ktime: Change ktime_set() to take 64bit seconds value
[deliverable/linux.git] / include / linux / ktime.h
1 /*
2 * include/linux/ktime.h
3 *
4 * ktime_t - nanosecond-resolution time format.
5 *
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8 *
9 * data type definitions, declarations, prototypes and macros.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * Credits:
14 *
15 * Roman Zippel provided the ideas and primary code snippets of
16 * the ktime_t union and further simplifications of the original
17 * code.
18 *
19 * For licencing details see kernel-base/COPYING
20 */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26
27 /*
28 * ktime_t:
29 *
30 * A single 64-bit variable is used to store the hrtimers
31 * internal representation of time values in scalar nanoseconds. The
32 * design plays out best on 64-bit CPUs, where most conversions are
33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
34 * operations.
35 *
36 */
37 union ktime {
38 s64 tv64;
39 };
40
41 typedef union ktime ktime_t; /* Kill this */
42
43 /**
44 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
45 * @secs: seconds to set
46 * @nsecs: nanoseconds to set
47 *
48 * Return: The ktime_t representation of the value.
49 */
50 static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
51 {
52 if (unlikely(secs >= KTIME_SEC_MAX))
53 return (ktime_t){ .tv64 = KTIME_MAX };
54
55 return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs };
56 }
57
58 /* Subtract two ktime_t variables. rem = lhs -rhs: */
59 #define ktime_sub(lhs, rhs) \
60 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
61
62 /* Add two ktime_t variables. res = lhs + rhs: */
63 #define ktime_add(lhs, rhs) \
64 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
65
66 /*
67 * Add a ktime_t variable and a scalar nanosecond value.
68 * res = kt + nsval:
69 */
70 #define ktime_add_ns(kt, nsval) \
71 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
72
73 /*
74 * Subtract a scalar nanosecod from a ktime_t variable
75 * res = kt - nsval:
76 */
77 #define ktime_sub_ns(kt, nsval) \
78 ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
79
80 /* convert a timespec to ktime_t format: */
81 static inline ktime_t timespec_to_ktime(struct timespec ts)
82 {
83 return ktime_set(ts.tv_sec, ts.tv_nsec);
84 }
85
86 /* convert a timeval to ktime_t format: */
87 static inline ktime_t timeval_to_ktime(struct timeval tv)
88 {
89 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
90 }
91
92 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
93 #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
94
95 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
96 #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
97
98 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
99 #define ktime_to_ns(kt) ((kt).tv64)
100
101
102 /**
103 * ktime_equal - Compares two ktime_t variables to see if they are equal
104 * @cmp1: comparable1
105 * @cmp2: comparable2
106 *
107 * Compare two ktime_t variables.
108 *
109 * Return: 1 if equal.
110 */
111 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
112 {
113 return cmp1.tv64 == cmp2.tv64;
114 }
115
116 /**
117 * ktime_compare - Compares two ktime_t variables for less, greater or equal
118 * @cmp1: comparable1
119 * @cmp2: comparable2
120 *
121 * Return: ...
122 * cmp1 < cmp2: return <0
123 * cmp1 == cmp2: return 0
124 * cmp1 > cmp2: return >0
125 */
126 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
127 {
128 if (cmp1.tv64 < cmp2.tv64)
129 return -1;
130 if (cmp1.tv64 > cmp2.tv64)
131 return 1;
132 return 0;
133 }
134
135 /**
136 * ktime_after - Compare if a ktime_t value is bigger than another one.
137 * @cmp1: comparable1
138 * @cmp2: comparable2
139 *
140 * Return: true if cmp1 happened after cmp2.
141 */
142 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
143 {
144 return ktime_compare(cmp1, cmp2) > 0;
145 }
146
147 /**
148 * ktime_before - Compare if a ktime_t value is smaller than another one.
149 * @cmp1: comparable1
150 * @cmp2: comparable2
151 *
152 * Return: true if cmp1 happened before cmp2.
153 */
154 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
155 {
156 return ktime_compare(cmp1, cmp2) < 0;
157 }
158
159 #if BITS_PER_LONG < 64
160 extern u64 ktime_divns(const ktime_t kt, s64 div);
161 #else /* BITS_PER_LONG < 64 */
162 # define ktime_divns(kt, div) (u64)((kt).tv64 / (div))
163 #endif
164
165 static inline s64 ktime_to_us(const ktime_t kt)
166 {
167 return ktime_divns(kt, NSEC_PER_USEC);
168 }
169
170 static inline s64 ktime_to_ms(const ktime_t kt)
171 {
172 return ktime_divns(kt, NSEC_PER_MSEC);
173 }
174
175 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
176 {
177 return ktime_to_us(ktime_sub(later, earlier));
178 }
179
180 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
181 {
182 return ktime_add_ns(kt, usec * NSEC_PER_USEC);
183 }
184
185 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
186 {
187 return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
188 }
189
190 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
191 {
192 return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
193 }
194
195 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
196
197 /**
198 * ktime_to_timespec_cond - convert a ktime_t variable to timespec
199 * format only if the variable contains data
200 * @kt: the ktime_t variable to convert
201 * @ts: the timespec variable to store the result in
202 *
203 * Return: %true if there was a successful conversion, %false if kt was 0.
204 */
205 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
206 struct timespec *ts)
207 {
208 if (kt.tv64) {
209 *ts = ktime_to_timespec(kt);
210 return true;
211 } else {
212 return false;
213 }
214 }
215
216 /*
217 * The resolution of the clocks. The resolution value is returned in
218 * the clock_getres() system call to give application programmers an
219 * idea of the (in)accuracy of timers. Timer values are rounded up to
220 * this resolution values.
221 */
222 #define LOW_RES_NSEC TICK_NSEC
223 #define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC }
224
225 /* Get the monotonic time in timespec format: */
226 extern void ktime_get_ts(struct timespec *ts);
227
228 /* Get the real (wall-) time in timespec format: */
229 #define ktime_get_real_ts(ts) getnstimeofday(ts)
230
231 static inline ktime_t ns_to_ktime(u64 ns)
232 {
233 static const ktime_t ktime_zero = { .tv64 = 0 };
234
235 return ktime_add_ns(ktime_zero, ns);
236 }
237
238 static inline ktime_t ms_to_ktime(u64 ms)
239 {
240 static const ktime_t ktime_zero = { .tv64 = 0 };
241
242 return ktime_add_ms(ktime_zero, ms);
243 }
244
245 #endif
This page took 0.053359 seconds and 5 git commands to generate.