454
455 /**
456 * struct dma_async_tx_descriptor - async transaction descriptor
457 * ---dma generic offload fields---
458 * @cookie: tracking cookie for this transaction, set to -EBUSY if
459 * this tx is sitting on a dependency list
460 * @flags: flags to augment operation preparation, control completion, and
461 * communicate status
462 * @phys: physical address of the descriptor
463 * @chan: target channel for this operation
464 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
465 * descriptor pending. To be pushed on .issue_pending() call
466 * @callback: routine to call after this operation is complete
467 * @callback_param: general parameter to pass to the callback routine
468 * ---async_tx api specific fields---
469 * @next: at completion submit this descriptor
470 * @parent: pointer to the next level up in the dependency chain
471 * @lock: protect the parent and next pointers
472 */
473 struct dma_async_tx_descriptor {
474 dma_cookie_t cookie;
475 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
476 dma_addr_t phys;
477 struct dma_chan *chan;
478 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
479 int (*desc_free)(struct dma_async_tx_descriptor *tx);
480 dma_async_tx_callback callback;
481 void *callback_param;
482 struct dmaengine_unmap_data *unmap;
483 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
484 struct dma_async_tx_descriptor *next;
485 struct dma_async_tx_descriptor *parent;
486 spinlock_t lock;
487 #endif
488 };
489
490 #ifdef CONFIG_DMA_ENGINE
491 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
492 struct dmaengine_unmap_data *unmap)
493 {
494 kref_get(&unmap->kref);
495 tx->unmap = unmap;
496 }
497
498 struct dmaengine_unmap_data *
499 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
500 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
501 #else
502 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
503 struct dmaengine_unmap_data *unmap)
504 {
505 }
506 static inline struct dmaengine_unmap_data *
507 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
508 {
509 return NULL;
510 }
511 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
512 {
513 }
514 #endif
515
516 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
517 {
518 if (tx->unmap) {
519 dmaengine_unmap_put(tx->unmap);
520 tx->unmap = NULL;
521 }
522 }
523
524 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
525 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
526 {
527 }
528 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
529 {
530 }
531 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
532 {
533 BUG();
534 }
535 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
536 {
537 }
538 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
539 {
540 }
541 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
542 {
543 return NULL;
544 }
545 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
546 {
547 return NULL;
548 }
549
550 #else
551 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
552 {
553 spin_lock_bh(&txd->lock);
554 }
555 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
556 {
557 spin_unlock_bh(&txd->lock);
558 }
559 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
560 {
561 txd->next = next;
562 next->parent = txd;
563 }
564 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
565 {
566 txd->parent = NULL;
567 }
568 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
569 {
570 txd->next = NULL;
571 }
572 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
573 {
574 return txd->parent;
575 }
576 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
577 {
578 return txd->next;
579 }
580 #endif
581
582 /**
583 * struct dma_tx_state - filled in to report the status of
584 * a transfer.
585 * @last: last completed DMA cookie
586 * @used: last issued DMA cookie (i.e. the one in progress)
587 * @residue: the remaining number of bytes left to transmit
588 * on the selected transfer for states DMA_IN_PROGRESS and
589 * DMA_PAUSED if this is implemented in the driver, else 0
590 */
591 struct dma_tx_state {
592 dma_cookie_t last;
593 dma_cookie_t used;
594 u32 residue;
595 };
596
597 /**
598 * enum dmaengine_alignment - defines alignment of the DMA async tx
599 * buffers
600 */
601 enum dmaengine_alignment {
602 DMAENGINE_ALIGN_1_BYTE = 0,
603 DMAENGINE_ALIGN_2_BYTES = 1,
604 DMAENGINE_ALIGN_4_BYTES = 2,
605 DMAENGINE_ALIGN_8_BYTES = 3,
606 DMAENGINE_ALIGN_16_BYTES = 4,
607 DMAENGINE_ALIGN_32_BYTES = 5,
608 DMAENGINE_ALIGN_64_BYTES = 6,
609 };
610
611 /**
612 * struct dma_slave_map - associates slave device and it's slave channel with
613 * parameter to be used by a filter function
614 * @devname: name of the device
615 * @slave: slave channel name
616 * @param: opaque parameter to pass to struct dma_filter.fn
617 */
618 struct dma_slave_map {
619 const char *devname;
620 const char *slave;
621 void *param;
622 };
623
624 /**
625 * struct dma_filter - information for slave device/channel to filter_fn/param
626 * mapping
627 * @fn: filter function callback
628 * @mapcnt: number of slave device/channel in the map
629 * @map: array of channel to filter mapping data
630 */
631 struct dma_filter {
632 dma_filter_fn fn;
633 int mapcnt;
634 const struct dma_slave_map *map;
635 };
636
637 /**
638 * struct dma_device - info on the entity supplying DMA services
639 * @chancnt: how many DMA channels are supported
640 * @privatecnt: how many DMA channels are requested by dma_request_channel
641 * @channels: the list of struct dma_chan
642 * @global_node: list_head for global dma_device_list
643 * @filter: information for device/slave to filter function/param mapping
644 * @cap_mask: one or more dma_capability flags
645 * @max_xor: maximum number of xor sources, 0 if no capability
646 * @max_pq: maximum number of PQ sources and PQ-continue capability
647 * @copy_align: alignment shift for memcpy operations
648 * @xor_align: alignment shift for xor operations
649 * @pq_align: alignment shift for pq operations
650 * @fill_align: alignment shift for memset operations
651 * @dev_id: unique device ID
652 * @dev: struct device reference for dma mapping api
653 * @src_addr_widths: bit mask of src addr widths the device supports
654 * @dst_addr_widths: bit mask of dst addr widths the device supports
655 * @directions: bit mask of slave direction the device supports since
656 * the enum dma_transfer_direction is not defined as bits for
657 * each type of direction, the dma controller should fill (1 <<
658 * <TYPE>) and same should be checked by controller as well
659 * @max_burst: max burst capability per-transfer
660 * @residue_granularity: granularity of the transfer residue reported
661 * by tx_status
662 * @device_alloc_chan_resources: allocate resources and return the
663 * number of allocated descriptors
664 * @device_free_chan_resources: release DMA channel's resources
665 * @device_prep_dma_memcpy: prepares a memcpy operation
666 * @device_prep_dma_xor: prepares a xor operation
667 * @device_prep_dma_xor_val: prepares a xor validation operation
668 * @device_prep_dma_pq: prepares a pq operation
669 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
670 * @device_prep_dma_memset: prepares a memset operation
671 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
672 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
673 * @device_prep_slave_sg: prepares a slave dma operation
674 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
675 * The function takes a buffer of size buf_len. The callback function will
676 * be called after period_len bytes have been transferred.
677 * @device_prep_interleaved_dma: Transfer expression in a generic way.
678 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
679 * @device_config: Pushes a new configuration to a channel, return 0 or an error
680 * code
681 * @device_pause: Pauses any transfer happening on a channel. Returns
682 * 0 or an error code
683 * @device_resume: Resumes any transfer on a channel previously
684 * paused. Returns 0 or an error code
685 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
686 * or an error code
687 * @device_synchronize: Synchronizes the termination of a transfers to the
688 * current context.
689 * @device_tx_status: poll for transaction completion, the optional
690 * txstate parameter can be supplied with a pointer to get a
691 * struct with auxiliary transfer status information, otherwise the call
692 * will just return a simple status code
693 * @device_issue_pending: push pending transactions to hardware
694 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
695 */
696 struct dma_device {
697
698 unsigned int chancnt;
699 unsigned int privatecnt;
700 struct list_head channels;
701 struct list_head global_node;
702 struct dma_filter filter;
703 dma_cap_mask_t cap_mask;
704 unsigned short max_xor;
705 unsigned short max_pq;
706 enum dmaengine_alignment copy_align;
707 enum dmaengine_alignment xor_align;
708 enum dmaengine_alignment pq_align;
709 enum dmaengine_alignment fill_align;
710 #define DMA_HAS_PQ_CONTINUE (1 << 15)
711
712 int dev_id;
713 struct device *dev;
714
715 u32 src_addr_widths;
716 u32 dst_addr_widths;
717 u32 directions;
718 u32 max_burst;
719 bool descriptor_reuse;
720 enum dma_residue_granularity residue_granularity;
721
722 int (*device_alloc_chan_resources)(struct dma_chan *chan);
723 void (*device_free_chan_resources)(struct dma_chan *chan);
724
725 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
726 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
727 size_t len, unsigned long flags);
728 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
729 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
730 unsigned int src_cnt, size_t len, unsigned long flags);
731 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
732 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
733 size_t len, enum sum_check_flags *result, unsigned long flags);
734 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
735 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
736 unsigned int src_cnt, const unsigned char *scf,
737 size_t len, unsigned long flags);
738 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
739 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
740 unsigned int src_cnt, const unsigned char *scf, size_t len,
741 enum sum_check_flags *pqres, unsigned long flags);
742 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
743 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
744 unsigned long flags);
745 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
746 struct dma_chan *chan, struct scatterlist *sg,
747 unsigned int nents, int value, unsigned long flags);
748 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
749 struct dma_chan *chan, unsigned long flags);
750 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
751 struct dma_chan *chan,
752 struct scatterlist *dst_sg, unsigned int dst_nents,
753 struct scatterlist *src_sg, unsigned int src_nents,
754 unsigned long flags);
755
756 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
757 struct dma_chan *chan, struct scatterlist *sgl,
758 unsigned int sg_len, enum dma_transfer_direction direction,
759 unsigned long flags, void *context);
760 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
761 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
762 size_t period_len, enum dma_transfer_direction direction,
763 unsigned long flags);
764 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
765 struct dma_chan *chan, struct dma_interleaved_template *xt,
766 unsigned long flags);
767 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
768 struct dma_chan *chan, dma_addr_t dst, u64 data,
769 unsigned long flags);
770
771 int (*device_config)(struct dma_chan *chan,
772 struct dma_slave_config *config);
773 int (*device_pause)(struct dma_chan *chan);
774 int (*device_resume)(struct dma_chan *chan);
775 int (*device_terminate_all)(struct dma_chan *chan);
776 void (*device_synchronize)(struct dma_chan *chan);
777
778 enum dma_status (*device_tx_status)(struct dma_chan *chan,
779 dma_cookie_t cookie,
780 struct dma_tx_state *txstate);
781 void (*device_issue_pending)(struct dma_chan *chan);
782 };
783
784 static inline int dmaengine_slave_config(struct dma_chan *chan,
785 struct dma_slave_config *config)
786 {
787 if (chan->device->device_config)
788 return chan->device->device_config(chan, config);
789
790 return -ENOSYS;
791 }
792
793 static inline bool is_slave_direction(enum dma_transfer_direction direction)
794 {
795 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
796 }
797
798 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
799 struct dma_chan *chan, dma_addr_t buf, size_t len,
800 enum dma_transfer_direction dir, unsigned long flags)
801 {
802 struct scatterlist sg;
803 sg_init_table(&sg, 1);
804 sg_dma_address(&sg) = buf;
805 sg_dma_len(&sg) = len;
806
807 return chan->device->device_prep_slave_sg(chan, &sg, 1,
808 dir, flags, NULL);
809 }
810
811 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
812 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
813 enum dma_transfer_direction dir, unsigned long flags)
814 {
815 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
816 dir, flags, NULL);
817 }
818
819 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
820 struct rio_dma_ext;
821 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
822 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
823 enum dma_transfer_direction dir, unsigned long flags,
824 struct rio_dma_ext *rio_ext)
825 {
826 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
827 dir, flags, rio_ext);
828 }
829 #endif
830
831 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
832 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
833 size_t period_len, enum dma_transfer_direction dir,
834 unsigned long flags)
835 {
836 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
837 period_len, dir, flags);
838 }
839
840 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
841 struct dma_chan *chan, struct dma_interleaved_template *xt,
842 unsigned long flags)
843 {
844 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
845 }
846
847 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
848 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
849 unsigned long flags)
850 {
851 if (!chan || !chan->device)
852 return NULL;
853
854 return chan->device->device_prep_dma_memset(chan, dest, value,
855 len, flags);
856 }
857
858 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
859 struct dma_chan *chan,
860 struct scatterlist *dst_sg, unsigned int dst_nents,
861 struct scatterlist *src_sg, unsigned int src_nents,
862 unsigned long flags)
863 {
864 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
865 src_sg, src_nents, flags);
866 }
867
868 /**
869 * dmaengine_terminate_all() - Terminate all active DMA transfers
870 * @chan: The channel for which to terminate the transfers
871 *
872 * This function is DEPRECATED use either dmaengine_terminate_sync() or
873 * dmaengine_terminate_async() instead.
874 */
875 static inline int dmaengine_terminate_all(struct dma_chan *chan)
876 {
877 if (chan->device->device_terminate_all)
878 return chan->device->device_terminate_all(chan);
879
880 return -ENOSYS;
881 }
882
883 /**
884 * dmaengine_terminate_async() - Terminate all active DMA transfers
885 * @chan: The channel for which to terminate the transfers
886 *
887 * Calling this function will terminate all active and pending descriptors
888 * that have previously been submitted to the channel. It is not guaranteed
889 * though that the transfer for the active descriptor has stopped when the
890 * function returns. Furthermore it is possible the complete callback of a
891 * submitted transfer is still running when this function returns.
892 *
893 * dmaengine_synchronize() needs to be called before it is safe to free
894 * any memory that is accessed by previously submitted descriptors or before
895 * freeing any resources accessed from within the completion callback of any
896 * perviously submitted descriptors.
897 *
898 * This function can be called from atomic context as well as from within a
899 * complete callback of a descriptor submitted on the same channel.
900 *
901 * If none of the two conditions above apply consider using
902 * dmaengine_terminate_sync() instead.
903 */
904 static inline int dmaengine_terminate_async(struct dma_chan *chan)
905 {
906 if (chan->device->device_terminate_all)
907 return chan->device->device_terminate_all(chan);
908
909 return -EINVAL;
910 }
911
912 /**
913 * dmaengine_synchronize() - Synchronize DMA channel termination
914 * @chan: The channel to synchronize
915 *
916 * Synchronizes to the DMA channel termination to the current context. When this
917 * function returns it is guaranteed that all transfers for previously issued
918 * descriptors have stopped and and it is safe to free the memory assoicated
919 * with them. Furthermore it is guaranteed that all complete callback functions
920 * for a previously submitted descriptor have finished running and it is safe to
921 * free resources accessed from within the complete callbacks.
922 *
923 * The behavior of this function is undefined if dma_async_issue_pending() has
924 * been called between dmaengine_terminate_async() and this function.
925 *
926 * This function must only be called from non-atomic context and must not be
927 * called from within a complete callback of a descriptor submitted on the same
928 * channel.
929 */
930 static inline void dmaengine_synchronize(struct dma_chan *chan)
931 {
932 might_sleep();
933
934 if (chan->device->device_synchronize)
935 chan->device->device_synchronize(chan);
936 }
937
938 /**
939 * dmaengine_terminate_sync() - Terminate all active DMA transfers
940 * @chan: The channel for which to terminate the transfers
941 *
942 * Calling this function will terminate all active and pending transfers
943 * that have previously been submitted to the channel. It is similar to
944 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
945 * stopped and that all complete callbacks have finished running when the
946 * function returns.
947 *
948 * This function must only be called from non-atomic context and must not be
949 * called from within a complete callback of a descriptor submitted on the same
950 * channel.
951 */
952 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
953 {
954 int ret;
955
956 ret = dmaengine_terminate_async(chan);
957 if (ret)
958 return ret;
959
960 dmaengine_synchronize(chan);
961
962 return 0;
963 }
964
965 static inline int dmaengine_pause(struct dma_chan *chan)
966 {
967 if (chan->device->device_pause)
968 return chan->device->device_pause(chan);
969
970 return -ENOSYS;
971 }
972
973 static inline int dmaengine_resume(struct dma_chan *chan)
974 {
975 if (chan->device->device_resume)
976 return chan->device->device_resume(chan);
977
978 return -ENOSYS;
979 }
980
981 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
982 dma_cookie_t cookie, struct dma_tx_state *state)
983 {
984 return chan->device->device_tx_status(chan, cookie, state);
985 }
986
987 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
988 {
989 return desc->tx_submit(desc);
990 }
991
992 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
993 size_t off1, size_t off2, size_t len)
994 {
995 size_t mask;
996
997 if (!align)
998 return true;
999 mask = (1 << align) - 1;
1000 if (mask & (off1 | off2 | len))
1001 return false;
1002 return true;
1003 }
1004
1005 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1006 size_t off2, size_t len)
1007 {
1008 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1009 }
1010
1011 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1012 size_t off2, size_t len)
1013 {
1014 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1015 }
1016
1017 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1018 size_t off2, size_t len)
1019 {
1020 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1021 }
1022
1023 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1024 size_t off2, size_t len)
1025 {
1026 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1027 }
1028
1029 static inline void
1030 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1031 {
1032 dma->max_pq = maxpq;
1033 if (has_pq_continue)
1034 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1035 }
1036
1037 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1038 {
1039 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1040 }
1041
1042 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1043 {
1044 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1045
1046 return (flags & mask) == mask;
1047 }
1048
1049 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1050 {
1051 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1052 }
1053
1054 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1055 {
1056 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1057 }
1058
1059 /* dma_maxpq - reduce maxpq in the face of continued operations
1060 * @dma - dma device with PQ capability
1061 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1062 *
1063 * When an engine does not support native continuation we need 3 extra
1064 * source slots to reuse P and Q with the following coefficients:
1065 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1066 * 2/ {01} * Q : use Q to continue Q' calculation
1067 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1068 *
1069 * In the case where P is disabled we only need 1 extra source:
1070 * 1/ {01} * Q : use Q to continue Q' calculation
1071 */
1072 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1073 {
1074 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1075 return dma_dev_to_maxpq(dma);
1076 else if (dmaf_p_disabled_continue(flags))
1077 return dma_dev_to_maxpq(dma) - 1;
1078 else if (dmaf_continue(flags))
1079 return dma_dev_to_maxpq(dma) - 3;
1080 BUG();
1081 }
1082
1083 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1084 size_t dir_icg)
1085 {
1086 if (inc) {
1087 if (dir_icg)
1088 return dir_icg;
1089 else if (sgl)
1090 return icg;
1091 }
1092
1093 return 0;
1094 }
1095
1096 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1097 struct data_chunk *chunk)
1098 {
1099 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1100 chunk->icg, chunk->dst_icg);
1101 }
1102
1103 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1104 struct data_chunk *chunk)
1105 {
1106 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1107 chunk->icg, chunk->src_icg);
1108 }
1109
1110 /* --- public DMA engine API --- */
1111
1112 #ifdef CONFIG_DMA_ENGINE
1113 void dmaengine_get(void);
1114 void dmaengine_put(void);
1115 #else
1116 static inline void dmaengine_get(void)
1117 {
1118 }
1119 static inline void dmaengine_put(void)
1120 {
1121 }
1122 #endif
1123
1124 #ifdef CONFIG_ASYNC_TX_DMA
1125 #define async_dmaengine_get() dmaengine_get()
1126 #define async_dmaengine_put() dmaengine_put()
1127 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1128 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1129 #else
1130 #define async_dma_find_channel(type) dma_find_channel(type)
1131 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1132 #else
1133 static inline void async_dmaengine_get(void)
1134 {
1135 }
1136 static inline void async_dmaengine_put(void)
1137 {
1138 }
1139 static inline struct dma_chan *
1140 async_dma_find_channel(enum dma_transaction_type type)
1141 {
1142 return NULL;
1143 }
1144 #endif /* CONFIG_ASYNC_TX_DMA */
1145 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1146 struct dma_chan *chan);
1147
1148 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1149 {
1150 tx->flags |= DMA_CTRL_ACK;
1151 }
1152
1153 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1154 {
1155 tx->flags &= ~DMA_CTRL_ACK;
1156 }
1157
1158 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1159 {
1160 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1161 }
1162
1163 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1164 static inline void
1165 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1166 {
1167 set_bit(tx_type, dstp->bits);
1168 }
1169
1170 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1171 static inline void
1172 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1173 {
1174 clear_bit(tx_type, dstp->bits);
1175 }
1176
1177 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1178 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1179 {
1180 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1181 }
1182
1183 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1184 static inline int
1185 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1186 {
1187 return test_bit(tx_type, srcp->bits);
1188 }
1189
1190 #define for_each_dma_cap_mask(cap, mask) \
1191 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1192
1193 /**
1194 * dma_async_issue_pending - flush pending transactions to HW
1195 * @chan: target DMA channel
1196 *
1197 * This allows drivers to push copies to HW in batches,
1198 * reducing MMIO writes where possible.
1199 */
1200 static inline void dma_async_issue_pending(struct dma_chan *chan)
1201 {
1202 chan->device->device_issue_pending(chan);
1203 }
1204
1205 /**
1206 * dma_async_is_tx_complete - poll for transaction completion
1207 * @chan: DMA channel
1208 * @cookie: transaction identifier to check status of
1209 * @last: returns last completed cookie, can be NULL
1210 * @used: returns last issued cookie, can be NULL
1211 *
1212 * If @last and @used are passed in, upon return they reflect the driver
1213 * internal state and can be used with dma_async_is_complete() to check
1214 * the status of multiple cookies without re-checking hardware state.
1215 */
1216 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1217 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1218 {
1219 struct dma_tx_state state;
1220 enum dma_status status;
1221
1222 status = chan->device->device_tx_status(chan, cookie, &state);
1223 if (last)
1224 *last = state.last;
1225 if (used)
1226 *used = state.used;
1227 return status;
1228 }
1229
1230 /**
1231 * dma_async_is_complete - test a cookie against chan state
1232 * @cookie: transaction identifier to test status of
1233 * @last_complete: last know completed transaction
1234 * @last_used: last cookie value handed out
1235 *
1236 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1237 * the test logic is separated for lightweight testing of multiple cookies
1238 */
1239 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1240 dma_cookie_t last_complete, dma_cookie_t last_used)
1241 {
1242 if (last_complete <= last_used) {
1243 if ((cookie <= last_complete) || (cookie > last_used))
1244 return DMA_COMPLETE;
1245 } else {
1246 if ((cookie <= last_complete) && (cookie > last_used))
1247 return DMA_COMPLETE;
1248 }
1249 return DMA_IN_PROGRESS;
1250 }
1251
1252 static inline void
1253 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1254 {
1255 if (st) {
1256 st->last = last;
1257 st->used = used;
1258 st->residue = residue;
1259 }
1260 }
1261
1262 #ifdef CONFIG_DMA_ENGINE
1263 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1264 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1265 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1266 void dma_issue_pending_all(void);
1267 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1268 dma_filter_fn fn, void *fn_param);
1269 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1270
1271 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1272 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1273
1274 void dma_release_channel(struct dma_chan *chan);
1275 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1276 #else
1277 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1278 {
1279 return NULL;
1280 }
1281 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1282 {
1283 return DMA_COMPLETE;
1284 }
1285 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1286 {
1287 return DMA_COMPLETE;
1288 }
1289 static inline void dma_issue_pending_all(void)
1290 {
1291 }
1292 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1293 dma_filter_fn fn, void *fn_param)
1294 {
1295 return NULL;
1296 }
1297 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1298 const char *name)
1299 {
1300 return NULL;
1301 }
1302 static inline struct dma_chan *dma_request_chan(struct device *dev,
1303 const char *name)
1304 {
1305 return ERR_PTR(-ENODEV);
1306 }
1307 static inline struct dma_chan *dma_request_chan_by_mask(
1308 const dma_cap_mask_t *mask)
1309 {
1310 return ERR_PTR(-ENODEV);
1311 }
1312 static inline void dma_release_channel(struct dma_chan *chan)
1313 {
1314 }
1315 static inline int dma_get_slave_caps(struct dma_chan *chan,
1316 struct dma_slave_caps *caps)
1317 {
1318 return -ENXIO;
1319 }
1320 #endif
1321
1322 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1323
1324 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1325 {
1326 struct dma_slave_caps caps;
1327
1328 dma_get_slave_caps(tx->chan, &caps);
1329
1330 if (caps.descriptor_reuse) {
1331 tx->flags |= DMA_CTRL_REUSE;
1332 return 0;
1333 } else {
1334 return -EPERM;
1335 }
1336 }
1337
1338 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1339 {
1340 tx->flags &= ~DMA_CTRL_REUSE;
1341 }
1342
1343 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1344 {
1345 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1346 }
1347
1348 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1349 {
1350 /* this is supported for reusable desc, so check that */
1351 if (dmaengine_desc_test_reuse(desc))
1352 return desc->desc_free(desc);
1353 else
1354 return -EPERM;
1355 }
1356
1357 /* --- DMA device --- */
1358
1359 int dma_async_device_register(struct dma_device *device);
1360 void dma_async_device_unregister(struct dma_device *device);
1361 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1362 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1363 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1364 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1365 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1366 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1367
1368 static inline struct dma_chan
1369 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1370 dma_filter_fn fn, void *fn_param,
1371 struct device *dev, const char *name)
1372 {
1373 struct dma_chan *chan;
1374
1375 chan = dma_request_slave_channel(dev, name);
1376 if (chan)
1377 return chan;
1378
1379 if (!fn || !fn_param)
1380 return NULL;
1381
1382 return __dma_request_channel(mask, fn, fn_param);
1383 }
1384 #endif /* DMAENGINE_H */
This page took 0.077792 seconds and 5 git commands to generate.