dt-bindings: mailbox: Add Amlogic Meson MHU Bindings
[deliverable/linux.git] / include / linux / hyperv.h
1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/workqueue.h>
36 #include <linux/completion.h>
37 #include <linux/device.h>
38 #include <linux/mod_devicetable.h>
39
40
41 #define MAX_PAGE_BUFFER_COUNT 32
42 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
43
44 #pragma pack(push, 1)
45
46 /* Single-page buffer */
47 struct hv_page_buffer {
48 u32 len;
49 u32 offset;
50 u64 pfn;
51 };
52
53 /* Multiple-page buffer */
54 struct hv_multipage_buffer {
55 /* Length and Offset determines the # of pfns in the array */
56 u32 len;
57 u32 offset;
58 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
59 };
60
61 /*
62 * Multiple-page buffer array; the pfn array is variable size:
63 * The number of entries in the PFN array is determined by
64 * "len" and "offset".
65 */
66 struct hv_mpb_array {
67 /* Length and Offset determines the # of pfns in the array */
68 u32 len;
69 u32 offset;
70 u64 pfn_array[];
71 };
72
73 /* 0x18 includes the proprietary packet header */
74 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
75 (sizeof(struct hv_page_buffer) * \
76 MAX_PAGE_BUFFER_COUNT))
77 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
78 sizeof(struct hv_multipage_buffer))
79
80
81 #pragma pack(pop)
82
83 struct hv_ring_buffer {
84 /* Offset in bytes from the start of ring data below */
85 u32 write_index;
86
87 /* Offset in bytes from the start of ring data below */
88 u32 read_index;
89
90 u32 interrupt_mask;
91
92 /*
93 * Win8 uses some of the reserved bits to implement
94 * interrupt driven flow management. On the send side
95 * we can request that the receiver interrupt the sender
96 * when the ring transitions from being full to being able
97 * to handle a message of size "pending_send_sz".
98 *
99 * Add necessary state for this enhancement.
100 */
101 u32 pending_send_sz;
102
103 u32 reserved1[12];
104
105 union {
106 struct {
107 u32 feat_pending_send_sz:1;
108 };
109 u32 value;
110 } feature_bits;
111
112 /* Pad it to PAGE_SIZE so that data starts on page boundary */
113 u8 reserved2[4028];
114
115 /*
116 * Ring data starts here + RingDataStartOffset
117 * !!! DO NOT place any fields below this !!!
118 */
119 u8 buffer[0];
120 } __packed;
121
122 struct hv_ring_buffer_info {
123 struct hv_ring_buffer *ring_buffer;
124 u32 ring_size; /* Include the shared header */
125 spinlock_t ring_lock;
126
127 u32 ring_datasize; /* < ring_size */
128 u32 ring_data_startoffset;
129 u32 priv_write_index;
130 u32 priv_read_index;
131 };
132
133 /*
134 *
135 * hv_get_ringbuffer_availbytes()
136 *
137 * Get number of bytes available to read and to write to
138 * for the specified ring buffer
139 */
140 static inline void
141 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
142 u32 *read, u32 *write)
143 {
144 u32 read_loc, write_loc, dsize;
145
146 /* Capture the read/write indices before they changed */
147 read_loc = rbi->ring_buffer->read_index;
148 write_loc = rbi->ring_buffer->write_index;
149 dsize = rbi->ring_datasize;
150
151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
152 read_loc - write_loc;
153 *read = dsize - *write;
154 }
155
156 static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi)
157 {
158 u32 read_loc, write_loc, dsize, read;
159
160 dsize = rbi->ring_datasize;
161 read_loc = rbi->ring_buffer->read_index;
162 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
163
164 read = write_loc >= read_loc ? (write_loc - read_loc) :
165 (dsize - read_loc) + write_loc;
166
167 return read;
168 }
169
170 static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi)
171 {
172 u32 read_loc, write_loc, dsize, write;
173
174 dsize = rbi->ring_datasize;
175 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
176 write_loc = rbi->ring_buffer->write_index;
177
178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
179 read_loc - write_loc;
180 return write;
181 }
182
183 /*
184 * VMBUS version is 32 bit entity broken up into
185 * two 16 bit quantities: major_number. minor_number.
186 *
187 * 0 . 13 (Windows Server 2008)
188 * 1 . 1 (Windows 7)
189 * 2 . 4 (Windows 8)
190 * 3 . 0 (Windows 8 R2)
191 * 4 . 0 (Windows 10)
192 */
193
194 #define VERSION_WS2008 ((0 << 16) | (13))
195 #define VERSION_WIN7 ((1 << 16) | (1))
196 #define VERSION_WIN8 ((2 << 16) | (4))
197 #define VERSION_WIN8_1 ((3 << 16) | (0))
198 #define VERSION_WIN10 ((4 << 16) | (0))
199
200 #define VERSION_INVAL -1
201
202 #define VERSION_CURRENT VERSION_WIN10
203
204 /* Make maximum size of pipe payload of 16K */
205 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
206
207 /* Define PipeMode values. */
208 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
209 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
210
211 /* The size of the user defined data buffer for non-pipe offers. */
212 #define MAX_USER_DEFINED_BYTES 120
213
214 /* The size of the user defined data buffer for pipe offers. */
215 #define MAX_PIPE_USER_DEFINED_BYTES 116
216
217 /*
218 * At the center of the Channel Management library is the Channel Offer. This
219 * struct contains the fundamental information about an offer.
220 */
221 struct vmbus_channel_offer {
222 uuid_le if_type;
223 uuid_le if_instance;
224
225 /*
226 * These two fields are not currently used.
227 */
228 u64 reserved1;
229 u64 reserved2;
230
231 u16 chn_flags;
232 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
233
234 union {
235 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
236 struct {
237 unsigned char user_def[MAX_USER_DEFINED_BYTES];
238 } std;
239
240 /*
241 * Pipes:
242 * The following sructure is an integrated pipe protocol, which
243 * is implemented on top of standard user-defined data. Pipe
244 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
245 * use.
246 */
247 struct {
248 u32 pipe_mode;
249 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
250 } pipe;
251 } u;
252 /*
253 * The sub_channel_index is defined in win8.
254 */
255 u16 sub_channel_index;
256 u16 reserved3;
257 } __packed;
258
259 /* Server Flags */
260 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
261 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
262 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
263 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
264 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
265 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
266 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
267 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
268
269 struct vmpacket_descriptor {
270 u16 type;
271 u16 offset8;
272 u16 len8;
273 u16 flags;
274 u64 trans_id;
275 } __packed;
276
277 struct vmpacket_header {
278 u32 prev_pkt_start_offset;
279 struct vmpacket_descriptor descriptor;
280 } __packed;
281
282 struct vmtransfer_page_range {
283 u32 byte_count;
284 u32 byte_offset;
285 } __packed;
286
287 struct vmtransfer_page_packet_header {
288 struct vmpacket_descriptor d;
289 u16 xfer_pageset_id;
290 u8 sender_owns_set;
291 u8 reserved;
292 u32 range_cnt;
293 struct vmtransfer_page_range ranges[1];
294 } __packed;
295
296 struct vmgpadl_packet_header {
297 struct vmpacket_descriptor d;
298 u32 gpadl;
299 u32 reserved;
300 } __packed;
301
302 struct vmadd_remove_transfer_page_set {
303 struct vmpacket_descriptor d;
304 u32 gpadl;
305 u16 xfer_pageset_id;
306 u16 reserved;
307 } __packed;
308
309 /*
310 * This structure defines a range in guest physical space that can be made to
311 * look virtually contiguous.
312 */
313 struct gpa_range {
314 u32 byte_count;
315 u32 byte_offset;
316 u64 pfn_array[0];
317 };
318
319 /*
320 * This is the format for an Establish Gpadl packet, which contains a handle by
321 * which this GPADL will be known and a set of GPA ranges associated with it.
322 * This can be converted to a MDL by the guest OS. If there are multiple GPA
323 * ranges, then the resulting MDL will be "chained," representing multiple VA
324 * ranges.
325 */
326 struct vmestablish_gpadl {
327 struct vmpacket_descriptor d;
328 u32 gpadl;
329 u32 range_cnt;
330 struct gpa_range range[1];
331 } __packed;
332
333 /*
334 * This is the format for a Teardown Gpadl packet, which indicates that the
335 * GPADL handle in the Establish Gpadl packet will never be referenced again.
336 */
337 struct vmteardown_gpadl {
338 struct vmpacket_descriptor d;
339 u32 gpadl;
340 u32 reserved; /* for alignment to a 8-byte boundary */
341 } __packed;
342
343 /*
344 * This is the format for a GPA-Direct packet, which contains a set of GPA
345 * ranges, in addition to commands and/or data.
346 */
347 struct vmdata_gpa_direct {
348 struct vmpacket_descriptor d;
349 u32 reserved;
350 u32 range_cnt;
351 struct gpa_range range[1];
352 } __packed;
353
354 /* This is the format for a Additional Data Packet. */
355 struct vmadditional_data {
356 struct vmpacket_descriptor d;
357 u64 total_bytes;
358 u32 offset;
359 u32 byte_cnt;
360 unsigned char data[1];
361 } __packed;
362
363 union vmpacket_largest_possible_header {
364 struct vmpacket_descriptor simple_hdr;
365 struct vmtransfer_page_packet_header xfer_page_hdr;
366 struct vmgpadl_packet_header gpadl_hdr;
367 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
368 struct vmestablish_gpadl establish_gpadl_hdr;
369 struct vmteardown_gpadl teardown_gpadl_hdr;
370 struct vmdata_gpa_direct data_gpa_direct_hdr;
371 };
372
373 #define VMPACKET_DATA_START_ADDRESS(__packet) \
374 (void *)(((unsigned char *)__packet) + \
375 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
376
377 #define VMPACKET_DATA_LENGTH(__packet) \
378 ((((struct vmpacket_descriptor)__packet)->len8 - \
379 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
380
381 #define VMPACKET_TRANSFER_MODE(__packet) \
382 (((struct IMPACT)__packet)->type)
383
384 enum vmbus_packet_type {
385 VM_PKT_INVALID = 0x0,
386 VM_PKT_SYNCH = 0x1,
387 VM_PKT_ADD_XFER_PAGESET = 0x2,
388 VM_PKT_RM_XFER_PAGESET = 0x3,
389 VM_PKT_ESTABLISH_GPADL = 0x4,
390 VM_PKT_TEARDOWN_GPADL = 0x5,
391 VM_PKT_DATA_INBAND = 0x6,
392 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
393 VM_PKT_DATA_USING_GPADL = 0x8,
394 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
395 VM_PKT_CANCEL_REQUEST = 0xa,
396 VM_PKT_COMP = 0xb,
397 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
398 VM_PKT_ADDITIONAL_DATA = 0xd
399 };
400
401 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
402
403
404 /* Version 1 messages */
405 enum vmbus_channel_message_type {
406 CHANNELMSG_INVALID = 0,
407 CHANNELMSG_OFFERCHANNEL = 1,
408 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
409 CHANNELMSG_REQUESTOFFERS = 3,
410 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
411 CHANNELMSG_OPENCHANNEL = 5,
412 CHANNELMSG_OPENCHANNEL_RESULT = 6,
413 CHANNELMSG_CLOSECHANNEL = 7,
414 CHANNELMSG_GPADL_HEADER = 8,
415 CHANNELMSG_GPADL_BODY = 9,
416 CHANNELMSG_GPADL_CREATED = 10,
417 CHANNELMSG_GPADL_TEARDOWN = 11,
418 CHANNELMSG_GPADL_TORNDOWN = 12,
419 CHANNELMSG_RELID_RELEASED = 13,
420 CHANNELMSG_INITIATE_CONTACT = 14,
421 CHANNELMSG_VERSION_RESPONSE = 15,
422 CHANNELMSG_UNLOAD = 16,
423 CHANNELMSG_UNLOAD_RESPONSE = 17,
424 CHANNELMSG_18 = 18,
425 CHANNELMSG_19 = 19,
426 CHANNELMSG_20 = 20,
427 CHANNELMSG_TL_CONNECT_REQUEST = 21,
428 CHANNELMSG_COUNT
429 };
430
431 struct vmbus_channel_message_header {
432 enum vmbus_channel_message_type msgtype;
433 u32 padding;
434 } __packed;
435
436 /* Query VMBus Version parameters */
437 struct vmbus_channel_query_vmbus_version {
438 struct vmbus_channel_message_header header;
439 u32 version;
440 } __packed;
441
442 /* VMBus Version Supported parameters */
443 struct vmbus_channel_version_supported {
444 struct vmbus_channel_message_header header;
445 u8 version_supported;
446 } __packed;
447
448 /* Offer Channel parameters */
449 struct vmbus_channel_offer_channel {
450 struct vmbus_channel_message_header header;
451 struct vmbus_channel_offer offer;
452 u32 child_relid;
453 u8 monitorid;
454 /*
455 * win7 and beyond splits this field into a bit field.
456 */
457 u8 monitor_allocated:1;
458 u8 reserved:7;
459 /*
460 * These are new fields added in win7 and later.
461 * Do not access these fields without checking the
462 * negotiated protocol.
463 *
464 * If "is_dedicated_interrupt" is set, we must not set the
465 * associated bit in the channel bitmap while sending the
466 * interrupt to the host.
467 *
468 * connection_id is to be used in signaling the host.
469 */
470 u16 is_dedicated_interrupt:1;
471 u16 reserved1:15;
472 u32 connection_id;
473 } __packed;
474
475 /* Rescind Offer parameters */
476 struct vmbus_channel_rescind_offer {
477 struct vmbus_channel_message_header header;
478 u32 child_relid;
479 } __packed;
480
481 /*
482 * Request Offer -- no parameters, SynIC message contains the partition ID
483 * Set Snoop -- no parameters, SynIC message contains the partition ID
484 * Clear Snoop -- no parameters, SynIC message contains the partition ID
485 * All Offers Delivered -- no parameters, SynIC message contains the partition
486 * ID
487 * Flush Client -- no parameters, SynIC message contains the partition ID
488 */
489
490 /* Open Channel parameters */
491 struct vmbus_channel_open_channel {
492 struct vmbus_channel_message_header header;
493
494 /* Identifies the specific VMBus channel that is being opened. */
495 u32 child_relid;
496
497 /* ID making a particular open request at a channel offer unique. */
498 u32 openid;
499
500 /* GPADL for the channel's ring buffer. */
501 u32 ringbuffer_gpadlhandle;
502
503 /*
504 * Starting with win8, this field will be used to specify
505 * the target virtual processor on which to deliver the interrupt for
506 * the host to guest communication.
507 * Prior to win8, incoming channel interrupts would only
508 * be delivered on cpu 0. Setting this value to 0 would
509 * preserve the earlier behavior.
510 */
511 u32 target_vp;
512
513 /*
514 * The upstream ring buffer begins at offset zero in the memory
515 * described by RingBufferGpadlHandle. The downstream ring buffer
516 * follows it at this offset (in pages).
517 */
518 u32 downstream_ringbuffer_pageoffset;
519
520 /* User-specific data to be passed along to the server endpoint. */
521 unsigned char userdata[MAX_USER_DEFINED_BYTES];
522 } __packed;
523
524 /* Open Channel Result parameters */
525 struct vmbus_channel_open_result {
526 struct vmbus_channel_message_header header;
527 u32 child_relid;
528 u32 openid;
529 u32 status;
530 } __packed;
531
532 /* Close channel parameters; */
533 struct vmbus_channel_close_channel {
534 struct vmbus_channel_message_header header;
535 u32 child_relid;
536 } __packed;
537
538 /* Channel Message GPADL */
539 #define GPADL_TYPE_RING_BUFFER 1
540 #define GPADL_TYPE_SERVER_SAVE_AREA 2
541 #define GPADL_TYPE_TRANSACTION 8
542
543 /*
544 * The number of PFNs in a GPADL message is defined by the number of
545 * pages that would be spanned by ByteCount and ByteOffset. If the
546 * implied number of PFNs won't fit in this packet, there will be a
547 * follow-up packet that contains more.
548 */
549 struct vmbus_channel_gpadl_header {
550 struct vmbus_channel_message_header header;
551 u32 child_relid;
552 u32 gpadl;
553 u16 range_buflen;
554 u16 rangecount;
555 struct gpa_range range[0];
556 } __packed;
557
558 /* This is the followup packet that contains more PFNs. */
559 struct vmbus_channel_gpadl_body {
560 struct vmbus_channel_message_header header;
561 u32 msgnumber;
562 u32 gpadl;
563 u64 pfn[0];
564 } __packed;
565
566 struct vmbus_channel_gpadl_created {
567 struct vmbus_channel_message_header header;
568 u32 child_relid;
569 u32 gpadl;
570 u32 creation_status;
571 } __packed;
572
573 struct vmbus_channel_gpadl_teardown {
574 struct vmbus_channel_message_header header;
575 u32 child_relid;
576 u32 gpadl;
577 } __packed;
578
579 struct vmbus_channel_gpadl_torndown {
580 struct vmbus_channel_message_header header;
581 u32 gpadl;
582 } __packed;
583
584 struct vmbus_channel_relid_released {
585 struct vmbus_channel_message_header header;
586 u32 child_relid;
587 } __packed;
588
589 struct vmbus_channel_initiate_contact {
590 struct vmbus_channel_message_header header;
591 u32 vmbus_version_requested;
592 u32 target_vcpu; /* The VCPU the host should respond to */
593 u64 interrupt_page;
594 u64 monitor_page1;
595 u64 monitor_page2;
596 } __packed;
597
598 /* Hyper-V socket: guest's connect()-ing to host */
599 struct vmbus_channel_tl_connect_request {
600 struct vmbus_channel_message_header header;
601 uuid_le guest_endpoint_id;
602 uuid_le host_service_id;
603 } __packed;
604
605 struct vmbus_channel_version_response {
606 struct vmbus_channel_message_header header;
607 u8 version_supported;
608 } __packed;
609
610 enum vmbus_channel_state {
611 CHANNEL_OFFER_STATE,
612 CHANNEL_OPENING_STATE,
613 CHANNEL_OPEN_STATE,
614 CHANNEL_OPENED_STATE,
615 };
616
617 /*
618 * Represents each channel msg on the vmbus connection This is a
619 * variable-size data structure depending on the msg type itself
620 */
621 struct vmbus_channel_msginfo {
622 /* Bookkeeping stuff */
623 struct list_head msglistentry;
624
625 /* So far, this is only used to handle gpadl body message */
626 struct list_head submsglist;
627
628 /* Synchronize the request/response if needed */
629 struct completion waitevent;
630 union {
631 struct vmbus_channel_version_supported version_supported;
632 struct vmbus_channel_open_result open_result;
633 struct vmbus_channel_gpadl_torndown gpadl_torndown;
634 struct vmbus_channel_gpadl_created gpadl_created;
635 struct vmbus_channel_version_response version_response;
636 } response;
637
638 u32 msgsize;
639 /*
640 * The channel message that goes out on the "wire".
641 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
642 */
643 unsigned char msg[0];
644 };
645
646 struct vmbus_close_msg {
647 struct vmbus_channel_msginfo info;
648 struct vmbus_channel_close_channel msg;
649 };
650
651 /* Define connection identifier type. */
652 union hv_connection_id {
653 u32 asu32;
654 struct {
655 u32 id:24;
656 u32 reserved:8;
657 } u;
658 };
659
660 /* Definition of the hv_signal_event hypercall input structure. */
661 struct hv_input_signal_event {
662 union hv_connection_id connectionid;
663 u16 flag_number;
664 u16 rsvdz;
665 };
666
667 struct hv_input_signal_event_buffer {
668 u64 align8;
669 struct hv_input_signal_event event;
670 };
671
672 enum hv_signal_policy {
673 HV_SIGNAL_POLICY_DEFAULT = 0,
674 HV_SIGNAL_POLICY_EXPLICIT,
675 };
676
677 enum vmbus_device_type {
678 HV_IDE = 0,
679 HV_SCSI,
680 HV_FC,
681 HV_NIC,
682 HV_ND,
683 HV_PCIE,
684 HV_FB,
685 HV_KBD,
686 HV_MOUSE,
687 HV_KVP,
688 HV_TS,
689 HV_HB,
690 HV_SHUTDOWN,
691 HV_FCOPY,
692 HV_BACKUP,
693 HV_DM,
694 HV_UNKOWN,
695 };
696
697 struct vmbus_device {
698 u16 dev_type;
699 uuid_le guid;
700 bool perf_device;
701 };
702
703 struct vmbus_channel {
704 /* Unique channel id */
705 int id;
706
707 struct list_head listentry;
708
709 struct hv_device *device_obj;
710
711 enum vmbus_channel_state state;
712
713 struct vmbus_channel_offer_channel offermsg;
714 /*
715 * These are based on the OfferMsg.MonitorId.
716 * Save it here for easy access.
717 */
718 u8 monitor_grp;
719 u8 monitor_bit;
720
721 bool rescind; /* got rescind msg */
722
723 u32 ringbuffer_gpadlhandle;
724
725 /* Allocated memory for ring buffer */
726 void *ringbuffer_pages;
727 u32 ringbuffer_pagecount;
728 struct hv_ring_buffer_info outbound; /* send to parent */
729 struct hv_ring_buffer_info inbound; /* receive from parent */
730 spinlock_t inbound_lock;
731
732 struct vmbus_close_msg close_msg;
733
734 /* Channel callback are invoked in this workqueue context */
735 /* HANDLE dataWorkQueue; */
736
737 void (*onchannel_callback)(void *context);
738 void *channel_callback_context;
739
740 /*
741 * A channel can be marked for efficient (batched)
742 * reading:
743 * If batched_reading is set to "true", we read until the
744 * channel is empty and hold off interrupts from the host
745 * during the entire read process.
746 * If batched_reading is set to "false", the client is not
747 * going to perform batched reading.
748 *
749 * By default we will enable batched reading; specific
750 * drivers that don't want this behavior can turn it off.
751 */
752
753 bool batched_reading;
754
755 bool is_dedicated_interrupt;
756 struct hv_input_signal_event_buffer sig_buf;
757 struct hv_input_signal_event *sig_event;
758
759 /*
760 * Starting with win8, this field will be used to specify
761 * the target virtual processor on which to deliver the interrupt for
762 * the host to guest communication.
763 * Prior to win8, incoming channel interrupts would only
764 * be delivered on cpu 0. Setting this value to 0 would
765 * preserve the earlier behavior.
766 */
767 u32 target_vp;
768 /* The corresponding CPUID in the guest */
769 u32 target_cpu;
770 /*
771 * State to manage the CPU affiliation of channels.
772 */
773 struct cpumask alloced_cpus_in_node;
774 int numa_node;
775 /*
776 * Support for sub-channels. For high performance devices,
777 * it will be useful to have multiple sub-channels to support
778 * a scalable communication infrastructure with the host.
779 * The support for sub-channels is implemented as an extention
780 * to the current infrastructure.
781 * The initial offer is considered the primary channel and this
782 * offer message will indicate if the host supports sub-channels.
783 * The guest is free to ask for sub-channels to be offerred and can
784 * open these sub-channels as a normal "primary" channel. However,
785 * all sub-channels will have the same type and instance guids as the
786 * primary channel. Requests sent on a given channel will result in a
787 * response on the same channel.
788 */
789
790 /*
791 * Sub-channel creation callback. This callback will be called in
792 * process context when a sub-channel offer is received from the host.
793 * The guest can open the sub-channel in the context of this callback.
794 */
795 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
796
797 /*
798 * Channel rescind callback. Some channels (the hvsock ones), need to
799 * register a callback which is invoked in vmbus_onoffer_rescind().
800 */
801 void (*chn_rescind_callback)(struct vmbus_channel *channel);
802
803 /*
804 * The spinlock to protect the structure. It is being used to protect
805 * test-and-set access to various attributes of the structure as well
806 * as all sc_list operations.
807 */
808 spinlock_t lock;
809 /*
810 * All Sub-channels of a primary channel are linked here.
811 */
812 struct list_head sc_list;
813 /*
814 * Current number of sub-channels.
815 */
816 int num_sc;
817 /*
818 * Number of a sub-channel (position within sc_list) which is supposed
819 * to be used as the next outgoing channel.
820 */
821 int next_oc;
822 /*
823 * The primary channel this sub-channel belongs to.
824 * This will be NULL for the primary channel.
825 */
826 struct vmbus_channel *primary_channel;
827 /*
828 * Support per-channel state for use by vmbus drivers.
829 */
830 void *per_channel_state;
831 /*
832 * To support per-cpu lookup mapping of relid to channel,
833 * link up channels based on their CPU affinity.
834 */
835 struct list_head percpu_list;
836 /*
837 * Host signaling policy: The default policy will be
838 * based on the ring buffer state. We will also support
839 * a policy where the client driver can have explicit
840 * signaling control.
841 */
842 enum hv_signal_policy signal_policy;
843 /*
844 * On the channel send side, many of the VMBUS
845 * device drivers explicity serialize access to the
846 * outgoing ring buffer. Give more control to the
847 * VMBUS device drivers in terms how to serialize
848 * accesss to the outgoing ring buffer.
849 * The default behavior will be to aquire the
850 * ring lock to preserve the current behavior.
851 */
852 bool acquire_ring_lock;
853
854 };
855
856 static inline void set_channel_lock_state(struct vmbus_channel *c, bool state)
857 {
858 c->acquire_ring_lock = state;
859 }
860
861 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
862 {
863 return !!(c->offermsg.offer.chn_flags &
864 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
865 }
866
867 static inline void set_channel_signal_state(struct vmbus_channel *c,
868 enum hv_signal_policy policy)
869 {
870 c->signal_policy = policy;
871 }
872
873 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
874 {
875 c->batched_reading = state;
876 }
877
878 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
879 {
880 c->per_channel_state = s;
881 }
882
883 static inline void *get_per_channel_state(struct vmbus_channel *c)
884 {
885 return c->per_channel_state;
886 }
887
888 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
889 u32 size)
890 {
891 c->outbound.ring_buffer->pending_send_sz = size;
892 }
893
894 void vmbus_onmessage(void *context);
895
896 int vmbus_request_offers(void);
897
898 /*
899 * APIs for managing sub-channels.
900 */
901
902 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
903 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
904
905 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
906 void (*chn_rescind_cb)(struct vmbus_channel *));
907
908 /*
909 * Retrieve the (sub) channel on which to send an outgoing request.
910 * When a primary channel has multiple sub-channels, we choose a
911 * channel whose VCPU binding is closest to the VCPU on which
912 * this call is being made.
913 */
914 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
915
916 /*
917 * Check if sub-channels have already been offerred. This API will be useful
918 * when the driver is unloaded after establishing sub-channels. In this case,
919 * when the driver is re-loaded, the driver would have to check if the
920 * subchannels have already been established before attempting to request
921 * the creation of sub-channels.
922 * This function returns TRUE to indicate that subchannels have already been
923 * created.
924 * This function should be invoked after setting the callback function for
925 * sub-channel creation.
926 */
927 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
928
929 /* The format must be the same as struct vmdata_gpa_direct */
930 struct vmbus_channel_packet_page_buffer {
931 u16 type;
932 u16 dataoffset8;
933 u16 length8;
934 u16 flags;
935 u64 transactionid;
936 u32 reserved;
937 u32 rangecount;
938 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
939 } __packed;
940
941 /* The format must be the same as struct vmdata_gpa_direct */
942 struct vmbus_channel_packet_multipage_buffer {
943 u16 type;
944 u16 dataoffset8;
945 u16 length8;
946 u16 flags;
947 u64 transactionid;
948 u32 reserved;
949 u32 rangecount; /* Always 1 in this case */
950 struct hv_multipage_buffer range;
951 } __packed;
952
953 /* The format must be the same as struct vmdata_gpa_direct */
954 struct vmbus_packet_mpb_array {
955 u16 type;
956 u16 dataoffset8;
957 u16 length8;
958 u16 flags;
959 u64 transactionid;
960 u32 reserved;
961 u32 rangecount; /* Always 1 in this case */
962 struct hv_mpb_array range;
963 } __packed;
964
965
966 extern int vmbus_open(struct vmbus_channel *channel,
967 u32 send_ringbuffersize,
968 u32 recv_ringbuffersize,
969 void *userdata,
970 u32 userdatalen,
971 void(*onchannel_callback)(void *context),
972 void *context);
973
974 extern void vmbus_close(struct vmbus_channel *channel);
975
976 extern int vmbus_sendpacket(struct vmbus_channel *channel,
977 void *buffer,
978 u32 bufferLen,
979 u64 requestid,
980 enum vmbus_packet_type type,
981 u32 flags);
982
983 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
984 void *buffer,
985 u32 bufferLen,
986 u64 requestid,
987 enum vmbus_packet_type type,
988 u32 flags,
989 bool kick_q);
990
991 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
992 struct hv_page_buffer pagebuffers[],
993 u32 pagecount,
994 void *buffer,
995 u32 bufferlen,
996 u64 requestid);
997
998 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
999 struct hv_page_buffer pagebuffers[],
1000 u32 pagecount,
1001 void *buffer,
1002 u32 bufferlen,
1003 u64 requestid,
1004 u32 flags,
1005 bool kick_q);
1006
1007 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1008 struct hv_multipage_buffer *mpb,
1009 void *buffer,
1010 u32 bufferlen,
1011 u64 requestid);
1012
1013 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1014 struct vmbus_packet_mpb_array *mpb,
1015 u32 desc_size,
1016 void *buffer,
1017 u32 bufferlen,
1018 u64 requestid);
1019
1020 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1021 void *kbuffer,
1022 u32 size,
1023 u32 *gpadl_handle);
1024
1025 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1026 u32 gpadl_handle);
1027
1028 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1029 void *buffer,
1030 u32 bufferlen,
1031 u32 *buffer_actual_len,
1032 u64 *requestid);
1033
1034 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1035 void *buffer,
1036 u32 bufferlen,
1037 u32 *buffer_actual_len,
1038 u64 *requestid);
1039
1040
1041 extern void vmbus_ontimer(unsigned long data);
1042
1043 /* Base driver object */
1044 struct hv_driver {
1045 const char *name;
1046
1047 /*
1048 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1049 * channel flag, actually doesn't mean a synthetic device because the
1050 * offer's if_type/if_instance can change for every new hvsock
1051 * connection.
1052 *
1053 * However, to facilitate the notification of new-offer/rescind-offer
1054 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1055 * a special vmbus device, and hence we need the below flag to
1056 * indicate if the driver is the hvsock driver or not: we need to
1057 * specially treat the hvosck offer & driver in vmbus_match().
1058 */
1059 bool hvsock;
1060
1061 /* the device type supported by this driver */
1062 uuid_le dev_type;
1063 const struct hv_vmbus_device_id *id_table;
1064
1065 struct device_driver driver;
1066
1067 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1068 int (*remove)(struct hv_device *);
1069 void (*shutdown)(struct hv_device *);
1070
1071 };
1072
1073 /* Base device object */
1074 struct hv_device {
1075 /* the device type id of this device */
1076 uuid_le dev_type;
1077
1078 /* the device instance id of this device */
1079 uuid_le dev_instance;
1080 u16 vendor_id;
1081 u16 device_id;
1082
1083 struct device device;
1084
1085 struct vmbus_channel *channel;
1086 };
1087
1088
1089 static inline struct hv_device *device_to_hv_device(struct device *d)
1090 {
1091 return container_of(d, struct hv_device, device);
1092 }
1093
1094 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1095 {
1096 return container_of(d, struct hv_driver, driver);
1097 }
1098
1099 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1100 {
1101 dev_set_drvdata(&dev->device, data);
1102 }
1103
1104 static inline void *hv_get_drvdata(struct hv_device *dev)
1105 {
1106 return dev_get_drvdata(&dev->device);
1107 }
1108
1109 /* Vmbus interface */
1110 #define vmbus_driver_register(driver) \
1111 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1112 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1113 struct module *owner,
1114 const char *mod_name);
1115 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1116
1117 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1118
1119 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1120 resource_size_t min, resource_size_t max,
1121 resource_size_t size, resource_size_t align,
1122 bool fb_overlap_ok);
1123 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1124 int vmbus_cpu_number_to_vp_number(int cpu_number);
1125 u64 hv_do_hypercall(u64 control, void *input, void *output);
1126
1127 /*
1128 * GUID definitions of various offer types - services offered to the guest.
1129 */
1130
1131 /*
1132 * Network GUID
1133 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1134 */
1135 #define HV_NIC_GUID \
1136 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1137 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1138
1139 /*
1140 * IDE GUID
1141 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1142 */
1143 #define HV_IDE_GUID \
1144 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1145 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1146
1147 /*
1148 * SCSI GUID
1149 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1150 */
1151 #define HV_SCSI_GUID \
1152 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1153 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1154
1155 /*
1156 * Shutdown GUID
1157 * {0e0b6031-5213-4934-818b-38d90ced39db}
1158 */
1159 #define HV_SHUTDOWN_GUID \
1160 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1161 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1162
1163 /*
1164 * Time Synch GUID
1165 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1166 */
1167 #define HV_TS_GUID \
1168 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1169 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1170
1171 /*
1172 * Heartbeat GUID
1173 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1174 */
1175 #define HV_HEART_BEAT_GUID \
1176 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1177 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1178
1179 /*
1180 * KVP GUID
1181 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1182 */
1183 #define HV_KVP_GUID \
1184 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1185 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1186
1187 /*
1188 * Dynamic memory GUID
1189 * {525074dc-8985-46e2-8057-a307dc18a502}
1190 */
1191 #define HV_DM_GUID \
1192 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1193 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1194
1195 /*
1196 * Mouse GUID
1197 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1198 */
1199 #define HV_MOUSE_GUID \
1200 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1201 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1202
1203 /*
1204 * Keyboard GUID
1205 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1206 */
1207 #define HV_KBD_GUID \
1208 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1209 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1210
1211 /*
1212 * VSS (Backup/Restore) GUID
1213 */
1214 #define HV_VSS_GUID \
1215 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1216 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1217 /*
1218 * Synthetic Video GUID
1219 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1220 */
1221 #define HV_SYNTHVID_GUID \
1222 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1223 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1224
1225 /*
1226 * Synthetic FC GUID
1227 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1228 */
1229 #define HV_SYNTHFC_GUID \
1230 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1231 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1232
1233 /*
1234 * Guest File Copy Service
1235 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1236 */
1237
1238 #define HV_FCOPY_GUID \
1239 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1240 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1241
1242 /*
1243 * NetworkDirect. This is the guest RDMA service.
1244 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1245 */
1246 #define HV_ND_GUID \
1247 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1248 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1249
1250 /*
1251 * PCI Express Pass Through
1252 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1253 */
1254
1255 #define HV_PCIE_GUID \
1256 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1257 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1258
1259 /*
1260 * Common header for Hyper-V ICs
1261 */
1262
1263 #define ICMSGTYPE_NEGOTIATE 0
1264 #define ICMSGTYPE_HEARTBEAT 1
1265 #define ICMSGTYPE_KVPEXCHANGE 2
1266 #define ICMSGTYPE_SHUTDOWN 3
1267 #define ICMSGTYPE_TIMESYNC 4
1268 #define ICMSGTYPE_VSS 5
1269
1270 #define ICMSGHDRFLAG_TRANSACTION 1
1271 #define ICMSGHDRFLAG_REQUEST 2
1272 #define ICMSGHDRFLAG_RESPONSE 4
1273
1274
1275 /*
1276 * While we want to handle util services as regular devices,
1277 * there is only one instance of each of these services; so
1278 * we statically allocate the service specific state.
1279 */
1280
1281 struct hv_util_service {
1282 u8 *recv_buffer;
1283 void *channel;
1284 void (*util_cb)(void *);
1285 int (*util_init)(struct hv_util_service *);
1286 void (*util_deinit)(void);
1287 };
1288
1289 struct vmbuspipe_hdr {
1290 u32 flags;
1291 u32 msgsize;
1292 } __packed;
1293
1294 struct ic_version {
1295 u16 major;
1296 u16 minor;
1297 } __packed;
1298
1299 struct icmsg_hdr {
1300 struct ic_version icverframe;
1301 u16 icmsgtype;
1302 struct ic_version icvermsg;
1303 u16 icmsgsize;
1304 u32 status;
1305 u8 ictransaction_id;
1306 u8 icflags;
1307 u8 reserved[2];
1308 } __packed;
1309
1310 struct icmsg_negotiate {
1311 u16 icframe_vercnt;
1312 u16 icmsg_vercnt;
1313 u32 reserved;
1314 struct ic_version icversion_data[1]; /* any size array */
1315 } __packed;
1316
1317 struct shutdown_msg_data {
1318 u32 reason_code;
1319 u32 timeout_seconds;
1320 u32 flags;
1321 u8 display_message[2048];
1322 } __packed;
1323
1324 struct heartbeat_msg_data {
1325 u64 seq_num;
1326 u32 reserved[8];
1327 } __packed;
1328
1329 /* Time Sync IC defs */
1330 #define ICTIMESYNCFLAG_PROBE 0
1331 #define ICTIMESYNCFLAG_SYNC 1
1332 #define ICTIMESYNCFLAG_SAMPLE 2
1333
1334 #ifdef __x86_64__
1335 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1336 #else
1337 #define WLTIMEDELTA 116444736000000000LL
1338 #endif
1339
1340 struct ictimesync_data {
1341 u64 parenttime;
1342 u64 childtime;
1343 u64 roundtriptime;
1344 u8 flags;
1345 } __packed;
1346
1347 struct hyperv_service_callback {
1348 u8 msg_type;
1349 char *log_msg;
1350 uuid_le data;
1351 struct vmbus_channel *channel;
1352 void (*callback) (void *context);
1353 };
1354
1355 #define MAX_SRV_VER 0x7ffffff
1356 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1357 struct icmsg_negotiate *, u8 *, int,
1358 int);
1359
1360 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1361
1362 /*
1363 * Negotiated version with the Host.
1364 */
1365
1366 extern __u32 vmbus_proto_version;
1367
1368 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1369 const uuid_le *shv_host_servie_id);
1370 void vmbus_set_event(struct vmbus_channel *channel);
1371
1372 /* Get the start of the ring buffer. */
1373 static inline void *
1374 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
1375 {
1376 return (void *)ring_info->ring_buffer->buffer;
1377 }
1378
1379 /*
1380 * To optimize the flow management on the send-side,
1381 * when the sender is blocked because of lack of
1382 * sufficient space in the ring buffer, potential the
1383 * consumer of the ring buffer can signal the producer.
1384 * This is controlled by the following parameters:
1385 *
1386 * 1. pending_send_sz: This is the size in bytes that the
1387 * producer is trying to send.
1388 * 2. The feature bit feat_pending_send_sz set to indicate if
1389 * the consumer of the ring will signal when the ring
1390 * state transitions from being full to a state where
1391 * there is room for the producer to send the pending packet.
1392 */
1393
1394 static inline bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
1395 {
1396 u32 cur_write_sz;
1397 u32 pending_sz;
1398
1399 /*
1400 * Issue a full memory barrier before making the signaling decision.
1401 * Here is the reason for having this barrier:
1402 * If the reading of the pend_sz (in this function)
1403 * were to be reordered and read before we commit the new read
1404 * index (in the calling function) we could
1405 * have a problem. If the host were to set the pending_sz after we
1406 * have sampled pending_sz and go to sleep before we commit the
1407 * read index, we could miss sending the interrupt. Issue a full
1408 * memory barrier to address this.
1409 */
1410 virt_mb();
1411
1412 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1413 /* If the other end is not blocked on write don't bother. */
1414 if (pending_sz == 0)
1415 return false;
1416
1417 cur_write_sz = hv_get_bytes_to_write(rbi);
1418
1419 if (cur_write_sz >= pending_sz)
1420 return true;
1421
1422 return false;
1423 }
1424
1425 /*
1426 * An API to support in-place processing of incoming VMBUS packets.
1427 */
1428 #define VMBUS_PKT_TRAILER 8
1429
1430 static inline struct vmpacket_descriptor *
1431 get_next_pkt_raw(struct vmbus_channel *channel)
1432 {
1433 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1434 u32 read_loc = ring_info->priv_read_index;
1435 void *ring_buffer = hv_get_ring_buffer(ring_info);
1436 struct vmpacket_descriptor *cur_desc;
1437 u32 packetlen;
1438 u32 dsize = ring_info->ring_datasize;
1439 u32 delta = read_loc - ring_info->ring_buffer->read_index;
1440 u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta);
1441
1442 if (bytes_avail_toread < sizeof(struct vmpacket_descriptor))
1443 return NULL;
1444
1445 if ((read_loc + sizeof(*cur_desc)) > dsize)
1446 return NULL;
1447
1448 cur_desc = ring_buffer + read_loc;
1449 packetlen = cur_desc->len8 << 3;
1450
1451 /*
1452 * If the packet under consideration is wrapping around,
1453 * return failure.
1454 */
1455 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > (dsize - 1))
1456 return NULL;
1457
1458 return cur_desc;
1459 }
1460
1461 /*
1462 * A helper function to step through packets "in-place"
1463 * This API is to be called after each successful call
1464 * get_next_pkt_raw().
1465 */
1466 static inline void put_pkt_raw(struct vmbus_channel *channel,
1467 struct vmpacket_descriptor *desc)
1468 {
1469 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1470 u32 read_loc = ring_info->priv_read_index;
1471 u32 packetlen = desc->len8 << 3;
1472 u32 dsize = ring_info->ring_datasize;
1473
1474 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > dsize)
1475 BUG();
1476 /*
1477 * Include the packet trailer.
1478 */
1479 ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
1480 }
1481
1482 /*
1483 * This call commits the read index and potentially signals the host.
1484 * Here is the pattern for using the "in-place" consumption APIs:
1485 *
1486 * while (get_next_pkt_raw() {
1487 * process the packet "in-place";
1488 * put_pkt_raw();
1489 * }
1490 * if (packets processed in place)
1491 * commit_rd_index();
1492 */
1493 static inline void commit_rd_index(struct vmbus_channel *channel)
1494 {
1495 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1496 /*
1497 * Make sure all reads are done before we update the read index since
1498 * the writer may start writing to the read area once the read index
1499 * is updated.
1500 */
1501 virt_rmb();
1502 ring_info->ring_buffer->read_index = ring_info->priv_read_index;
1503
1504 if (hv_need_to_signal_on_read(ring_info))
1505 vmbus_set_event(channel);
1506 }
1507
1508
1509 #endif /* _HYPERV_H */
This page took 0.062114 seconds and 5 git commands to generate.