Merge branches 'acpica-fixes' and 'device-properties-fixes'
[deliverable/linux.git] / include / linux / memcontrol.h
1 /* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #ifndef _LINUX_MEMCONTROL_H
21 #define _LINUX_MEMCONTROL_H
22 #include <linux/cgroup.h>
23 #include <linux/vm_event_item.h>
24 #include <linux/hardirq.h>
25 #include <linux/jump_label.h>
26 #include <linux/page_counter.h>
27 #include <linux/vmpressure.h>
28 #include <linux/eventfd.h>
29 #include <linux/mmzone.h>
30 #include <linux/writeback.h>
31 #include <linux/page-flags.h>
32
33 struct mem_cgroup;
34 struct page;
35 struct mm_struct;
36 struct kmem_cache;
37
38 /*
39 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
40 * These two lists should keep in accord with each other.
41 */
42 enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
48 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
49 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
50 MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
51 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
52 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
53 MEM_CGROUP_STAT_NSTATS,
54 /* default hierarchy stats */
55 MEMCG_KERNEL_STACK = MEM_CGROUP_STAT_NSTATS,
56 MEMCG_SLAB_RECLAIMABLE,
57 MEMCG_SLAB_UNRECLAIMABLE,
58 MEMCG_SOCK,
59 MEMCG_NR_STAT,
60 };
61
62 struct mem_cgroup_reclaim_cookie {
63 struct zone *zone;
64 int priority;
65 unsigned int generation;
66 };
67
68 enum mem_cgroup_events_index {
69 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
70 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
71 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
72 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
73 MEM_CGROUP_EVENTS_NSTATS,
74 /* default hierarchy events */
75 MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
76 MEMCG_HIGH,
77 MEMCG_MAX,
78 MEMCG_OOM,
79 MEMCG_NR_EVENTS,
80 };
81
82 /*
83 * Per memcg event counter is incremented at every pagein/pageout. With THP,
84 * it will be incremated by the number of pages. This counter is used for
85 * for trigger some periodic events. This is straightforward and better
86 * than using jiffies etc. to handle periodic memcg event.
87 */
88 enum mem_cgroup_events_target {
89 MEM_CGROUP_TARGET_THRESH,
90 MEM_CGROUP_TARGET_SOFTLIMIT,
91 MEM_CGROUP_TARGET_NUMAINFO,
92 MEM_CGROUP_NTARGETS,
93 };
94
95 #ifdef CONFIG_MEMCG
96
97 #define MEM_CGROUP_ID_SHIFT 16
98 #define MEM_CGROUP_ID_MAX USHRT_MAX
99
100 struct mem_cgroup_stat_cpu {
101 long count[MEMCG_NR_STAT];
102 unsigned long events[MEMCG_NR_EVENTS];
103 unsigned long nr_page_events;
104 unsigned long targets[MEM_CGROUP_NTARGETS];
105 };
106
107 struct mem_cgroup_reclaim_iter {
108 struct mem_cgroup *position;
109 /* scan generation, increased every round-trip */
110 unsigned int generation;
111 };
112
113 /*
114 * per-zone information in memory controller.
115 */
116 struct mem_cgroup_per_zone {
117 struct lruvec lruvec;
118 unsigned long lru_size[NR_LRU_LISTS];
119
120 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
121
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *memcg; /* Back pointer, we cannot */
127 /* use container_of */
128 };
129
130 struct mem_cgroup_per_node {
131 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
132 };
133
134 struct mem_cgroup_threshold {
135 struct eventfd_ctx *eventfd;
136 unsigned long threshold;
137 };
138
139 /* For threshold */
140 struct mem_cgroup_threshold_ary {
141 /* An array index points to threshold just below or equal to usage. */
142 int current_threshold;
143 /* Size of entries[] */
144 unsigned int size;
145 /* Array of thresholds */
146 struct mem_cgroup_threshold entries[0];
147 };
148
149 struct mem_cgroup_thresholds {
150 /* Primary thresholds array */
151 struct mem_cgroup_threshold_ary *primary;
152 /*
153 * Spare threshold array.
154 * This is needed to make mem_cgroup_unregister_event() "never fail".
155 * It must be able to store at least primary->size - 1 entries.
156 */
157 struct mem_cgroup_threshold_ary *spare;
158 };
159
160 enum memcg_kmem_state {
161 KMEM_NONE,
162 KMEM_ALLOCATED,
163 KMEM_ONLINE,
164 };
165
166 /*
167 * The memory controller data structure. The memory controller controls both
168 * page cache and RSS per cgroup. We would eventually like to provide
169 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
170 * to help the administrator determine what knobs to tune.
171 */
172 struct mem_cgroup {
173 struct cgroup_subsys_state css;
174
175 /* Accounted resources */
176 struct page_counter memory;
177 struct page_counter swap;
178
179 /* Legacy consumer-oriented counters */
180 struct page_counter memsw;
181 struct page_counter kmem;
182 struct page_counter tcpmem;
183
184 /* Normal memory consumption range */
185 unsigned long low;
186 unsigned long high;
187
188 /* Range enforcement for interrupt charges */
189 struct work_struct high_work;
190
191 unsigned long soft_limit;
192
193 /* vmpressure notifications */
194 struct vmpressure vmpressure;
195
196 /*
197 * Should the accounting and control be hierarchical, per subtree?
198 */
199 bool use_hierarchy;
200
201 /* protected by memcg_oom_lock */
202 bool oom_lock;
203 int under_oom;
204
205 int swappiness;
206 /* OOM-Killer disable */
207 int oom_kill_disable;
208
209 /* handle for "memory.events" */
210 struct cgroup_file events_file;
211
212 /* protect arrays of thresholds */
213 struct mutex thresholds_lock;
214
215 /* thresholds for memory usage. RCU-protected */
216 struct mem_cgroup_thresholds thresholds;
217
218 /* thresholds for mem+swap usage. RCU-protected */
219 struct mem_cgroup_thresholds memsw_thresholds;
220
221 /* For oom notifier event fd */
222 struct list_head oom_notify;
223
224 /*
225 * Should we move charges of a task when a task is moved into this
226 * mem_cgroup ? And what type of charges should we move ?
227 */
228 unsigned long move_charge_at_immigrate;
229 /*
230 * set > 0 if pages under this cgroup are moving to other cgroup.
231 */
232 atomic_t moving_account;
233 /* taken only while moving_account > 0 */
234 spinlock_t move_lock;
235 struct task_struct *move_lock_task;
236 unsigned long move_lock_flags;
237 /*
238 * percpu counter.
239 */
240 struct mem_cgroup_stat_cpu __percpu *stat;
241
242 unsigned long socket_pressure;
243
244 /* Legacy tcp memory accounting */
245 bool tcpmem_active;
246 int tcpmem_pressure;
247
248 #ifndef CONFIG_SLOB
249 /* Index in the kmem_cache->memcg_params.memcg_caches array */
250 int kmemcg_id;
251 enum memcg_kmem_state kmem_state;
252 #endif
253
254 int last_scanned_node;
255 #if MAX_NUMNODES > 1
256 nodemask_t scan_nodes;
257 atomic_t numainfo_events;
258 atomic_t numainfo_updating;
259 #endif
260
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 struct list_head cgwb_list;
263 struct wb_domain cgwb_domain;
264 #endif
265
266 /* List of events which userspace want to receive */
267 struct list_head event_list;
268 spinlock_t event_list_lock;
269
270 struct mem_cgroup_per_node *nodeinfo[0];
271 /* WARNING: nodeinfo must be the last member here */
272 };
273
274 extern struct mem_cgroup *root_mem_cgroup;
275
276 static inline bool mem_cgroup_disabled(void)
277 {
278 return !cgroup_subsys_enabled(memory_cgrp_subsys);
279 }
280
281 /**
282 * mem_cgroup_events - count memory events against a cgroup
283 * @memcg: the memory cgroup
284 * @idx: the event index
285 * @nr: the number of events to account for
286 */
287 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
288 enum mem_cgroup_events_index idx,
289 unsigned int nr)
290 {
291 this_cpu_add(memcg->stat->events[idx], nr);
292 cgroup_file_notify(&memcg->events_file);
293 }
294
295 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
296
297 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
298 gfp_t gfp_mask, struct mem_cgroup **memcgp,
299 bool compound);
300 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
301 bool lrucare, bool compound);
302 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
303 bool compound);
304 void mem_cgroup_uncharge(struct page *page);
305 void mem_cgroup_uncharge_list(struct list_head *page_list);
306
307 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
308
309 struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
310 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
311
312 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
313 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
314
315 static inline
316 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
317 return css ? container_of(css, struct mem_cgroup, css) : NULL;
318 }
319
320 #define mem_cgroup_from_counter(counter, member) \
321 container_of(counter, struct mem_cgroup, member)
322
323 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
324 struct mem_cgroup *,
325 struct mem_cgroup_reclaim_cookie *);
326 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
327
328 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
329 {
330 if (mem_cgroup_disabled())
331 return 0;
332
333 return memcg->css.id;
334 }
335
336 /**
337 * mem_cgroup_from_id - look up a memcg from an id
338 * @id: the id to look up
339 *
340 * Caller must hold rcu_read_lock() and use css_tryget() as necessary.
341 */
342 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
343 {
344 struct cgroup_subsys_state *css;
345
346 css = css_from_id(id, &memory_cgrp_subsys);
347 return mem_cgroup_from_css(css);
348 }
349
350 /**
351 * parent_mem_cgroup - find the accounting parent of a memcg
352 * @memcg: memcg whose parent to find
353 *
354 * Returns the parent memcg, or NULL if this is the root or the memory
355 * controller is in legacy no-hierarchy mode.
356 */
357 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
358 {
359 if (!memcg->memory.parent)
360 return NULL;
361 return mem_cgroup_from_counter(memcg->memory.parent, memory);
362 }
363
364 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
365 struct mem_cgroup *root)
366 {
367 if (root == memcg)
368 return true;
369 if (!root->use_hierarchy)
370 return false;
371 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
372 }
373
374 static inline bool mm_match_cgroup(struct mm_struct *mm,
375 struct mem_cgroup *memcg)
376 {
377 struct mem_cgroup *task_memcg;
378 bool match = false;
379
380 rcu_read_lock();
381 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
382 if (task_memcg)
383 match = mem_cgroup_is_descendant(task_memcg, memcg);
384 rcu_read_unlock();
385 return match;
386 }
387
388 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
389 ino_t page_cgroup_ino(struct page *page);
390
391 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
392 {
393 if (mem_cgroup_disabled())
394 return true;
395 return !!(memcg->css.flags & CSS_ONLINE);
396 }
397
398 /*
399 * For memory reclaim.
400 */
401 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
402
403 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
404 int nr_pages);
405
406 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
407 int nid, unsigned int lru_mask);
408
409 static inline
410 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
411 {
412 struct mem_cgroup_per_zone *mz;
413
414 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
415 return mz->lru_size[lru];
416 }
417
418 static inline bool mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
419 {
420 unsigned long inactive_ratio;
421 unsigned long inactive;
422 unsigned long active;
423 unsigned long gb;
424
425 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
426 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
427
428 gb = (inactive + active) >> (30 - PAGE_SHIFT);
429 if (gb)
430 inactive_ratio = int_sqrt(10 * gb);
431 else
432 inactive_ratio = 1;
433
434 return inactive * inactive_ratio < active;
435 }
436
437 void mem_cgroup_handle_over_high(void);
438
439 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
440 struct task_struct *p);
441
442 static inline void mem_cgroup_oom_enable(void)
443 {
444 WARN_ON(current->memcg_may_oom);
445 current->memcg_may_oom = 1;
446 }
447
448 static inline void mem_cgroup_oom_disable(void)
449 {
450 WARN_ON(!current->memcg_may_oom);
451 current->memcg_may_oom = 0;
452 }
453
454 static inline bool task_in_memcg_oom(struct task_struct *p)
455 {
456 return p->memcg_in_oom;
457 }
458
459 bool mem_cgroup_oom_synchronize(bool wait);
460
461 #ifdef CONFIG_MEMCG_SWAP
462 extern int do_swap_account;
463 #endif
464
465 void lock_page_memcg(struct page *page);
466 void unlock_page_memcg(struct page *page);
467
468 /**
469 * mem_cgroup_update_page_stat - update page state statistics
470 * @page: the page
471 * @idx: page state item to account
472 * @val: number of pages (positive or negative)
473 *
474 * The @page must be locked or the caller must use lock_page_memcg()
475 * to prevent double accounting when the page is concurrently being
476 * moved to another memcg:
477 *
478 * lock_page(page) or lock_page_memcg(page)
479 * if (TestClearPageState(page))
480 * mem_cgroup_update_page_stat(page, state, -1);
481 * unlock_page(page) or unlock_page_memcg(page)
482 */
483 static inline void mem_cgroup_update_page_stat(struct page *page,
484 enum mem_cgroup_stat_index idx, int val)
485 {
486 VM_BUG_ON(!(rcu_read_lock_held() || PageLocked(page)));
487
488 if (page->mem_cgroup)
489 this_cpu_add(page->mem_cgroup->stat->count[idx], val);
490 }
491
492 static inline void mem_cgroup_inc_page_stat(struct page *page,
493 enum mem_cgroup_stat_index idx)
494 {
495 mem_cgroup_update_page_stat(page, idx, 1);
496 }
497
498 static inline void mem_cgroup_dec_page_stat(struct page *page,
499 enum mem_cgroup_stat_index idx)
500 {
501 mem_cgroup_update_page_stat(page, idx, -1);
502 }
503
504 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
505 gfp_t gfp_mask,
506 unsigned long *total_scanned);
507
508 static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
509 enum vm_event_item idx)
510 {
511 struct mem_cgroup *memcg;
512
513 if (mem_cgroup_disabled())
514 return;
515
516 rcu_read_lock();
517 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
518 if (unlikely(!memcg))
519 goto out;
520
521 switch (idx) {
522 case PGFAULT:
523 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
524 break;
525 case PGMAJFAULT:
526 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
527 break;
528 default:
529 BUG();
530 }
531 out:
532 rcu_read_unlock();
533 }
534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
535 void mem_cgroup_split_huge_fixup(struct page *head);
536 #endif
537
538 #else /* CONFIG_MEMCG */
539
540 #define MEM_CGROUP_ID_SHIFT 0
541 #define MEM_CGROUP_ID_MAX 0
542
543 struct mem_cgroup;
544
545 static inline bool mem_cgroup_disabled(void)
546 {
547 return true;
548 }
549
550 static inline void mem_cgroup_events(struct mem_cgroup *memcg,
551 enum mem_cgroup_events_index idx,
552 unsigned int nr)
553 {
554 }
555
556 static inline bool mem_cgroup_low(struct mem_cgroup *root,
557 struct mem_cgroup *memcg)
558 {
559 return false;
560 }
561
562 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
563 gfp_t gfp_mask,
564 struct mem_cgroup **memcgp,
565 bool compound)
566 {
567 *memcgp = NULL;
568 return 0;
569 }
570
571 static inline void mem_cgroup_commit_charge(struct page *page,
572 struct mem_cgroup *memcg,
573 bool lrucare, bool compound)
574 {
575 }
576
577 static inline void mem_cgroup_cancel_charge(struct page *page,
578 struct mem_cgroup *memcg,
579 bool compound)
580 {
581 }
582
583 static inline void mem_cgroup_uncharge(struct page *page)
584 {
585 }
586
587 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
588 {
589 }
590
591 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
592 {
593 }
594
595 static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
596 struct mem_cgroup *memcg)
597 {
598 return &zone->lruvec;
599 }
600
601 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
602 struct zone *zone)
603 {
604 return &zone->lruvec;
605 }
606
607 static inline bool mm_match_cgroup(struct mm_struct *mm,
608 struct mem_cgroup *memcg)
609 {
610 return true;
611 }
612
613 static inline bool task_in_mem_cgroup(struct task_struct *task,
614 const struct mem_cgroup *memcg)
615 {
616 return true;
617 }
618
619 static inline struct mem_cgroup *
620 mem_cgroup_iter(struct mem_cgroup *root,
621 struct mem_cgroup *prev,
622 struct mem_cgroup_reclaim_cookie *reclaim)
623 {
624 return NULL;
625 }
626
627 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
628 struct mem_cgroup *prev)
629 {
630 }
631
632 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
633 {
634 return 0;
635 }
636
637 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
638 {
639 WARN_ON_ONCE(id);
640 /* XXX: This should always return root_mem_cgroup */
641 return NULL;
642 }
643
644 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
645 {
646 return true;
647 }
648
649 static inline bool
650 mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
651 {
652 return true;
653 }
654
655 static inline unsigned long
656 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
657 {
658 return 0;
659 }
660
661 static inline void
662 mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
663 int increment)
664 {
665 }
666
667 static inline unsigned long
668 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
669 int nid, unsigned int lru_mask)
670 {
671 return 0;
672 }
673
674 static inline void
675 mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
676 {
677 }
678
679 static inline void lock_page_memcg(struct page *page)
680 {
681 }
682
683 static inline void unlock_page_memcg(struct page *page)
684 {
685 }
686
687 static inline void mem_cgroup_handle_over_high(void)
688 {
689 }
690
691 static inline void mem_cgroup_oom_enable(void)
692 {
693 }
694
695 static inline void mem_cgroup_oom_disable(void)
696 {
697 }
698
699 static inline bool task_in_memcg_oom(struct task_struct *p)
700 {
701 return false;
702 }
703
704 static inline bool mem_cgroup_oom_synchronize(bool wait)
705 {
706 return false;
707 }
708
709 static inline void mem_cgroup_inc_page_stat(struct page *page,
710 enum mem_cgroup_stat_index idx)
711 {
712 }
713
714 static inline void mem_cgroup_dec_page_stat(struct page *page,
715 enum mem_cgroup_stat_index idx)
716 {
717 }
718
719 static inline
720 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
721 gfp_t gfp_mask,
722 unsigned long *total_scanned)
723 {
724 return 0;
725 }
726
727 static inline void mem_cgroup_split_huge_fixup(struct page *head)
728 {
729 }
730
731 static inline
732 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
733 {
734 }
735 #endif /* CONFIG_MEMCG */
736
737 #ifdef CONFIG_CGROUP_WRITEBACK
738
739 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
740 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
741 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
742 unsigned long *pheadroom, unsigned long *pdirty,
743 unsigned long *pwriteback);
744
745 #else /* CONFIG_CGROUP_WRITEBACK */
746
747 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
748 {
749 return NULL;
750 }
751
752 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
753 unsigned long *pfilepages,
754 unsigned long *pheadroom,
755 unsigned long *pdirty,
756 unsigned long *pwriteback)
757 {
758 }
759
760 #endif /* CONFIG_CGROUP_WRITEBACK */
761
762 struct sock;
763 void sock_update_memcg(struct sock *sk);
764 void sock_release_memcg(struct sock *sk);
765 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
766 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
767 #ifdef CONFIG_MEMCG
768 extern struct static_key_false memcg_sockets_enabled_key;
769 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
770 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
771 {
772 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
773 return true;
774 do {
775 if (time_before(jiffies, memcg->socket_pressure))
776 return true;
777 } while ((memcg = parent_mem_cgroup(memcg)));
778 return false;
779 }
780 #else
781 #define mem_cgroup_sockets_enabled 0
782 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
783 {
784 return false;
785 }
786 #endif
787
788 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
789 extern struct static_key_false memcg_kmem_enabled_key;
790
791 extern int memcg_nr_cache_ids;
792 void memcg_get_cache_ids(void);
793 void memcg_put_cache_ids(void);
794
795 /*
796 * Helper macro to loop through all memcg-specific caches. Callers must still
797 * check if the cache is valid (it is either valid or NULL).
798 * the slab_mutex must be held when looping through those caches
799 */
800 #define for_each_memcg_cache_index(_idx) \
801 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
802
803 static inline bool memcg_kmem_enabled(void)
804 {
805 return static_branch_unlikely(&memcg_kmem_enabled_key);
806 }
807
808 /*
809 * In general, we'll do everything in our power to not incur in any overhead
810 * for non-memcg users for the kmem functions. Not even a function call, if we
811 * can avoid it.
812 *
813 * Therefore, we'll inline all those functions so that in the best case, we'll
814 * see that kmemcg is off for everybody and proceed quickly. If it is on,
815 * we'll still do most of the flag checking inline. We check a lot of
816 * conditions, but because they are pretty simple, they are expected to be
817 * fast.
818 */
819 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
820 struct mem_cgroup *memcg);
821 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
822 void __memcg_kmem_uncharge(struct page *page, int order);
823
824 /*
825 * helper for accessing a memcg's index. It will be used as an index in the
826 * child cache array in kmem_cache, and also to derive its name. This function
827 * will return -1 when this is not a kmem-limited memcg.
828 */
829 static inline int memcg_cache_id(struct mem_cgroup *memcg)
830 {
831 return memcg ? memcg->kmemcg_id : -1;
832 }
833
834 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
835 void __memcg_kmem_put_cache(struct kmem_cache *cachep);
836
837 static inline bool __memcg_kmem_bypass(void)
838 {
839 if (!memcg_kmem_enabled())
840 return true;
841 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
842 return true;
843 return false;
844 }
845
846 /**
847 * memcg_kmem_charge: charge a kmem page
848 * @page: page to charge
849 * @gfp: reclaim mode
850 * @order: allocation order
851 *
852 * Returns 0 on success, an error code on failure.
853 */
854 static __always_inline int memcg_kmem_charge(struct page *page,
855 gfp_t gfp, int order)
856 {
857 if (__memcg_kmem_bypass())
858 return 0;
859 if (!(gfp & __GFP_ACCOUNT))
860 return 0;
861 return __memcg_kmem_charge(page, gfp, order);
862 }
863
864 /**
865 * memcg_kmem_uncharge: uncharge a kmem page
866 * @page: page to uncharge
867 * @order: allocation order
868 */
869 static __always_inline void memcg_kmem_uncharge(struct page *page, int order)
870 {
871 if (memcg_kmem_enabled())
872 __memcg_kmem_uncharge(page, order);
873 }
874
875 /**
876 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
877 * @cachep: the original global kmem cache
878 *
879 * All memory allocated from a per-memcg cache is charged to the owner memcg.
880 */
881 static __always_inline struct kmem_cache *
882 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
883 {
884 if (__memcg_kmem_bypass())
885 return cachep;
886 return __memcg_kmem_get_cache(cachep, gfp);
887 }
888
889 static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
890 {
891 if (memcg_kmem_enabled())
892 __memcg_kmem_put_cache(cachep);
893 }
894
895 /**
896 * memcg_kmem_update_page_stat - update kmem page state statistics
897 * @page: the page
898 * @idx: page state item to account
899 * @val: number of pages (positive or negative)
900 */
901 static inline void memcg_kmem_update_page_stat(struct page *page,
902 enum mem_cgroup_stat_index idx, int val)
903 {
904 if (memcg_kmem_enabled() && page->mem_cgroup)
905 this_cpu_add(page->mem_cgroup->stat->count[idx], val);
906 }
907
908 #else
909 #define for_each_memcg_cache_index(_idx) \
910 for (; NULL; )
911
912 static inline bool memcg_kmem_enabled(void)
913 {
914 return false;
915 }
916
917 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
918 {
919 return 0;
920 }
921
922 static inline void memcg_kmem_uncharge(struct page *page, int order)
923 {
924 }
925
926 static inline int memcg_cache_id(struct mem_cgroup *memcg)
927 {
928 return -1;
929 }
930
931 static inline void memcg_get_cache_ids(void)
932 {
933 }
934
935 static inline void memcg_put_cache_ids(void)
936 {
937 }
938
939 static inline struct kmem_cache *
940 memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
941 {
942 return cachep;
943 }
944
945 static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
946 {
947 }
948
949 static inline void memcg_kmem_update_page_stat(struct page *page,
950 enum mem_cgroup_stat_index idx, int val)
951 {
952 }
953 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
954
955 #endif /* _LINUX_MEMCONTROL_H */
This page took 0.051374 seconds and 5 git commands to generate.