vfio/pci: Fix typos in comments
[deliverable/linux.git] / include / linux / mfd / cros_ec_commands.h
1 /*
2 * Host communication command constants for ChromeOS EC
3 *
4 * Copyright (C) 2012 Google, Inc
5 *
6 * This software is licensed under the terms of the GNU General Public
7 * License version 2, as published by the Free Software Foundation, and
8 * may be copied, distributed, and modified under those terms.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * The ChromeOS EC multi function device is used to mux all the requests
16 * to the EC device for its multiple features: keyboard controller,
17 * battery charging and regulator control, firmware update.
18 *
19 * NOTE: This file is copied verbatim from the ChromeOS EC Open Source
20 * project in an attempt to make future updates easy to make.
21 */
22
23 #ifndef __CROS_EC_COMMANDS_H
24 #define __CROS_EC_COMMANDS_H
25
26 /*
27 * Current version of this protocol
28 *
29 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
30 * determined in other ways. Remove this once the kernel code no longer
31 * depends on it.
32 */
33 #define EC_PROTO_VERSION 0x00000002
34
35 /* Command version mask */
36 #define EC_VER_MASK(version) (1UL << (version))
37
38 /* I/O addresses for ACPI commands */
39 #define EC_LPC_ADDR_ACPI_DATA 0x62
40 #define EC_LPC_ADDR_ACPI_CMD 0x66
41
42 /* I/O addresses for host command */
43 #define EC_LPC_ADDR_HOST_DATA 0x200
44 #define EC_LPC_ADDR_HOST_CMD 0x204
45
46 /* I/O addresses for host command args and params */
47 /* Protocol version 2 */
48 #define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */
49 #define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is
50 * EC_PROTO2_MAX_PARAM_SIZE */
51 /* Protocol version 3 */
52 #define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */
53 #define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */
54
55 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
56 * and they tell the kernel that so we have to think of it as two parts. */
57 #define EC_HOST_CMD_REGION0 0x800
58 #define EC_HOST_CMD_REGION1 0x880
59 #define EC_HOST_CMD_REGION_SIZE 0x80
60
61 /* EC command register bit functions */
62 #define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */
63 #define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */
64 #define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */
65 #define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */
66 #define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */
67 #define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */
68 #define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */
69
70 #define EC_LPC_ADDR_MEMMAP 0x900
71 #define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */
72 #define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */
73
74 /* The offset address of each type of data in mapped memory. */
75 #define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */
76 #define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */
77 #define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */
78 #define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */
79 #define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */
80 #define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */
81 #define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */
82 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
83 #define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */
84 #define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */
85 /* Unused 0x28 - 0x2f */
86 #define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */
87 /* Unused 0x31 - 0x33 */
88 #define EC_MEMMAP_HOST_EVENTS 0x34 /* 32 bits */
89 /* Reserve 0x38 - 0x3f for additional host event-related stuff */
90 /* Battery values are all 32 bits */
91 #define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */
92 #define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */
93 #define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */
94 #define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */
95 #define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */
96 #define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */
97 #define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */
98 #define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */
99 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
100 #define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */
101 #define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */
102 #define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */
103 #define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */
104 #define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */
105 /* Unused 0x84 - 0x8f */
106 #define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/
107 /* Unused 0x91 */
108 #define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometer data 0x92 - 0x9f */
109 #define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */
110 /* Unused 0xa6 - 0xfe (remember, 0xff is NOT part of the memmap region) */
111
112
113 /* Define the format of the accelerometer mapped memory status byte. */
114 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f
115 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT (1 << 4)
116 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT (1 << 7)
117
118 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
119 #define EC_TEMP_SENSOR_ENTRIES 16
120 /*
121 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
122 *
123 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
124 */
125 #define EC_TEMP_SENSOR_B_ENTRIES 8
126
127 /* Special values for mapped temperature sensors */
128 #define EC_TEMP_SENSOR_NOT_PRESENT 0xff
129 #define EC_TEMP_SENSOR_ERROR 0xfe
130 #define EC_TEMP_SENSOR_NOT_POWERED 0xfd
131 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
132 /*
133 * The offset of temperature value stored in mapped memory. This allows
134 * reporting a temperature range of 200K to 454K = -73C to 181C.
135 */
136 #define EC_TEMP_SENSOR_OFFSET 200
137
138 /*
139 * Number of ALS readings at EC_MEMMAP_ALS
140 */
141 #define EC_ALS_ENTRIES 2
142
143 /*
144 * The default value a temperature sensor will return when it is present but
145 * has not been read this boot. This is a reasonable number to avoid
146 * triggering alarms on the host.
147 */
148 #define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET)
149
150 #define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */
151 #define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */
152 #define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */
153
154 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
155 #define EC_BATT_FLAG_AC_PRESENT 0x01
156 #define EC_BATT_FLAG_BATT_PRESENT 0x02
157 #define EC_BATT_FLAG_DISCHARGING 0x04
158 #define EC_BATT_FLAG_CHARGING 0x08
159 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
160
161 /* Switch flags at EC_MEMMAP_SWITCHES */
162 #define EC_SWITCH_LID_OPEN 0x01
163 #define EC_SWITCH_POWER_BUTTON_PRESSED 0x02
164 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
165 /* Was recovery requested via keyboard; now unused. */
166 #define EC_SWITCH_IGNORE1 0x08
167 /* Recovery requested via dedicated signal (from servo board) */
168 #define EC_SWITCH_DEDICATED_RECOVERY 0x10
169 /* Was fake developer mode switch; now unused. Remove in next refactor. */
170 #define EC_SWITCH_IGNORE0 0x20
171
172 /* Host command interface flags */
173 /* Host command interface supports LPC args (LPC interface only) */
174 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01
175 /* Host command interface supports version 3 protocol */
176 #define EC_HOST_CMD_FLAG_VERSION_3 0x02
177
178 /* Wireless switch flags */
179 #define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */
180 #define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */
181 #define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */
182 #define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */
183 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */
184
185 /*
186 * This header file is used in coreboot both in C and ACPI code. The ACPI code
187 * is pre-processed to handle constants but the ASL compiler is unable to
188 * handle actual C code so keep it separate.
189 */
190 #ifndef __ACPI__
191
192 /*
193 * Define __packed if someone hasn't beat us to it. Linux kernel style
194 * checking prefers __packed over __attribute__((packed)).
195 */
196 #ifndef __packed
197 #define __packed __attribute__((packed))
198 #endif
199
200 /* LPC command status byte masks */
201 /* EC has written a byte in the data register and host hasn't read it yet */
202 #define EC_LPC_STATUS_TO_HOST 0x01
203 /* Host has written a command/data byte and the EC hasn't read it yet */
204 #define EC_LPC_STATUS_FROM_HOST 0x02
205 /* EC is processing a command */
206 #define EC_LPC_STATUS_PROCESSING 0x04
207 /* Last write to EC was a command, not data */
208 #define EC_LPC_STATUS_LAST_CMD 0x08
209 /* EC is in burst mode. Unsupported by Chrome EC, so this bit is never set */
210 #define EC_LPC_STATUS_BURST_MODE 0x10
211 /* SCI event is pending (requesting SCI query) */
212 #define EC_LPC_STATUS_SCI_PENDING 0x20
213 /* SMI event is pending (requesting SMI query) */
214 #define EC_LPC_STATUS_SMI_PENDING 0x40
215 /* (reserved) */
216 #define EC_LPC_STATUS_RESERVED 0x80
217
218 /*
219 * EC is busy. This covers both the EC processing a command, and the host has
220 * written a new command but the EC hasn't picked it up yet.
221 */
222 #define EC_LPC_STATUS_BUSY_MASK \
223 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
224
225 /* Host command response codes */
226 enum ec_status {
227 EC_RES_SUCCESS = 0,
228 EC_RES_INVALID_COMMAND = 1,
229 EC_RES_ERROR = 2,
230 EC_RES_INVALID_PARAM = 3,
231 EC_RES_ACCESS_DENIED = 4,
232 EC_RES_INVALID_RESPONSE = 5,
233 EC_RES_INVALID_VERSION = 6,
234 EC_RES_INVALID_CHECKSUM = 7,
235 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */
236 EC_RES_UNAVAILABLE = 9, /* No response available */
237 EC_RES_TIMEOUT = 10, /* We got a timeout */
238 EC_RES_OVERFLOW = 11, /* Table / data overflow */
239 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */
240 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */
241 EC_RES_RESPONSE_TOO_BIG = 14 /* Response was too big to handle */
242 };
243
244 /*
245 * Host event codes. Note these are 1-based, not 0-based, because ACPI query
246 * EC command uses code 0 to mean "no event pending". We explicitly specify
247 * each value in the enum listing so they won't change if we delete/insert an
248 * item or rearrange the list (it needs to be stable across platforms, not
249 * just within a single compiled instance).
250 */
251 enum host_event_code {
252 EC_HOST_EVENT_LID_CLOSED = 1,
253 EC_HOST_EVENT_LID_OPEN = 2,
254 EC_HOST_EVENT_POWER_BUTTON = 3,
255 EC_HOST_EVENT_AC_CONNECTED = 4,
256 EC_HOST_EVENT_AC_DISCONNECTED = 5,
257 EC_HOST_EVENT_BATTERY_LOW = 6,
258 EC_HOST_EVENT_BATTERY_CRITICAL = 7,
259 EC_HOST_EVENT_BATTERY = 8,
260 EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
261 EC_HOST_EVENT_THERMAL_OVERLOAD = 10,
262 EC_HOST_EVENT_THERMAL = 11,
263 EC_HOST_EVENT_USB_CHARGER = 12,
264 EC_HOST_EVENT_KEY_PRESSED = 13,
265 /*
266 * EC has finished initializing the host interface. The host can check
267 * for this event following sending a EC_CMD_REBOOT_EC command to
268 * determine when the EC is ready to accept subsequent commands.
269 */
270 EC_HOST_EVENT_INTERFACE_READY = 14,
271 /* Keyboard recovery combo has been pressed */
272 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
273
274 /* Shutdown due to thermal overload */
275 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
276 /* Shutdown due to battery level too low */
277 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
278
279 /* Suggest that the AP throttle itself */
280 EC_HOST_EVENT_THROTTLE_START = 18,
281 /* Suggest that the AP resume normal speed */
282 EC_HOST_EVENT_THROTTLE_STOP = 19,
283
284 /* Hang detect logic detected a hang and host event timeout expired */
285 EC_HOST_EVENT_HANG_DETECT = 20,
286 /* Hang detect logic detected a hang and warm rebooted the AP */
287 EC_HOST_EVENT_HANG_REBOOT = 21,
288
289 /*
290 * The high bit of the event mask is not used as a host event code. If
291 * it reads back as set, then the entire event mask should be
292 * considered invalid by the host. This can happen when reading the
293 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
294 * not initialized on the EC, or improperly configured on the host.
295 */
296 EC_HOST_EVENT_INVALID = 32
297 };
298 /* Host event mask */
299 #define EC_HOST_EVENT_MASK(event_code) (1UL << ((event_code) - 1))
300
301 /* Arguments at EC_LPC_ADDR_HOST_ARGS */
302 struct ec_lpc_host_args {
303 uint8_t flags;
304 uint8_t command_version;
305 uint8_t data_size;
306 /*
307 * Checksum; sum of command + flags + command_version + data_size +
308 * all params/response data bytes.
309 */
310 uint8_t checksum;
311 } __packed;
312
313 /* Flags for ec_lpc_host_args.flags */
314 /*
315 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command
316 * params.
317 *
318 * If EC gets a command and this flag is not set, this is an old-style command.
319 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
320 * unknown length. EC must respond with an old-style response (that is,
321 * withouth setting EC_HOST_ARGS_FLAG_TO_HOST).
322 */
323 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
324 /*
325 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response.
326 *
327 * If EC responds to a command and this flag is not set, this is an old-style
328 * response. Command version is 0 and response data from EC is at
329 * EC_LPC_ADDR_OLD_PARAM with unknown length.
330 */
331 #define EC_HOST_ARGS_FLAG_TO_HOST 0x02
332
333 /*****************************************************************************/
334 /*
335 * Byte codes returned by EC over SPI interface.
336 *
337 * These can be used by the AP to debug the EC interface, and to determine
338 * when the EC is not in a state where it will ever get around to responding
339 * to the AP.
340 *
341 * Example of sequence of bytes read from EC for a current good transfer:
342 * 1. - - AP asserts chip select (CS#)
343 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request
344 * 3. - - EC starts handling CS# interrupt
345 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request
346 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in
347 * bytes looking for EC_SPI_FRAME_START
348 * 6. - - EC finishes processing and sets up response
349 * 7. EC_SPI_FRAME_START - AP reads frame byte
350 * 8. (response packet) - AP reads response packet
351 * 9. EC_SPI_PAST_END - Any additional bytes read by AP
352 * 10 - - AP deasserts chip select
353 * 11 - - EC processes CS# interrupt and sets up DMA for
354 * next request
355 *
356 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
357 * the following byte values:
358 * EC_SPI_OLD_READY
359 * EC_SPI_RX_READY
360 * EC_SPI_RECEIVING
361 * EC_SPI_PROCESSING
362 *
363 * Then the EC found an error in the request, or was not ready for the request
364 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START,
365 * because the EC is unable to tell when the AP is done sending its request.
366 */
367
368 /*
369 * Framing byte which precedes a response packet from the EC. After sending a
370 * request, the AP will clock in bytes until it sees the framing byte, then
371 * clock in the response packet.
372 */
373 #define EC_SPI_FRAME_START 0xec
374
375 /*
376 * Padding bytes which are clocked out after the end of a response packet.
377 */
378 #define EC_SPI_PAST_END 0xed
379
380 /*
381 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects
382 * that the AP will send a valid packet header (starting with
383 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
384 */
385 #define EC_SPI_RX_READY 0xf8
386
387 /*
388 * EC has started receiving the request from the AP, but hasn't started
389 * processing it yet.
390 */
391 #define EC_SPI_RECEIVING 0xf9
392
393 /* EC has received the entire request from the AP and is processing it. */
394 #define EC_SPI_PROCESSING 0xfa
395
396 /*
397 * EC received bad data from the AP, such as a packet header with an invalid
398 * length. EC will ignore all data until chip select deasserts.
399 */
400 #define EC_SPI_RX_BAD_DATA 0xfb
401
402 /*
403 * EC received data from the AP before it was ready. That is, the AP asserted
404 * chip select and started clocking data before the EC was ready to receive it.
405 * EC will ignore all data until chip select deasserts.
406 */
407 #define EC_SPI_NOT_READY 0xfc
408
409 /*
410 * EC was ready to receive a request from the AP. EC has treated the byte sent
411 * by the AP as part of a request packet, or (for old-style ECs) is processing
412 * a fully received packet but is not ready to respond yet.
413 */
414 #define EC_SPI_OLD_READY 0xfd
415
416 /*****************************************************************************/
417
418 /*
419 * Protocol version 2 for I2C and SPI send a request this way:
420 *
421 * 0 EC_CMD_VERSION0 + (command version)
422 * 1 Command number
423 * 2 Length of params = N
424 * 3..N+2 Params, if any
425 * N+3 8-bit checksum of bytes 0..N+2
426 *
427 * The corresponding response is:
428 *
429 * 0 Result code (EC_RES_*)
430 * 1 Length of params = M
431 * 2..M+1 Params, if any
432 * M+2 8-bit checksum of bytes 0..M+1
433 */
434 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
435 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
436 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \
437 EC_PROTO2_REQUEST_TRAILER_BYTES)
438
439 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
440 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
441 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \
442 EC_PROTO2_RESPONSE_TRAILER_BYTES)
443
444 /* Parameter length was limited by the LPC interface */
445 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
446
447 /* Maximum request and response packet sizes for protocol version 2 */
448 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \
449 EC_PROTO2_MAX_PARAM_SIZE)
450 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \
451 EC_PROTO2_MAX_PARAM_SIZE)
452
453 /*****************************************************************************/
454
455 /*
456 * Value written to legacy command port / prefix byte to indicate protocol
457 * 3+ structs are being used. Usage is bus-dependent.
458 */
459 #define EC_COMMAND_PROTOCOL_3 0xda
460
461 #define EC_HOST_REQUEST_VERSION 3
462
463 /* Version 3 request from host */
464 struct ec_host_request {
465 /* Struct version (=3)
466 *
467 * EC will return EC_RES_INVALID_HEADER if it receives a header with a
468 * version it doesn't know how to parse.
469 */
470 uint8_t struct_version;
471
472 /*
473 * Checksum of request and data; sum of all bytes including checksum
474 * should total to 0.
475 */
476 uint8_t checksum;
477
478 /* Command code */
479 uint16_t command;
480
481 /* Command version */
482 uint8_t command_version;
483
484 /* Unused byte in current protocol version; set to 0 */
485 uint8_t reserved;
486
487 /* Length of data which follows this header */
488 uint16_t data_len;
489 } __packed;
490
491 #define EC_HOST_RESPONSE_VERSION 3
492
493 /* Version 3 response from EC */
494 struct ec_host_response {
495 /* Struct version (=3) */
496 uint8_t struct_version;
497
498 /*
499 * Checksum of response and data; sum of all bytes including checksum
500 * should total to 0.
501 */
502 uint8_t checksum;
503
504 /* Result code (EC_RES_*) */
505 uint16_t result;
506
507 /* Length of data which follows this header */
508 uint16_t data_len;
509
510 /* Unused bytes in current protocol version; set to 0 */
511 uint16_t reserved;
512 } __packed;
513
514 /*****************************************************************************/
515 /*
516 * Notes on commands:
517 *
518 * Each command is an 16-bit command value. Commands which take params or
519 * return response data specify structs for that data. If no struct is
520 * specified, the command does not input or output data, respectively.
521 * Parameter/response length is implicit in the structs. Some underlying
522 * communication protocols (I2C, SPI) may add length or checksum headers, but
523 * those are implementation-dependent and not defined here.
524 */
525
526 /*****************************************************************************/
527 /* General / test commands */
528
529 /*
530 * Get protocol version, used to deal with non-backward compatible protocol
531 * changes.
532 */
533 #define EC_CMD_PROTO_VERSION 0x00
534
535 struct ec_response_proto_version {
536 uint32_t version;
537 } __packed;
538
539 /*
540 * Hello. This is a simple command to test the EC is responsive to
541 * commands.
542 */
543 #define EC_CMD_HELLO 0x01
544
545 struct ec_params_hello {
546 uint32_t in_data; /* Pass anything here */
547 } __packed;
548
549 struct ec_response_hello {
550 uint32_t out_data; /* Output will be in_data + 0x01020304 */
551 } __packed;
552
553 /* Get version number */
554 #define EC_CMD_GET_VERSION 0x02
555
556 enum ec_current_image {
557 EC_IMAGE_UNKNOWN = 0,
558 EC_IMAGE_RO,
559 EC_IMAGE_RW
560 };
561
562 struct ec_response_get_version {
563 /* Null-terminated version strings for RO, RW */
564 char version_string_ro[32];
565 char version_string_rw[32];
566 char reserved[32]; /* Was previously RW-B string */
567 uint32_t current_image; /* One of ec_current_image */
568 } __packed;
569
570 /* Read test */
571 #define EC_CMD_READ_TEST 0x03
572
573 struct ec_params_read_test {
574 uint32_t offset; /* Starting value for read buffer */
575 uint32_t size; /* Size to read in bytes */
576 } __packed;
577
578 struct ec_response_read_test {
579 uint32_t data[32];
580 } __packed;
581
582 /*
583 * Get build information
584 *
585 * Response is null-terminated string.
586 */
587 #define EC_CMD_GET_BUILD_INFO 0x04
588
589 /* Get chip info */
590 #define EC_CMD_GET_CHIP_INFO 0x05
591
592 struct ec_response_get_chip_info {
593 /* Null-terminated strings */
594 char vendor[32];
595 char name[32];
596 char revision[32]; /* Mask version */
597 } __packed;
598
599 /* Get board HW version */
600 #define EC_CMD_GET_BOARD_VERSION 0x06
601
602 struct ec_response_board_version {
603 uint16_t board_version; /* A monotonously incrementing number. */
604 } __packed;
605
606 /*
607 * Read memory-mapped data.
608 *
609 * This is an alternate interface to memory-mapped data for bus protocols
610 * which don't support direct-mapped memory - I2C, SPI, etc.
611 *
612 * Response is params.size bytes of data.
613 */
614 #define EC_CMD_READ_MEMMAP 0x07
615
616 struct ec_params_read_memmap {
617 uint8_t offset; /* Offset in memmap (EC_MEMMAP_*) */
618 uint8_t size; /* Size to read in bytes */
619 } __packed;
620
621 /* Read versions supported for a command */
622 #define EC_CMD_GET_CMD_VERSIONS 0x08
623
624 struct ec_params_get_cmd_versions {
625 uint8_t cmd; /* Command to check */
626 } __packed;
627
628 struct ec_response_get_cmd_versions {
629 /*
630 * Mask of supported versions; use EC_VER_MASK() to compare with a
631 * desired version.
632 */
633 uint32_t version_mask;
634 } __packed;
635
636 /*
637 * Check EC communcations status (busy). This is needed on i2c/spi but not
638 * on lpc since it has its own out-of-band busy indicator.
639 *
640 * lpc must read the status from the command register. Attempting this on
641 * lpc will overwrite the args/parameter space and corrupt its data.
642 */
643 #define EC_CMD_GET_COMMS_STATUS 0x09
644
645 /* Avoid using ec_status which is for return values */
646 enum ec_comms_status {
647 EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */
648 };
649
650 struct ec_response_get_comms_status {
651 uint32_t flags; /* Mask of enum ec_comms_status */
652 } __packed;
653
654 /* Fake a variety of responses, purely for testing purposes. */
655 #define EC_CMD_TEST_PROTOCOL 0x0a
656
657 /* Tell the EC what to send back to us. */
658 struct ec_params_test_protocol {
659 uint32_t ec_result;
660 uint32_t ret_len;
661 uint8_t buf[32];
662 } __packed;
663
664 /* Here it comes... */
665 struct ec_response_test_protocol {
666 uint8_t buf[32];
667 } __packed;
668
669 /* Get prococol information */
670 #define EC_CMD_GET_PROTOCOL_INFO 0x0b
671
672 /* Flags for ec_response_get_protocol_info.flags */
673 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
674 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
675
676 struct ec_response_get_protocol_info {
677 /* Fields which exist if at least protocol version 3 supported */
678
679 /* Bitmask of protocol versions supported (1 << n means version n)*/
680 uint32_t protocol_versions;
681
682 /* Maximum request packet size, in bytes */
683 uint16_t max_request_packet_size;
684
685 /* Maximum response packet size, in bytes */
686 uint16_t max_response_packet_size;
687
688 /* Flags; see EC_PROTOCOL_INFO_* */
689 uint32_t flags;
690 } __packed;
691
692
693 /*****************************************************************************/
694 /* Get/Set miscellaneous values */
695
696 /* The upper byte of .flags tells what to do (nothing means "get") */
697 #define EC_GSV_SET 0x80000000
698
699 /* The lower three bytes of .flags identifies the parameter, if that has
700 meaning for an individual command. */
701 #define EC_GSV_PARAM_MASK 0x00ffffff
702
703 struct ec_params_get_set_value {
704 uint32_t flags;
705 uint32_t value;
706 } __packed;
707
708 struct ec_response_get_set_value {
709 uint32_t flags;
710 uint32_t value;
711 } __packed;
712
713 /* More than one command can use these structs to get/set paramters. */
714 #define EC_CMD_GSV_PAUSE_IN_S5 0x0c
715
716
717 /*****************************************************************************/
718 /* Flash commands */
719
720 /* Get flash info */
721 #define EC_CMD_FLASH_INFO 0x10
722
723 /* Version 0 returns these fields */
724 struct ec_response_flash_info {
725 /* Usable flash size, in bytes */
726 uint32_t flash_size;
727 /*
728 * Write block size. Write offset and size must be a multiple
729 * of this.
730 */
731 uint32_t write_block_size;
732 /*
733 * Erase block size. Erase offset and size must be a multiple
734 * of this.
735 */
736 uint32_t erase_block_size;
737 /*
738 * Protection block size. Protection offset and size must be a
739 * multiple of this.
740 */
741 uint32_t protect_block_size;
742 } __packed;
743
744 /* Flags for version 1+ flash info command */
745 /* EC flash erases bits to 0 instead of 1 */
746 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
747
748 /*
749 * Version 1 returns the same initial fields as version 0, with additional
750 * fields following.
751 *
752 * gcc anonymous structs don't seem to get along with the __packed directive;
753 * if they did we'd define the version 0 struct as a sub-struct of this one.
754 */
755 struct ec_response_flash_info_1 {
756 /* Version 0 fields; see above for description */
757 uint32_t flash_size;
758 uint32_t write_block_size;
759 uint32_t erase_block_size;
760 uint32_t protect_block_size;
761
762 /* Version 1 adds these fields: */
763 /*
764 * Ideal write size in bytes. Writes will be fastest if size is
765 * exactly this and offset is a multiple of this. For example, an EC
766 * may have a write buffer which can do half-page operations if data is
767 * aligned, and a slower word-at-a-time write mode.
768 */
769 uint32_t write_ideal_size;
770
771 /* Flags; see EC_FLASH_INFO_* */
772 uint32_t flags;
773 } __packed;
774
775 /*
776 * Read flash
777 *
778 * Response is params.size bytes of data.
779 */
780 #define EC_CMD_FLASH_READ 0x11
781
782 struct ec_params_flash_read {
783 uint32_t offset; /* Byte offset to read */
784 uint32_t size; /* Size to read in bytes */
785 } __packed;
786
787 /* Write flash */
788 #define EC_CMD_FLASH_WRITE 0x12
789 #define EC_VER_FLASH_WRITE 1
790
791 /* Version 0 of the flash command supported only 64 bytes of data */
792 #define EC_FLASH_WRITE_VER0_SIZE 64
793
794 struct ec_params_flash_write {
795 uint32_t offset; /* Byte offset to write */
796 uint32_t size; /* Size to write in bytes */
797 /* Followed by data to write */
798 } __packed;
799
800 /* Erase flash */
801 #define EC_CMD_FLASH_ERASE 0x13
802
803 struct ec_params_flash_erase {
804 uint32_t offset; /* Byte offset to erase */
805 uint32_t size; /* Size to erase in bytes */
806 } __packed;
807
808 /*
809 * Get/set flash protection.
810 *
811 * If mask!=0, sets/clear the requested bits of flags. Depending on the
812 * firmware write protect GPIO, not all flags will take effect immediately;
813 * some flags require a subsequent hard reset to take effect. Check the
814 * returned flags bits to see what actually happened.
815 *
816 * If mask=0, simply returns the current flags state.
817 */
818 #define EC_CMD_FLASH_PROTECT 0x15
819 #define EC_VER_FLASH_PROTECT 1 /* Command version 1 */
820
821 /* Flags for flash protection */
822 /* RO flash code protected when the EC boots */
823 #define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0)
824 /*
825 * RO flash code protected now. If this bit is set, at-boot status cannot
826 * be changed.
827 */
828 #define EC_FLASH_PROTECT_RO_NOW (1 << 1)
829 /* Entire flash code protected now, until reboot. */
830 #define EC_FLASH_PROTECT_ALL_NOW (1 << 2)
831 /* Flash write protect GPIO is asserted now */
832 #define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3)
833 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
834 #define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4)
835 /*
836 * Error - flash protection is in inconsistent state. At least one bank of
837 * flash which should be protected is not protected. Usually fixed by
838 * re-requesting the desired flags, or by a hard reset if that fails.
839 */
840 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
841 /* Entile flash code protected when the EC boots */
842 #define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6)
843
844 struct ec_params_flash_protect {
845 uint32_t mask; /* Bits in flags to apply */
846 uint32_t flags; /* New flags to apply */
847 } __packed;
848
849 struct ec_response_flash_protect {
850 /* Current value of flash protect flags */
851 uint32_t flags;
852 /*
853 * Flags which are valid on this platform. This allows the caller
854 * to distinguish between flags which aren't set vs. flags which can't
855 * be set on this platform.
856 */
857 uint32_t valid_flags;
858 /* Flags which can be changed given the current protection state */
859 uint32_t writable_flags;
860 } __packed;
861
862 /*
863 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
864 * write protect. These commands may be reused with version > 0.
865 */
866
867 /* Get the region offset/size */
868 #define EC_CMD_FLASH_REGION_INFO 0x16
869 #define EC_VER_FLASH_REGION_INFO 1
870
871 enum ec_flash_region {
872 /* Region which holds read-only EC image */
873 EC_FLASH_REGION_RO = 0,
874 /* Region which holds rewritable EC image */
875 EC_FLASH_REGION_RW,
876 /*
877 * Region which should be write-protected in the factory (a superset of
878 * EC_FLASH_REGION_RO)
879 */
880 EC_FLASH_REGION_WP_RO,
881 /* Number of regions */
882 EC_FLASH_REGION_COUNT,
883 };
884
885 struct ec_params_flash_region_info {
886 uint32_t region; /* enum ec_flash_region */
887 } __packed;
888
889 struct ec_response_flash_region_info {
890 uint32_t offset;
891 uint32_t size;
892 } __packed;
893
894 /* Read/write VbNvContext */
895 #define EC_CMD_VBNV_CONTEXT 0x17
896 #define EC_VER_VBNV_CONTEXT 1
897 #define EC_VBNV_BLOCK_SIZE 16
898
899 enum ec_vbnvcontext_op {
900 EC_VBNV_CONTEXT_OP_READ,
901 EC_VBNV_CONTEXT_OP_WRITE,
902 };
903
904 struct ec_params_vbnvcontext {
905 uint32_t op;
906 uint8_t block[EC_VBNV_BLOCK_SIZE];
907 } __packed;
908
909 struct ec_response_vbnvcontext {
910 uint8_t block[EC_VBNV_BLOCK_SIZE];
911 } __packed;
912
913 /*****************************************************************************/
914 /* PWM commands */
915
916 /* Get fan target RPM */
917 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x20
918
919 struct ec_response_pwm_get_fan_rpm {
920 uint32_t rpm;
921 } __packed;
922
923 /* Set target fan RPM */
924 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x21
925
926 struct ec_params_pwm_set_fan_target_rpm {
927 uint32_t rpm;
928 } __packed;
929
930 /* Get keyboard backlight */
931 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x22
932
933 struct ec_response_pwm_get_keyboard_backlight {
934 uint8_t percent;
935 uint8_t enabled;
936 } __packed;
937
938 /* Set keyboard backlight */
939 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x23
940
941 struct ec_params_pwm_set_keyboard_backlight {
942 uint8_t percent;
943 } __packed;
944
945 /* Set target fan PWM duty cycle */
946 #define EC_CMD_PWM_SET_FAN_DUTY 0x24
947
948 struct ec_params_pwm_set_fan_duty {
949 uint32_t percent;
950 } __packed;
951
952 #define EC_CMD_PWM_SET_DUTY 0x25
953 /* 16 bit duty cycle, 0xffff = 100% */
954 #define EC_PWM_MAX_DUTY 0xffff
955
956 enum ec_pwm_type {
957 /* All types, indexed by board-specific enum pwm_channel */
958 EC_PWM_TYPE_GENERIC = 0,
959 /* Keyboard backlight */
960 EC_PWM_TYPE_KB_LIGHT,
961 /* Display backlight */
962 EC_PWM_TYPE_DISPLAY_LIGHT,
963 EC_PWM_TYPE_COUNT,
964 };
965
966 struct ec_params_pwm_set_duty {
967 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
968 uint8_t pwm_type; /* ec_pwm_type */
969 uint8_t index; /* Type-specific index, or 0 if unique */
970 } __packed;
971
972 #define EC_CMD_PWM_GET_DUTY 0x26
973
974 struct ec_params_pwm_get_duty {
975 uint8_t pwm_type; /* ec_pwm_type */
976 uint8_t index; /* Type-specific index, or 0 if unique */
977 } __packed;
978
979 struct ec_response_pwm_get_duty {
980 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
981 } __packed;
982
983 /*****************************************************************************/
984 /*
985 * Lightbar commands. This looks worse than it is. Since we only use one HOST
986 * command to say "talk to the lightbar", we put the "and tell it to do X" part
987 * into a subcommand. We'll make separate structs for subcommands with
988 * different input args, so that we know how much to expect.
989 */
990 #define EC_CMD_LIGHTBAR_CMD 0x28
991
992 struct rgb_s {
993 uint8_t r, g, b;
994 };
995
996 #define LB_BATTERY_LEVELS 4
997 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
998 * host command, but the alignment is the same regardless. Keep it that way.
999 */
1000 struct lightbar_params_v0 {
1001 /* Timing */
1002 int32_t google_ramp_up;
1003 int32_t google_ramp_down;
1004 int32_t s3s0_ramp_up;
1005 int32_t s0_tick_delay[2]; /* AC=0/1 */
1006 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1007 int32_t s0s3_ramp_down;
1008 int32_t s3_sleep_for;
1009 int32_t s3_ramp_up;
1010 int32_t s3_ramp_down;
1011
1012 /* Oscillation */
1013 uint8_t new_s0;
1014 uint8_t osc_min[2]; /* AC=0/1 */
1015 uint8_t osc_max[2]; /* AC=0/1 */
1016 uint8_t w_ofs[2]; /* AC=0/1 */
1017
1018 /* Brightness limits based on the backlight and AC. */
1019 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1020 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1021 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1022
1023 /* Battery level thresholds */
1024 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1025
1026 /* Map [AC][battery_level] to color index */
1027 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1028 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1029
1030 /* Color palette */
1031 struct rgb_s color[8]; /* 0-3 are Google colors */
1032 } __packed;
1033
1034 struct lightbar_params_v1 {
1035 /* Timing */
1036 int32_t google_ramp_up;
1037 int32_t google_ramp_down;
1038 int32_t s3s0_ramp_up;
1039 int32_t s0_tick_delay[2]; /* AC=0/1 */
1040 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1041 int32_t s0s3_ramp_down;
1042 int32_t s3_sleep_for;
1043 int32_t s3_ramp_up;
1044 int32_t s3_ramp_down;
1045 int32_t tap_tick_delay;
1046 int32_t tap_display_time;
1047
1048 /* Tap-for-battery params */
1049 uint8_t tap_pct_red;
1050 uint8_t tap_pct_green;
1051 uint8_t tap_seg_min_on;
1052 uint8_t tap_seg_max_on;
1053 uint8_t tap_seg_osc;
1054 uint8_t tap_idx[3];
1055
1056 /* Oscillation */
1057 uint8_t osc_min[2]; /* AC=0/1 */
1058 uint8_t osc_max[2]; /* AC=0/1 */
1059 uint8_t w_ofs[2]; /* AC=0/1 */
1060
1061 /* Brightness limits based on the backlight and AC. */
1062 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1063 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1064 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1065
1066 /* Battery level thresholds */
1067 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1068
1069 /* Map [AC][battery_level] to color index */
1070 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1071 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1072
1073 /* Color palette */
1074 struct rgb_s color[8]; /* 0-3 are Google colors */
1075 } __packed;
1076
1077 struct ec_params_lightbar {
1078 uint8_t cmd; /* Command (see enum lightbar_command) */
1079 union {
1080 struct {
1081 /* no args */
1082 } dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1083 version, get_brightness, get_demo;
1084
1085 struct {
1086 uint8_t num;
1087 } set_brightness, seq, demo;
1088
1089 struct {
1090 uint8_t ctrl, reg, value;
1091 } reg;
1092
1093 struct {
1094 uint8_t led, red, green, blue;
1095 } set_rgb;
1096
1097 struct {
1098 uint8_t led;
1099 } get_rgb;
1100
1101 struct lightbar_params_v0 set_params_v0;
1102 struct lightbar_params_v1 set_params_v1;
1103 };
1104 } __packed;
1105
1106 struct ec_response_lightbar {
1107 union {
1108 struct {
1109 struct {
1110 uint8_t reg;
1111 uint8_t ic0;
1112 uint8_t ic1;
1113 } vals[23];
1114 } dump;
1115
1116 struct {
1117 uint8_t num;
1118 } get_seq, get_brightness, get_demo;
1119
1120 struct lightbar_params_v0 get_params_v0;
1121 struct lightbar_params_v1 get_params_v1;
1122
1123 struct {
1124 uint32_t num;
1125 uint32_t flags;
1126 } version;
1127
1128 struct {
1129 uint8_t red, green, blue;
1130 } get_rgb;
1131
1132 struct {
1133 /* no return params */
1134 } off, on, init, set_brightness, seq, reg, set_rgb,
1135 demo, set_params_v0, set_params_v1;
1136 };
1137 } __packed;
1138
1139 /* Lightbar commands */
1140 enum lightbar_command {
1141 LIGHTBAR_CMD_DUMP = 0,
1142 LIGHTBAR_CMD_OFF = 1,
1143 LIGHTBAR_CMD_ON = 2,
1144 LIGHTBAR_CMD_INIT = 3,
1145 LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1146 LIGHTBAR_CMD_SEQ = 5,
1147 LIGHTBAR_CMD_REG = 6,
1148 LIGHTBAR_CMD_SET_RGB = 7,
1149 LIGHTBAR_CMD_GET_SEQ = 8,
1150 LIGHTBAR_CMD_DEMO = 9,
1151 LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1152 LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1153 LIGHTBAR_CMD_VERSION = 12,
1154 LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1155 LIGHTBAR_CMD_GET_RGB = 14,
1156 LIGHTBAR_CMD_GET_DEMO = 15,
1157 LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1158 LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1159 LIGHTBAR_NUM_CMDS
1160 };
1161
1162 /*****************************************************************************/
1163 /* LED control commands */
1164
1165 #define EC_CMD_LED_CONTROL 0x29
1166
1167 enum ec_led_id {
1168 /* LED to indicate battery state of charge */
1169 EC_LED_ID_BATTERY_LED = 0,
1170 /*
1171 * LED to indicate system power state (on or in suspend).
1172 * May be on power button or on C-panel.
1173 */
1174 EC_LED_ID_POWER_LED,
1175 /* LED on power adapter or its plug */
1176 EC_LED_ID_ADAPTER_LED,
1177
1178 EC_LED_ID_COUNT
1179 };
1180
1181 /* LED control flags */
1182 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1183 #define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */
1184
1185 enum ec_led_colors {
1186 EC_LED_COLOR_RED = 0,
1187 EC_LED_COLOR_GREEN,
1188 EC_LED_COLOR_BLUE,
1189 EC_LED_COLOR_YELLOW,
1190 EC_LED_COLOR_WHITE,
1191
1192 EC_LED_COLOR_COUNT
1193 };
1194
1195 struct ec_params_led_control {
1196 uint8_t led_id; /* Which LED to control */
1197 uint8_t flags; /* Control flags */
1198
1199 uint8_t brightness[EC_LED_COLOR_COUNT];
1200 } __packed;
1201
1202 struct ec_response_led_control {
1203 /*
1204 * Available brightness value range.
1205 *
1206 * Range 0 means color channel not present.
1207 * Range 1 means on/off control.
1208 * Other values means the LED is control by PWM.
1209 */
1210 uint8_t brightness_range[EC_LED_COLOR_COUNT];
1211 } __packed;
1212
1213 /*****************************************************************************/
1214 /* Verified boot commands */
1215
1216 /*
1217 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1218 * reused for other purposes with version > 0.
1219 */
1220
1221 /* Verified boot hash command */
1222 #define EC_CMD_VBOOT_HASH 0x2A
1223
1224 struct ec_params_vboot_hash {
1225 uint8_t cmd; /* enum ec_vboot_hash_cmd */
1226 uint8_t hash_type; /* enum ec_vboot_hash_type */
1227 uint8_t nonce_size; /* Nonce size; may be 0 */
1228 uint8_t reserved0; /* Reserved; set 0 */
1229 uint32_t offset; /* Offset in flash to hash */
1230 uint32_t size; /* Number of bytes to hash */
1231 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */
1232 } __packed;
1233
1234 struct ec_response_vboot_hash {
1235 uint8_t status; /* enum ec_vboot_hash_status */
1236 uint8_t hash_type; /* enum ec_vboot_hash_type */
1237 uint8_t digest_size; /* Size of hash digest in bytes */
1238 uint8_t reserved0; /* Ignore; will be 0 */
1239 uint32_t offset; /* Offset in flash which was hashed */
1240 uint32_t size; /* Number of bytes hashed */
1241 uint8_t hash_digest[64]; /* Hash digest data */
1242 } __packed;
1243
1244 enum ec_vboot_hash_cmd {
1245 EC_VBOOT_HASH_GET = 0, /* Get current hash status */
1246 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */
1247 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */
1248 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */
1249 };
1250
1251 enum ec_vboot_hash_type {
1252 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1253 };
1254
1255 enum ec_vboot_hash_status {
1256 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1257 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1258 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1259 };
1260
1261 /*
1262 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1263 * If one of these is specified, the EC will automatically update offset and
1264 * size to the correct values for the specified image (RO or RW).
1265 */
1266 #define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
1267 #define EC_VBOOT_HASH_OFFSET_RW 0xfffffffd
1268
1269 /*****************************************************************************/
1270 /*
1271 * Motion sense commands. We'll make separate structs for sub-commands with
1272 * different input args, so that we know how much to expect.
1273 */
1274 #define EC_CMD_MOTION_SENSE_CMD 0x2B
1275
1276 /* Motion sense commands */
1277 enum motionsense_command {
1278 /*
1279 * Dump command returns all motion sensor data including motion sense
1280 * module flags and individual sensor flags.
1281 */
1282 MOTIONSENSE_CMD_DUMP = 0,
1283
1284 /*
1285 * Info command returns data describing the details of a given sensor,
1286 * including enum motionsensor_type, enum motionsensor_location, and
1287 * enum motionsensor_chip.
1288 */
1289 MOTIONSENSE_CMD_INFO = 1,
1290
1291 /*
1292 * EC Rate command is a setter/getter command for the EC sampling rate
1293 * of all motion sensors in milliseconds.
1294 */
1295 MOTIONSENSE_CMD_EC_RATE = 2,
1296
1297 /*
1298 * Sensor ODR command is a setter/getter command for the output data
1299 * rate of a specific motion sensor in millihertz.
1300 */
1301 MOTIONSENSE_CMD_SENSOR_ODR = 3,
1302
1303 /*
1304 * Sensor range command is a setter/getter command for the range of
1305 * a specified motion sensor in +/-G's or +/- deg/s.
1306 */
1307 MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1308
1309 /*
1310 * Setter/getter command for the keyboard wake angle. When the lid
1311 * angle is greater than this value, keyboard wake is disabled in S3,
1312 * and when the lid angle goes less than this value, keyboard wake is
1313 * enabled. Note, the lid angle measurement is an approximate,
1314 * un-calibrated value, hence the wake angle isn't exact.
1315 */
1316 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
1317
1318 /* Number of motionsense sub-commands. */
1319 MOTIONSENSE_NUM_CMDS
1320 };
1321
1322 enum motionsensor_id {
1323 EC_MOTION_SENSOR_ACCEL_BASE = 0,
1324 EC_MOTION_SENSOR_ACCEL_LID = 1,
1325 EC_MOTION_SENSOR_GYRO = 2,
1326
1327 /*
1328 * Note, if more sensors are added and this count changes, the padding
1329 * in ec_response_motion_sense dump command must be modified.
1330 */
1331 EC_MOTION_SENSOR_COUNT = 3
1332 };
1333
1334 /* List of motion sensor types. */
1335 enum motionsensor_type {
1336 MOTIONSENSE_TYPE_ACCEL = 0,
1337 MOTIONSENSE_TYPE_GYRO = 1,
1338 };
1339
1340 /* List of motion sensor locations. */
1341 enum motionsensor_location {
1342 MOTIONSENSE_LOC_BASE = 0,
1343 MOTIONSENSE_LOC_LID = 1,
1344 };
1345
1346 /* List of motion sensor chips. */
1347 enum motionsensor_chip {
1348 MOTIONSENSE_CHIP_KXCJ9 = 0,
1349 };
1350
1351 /* Module flag masks used for the dump sub-command. */
1352 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
1353
1354 /* Sensor flag masks used for the dump sub-command. */
1355 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
1356
1357 /*
1358 * Send this value for the data element to only perform a read. If you
1359 * send any other value, the EC will interpret it as data to set and will
1360 * return the actual value set.
1361 */
1362 #define EC_MOTION_SENSE_NO_VALUE -1
1363
1364 struct ec_params_motion_sense {
1365 uint8_t cmd;
1366 union {
1367 /* Used for MOTIONSENSE_CMD_DUMP. */
1368 struct {
1369 /* no args */
1370 } dump;
1371
1372 /*
1373 * Used for MOTIONSENSE_CMD_EC_RATE and
1374 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1375 */
1376 struct {
1377 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1378 int16_t data;
1379 } ec_rate, kb_wake_angle;
1380
1381 /* Used for MOTIONSENSE_CMD_INFO. */
1382 struct {
1383 /* Should be element of enum motionsensor_id. */
1384 uint8_t sensor_num;
1385 } info;
1386
1387 /*
1388 * Used for MOTIONSENSE_CMD_SENSOR_ODR and
1389 * MOTIONSENSE_CMD_SENSOR_RANGE.
1390 */
1391 struct {
1392 /* Should be element of enum motionsensor_id. */
1393 uint8_t sensor_num;
1394
1395 /* Rounding flag, true for round-up, false for down. */
1396 uint8_t roundup;
1397
1398 uint16_t reserved;
1399
1400 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
1401 int32_t data;
1402 } sensor_odr, sensor_range;
1403 };
1404 } __packed;
1405
1406 struct ec_response_motion_sense {
1407 union {
1408 /* Used for MOTIONSENSE_CMD_DUMP. */
1409 struct {
1410 /* Flags representing the motion sensor module. */
1411 uint8_t module_flags;
1412
1413 /* Flags for each sensor in enum motionsensor_id. */
1414 uint8_t sensor_flags[EC_MOTION_SENSOR_COUNT];
1415
1416 /* Array of all sensor data. Each sensor is 3-axis. */
1417 int16_t data[3*EC_MOTION_SENSOR_COUNT];
1418 } dump;
1419
1420 /* Used for MOTIONSENSE_CMD_INFO. */
1421 struct {
1422 /* Should be element of enum motionsensor_type. */
1423 uint8_t type;
1424
1425 /* Should be element of enum motionsensor_location. */
1426 uint8_t location;
1427
1428 /* Should be element of enum motionsensor_chip. */
1429 uint8_t chip;
1430 } info;
1431
1432 /*
1433 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
1434 * MOTIONSENSE_CMD_SENSOR_RANGE, and
1435 * MOTIONSENSE_CMD_KB_WAKE_ANGLE.
1436 */
1437 struct {
1438 /* Current value of the parameter queried. */
1439 int32_t ret;
1440 } ec_rate, sensor_odr, sensor_range, kb_wake_angle;
1441 };
1442 } __packed;
1443
1444 /*****************************************************************************/
1445 /* USB charging control commands */
1446
1447 /* Set USB port charging mode */
1448 #define EC_CMD_USB_CHARGE_SET_MODE 0x30
1449
1450 struct ec_params_usb_charge_set_mode {
1451 uint8_t usb_port_id;
1452 uint8_t mode;
1453 } __packed;
1454
1455 /*****************************************************************************/
1456 /* Persistent storage for host */
1457
1458 /* Maximum bytes that can be read/written in a single command */
1459 #define EC_PSTORE_SIZE_MAX 64
1460
1461 /* Get persistent storage info */
1462 #define EC_CMD_PSTORE_INFO 0x40
1463
1464 struct ec_response_pstore_info {
1465 /* Persistent storage size, in bytes */
1466 uint32_t pstore_size;
1467 /* Access size; read/write offset and size must be a multiple of this */
1468 uint32_t access_size;
1469 } __packed;
1470
1471 /*
1472 * Read persistent storage
1473 *
1474 * Response is params.size bytes of data.
1475 */
1476 #define EC_CMD_PSTORE_READ 0x41
1477
1478 struct ec_params_pstore_read {
1479 uint32_t offset; /* Byte offset to read */
1480 uint32_t size; /* Size to read in bytes */
1481 } __packed;
1482
1483 /* Write persistent storage */
1484 #define EC_CMD_PSTORE_WRITE 0x42
1485
1486 struct ec_params_pstore_write {
1487 uint32_t offset; /* Byte offset to write */
1488 uint32_t size; /* Size to write in bytes */
1489 uint8_t data[EC_PSTORE_SIZE_MAX];
1490 } __packed;
1491
1492 /*****************************************************************************/
1493 /* Real-time clock */
1494
1495 /* RTC params and response structures */
1496 struct ec_params_rtc {
1497 uint32_t time;
1498 } __packed;
1499
1500 struct ec_response_rtc {
1501 uint32_t time;
1502 } __packed;
1503
1504 /* These use ec_response_rtc */
1505 #define EC_CMD_RTC_GET_VALUE 0x44
1506 #define EC_CMD_RTC_GET_ALARM 0x45
1507
1508 /* These all use ec_params_rtc */
1509 #define EC_CMD_RTC_SET_VALUE 0x46
1510 #define EC_CMD_RTC_SET_ALARM 0x47
1511
1512 /*****************************************************************************/
1513 /* Port80 log access */
1514
1515 /* Maximum entries that can be read/written in a single command */
1516 #define EC_PORT80_SIZE_MAX 32
1517
1518 /* Get last port80 code from previous boot */
1519 #define EC_CMD_PORT80_LAST_BOOT 0x48
1520 #define EC_CMD_PORT80_READ 0x48
1521
1522 enum ec_port80_subcmd {
1523 EC_PORT80_GET_INFO = 0,
1524 EC_PORT80_READ_BUFFER,
1525 };
1526
1527 struct ec_params_port80_read {
1528 uint16_t subcmd;
1529 union {
1530 struct {
1531 uint32_t offset;
1532 uint32_t num_entries;
1533 } read_buffer;
1534 };
1535 } __packed;
1536
1537 struct ec_response_port80_read {
1538 union {
1539 struct {
1540 uint32_t writes;
1541 uint32_t history_size;
1542 uint32_t last_boot;
1543 } get_info;
1544 struct {
1545 uint16_t codes[EC_PORT80_SIZE_MAX];
1546 } data;
1547 };
1548 } __packed;
1549
1550 struct ec_response_port80_last_boot {
1551 uint16_t code;
1552 } __packed;
1553
1554 /*****************************************************************************/
1555 /* Thermal engine commands. Note that there are two implementations. We'll
1556 * reuse the command number, but the data and behavior is incompatible.
1557 * Version 0 is what originally shipped on Link.
1558 * Version 1 separates the CPU thermal limits from the fan control.
1559 */
1560
1561 #define EC_CMD_THERMAL_SET_THRESHOLD 0x50
1562 #define EC_CMD_THERMAL_GET_THRESHOLD 0x51
1563
1564 /* The version 0 structs are opaque. You have to know what they are for
1565 * the get/set commands to make any sense.
1566 */
1567
1568 /* Version 0 - set */
1569 struct ec_params_thermal_set_threshold {
1570 uint8_t sensor_type;
1571 uint8_t threshold_id;
1572 uint16_t value;
1573 } __packed;
1574
1575 /* Version 0 - get */
1576 struct ec_params_thermal_get_threshold {
1577 uint8_t sensor_type;
1578 uint8_t threshold_id;
1579 } __packed;
1580
1581 struct ec_response_thermal_get_threshold {
1582 uint16_t value;
1583 } __packed;
1584
1585
1586 /* The version 1 structs are visible. */
1587 enum ec_temp_thresholds {
1588 EC_TEMP_THRESH_WARN = 0,
1589 EC_TEMP_THRESH_HIGH,
1590 EC_TEMP_THRESH_HALT,
1591
1592 EC_TEMP_THRESH_COUNT
1593 };
1594
1595 /* Thermal configuration for one temperature sensor. Temps are in degrees K.
1596 * Zero values will be silently ignored by the thermal task.
1597 */
1598 struct ec_thermal_config {
1599 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
1600 uint32_t temp_fan_off; /* no active cooling needed */
1601 uint32_t temp_fan_max; /* max active cooling needed */
1602 } __packed;
1603
1604 /* Version 1 - get config for one sensor. */
1605 struct ec_params_thermal_get_threshold_v1 {
1606 uint32_t sensor_num;
1607 } __packed;
1608 /* This returns a struct ec_thermal_config */
1609
1610 /* Version 1 - set config for one sensor.
1611 * Use read-modify-write for best results! */
1612 struct ec_params_thermal_set_threshold_v1 {
1613 uint32_t sensor_num;
1614 struct ec_thermal_config cfg;
1615 } __packed;
1616 /* This returns no data */
1617
1618 /****************************************************************************/
1619
1620 /* Toggle automatic fan control */
1621 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x52
1622
1623 /* Get TMP006 calibration data */
1624 #define EC_CMD_TMP006_GET_CALIBRATION 0x53
1625
1626 struct ec_params_tmp006_get_calibration {
1627 uint8_t index;
1628 } __packed;
1629
1630 struct ec_response_tmp006_get_calibration {
1631 float s0;
1632 float b0;
1633 float b1;
1634 float b2;
1635 } __packed;
1636
1637 /* Set TMP006 calibration data */
1638 #define EC_CMD_TMP006_SET_CALIBRATION 0x54
1639
1640 struct ec_params_tmp006_set_calibration {
1641 uint8_t index;
1642 uint8_t reserved[3]; /* Reserved; set 0 */
1643 float s0;
1644 float b0;
1645 float b1;
1646 float b2;
1647 } __packed;
1648
1649 /* Read raw TMP006 data */
1650 #define EC_CMD_TMP006_GET_RAW 0x55
1651
1652 struct ec_params_tmp006_get_raw {
1653 uint8_t index;
1654 } __packed;
1655
1656 struct ec_response_tmp006_get_raw {
1657 int32_t t; /* In 1/100 K */
1658 int32_t v; /* In nV */
1659 };
1660
1661 /*****************************************************************************/
1662 /* MKBP - Matrix KeyBoard Protocol */
1663
1664 /*
1665 * Read key state
1666 *
1667 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
1668 * expected response size.
1669 */
1670 #define EC_CMD_MKBP_STATE 0x60
1671
1672 /* Provide information about the matrix : number of rows and columns */
1673 #define EC_CMD_MKBP_INFO 0x61
1674
1675 struct ec_response_mkbp_info {
1676 uint32_t rows;
1677 uint32_t cols;
1678 uint8_t switches;
1679 } __packed;
1680
1681 /* Simulate key press */
1682 #define EC_CMD_MKBP_SIMULATE_KEY 0x62
1683
1684 struct ec_params_mkbp_simulate_key {
1685 uint8_t col;
1686 uint8_t row;
1687 uint8_t pressed;
1688 } __packed;
1689
1690 /* Configure keyboard scanning */
1691 #define EC_CMD_MKBP_SET_CONFIG 0x64
1692 #define EC_CMD_MKBP_GET_CONFIG 0x65
1693
1694 /* flags */
1695 enum mkbp_config_flags {
1696 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */
1697 };
1698
1699 enum mkbp_config_valid {
1700 EC_MKBP_VALID_SCAN_PERIOD = 1 << 0,
1701 EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1,
1702 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3,
1703 EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4,
1704 EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5,
1705 EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6,
1706 EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7,
1707 };
1708
1709 /* Configuration for our key scanning algorithm */
1710 struct ec_mkbp_config {
1711 uint32_t valid_mask; /* valid fields */
1712 uint8_t flags; /* some flags (enum mkbp_config_flags) */
1713 uint8_t valid_flags; /* which flags are valid */
1714 uint16_t scan_period_us; /* period between start of scans */
1715 /* revert to interrupt mode after no activity for this long */
1716 uint32_t poll_timeout_us;
1717 /*
1718 * minimum post-scan relax time. Once we finish a scan we check
1719 * the time until we are due to start the next one. If this time is
1720 * shorter this field, we use this instead.
1721 */
1722 uint16_t min_post_scan_delay_us;
1723 /* delay between setting up output and waiting for it to settle */
1724 uint16_t output_settle_us;
1725 uint16_t debounce_down_us; /* time for debounce on key down */
1726 uint16_t debounce_up_us; /* time for debounce on key up */
1727 /* maximum depth to allow for fifo (0 = no keyscan output) */
1728 uint8_t fifo_max_depth;
1729 } __packed;
1730
1731 struct ec_params_mkbp_set_config {
1732 struct ec_mkbp_config config;
1733 } __packed;
1734
1735 struct ec_response_mkbp_get_config {
1736 struct ec_mkbp_config config;
1737 } __packed;
1738
1739 /* Run the key scan emulation */
1740 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x66
1741
1742 enum ec_keyscan_seq_cmd {
1743 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */
1744 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */
1745 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */
1746 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */
1747 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */
1748 };
1749
1750 enum ec_collect_flags {
1751 /*
1752 * Indicates this scan was processed by the EC. Due to timing, some
1753 * scans may be skipped.
1754 */
1755 EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0,
1756 };
1757
1758 struct ec_collect_item {
1759 uint8_t flags; /* some flags (enum ec_collect_flags) */
1760 };
1761
1762 struct ec_params_keyscan_seq_ctrl {
1763 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */
1764 union {
1765 struct {
1766 uint8_t active; /* still active */
1767 uint8_t num_items; /* number of items */
1768 /* Current item being presented */
1769 uint8_t cur_item;
1770 } status;
1771 struct {
1772 /*
1773 * Absolute time for this scan, measured from the
1774 * start of the sequence.
1775 */
1776 uint32_t time_us;
1777 uint8_t scan[0]; /* keyscan data */
1778 } add;
1779 struct {
1780 uint8_t start_item; /* First item to return */
1781 uint8_t num_items; /* Number of items to return */
1782 } collect;
1783 };
1784 } __packed;
1785
1786 struct ec_result_keyscan_seq_ctrl {
1787 union {
1788 struct {
1789 uint8_t num_items; /* Number of items */
1790 /* Data for each item */
1791 struct ec_collect_item item[0];
1792 } collect;
1793 };
1794 } __packed;
1795
1796 /*****************************************************************************/
1797 /* Temperature sensor commands */
1798
1799 /* Read temperature sensor info */
1800 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x70
1801
1802 struct ec_params_temp_sensor_get_info {
1803 uint8_t id;
1804 } __packed;
1805
1806 struct ec_response_temp_sensor_get_info {
1807 char sensor_name[32];
1808 uint8_t sensor_type;
1809 } __packed;
1810
1811 /*****************************************************************************/
1812
1813 /*
1814 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
1815 * commands accidentally sent to the wrong interface. See the ACPI section
1816 * below.
1817 */
1818
1819 /*****************************************************************************/
1820 /* Host event commands */
1821
1822 /*
1823 * Host event mask params and response structures, shared by all of the host
1824 * event commands below.
1825 */
1826 struct ec_params_host_event_mask {
1827 uint32_t mask;
1828 } __packed;
1829
1830 struct ec_response_host_event_mask {
1831 uint32_t mask;
1832 } __packed;
1833
1834 /* These all use ec_response_host_event_mask */
1835 #define EC_CMD_HOST_EVENT_GET_B 0x87
1836 #define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x88
1837 #define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x89
1838 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x8d
1839
1840 /* These all use ec_params_host_event_mask */
1841 #define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x8a
1842 #define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x8b
1843 #define EC_CMD_HOST_EVENT_CLEAR 0x8c
1844 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x8e
1845 #define EC_CMD_HOST_EVENT_CLEAR_B 0x8f
1846
1847 /*****************************************************************************/
1848 /* Switch commands */
1849
1850 /* Enable/disable LCD backlight */
1851 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x90
1852
1853 struct ec_params_switch_enable_backlight {
1854 uint8_t enabled;
1855 } __packed;
1856
1857 /* Enable/disable WLAN/Bluetooth */
1858 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x91
1859 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
1860
1861 /* Version 0 params; no response */
1862 struct ec_params_switch_enable_wireless_v0 {
1863 uint8_t enabled;
1864 } __packed;
1865
1866 /* Version 1 params */
1867 struct ec_params_switch_enable_wireless_v1 {
1868 /* Flags to enable now */
1869 uint8_t now_flags;
1870
1871 /* Which flags to copy from now_flags */
1872 uint8_t now_mask;
1873
1874 /*
1875 * Flags to leave enabled in S3, if they're on at the S0->S3
1876 * transition. (Other flags will be disabled by the S0->S3
1877 * transition.)
1878 */
1879 uint8_t suspend_flags;
1880
1881 /* Which flags to copy from suspend_flags */
1882 uint8_t suspend_mask;
1883 } __packed;
1884
1885 /* Version 1 response */
1886 struct ec_response_switch_enable_wireless_v1 {
1887 /* Flags to enable now */
1888 uint8_t now_flags;
1889
1890 /* Flags to leave enabled in S3 */
1891 uint8_t suspend_flags;
1892 } __packed;
1893
1894 /*****************************************************************************/
1895 /* GPIO commands. Only available on EC if write protect has been disabled. */
1896
1897 /* Set GPIO output value */
1898 #define EC_CMD_GPIO_SET 0x92
1899
1900 struct ec_params_gpio_set {
1901 char name[32];
1902 uint8_t val;
1903 } __packed;
1904
1905 /* Get GPIO value */
1906 #define EC_CMD_GPIO_GET 0x93
1907
1908 /* Version 0 of input params and response */
1909 struct ec_params_gpio_get {
1910 char name[32];
1911 } __packed;
1912 struct ec_response_gpio_get {
1913 uint8_t val;
1914 } __packed;
1915
1916 /* Version 1 of input params and response */
1917 struct ec_params_gpio_get_v1 {
1918 uint8_t subcmd;
1919 union {
1920 struct {
1921 char name[32];
1922 } get_value_by_name;
1923 struct {
1924 uint8_t index;
1925 } get_info;
1926 };
1927 } __packed;
1928
1929 struct ec_response_gpio_get_v1 {
1930 union {
1931 struct {
1932 uint8_t val;
1933 } get_value_by_name, get_count;
1934 struct {
1935 uint8_t val;
1936 char name[32];
1937 uint32_t flags;
1938 } get_info;
1939 };
1940 } __packed;
1941
1942 enum gpio_get_subcmd {
1943 EC_GPIO_GET_BY_NAME = 0,
1944 EC_GPIO_GET_COUNT = 1,
1945 EC_GPIO_GET_INFO = 2,
1946 };
1947
1948 /*****************************************************************************/
1949 /* I2C commands. Only available when flash write protect is unlocked. */
1950
1951 /*
1952 * TODO(crosbug.com/p/23570): These commands are deprecated, and will be
1953 * removed soon. Use EC_CMD_I2C_XFER instead.
1954 */
1955
1956 /* Read I2C bus */
1957 #define EC_CMD_I2C_READ 0x94
1958
1959 struct ec_params_i2c_read {
1960 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
1961 uint8_t read_size; /* Either 8 or 16. */
1962 uint8_t port;
1963 uint8_t offset;
1964 } __packed;
1965 struct ec_response_i2c_read {
1966 uint16_t data;
1967 } __packed;
1968
1969 /* Write I2C bus */
1970 #define EC_CMD_I2C_WRITE 0x95
1971
1972 struct ec_params_i2c_write {
1973 uint16_t data;
1974 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
1975 uint8_t write_size; /* Either 8 or 16. */
1976 uint8_t port;
1977 uint8_t offset;
1978 } __packed;
1979
1980 /*****************************************************************************/
1981 /* Charge state commands. Only available when flash write protect unlocked. */
1982
1983 /* Force charge state machine to stop charging the battery or force it to
1984 * discharge the battery.
1985 */
1986 #define EC_CMD_CHARGE_CONTROL 0x96
1987 #define EC_VER_CHARGE_CONTROL 1
1988
1989 enum ec_charge_control_mode {
1990 CHARGE_CONTROL_NORMAL = 0,
1991 CHARGE_CONTROL_IDLE,
1992 CHARGE_CONTROL_DISCHARGE,
1993 };
1994
1995 struct ec_params_charge_control {
1996 uint32_t mode; /* enum charge_control_mode */
1997 } __packed;
1998
1999 /*****************************************************************************/
2000 /* Console commands. Only available when flash write protect is unlocked. */
2001
2002 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
2003 #define EC_CMD_CONSOLE_SNAPSHOT 0x97
2004
2005 /*
2006 * Read next chunk of data from saved snapshot.
2007 *
2008 * Response is null-terminated string. Empty string, if there is no more
2009 * remaining output.
2010 */
2011 #define EC_CMD_CONSOLE_READ 0x98
2012
2013 /*****************************************************************************/
2014
2015 /*
2016 * Cut off battery power immediately or after the host has shut down.
2017 *
2018 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
2019 * EC_RES_SUCCESS if the command was successful.
2020 * EC_RES_ERROR if the cut off command failed.
2021 */
2022
2023 #define EC_CMD_BATTERY_CUT_OFF 0x99
2024
2025 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN (1 << 0)
2026
2027 struct ec_params_battery_cutoff {
2028 uint8_t flags;
2029 } __packed;
2030
2031 /*****************************************************************************/
2032 /* USB port mux control. */
2033
2034 /*
2035 * Switch USB mux or return to automatic switching.
2036 */
2037 #define EC_CMD_USB_MUX 0x9a
2038
2039 struct ec_params_usb_mux {
2040 uint8_t mux;
2041 } __packed;
2042
2043 /*****************************************************************************/
2044 /* LDOs / FETs control. */
2045
2046 enum ec_ldo_state {
2047 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */
2048 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */
2049 };
2050
2051 /*
2052 * Switch on/off a LDO.
2053 */
2054 #define EC_CMD_LDO_SET 0x9b
2055
2056 struct ec_params_ldo_set {
2057 uint8_t index;
2058 uint8_t state;
2059 } __packed;
2060
2061 /*
2062 * Get LDO state.
2063 */
2064 #define EC_CMD_LDO_GET 0x9c
2065
2066 struct ec_params_ldo_get {
2067 uint8_t index;
2068 } __packed;
2069
2070 struct ec_response_ldo_get {
2071 uint8_t state;
2072 } __packed;
2073
2074 /*****************************************************************************/
2075 /* Power info. */
2076
2077 /*
2078 * Get power info.
2079 */
2080 #define EC_CMD_POWER_INFO 0x9d
2081
2082 struct ec_response_power_info {
2083 uint32_t usb_dev_type;
2084 uint16_t voltage_ac;
2085 uint16_t voltage_system;
2086 uint16_t current_system;
2087 uint16_t usb_current_limit;
2088 } __packed;
2089
2090 /*****************************************************************************/
2091 /* I2C passthru command */
2092
2093 #define EC_CMD_I2C_PASSTHRU 0x9e
2094
2095 /* Read data; if not present, message is a write */
2096 #define EC_I2C_FLAG_READ (1 << 15)
2097
2098 /* Mask for address */
2099 #define EC_I2C_ADDR_MASK 0x3ff
2100
2101 #define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */
2102 #define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */
2103
2104 /* Any error */
2105 #define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
2106
2107 struct ec_params_i2c_passthru_msg {
2108 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */
2109 uint16_t len; /* Number of bytes to read or write */
2110 } __packed;
2111
2112 struct ec_params_i2c_passthru {
2113 uint8_t port; /* I2C port number */
2114 uint8_t num_msgs; /* Number of messages */
2115 struct ec_params_i2c_passthru_msg msg[];
2116 /* Data to write for all messages is concatenated here */
2117 } __packed;
2118
2119 struct ec_response_i2c_passthru {
2120 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */
2121 uint8_t num_msgs; /* Number of messages processed */
2122 uint8_t data[]; /* Data read by messages concatenated here */
2123 } __packed;
2124
2125 /*****************************************************************************/
2126 /* Power button hang detect */
2127
2128 #define EC_CMD_HANG_DETECT 0x9f
2129
2130 /* Reasons to start hang detection timer */
2131 /* Power button pressed */
2132 #define EC_HANG_START_ON_POWER_PRESS (1 << 0)
2133
2134 /* Lid closed */
2135 #define EC_HANG_START_ON_LID_CLOSE (1 << 1)
2136
2137 /* Lid opened */
2138 #define EC_HANG_START_ON_LID_OPEN (1 << 2)
2139
2140 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
2141 #define EC_HANG_START_ON_RESUME (1 << 3)
2142
2143 /* Reasons to cancel hang detection */
2144
2145 /* Power button released */
2146 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
2147
2148 /* Any host command from AP received */
2149 #define EC_HANG_STOP_ON_HOST_COMMAND (1 << 9)
2150
2151 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
2152 #define EC_HANG_STOP_ON_SUSPEND (1 << 10)
2153
2154 /*
2155 * If this flag is set, all the other fields are ignored, and the hang detect
2156 * timer is started. This provides the AP a way to start the hang timer
2157 * without reconfiguring any of the other hang detect settings. Note that
2158 * you must previously have configured the timeouts.
2159 */
2160 #define EC_HANG_START_NOW (1 << 30)
2161
2162 /*
2163 * If this flag is set, all the other fields are ignored (including
2164 * EC_HANG_START_NOW). This provides the AP a way to stop the hang timer
2165 * without reconfiguring any of the other hang detect settings.
2166 */
2167 #define EC_HANG_STOP_NOW (1 << 31)
2168
2169 struct ec_params_hang_detect {
2170 /* Flags; see EC_HANG_* */
2171 uint32_t flags;
2172
2173 /* Timeout in msec before generating host event, if enabled */
2174 uint16_t host_event_timeout_msec;
2175
2176 /* Timeout in msec before generating warm reboot, if enabled */
2177 uint16_t warm_reboot_timeout_msec;
2178 } __packed;
2179
2180 /*****************************************************************************/
2181 /* Commands for battery charging */
2182
2183 /*
2184 * This is the single catch-all host command to exchange data regarding the
2185 * charge state machine (v2 and up).
2186 */
2187 #define EC_CMD_CHARGE_STATE 0xa0
2188
2189 /* Subcommands for this host command */
2190 enum charge_state_command {
2191 CHARGE_STATE_CMD_GET_STATE,
2192 CHARGE_STATE_CMD_GET_PARAM,
2193 CHARGE_STATE_CMD_SET_PARAM,
2194 CHARGE_STATE_NUM_CMDS
2195 };
2196
2197 /*
2198 * Known param numbers are defined here. Ranges are reserved for board-specific
2199 * params, which are handled by the particular implementations.
2200 */
2201 enum charge_state_params {
2202 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */
2203 CS_PARAM_CHG_CURRENT, /* charger current limit */
2204 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */
2205 CS_PARAM_CHG_STATUS, /* charger-specific status */
2206 CS_PARAM_CHG_OPTION, /* charger-specific options */
2207 /* How many so far? */
2208 CS_NUM_BASE_PARAMS,
2209
2210 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
2211 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
2212 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
2213
2214 /* Other custom param ranges go here... */
2215 };
2216
2217 struct ec_params_charge_state {
2218 uint8_t cmd; /* enum charge_state_command */
2219 union {
2220 struct {
2221 /* no args */
2222 } get_state;
2223
2224 struct {
2225 uint32_t param; /* enum charge_state_param */
2226 } get_param;
2227
2228 struct {
2229 uint32_t param; /* param to set */
2230 uint32_t value; /* value to set */
2231 } set_param;
2232 };
2233 } __packed;
2234
2235 struct ec_response_charge_state {
2236 union {
2237 struct {
2238 int ac;
2239 int chg_voltage;
2240 int chg_current;
2241 int chg_input_current;
2242 int batt_state_of_charge;
2243 } get_state;
2244
2245 struct {
2246 uint32_t value;
2247 } get_param;
2248 struct {
2249 /* no return values */
2250 } set_param;
2251 };
2252 } __packed;
2253
2254
2255 /*
2256 * Set maximum battery charging current.
2257 */
2258 #define EC_CMD_CHARGE_CURRENT_LIMIT 0xa1
2259
2260 struct ec_params_current_limit {
2261 uint32_t limit; /* in mA */
2262 } __packed;
2263
2264 /*
2265 * Set maximum external power current.
2266 */
2267 #define EC_CMD_EXT_POWER_CURRENT_LIMIT 0xa2
2268
2269 struct ec_params_ext_power_current_limit {
2270 uint32_t limit; /* in mA */
2271 } __packed;
2272
2273 /*****************************************************************************/
2274 /* Smart battery pass-through */
2275
2276 /* Get / Set 16-bit smart battery registers */
2277 #define EC_CMD_SB_READ_WORD 0xb0
2278 #define EC_CMD_SB_WRITE_WORD 0xb1
2279
2280 /* Get / Set string smart battery parameters
2281 * formatted as SMBUS "block".
2282 */
2283 #define EC_CMD_SB_READ_BLOCK 0xb2
2284 #define EC_CMD_SB_WRITE_BLOCK 0xb3
2285
2286 struct ec_params_sb_rd {
2287 uint8_t reg;
2288 } __packed;
2289
2290 struct ec_response_sb_rd_word {
2291 uint16_t value;
2292 } __packed;
2293
2294 struct ec_params_sb_wr_word {
2295 uint8_t reg;
2296 uint16_t value;
2297 } __packed;
2298
2299 struct ec_response_sb_rd_block {
2300 uint8_t data[32];
2301 } __packed;
2302
2303 struct ec_params_sb_wr_block {
2304 uint8_t reg;
2305 uint16_t data[32];
2306 } __packed;
2307
2308 /*****************************************************************************/
2309 /* Battery vendor parameters
2310 *
2311 * Get or set vendor-specific parameters in the battery. Implementations may
2312 * differ between boards or batteries. On a set operation, the response
2313 * contains the actual value set, which may be rounded or clipped from the
2314 * requested value.
2315 */
2316
2317 #define EC_CMD_BATTERY_VENDOR_PARAM 0xb4
2318
2319 enum ec_battery_vendor_param_mode {
2320 BATTERY_VENDOR_PARAM_MODE_GET = 0,
2321 BATTERY_VENDOR_PARAM_MODE_SET,
2322 };
2323
2324 struct ec_params_battery_vendor_param {
2325 uint32_t param;
2326 uint32_t value;
2327 uint8_t mode;
2328 } __packed;
2329
2330 struct ec_response_battery_vendor_param {
2331 uint32_t value;
2332 } __packed;
2333
2334 /*****************************************************************************/
2335 /* System commands */
2336
2337 /*
2338 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
2339 * necessarily reboot the EC. Rename to "image" or something similar?
2340 */
2341 #define EC_CMD_REBOOT_EC 0xd2
2342
2343 /* Command */
2344 enum ec_reboot_cmd {
2345 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */
2346 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */
2347 EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */
2348 /* (command 3 was jump to RW-B) */
2349 EC_REBOOT_COLD = 4, /* Cold-reboot */
2350 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */
2351 EC_REBOOT_HIBERNATE = 6 /* Hibernate EC */
2352 };
2353
2354 /* Flags for ec_params_reboot_ec.reboot_flags */
2355 #define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */
2356 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */
2357
2358 struct ec_params_reboot_ec {
2359 uint8_t cmd; /* enum ec_reboot_cmd */
2360 uint8_t flags; /* See EC_REBOOT_FLAG_* */
2361 } __packed;
2362
2363 /*
2364 * Get information on last EC panic.
2365 *
2366 * Returns variable-length platform-dependent panic information. See panic.h
2367 * for details.
2368 */
2369 #define EC_CMD_GET_PANIC_INFO 0xd3
2370
2371 /*****************************************************************************/
2372 /*
2373 * ACPI commands
2374 *
2375 * These are valid ONLY on the ACPI command/data port.
2376 */
2377
2378 /*
2379 * ACPI Read Embedded Controller
2380 *
2381 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2382 *
2383 * Use the following sequence:
2384 *
2385 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
2386 * - Wait for EC_LPC_CMDR_PENDING bit to clear
2387 * - Write address to EC_LPC_ADDR_ACPI_DATA
2388 * - Wait for EC_LPC_CMDR_DATA bit to set
2389 * - Read value from EC_LPC_ADDR_ACPI_DATA
2390 */
2391 #define EC_CMD_ACPI_READ 0x80
2392
2393 /*
2394 * ACPI Write Embedded Controller
2395 *
2396 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
2397 *
2398 * Use the following sequence:
2399 *
2400 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
2401 * - Wait for EC_LPC_CMDR_PENDING bit to clear
2402 * - Write address to EC_LPC_ADDR_ACPI_DATA
2403 * - Wait for EC_LPC_CMDR_PENDING bit to clear
2404 * - Write value to EC_LPC_ADDR_ACPI_DATA
2405 */
2406 #define EC_CMD_ACPI_WRITE 0x81
2407
2408 /*
2409 * ACPI Query Embedded Controller
2410 *
2411 * This clears the lowest-order bit in the currently pending host events, and
2412 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
2413 * event 0x80000000 = 32), or 0 if no event was pending.
2414 */
2415 #define EC_CMD_ACPI_QUERY_EVENT 0x84
2416
2417 /* Valid addresses in ACPI memory space, for read/write commands */
2418
2419 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
2420 #define EC_ACPI_MEM_VERSION 0x00
2421 /*
2422 * Test location; writing value here updates test compliment byte to (0xff -
2423 * value).
2424 */
2425 #define EC_ACPI_MEM_TEST 0x01
2426 /* Test compliment; writes here are ignored. */
2427 #define EC_ACPI_MEM_TEST_COMPLIMENT 0x02
2428
2429 /* Keyboard backlight brightness percent (0 - 100) */
2430 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
2431 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
2432 #define EC_ACPI_MEM_FAN_DUTY 0x04
2433
2434 /*
2435 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
2436 * independent thresholds attached to them. The current value of the ID
2437 * register determines which sensor is affected by the THRESHOLD and COMMIT
2438 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
2439 * as the memory-mapped sensors. The COMMIT register applies those settings.
2440 *
2441 * The spec does not mandate any way to read back the threshold settings
2442 * themselves, but when a threshold is crossed the AP needs a way to determine
2443 * which sensor(s) are responsible. Each reading of the ID register clears and
2444 * returns one sensor ID that has crossed one of its threshold (in either
2445 * direction) since the last read. A value of 0xFF means "no new thresholds
2446 * have tripped". Setting or enabling the thresholds for a sensor will clear
2447 * the unread event count for that sensor.
2448 */
2449 #define EC_ACPI_MEM_TEMP_ID 0x05
2450 #define EC_ACPI_MEM_TEMP_THRESHOLD 0x06
2451 #define EC_ACPI_MEM_TEMP_COMMIT 0x07
2452 /*
2453 * Here are the bits for the COMMIT register:
2454 * bit 0 selects the threshold index for the chosen sensor (0/1)
2455 * bit 1 enables/disables the selected threshold (0 = off, 1 = on)
2456 * Each write to the commit register affects one threshold.
2457 */
2458 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
2459 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
2460 /*
2461 * Example:
2462 *
2463 * Set the thresholds for sensor 2 to 50 C and 60 C:
2464 * write 2 to [0x05] -- select temp sensor 2
2465 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
2466 * write 0x2 to [0x07] -- enable threshold 0 with this value
2467 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
2468 * write 0x3 to [0x07] -- enable threshold 1 with this value
2469 *
2470 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
2471 * write 2 to [0x05] -- select temp sensor 2
2472 * write 0x1 to [0x07] -- disable threshold 1
2473 */
2474
2475 /* DPTF battery charging current limit */
2476 #define EC_ACPI_MEM_CHARGING_LIMIT 0x08
2477
2478 /* Charging limit is specified in 64 mA steps */
2479 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64
2480 /* Value to disable DPTF battery charging limit */
2481 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff
2482
2483 /* Current version of ACPI memory address space */
2484 #define EC_ACPI_MEM_VERSION_CURRENT 1
2485
2486
2487 /*****************************************************************************/
2488 /*
2489 * Special commands
2490 *
2491 * These do not follow the normal rules for commands. See each command for
2492 * details.
2493 */
2494
2495 /*
2496 * Reboot NOW
2497 *
2498 * This command will work even when the EC LPC interface is busy, because the
2499 * reboot command is processed at interrupt level. Note that when the EC
2500 * reboots, the host will reboot too, so there is no response to this command.
2501 *
2502 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
2503 */
2504 #define EC_CMD_REBOOT 0xd1 /* Think "die" */
2505
2506 /*
2507 * Resend last response (not supported on LPC).
2508 *
2509 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
2510 * there was no previous command, or the previous command's response was too
2511 * big to save.
2512 */
2513 #define EC_CMD_RESEND_RESPONSE 0xdb
2514
2515 /*
2516 * This header byte on a command indicate version 0. Any header byte less
2517 * than this means that we are talking to an old EC which doesn't support
2518 * versioning. In that case, we assume version 0.
2519 *
2520 * Header bytes greater than this indicate a later version. For example,
2521 * EC_CMD_VERSION0 + 1 means we are using version 1.
2522 *
2523 * The old EC interface must not use commands 0xdc or higher.
2524 */
2525 #define EC_CMD_VERSION0 0xdc
2526
2527 #endif /* !__ACPI__ */
2528
2529 /*****************************************************************************/
2530 /*
2531 * PD commands
2532 *
2533 * These commands are for PD MCU communication.
2534 */
2535
2536 /* EC to PD MCU exchange status command */
2537 #define EC_CMD_PD_EXCHANGE_STATUS 0x100
2538
2539 /* Status of EC being sent to PD */
2540 struct ec_params_pd_status {
2541 int8_t batt_soc; /* battery state of charge */
2542 } __packed;
2543
2544 /* Status of PD being sent back to EC */
2545 struct ec_response_pd_status {
2546 int8_t status; /* PD MCU status */
2547 uint32_t curr_lim_ma; /* input current limit */
2548 } __packed;
2549
2550 /* Set USB type-C port role and muxes */
2551 #define EC_CMD_USB_PD_CONTROL 0x101
2552
2553 enum usb_pd_control_role {
2554 USB_PD_CTRL_ROLE_NO_CHANGE = 0,
2555 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
2556 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
2557 USB_PD_CTRL_ROLE_FORCE_SINK = 3,
2558 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
2559 };
2560
2561 enum usb_pd_control_mux {
2562 USB_PD_CTRL_MUX_NO_CHANGE = 0,
2563 USB_PD_CTRL_MUX_NONE = 1,
2564 USB_PD_CTRL_MUX_USB = 2,
2565 USB_PD_CTRL_MUX_DP = 3,
2566 USB_PD_CTRL_MUX_DOCK = 4,
2567 USB_PD_CTRL_MUX_AUTO = 5,
2568 };
2569
2570 struct ec_params_usb_pd_control {
2571 uint8_t port;
2572 uint8_t role;
2573 uint8_t mux;
2574 } __packed;
2575
2576 /*****************************************************************************/
2577 /*
2578 * Passthru commands
2579 *
2580 * Some platforms have sub-processors chained to each other. For example.
2581 *
2582 * AP <--> EC <--> PD MCU
2583 *
2584 * The top 2 bits of the command number are used to indicate which device the
2585 * command is intended for. Device 0 is always the device receiving the
2586 * command; other device mapping is board-specific.
2587 *
2588 * When a device receives a command to be passed to a sub-processor, it passes
2589 * it on with the device number set back to 0. This allows the sub-processor
2590 * to remain blissfully unaware of whether the command originated on the next
2591 * device up the chain, or was passed through from the AP.
2592 *
2593 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
2594 * AP sends command 0x4002 to the EC
2595 * EC sends command 0x0002 to the PD MCU
2596 * EC forwards PD MCU response back to the AP
2597 */
2598
2599 /* Offset and max command number for sub-device n */
2600 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
2601 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
2602
2603 /*****************************************************************************/
2604 /*
2605 * Deprecated constants. These constants have been renamed for clarity. The
2606 * meaning and size has not changed. Programs that use the old names should
2607 * switch to the new names soon, as the old names may not be carried forward
2608 * forever.
2609 */
2610 #define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE
2611 #define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1
2612 #define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE
2613
2614 #endif /* __CROS_EC_COMMANDS_H */
This page took 0.08959 seconds and 5 git commands to generate.