5fc3d1083071ca24a96a6da038324fafae997667
[deliverable/linux.git] / include / linux / ktime.h
1 /*
2 * include/linux/ktime.h
3 *
4 * ktime_t - nanosecond-resolution time format.
5 *
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
8 *
9 * data type definitions, declarations, prototypes and macros.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * Credits:
14 *
15 * Roman Zippel provided the ideas and primary code snippets of
16 * the ktime_t union and further simplifications of the original
17 * code.
18 *
19 * For licencing details see kernel-base/COPYING
20 */
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
23
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
26
27 /*
28 * ktime_t:
29 *
30 * A single 64-bit variable is used to store the hrtimers
31 * internal representation of time values in scalar nanoseconds. The
32 * design plays out best on 64-bit CPUs, where most conversions are
33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
34 * operations.
35 *
36 */
37 union ktime {
38 s64 tv64;
39 };
40
41 typedef union ktime ktime_t; /* Kill this */
42
43 /**
44 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
45 * @secs: seconds to set
46 * @nsecs: nanoseconds to set
47 *
48 * Return: The ktime_t representation of the value.
49 */
50 static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
51 {
52 if (unlikely(secs >= KTIME_SEC_MAX))
53 return (ktime_t){ .tv64 = KTIME_MAX };
54
55 return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs };
56 }
57
58 /* Subtract two ktime_t variables. rem = lhs -rhs: */
59 #define ktime_sub(lhs, rhs) \
60 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
61
62 /* Add two ktime_t variables. res = lhs + rhs: */
63 #define ktime_add(lhs, rhs) \
64 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
65
66 /*
67 * Add a ktime_t variable and a scalar nanosecond value.
68 * res = kt + nsval:
69 */
70 #define ktime_add_ns(kt, nsval) \
71 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
72
73 /*
74 * Subtract a scalar nanosecod from a ktime_t variable
75 * res = kt - nsval:
76 */
77 #define ktime_sub_ns(kt, nsval) \
78 ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
79
80 /* convert a timespec to ktime_t format: */
81 static inline ktime_t timespec_to_ktime(struct timespec ts)
82 {
83 return ktime_set(ts.tv_sec, ts.tv_nsec);
84 }
85
86 /* convert a timespec64 to ktime_t format: */
87 static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
88 {
89 return ktime_set(ts.tv_sec, ts.tv_nsec);
90 }
91
92 /* convert a timeval to ktime_t format: */
93 static inline ktime_t timeval_to_ktime(struct timeval tv)
94 {
95 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
96 }
97
98 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
99 #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
100
101 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
102 #define ktime_to_timespec64(kt) ns_to_timespec64((kt).tv64)
103
104 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
105 #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
106
107 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
108 #define ktime_to_ns(kt) ((kt).tv64)
109
110
111 /**
112 * ktime_equal - Compares two ktime_t variables to see if they are equal
113 * @cmp1: comparable1
114 * @cmp2: comparable2
115 *
116 * Compare two ktime_t variables.
117 *
118 * Return: 1 if equal.
119 */
120 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
121 {
122 return cmp1.tv64 == cmp2.tv64;
123 }
124
125 /**
126 * ktime_compare - Compares two ktime_t variables for less, greater or equal
127 * @cmp1: comparable1
128 * @cmp2: comparable2
129 *
130 * Return: ...
131 * cmp1 < cmp2: return <0
132 * cmp1 == cmp2: return 0
133 * cmp1 > cmp2: return >0
134 */
135 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
136 {
137 if (cmp1.tv64 < cmp2.tv64)
138 return -1;
139 if (cmp1.tv64 > cmp2.tv64)
140 return 1;
141 return 0;
142 }
143
144 /**
145 * ktime_after - Compare if a ktime_t value is bigger than another one.
146 * @cmp1: comparable1
147 * @cmp2: comparable2
148 *
149 * Return: true if cmp1 happened after cmp2.
150 */
151 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
152 {
153 return ktime_compare(cmp1, cmp2) > 0;
154 }
155
156 /**
157 * ktime_before - Compare if a ktime_t value is smaller than another one.
158 * @cmp1: comparable1
159 * @cmp2: comparable2
160 *
161 * Return: true if cmp1 happened before cmp2.
162 */
163 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
164 {
165 return ktime_compare(cmp1, cmp2) < 0;
166 }
167
168 #if BITS_PER_LONG < 64
169 extern u64 __ktime_divns(const ktime_t kt, s64 div);
170 static inline u64 ktime_divns(const ktime_t kt, s64 div)
171 {
172 if (__builtin_constant_p(div) && !(div >> 32)) {
173 u64 ns = kt.tv64;
174 do_div(ns, div);
175 return ns;
176 } else {
177 return __ktime_divns(kt, div);
178 }
179 }
180 #else /* BITS_PER_LONG < 64 */
181 # define ktime_divns(kt, div) (u64)((kt).tv64 / (div))
182 #endif
183
184 static inline s64 ktime_to_us(const ktime_t kt)
185 {
186 return ktime_divns(kt, NSEC_PER_USEC);
187 }
188
189 static inline s64 ktime_to_ms(const ktime_t kt)
190 {
191 return ktime_divns(kt, NSEC_PER_MSEC);
192 }
193
194 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
195 {
196 return ktime_to_us(ktime_sub(later, earlier));
197 }
198
199 static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
200 {
201 return ktime_to_ms(ktime_sub(later, earlier));
202 }
203
204 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
205 {
206 return ktime_add_ns(kt, usec * NSEC_PER_USEC);
207 }
208
209 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
210 {
211 return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
212 }
213
214 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
215 {
216 return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
217 }
218
219 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
220
221 /**
222 * ktime_to_timespec_cond - convert a ktime_t variable to timespec
223 * format only if the variable contains data
224 * @kt: the ktime_t variable to convert
225 * @ts: the timespec variable to store the result in
226 *
227 * Return: %true if there was a successful conversion, %false if kt was 0.
228 */
229 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
230 struct timespec *ts)
231 {
232 if (kt.tv64) {
233 *ts = ktime_to_timespec(kt);
234 return true;
235 } else {
236 return false;
237 }
238 }
239
240 /**
241 * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
242 * format only if the variable contains data
243 * @kt: the ktime_t variable to convert
244 * @ts: the timespec variable to store the result in
245 *
246 * Return: %true if there was a successful conversion, %false if kt was 0.
247 */
248 static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
249 struct timespec64 *ts)
250 {
251 if (kt.tv64) {
252 *ts = ktime_to_timespec64(kt);
253 return true;
254 } else {
255 return false;
256 }
257 }
258
259 /*
260 * The resolution of the clocks. The resolution value is returned in
261 * the clock_getres() system call to give application programmers an
262 * idea of the (in)accuracy of timers. Timer values are rounded up to
263 * this resolution values.
264 */
265 #define LOW_RES_NSEC TICK_NSEC
266 #define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC }
267
268 static inline ktime_t ns_to_ktime(u64 ns)
269 {
270 static const ktime_t ktime_zero = { .tv64 = 0 };
271
272 return ktime_add_ns(ktime_zero, ns);
273 }
274
275 static inline ktime_t ms_to_ktime(u64 ms)
276 {
277 static const ktime_t ktime_zero = { .tv64 = 0 };
278
279 return ktime_add_ms(ktime_zero, ms);
280 }
281
282 # include <linux/timekeeping.h>
283
284 #endif
This page took 0.046837 seconds and 4 git commands to generate.