memcg: only account kmem allocations marked as __GFP_ACCOUNT
[deliverable/linux.git] / include / linux / gfp.h
1 #ifndef __LINUX_GFP_H
2 #define __LINUX_GFP_H
3
4 #include <linux/mmdebug.h>
5 #include <linux/mmzone.h>
6 #include <linux/stddef.h>
7 #include <linux/linkage.h>
8 #include <linux/topology.h>
9
10 struct vm_area_struct;
11
12 /* Plain integer GFP bitmasks. Do not use this directly. */
13 #define ___GFP_DMA 0x01u
14 #define ___GFP_HIGHMEM 0x02u
15 #define ___GFP_DMA32 0x04u
16 #define ___GFP_MOVABLE 0x08u
17 #define ___GFP_RECLAIMABLE 0x10u
18 #define ___GFP_HIGH 0x20u
19 #define ___GFP_IO 0x40u
20 #define ___GFP_FS 0x80u
21 #define ___GFP_COLD 0x100u
22 #define ___GFP_NOWARN 0x200u
23 #define ___GFP_REPEAT 0x400u
24 #define ___GFP_NOFAIL 0x800u
25 #define ___GFP_NORETRY 0x1000u
26 #define ___GFP_MEMALLOC 0x2000u
27 #define ___GFP_COMP 0x4000u
28 #define ___GFP_ZERO 0x8000u
29 #define ___GFP_NOMEMALLOC 0x10000u
30 #define ___GFP_HARDWALL 0x20000u
31 #define ___GFP_THISNODE 0x40000u
32 #define ___GFP_ATOMIC 0x80000u
33 #define ___GFP_ACCOUNT 0x100000u
34 #define ___GFP_NOTRACK 0x200000u
35 #define ___GFP_DIRECT_RECLAIM 0x400000u
36 #define ___GFP_OTHER_NODE 0x800000u
37 #define ___GFP_WRITE 0x1000000u
38 #define ___GFP_KSWAPD_RECLAIM 0x2000000u
39 /* If the above are modified, __GFP_BITS_SHIFT may need updating */
40
41 /*
42 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
43 *
44 * Do not put any conditional on these. If necessary modify the definitions
45 * without the underscores and use them consistently. The definitions here may
46 * be used in bit comparisons.
47 */
48 #define __GFP_DMA ((__force gfp_t)___GFP_DMA)
49 #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
50 #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
51 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* Page is movable */
52 #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
53 #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
54
55 /*
56 * Page mobility and placement hints
57 *
58 * These flags provide hints about how mobile the page is. Pages with similar
59 * mobility are placed within the same pageblocks to minimise problems due
60 * to external fragmentation.
61 *
62 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
63 * moved by page migration during memory compaction or can be reclaimed.
64 *
65 * __GFP_RECLAIMABLE is used for slab allocations that specify
66 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
67 *
68 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
69 * these pages will be spread between local zones to avoid all the dirty
70 * pages being in one zone (fair zone allocation policy).
71 *
72 * __GFP_HARDWALL enforces the cpuset memory allocation policy.
73 *
74 * __GFP_THISNODE forces the allocation to be satisified from the requested
75 * node with no fallbacks or placement policy enforcements.
76 *
77 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg (only relevant
78 * to kmem allocations).
79 */
80 #define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
81 #define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
82 #define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
83 #define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
84 #define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
85
86 /*
87 * Watermark modifiers -- controls access to emergency reserves
88 *
89 * __GFP_HIGH indicates that the caller is high-priority and that granting
90 * the request is necessary before the system can make forward progress.
91 * For example, creating an IO context to clean pages.
92 *
93 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
94 * high priority. Users are typically interrupt handlers. This may be
95 * used in conjunction with __GFP_HIGH
96 *
97 * __GFP_MEMALLOC allows access to all memory. This should only be used when
98 * the caller guarantees the allocation will allow more memory to be freed
99 * very shortly e.g. process exiting or swapping. Users either should
100 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
101 *
102 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
103 * This takes precedence over the __GFP_MEMALLOC flag if both are set.
104 *
105 * __GFP_NOACCOUNT ignores the accounting for kmemcg limit enforcement.
106 */
107 #define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
108 #define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
109 #define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
110 #define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
111
112 /*
113 * Reclaim modifiers
114 *
115 * __GFP_IO can start physical IO.
116 *
117 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
118 * allocator recursing into the filesystem which might already be holding
119 * locks.
120 *
121 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
122 * This flag can be cleared to avoid unnecessary delays when a fallback
123 * option is available.
124 *
125 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
126 * the low watermark is reached and have it reclaim pages until the high
127 * watermark is reached. A caller may wish to clear this flag when fallback
128 * options are available and the reclaim is likely to disrupt the system. The
129 * canonical example is THP allocation where a fallback is cheap but
130 * reclaim/compaction may cause indirect stalls.
131 *
132 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
133 *
134 * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
135 * _might_ fail. This depends upon the particular VM implementation.
136 *
137 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
138 * cannot handle allocation failures. New users should be evaluated carefully
139 * (and the flag should be used only when there is no reasonable failure
140 * policy) but it is definitely preferable to use the flag rather than
141 * opencode endless loop around allocator.
142 *
143 * __GFP_NORETRY: The VM implementation must not retry indefinitely and will
144 * return NULL when direct reclaim and memory compaction have failed to allow
145 * the allocation to succeed. The OOM killer is not called with the current
146 * implementation.
147 */
148 #define __GFP_IO ((__force gfp_t)___GFP_IO)
149 #define __GFP_FS ((__force gfp_t)___GFP_FS)
150 #define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
151 #define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
152 #define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
153 #define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT)
154 #define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
155 #define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
156
157 /*
158 * Action modifiers
159 *
160 * __GFP_COLD indicates that the caller does not expect to be used in the near
161 * future. Where possible, a cache-cold page will be returned.
162 *
163 * __GFP_NOWARN suppresses allocation failure reports.
164 *
165 * __GFP_COMP address compound page metadata.
166 *
167 * __GFP_ZERO returns a zeroed page on success.
168 *
169 * __GFP_NOTRACK avoids tracking with kmemcheck.
170 *
171 * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
172 * distinguishing in the source between false positives and allocations that
173 * cannot be supported (e.g. page tables).
174 *
175 * __GFP_OTHER_NODE is for allocations that are on a remote node but that
176 * should not be accounted for as a remote allocation in vmstat. A
177 * typical user would be khugepaged collapsing a huge page on a remote
178 * node.
179 */
180 #define __GFP_COLD ((__force gfp_t)___GFP_COLD)
181 #define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
182 #define __GFP_COMP ((__force gfp_t)___GFP_COMP)
183 #define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
184 #define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK)
185 #define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
186 #define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE)
187
188 /* Room for N __GFP_FOO bits */
189 #define __GFP_BITS_SHIFT 26
190 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
191
192 /*
193 * Useful GFP flag combinations that are commonly used. It is recommended
194 * that subsystems start with one of these combinations and then set/clear
195 * __GFP_FOO flags as necessary.
196 *
197 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
198 * watermark is applied to allow access to "atomic reserves"
199 *
200 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
201 * ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
202 *
203 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
204 * accounted to kmemcg.
205 *
206 * GFP_NOWAIT is for kernel allocations that should not stall for direct
207 * reclaim, start physical IO or use any filesystem callback.
208 *
209 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
210 * that do not require the starting of any physical IO.
211 *
212 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
213 *
214 * GFP_USER is for userspace allocations that also need to be directly
215 * accessibly by the kernel or hardware. It is typically used by hardware
216 * for buffers that are mapped to userspace (e.g. graphics) that hardware
217 * still must DMA to. cpuset limits are enforced for these allocations.
218 *
219 * GFP_DMA exists for historical reasons and should be avoided where possible.
220 * The flags indicates that the caller requires that the lowest zone be
221 * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
222 * it would require careful auditing as some users really require it and
223 * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
224 * lowest zone as a type of emergency reserve.
225 *
226 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
227 * address.
228 *
229 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
230 * do not need to be directly accessible by the kernel but that cannot
231 * move once in use. An example may be a hardware allocation that maps
232 * data directly into userspace but has no addressing limitations.
233 *
234 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
235 * need direct access to but can use kmap() when access is required. They
236 * are expected to be movable via page reclaim or page migration. Typically,
237 * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
238 *
239 * GFP_TRANSHUGE is used for THP allocations. They are compound allocations
240 * that will fail quickly if memory is not available and will not wake
241 * kswapd on failure.
242 */
243 #define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
244 #define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
245 #define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
246 #define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
247 #define GFP_NOIO (__GFP_RECLAIM)
248 #define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
249 #define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \
250 __GFP_RECLAIMABLE)
251 #define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
252 #define GFP_DMA __GFP_DMA
253 #define GFP_DMA32 __GFP_DMA32
254 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
255 #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
256 #define GFP_TRANSHUGE ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
257 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & \
258 ~__GFP_KSWAPD_RECLAIM)
259
260 /* Convert GFP flags to their corresponding migrate type */
261 #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
262 #define GFP_MOVABLE_SHIFT 3
263
264 static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
265 {
266 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
267 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
268 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
269
270 if (unlikely(page_group_by_mobility_disabled))
271 return MIGRATE_UNMOVABLE;
272
273 /* Group based on mobility */
274 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
275 }
276 #undef GFP_MOVABLE_MASK
277 #undef GFP_MOVABLE_SHIFT
278
279 static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
280 {
281 return (bool __force)(gfp_flags & __GFP_DIRECT_RECLAIM);
282 }
283
284 #ifdef CONFIG_HIGHMEM
285 #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
286 #else
287 #define OPT_ZONE_HIGHMEM ZONE_NORMAL
288 #endif
289
290 #ifdef CONFIG_ZONE_DMA
291 #define OPT_ZONE_DMA ZONE_DMA
292 #else
293 #define OPT_ZONE_DMA ZONE_NORMAL
294 #endif
295
296 #ifdef CONFIG_ZONE_DMA32
297 #define OPT_ZONE_DMA32 ZONE_DMA32
298 #else
299 #define OPT_ZONE_DMA32 ZONE_NORMAL
300 #endif
301
302 /*
303 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
304 * zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long
305 * and there are 16 of them to cover all possible combinations of
306 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
307 *
308 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
309 * But GFP_MOVABLE is not only a zone specifier but also an allocation
310 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
311 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
312 *
313 * bit result
314 * =================
315 * 0x0 => NORMAL
316 * 0x1 => DMA or NORMAL
317 * 0x2 => HIGHMEM or NORMAL
318 * 0x3 => BAD (DMA+HIGHMEM)
319 * 0x4 => DMA32 or DMA or NORMAL
320 * 0x5 => BAD (DMA+DMA32)
321 * 0x6 => BAD (HIGHMEM+DMA32)
322 * 0x7 => BAD (HIGHMEM+DMA32+DMA)
323 * 0x8 => NORMAL (MOVABLE+0)
324 * 0x9 => DMA or NORMAL (MOVABLE+DMA)
325 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
326 * 0xb => BAD (MOVABLE+HIGHMEM+DMA)
327 * 0xc => DMA32 (MOVABLE+DMA32)
328 * 0xd => BAD (MOVABLE+DMA32+DMA)
329 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
330 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
331 *
332 * ZONES_SHIFT must be <= 2 on 32 bit platforms.
333 */
334
335 #if 16 * ZONES_SHIFT > BITS_PER_LONG
336 #error ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
337 #endif
338
339 #define GFP_ZONE_TABLE ( \
340 (ZONE_NORMAL << 0 * ZONES_SHIFT) \
341 | (OPT_ZONE_DMA << ___GFP_DMA * ZONES_SHIFT) \
342 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * ZONES_SHIFT) \
343 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * ZONES_SHIFT) \
344 | (ZONE_NORMAL << ___GFP_MOVABLE * ZONES_SHIFT) \
345 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * ZONES_SHIFT) \
346 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * ZONES_SHIFT) \
347 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * ZONES_SHIFT) \
348 )
349
350 /*
351 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
352 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
353 * entry starting with bit 0. Bit is set if the combination is not
354 * allowed.
355 */
356 #define GFP_ZONE_BAD ( \
357 1 << (___GFP_DMA | ___GFP_HIGHMEM) \
358 | 1 << (___GFP_DMA | ___GFP_DMA32) \
359 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
360 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
361 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
362 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
363 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
364 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
365 )
366
367 static inline enum zone_type gfp_zone(gfp_t flags)
368 {
369 enum zone_type z;
370 int bit = (__force int) (flags & GFP_ZONEMASK);
371
372 z = (GFP_ZONE_TABLE >> (bit * ZONES_SHIFT)) &
373 ((1 << ZONES_SHIFT) - 1);
374 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
375 return z;
376 }
377
378 /*
379 * There is only one page-allocator function, and two main namespaces to
380 * it. The alloc_page*() variants return 'struct page *' and as such
381 * can allocate highmem pages, the *get*page*() variants return
382 * virtual kernel addresses to the allocated page(s).
383 */
384
385 static inline int gfp_zonelist(gfp_t flags)
386 {
387 if (IS_ENABLED(CONFIG_NUMA) && unlikely(flags & __GFP_THISNODE))
388 return 1;
389
390 return 0;
391 }
392
393 /*
394 * We get the zone list from the current node and the gfp_mask.
395 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
396 * There are two zonelists per node, one for all zones with memory and
397 * one containing just zones from the node the zonelist belongs to.
398 *
399 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
400 * optimized to &contig_page_data at compile-time.
401 */
402 static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
403 {
404 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
405 }
406
407 #ifndef HAVE_ARCH_FREE_PAGE
408 static inline void arch_free_page(struct page *page, int order) { }
409 #endif
410 #ifndef HAVE_ARCH_ALLOC_PAGE
411 static inline void arch_alloc_page(struct page *page, int order) { }
412 #endif
413
414 struct page *
415 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
416 struct zonelist *zonelist, nodemask_t *nodemask);
417
418 static inline struct page *
419 __alloc_pages(gfp_t gfp_mask, unsigned int order,
420 struct zonelist *zonelist)
421 {
422 return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);
423 }
424
425 /*
426 * Allocate pages, preferring the node given as nid. The node must be valid and
427 * online. For more general interface, see alloc_pages_node().
428 */
429 static inline struct page *
430 __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
431 {
432 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
433 VM_WARN_ON(!node_online(nid));
434
435 return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
436 }
437
438 /*
439 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
440 * prefer the current CPU's closest node. Otherwise node must be valid and
441 * online.
442 */
443 static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
444 unsigned int order)
445 {
446 if (nid == NUMA_NO_NODE)
447 nid = numa_mem_id();
448
449 return __alloc_pages_node(nid, gfp_mask, order);
450 }
451
452 #ifdef CONFIG_NUMA
453 extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
454
455 static inline struct page *
456 alloc_pages(gfp_t gfp_mask, unsigned int order)
457 {
458 return alloc_pages_current(gfp_mask, order);
459 }
460 extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
461 struct vm_area_struct *vma, unsigned long addr,
462 int node, bool hugepage);
463 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
464 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
465 #else
466 #define alloc_pages(gfp_mask, order) \
467 alloc_pages_node(numa_node_id(), gfp_mask, order)
468 #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
469 alloc_pages(gfp_mask, order)
470 #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
471 alloc_pages(gfp_mask, order)
472 #endif
473 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
474 #define alloc_page_vma(gfp_mask, vma, addr) \
475 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
476 #define alloc_page_vma_node(gfp_mask, vma, addr, node) \
477 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
478
479 extern struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order);
480 extern struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask,
481 unsigned int order);
482
483 extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
484 extern unsigned long get_zeroed_page(gfp_t gfp_mask);
485
486 void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
487 void free_pages_exact(void *virt, size_t size);
488 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
489
490 #define __get_free_page(gfp_mask) \
491 __get_free_pages((gfp_mask), 0)
492
493 #define __get_dma_pages(gfp_mask, order) \
494 __get_free_pages((gfp_mask) | GFP_DMA, (order))
495
496 extern void __free_pages(struct page *page, unsigned int order);
497 extern void free_pages(unsigned long addr, unsigned int order);
498 extern void free_hot_cold_page(struct page *page, bool cold);
499 extern void free_hot_cold_page_list(struct list_head *list, bool cold);
500
501 struct page_frag_cache;
502 extern void *__alloc_page_frag(struct page_frag_cache *nc,
503 unsigned int fragsz, gfp_t gfp_mask);
504 extern void __free_page_frag(void *addr);
505
506 extern void __free_kmem_pages(struct page *page, unsigned int order);
507 extern void free_kmem_pages(unsigned long addr, unsigned int order);
508
509 #define __free_page(page) __free_pages((page), 0)
510 #define free_page(addr) free_pages((addr), 0)
511
512 void page_alloc_init(void);
513 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
514 void drain_all_pages(struct zone *zone);
515 void drain_local_pages(struct zone *zone);
516
517 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
518 void page_alloc_init_late(void);
519 #else
520 static inline void page_alloc_init_late(void)
521 {
522 }
523 #endif
524
525 /*
526 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
527 * GFP flags are used before interrupts are enabled. Once interrupts are
528 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
529 * hibernation, it is used by PM to avoid I/O during memory allocation while
530 * devices are suspended.
531 */
532 extern gfp_t gfp_allowed_mask;
533
534 /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
535 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
536
537 extern void pm_restrict_gfp_mask(void);
538 extern void pm_restore_gfp_mask(void);
539
540 #ifdef CONFIG_PM_SLEEP
541 extern bool pm_suspended_storage(void);
542 #else
543 static inline bool pm_suspended_storage(void)
544 {
545 return false;
546 }
547 #endif /* CONFIG_PM_SLEEP */
548
549 #ifdef CONFIG_CMA
550
551 /* The below functions must be run on a range from a single zone. */
552 extern int alloc_contig_range(unsigned long start, unsigned long end,
553 unsigned migratetype);
554 extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
555
556 /* CMA stuff */
557 extern void init_cma_reserved_pageblock(struct page *page);
558
559 #endif
560
561 #endif /* __LINUX_GFP_H */
This page took 0.041995 seconds and 5 git commands to generate.