ACPI / util: cast data to u64 before shifting to fix sign extension
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25
26 struct mempolicy;
27 struct anon_vma;
28 struct anon_vma_chain;
29 struct file_ra_state;
30 struct user_struct;
31 struct writeback_control;
32 struct bdi_writeback;
33
34 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
35 extern unsigned long max_mapnr;
36
37 static inline void set_max_mapnr(unsigned long limit)
38 {
39 max_mapnr = limit;
40 }
41 #else
42 static inline void set_max_mapnr(unsigned long limit) { }
43 #endif
44
45 extern unsigned long totalram_pages;
46 extern void * high_memory;
47 extern int page_cluster;
48
49 #ifdef CONFIG_SYSCTL
50 extern int sysctl_legacy_va_layout;
51 #else
52 #define sysctl_legacy_va_layout 0
53 #endif
54
55 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56 extern const int mmap_rnd_bits_min;
57 extern const int mmap_rnd_bits_max;
58 extern int mmap_rnd_bits __read_mostly;
59 #endif
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61 extern const int mmap_rnd_compat_bits_min;
62 extern const int mmap_rnd_compat_bits_max;
63 extern int mmap_rnd_compat_bits __read_mostly;
64 #endif
65
66 #include <asm/page.h>
67 #include <asm/pgtable.h>
68 #include <asm/processor.h>
69
70 #ifndef __pa_symbol
71 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72 #endif
73
74 /*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81 #ifndef mm_forbids_zeropage
82 #define mm_forbids_zeropage(X) (0)
83 #endif
84
85 extern unsigned long sysctl_user_reserve_kbytes;
86 extern unsigned long sysctl_admin_reserve_kbytes;
87
88 extern int sysctl_overcommit_memory;
89 extern int sysctl_overcommit_ratio;
90 extern unsigned long sysctl_overcommit_kbytes;
91
92 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 size_t *, loff_t *);
94 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 size_t *, loff_t *);
96
97 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
99 /* to align the pointer to the (next) page boundary */
100 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
102 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
105 /*
106 * Linux kernel virtual memory manager primitives.
107 * The idea being to have a "virtual" mm in the same way
108 * we have a virtual fs - giving a cleaner interface to the
109 * mm details, and allowing different kinds of memory mappings
110 * (from shared memory to executable loading to arbitrary
111 * mmap() functions).
112 */
113
114 extern struct kmem_cache *vm_area_cachep;
115
116 #ifndef CONFIG_MMU
117 extern struct rb_root nommu_region_tree;
118 extern struct rw_semaphore nommu_region_sem;
119
120 extern unsigned int kobjsize(const void *objp);
121 #endif
122
123 /*
124 * vm_flags in vm_area_struct, see mm_types.h.
125 */
126 #define VM_NONE 0x00000000
127
128 #define VM_READ 0x00000001 /* currently active flags */
129 #define VM_WRITE 0x00000002
130 #define VM_EXEC 0x00000004
131 #define VM_SHARED 0x00000008
132
133 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
134 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
135 #define VM_MAYWRITE 0x00000020
136 #define VM_MAYEXEC 0x00000040
137 #define VM_MAYSHARE 0x00000080
138
139 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
140 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
141 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
142 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
143 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
144
145 #define VM_LOCKED 0x00002000
146 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
147
148 /* Used by sys_madvise() */
149 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
150 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
151
152 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
153 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
154 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
155 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
156 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
157 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
158 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
159 #define VM_ARCH_2 0x02000000
160 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
161
162 #ifdef CONFIG_MEM_SOFT_DIRTY
163 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
164 #else
165 # define VM_SOFTDIRTY 0
166 #endif
167
168 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
169 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
170 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
171 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
172
173 #if defined(CONFIG_X86)
174 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
175 #elif defined(CONFIG_PPC)
176 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
177 #elif defined(CONFIG_PARISC)
178 # define VM_GROWSUP VM_ARCH_1
179 #elif defined(CONFIG_METAG)
180 # define VM_GROWSUP VM_ARCH_1
181 #elif defined(CONFIG_IA64)
182 # define VM_GROWSUP VM_ARCH_1
183 #elif !defined(CONFIG_MMU)
184 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
185 #endif
186
187 #if defined(CONFIG_X86)
188 /* MPX specific bounds table or bounds directory */
189 # define VM_MPX VM_ARCH_2
190 #endif
191
192 #ifndef VM_GROWSUP
193 # define VM_GROWSUP VM_NONE
194 #endif
195
196 /* Bits set in the VMA until the stack is in its final location */
197 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
198
199 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
200 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
201 #endif
202
203 #ifdef CONFIG_STACK_GROWSUP
204 #define VM_STACK VM_GROWSUP
205 #else
206 #define VM_STACK VM_GROWSDOWN
207 #endif
208
209 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
210
211 /*
212 * Special vmas that are non-mergable, non-mlock()able.
213 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
214 */
215 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
216
217 /* This mask defines which mm->def_flags a process can inherit its parent */
218 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
219
220 /* This mask is used to clear all the VMA flags used by mlock */
221 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
222
223 /*
224 * mapping from the currently active vm_flags protection bits (the
225 * low four bits) to a page protection mask..
226 */
227 extern pgprot_t protection_map[16];
228
229 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
230 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
231 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
232 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
233 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
234 #define FAULT_FLAG_TRIED 0x20 /* Second try */
235 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
236
237 /*
238 * vm_fault is filled by the the pagefault handler and passed to the vma's
239 * ->fault function. The vma's ->fault is responsible for returning a bitmask
240 * of VM_FAULT_xxx flags that give details about how the fault was handled.
241 *
242 * MM layer fills up gfp_mask for page allocations but fault handler might
243 * alter it if its implementation requires a different allocation context.
244 *
245 * pgoff should be used in favour of virtual_address, if possible.
246 */
247 struct vm_fault {
248 unsigned int flags; /* FAULT_FLAG_xxx flags */
249 gfp_t gfp_mask; /* gfp mask to be used for allocations */
250 pgoff_t pgoff; /* Logical page offset based on vma */
251 void __user *virtual_address; /* Faulting virtual address */
252
253 struct page *cow_page; /* Handler may choose to COW */
254 struct page *page; /* ->fault handlers should return a
255 * page here, unless VM_FAULT_NOPAGE
256 * is set (which is also implied by
257 * VM_FAULT_ERROR).
258 */
259 /* for ->map_pages() only */
260 pgoff_t max_pgoff; /* map pages for offset from pgoff till
261 * max_pgoff inclusive */
262 pte_t *pte; /* pte entry associated with ->pgoff */
263 };
264
265 /*
266 * These are the virtual MM functions - opening of an area, closing and
267 * unmapping it (needed to keep files on disk up-to-date etc), pointer
268 * to the functions called when a no-page or a wp-page exception occurs.
269 */
270 struct vm_operations_struct {
271 void (*open)(struct vm_area_struct * area);
272 void (*close)(struct vm_area_struct * area);
273 int (*mremap)(struct vm_area_struct * area);
274 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
275 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
276 pmd_t *, unsigned int flags);
277 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
278
279 /* notification that a previously read-only page is about to become
280 * writable, if an error is returned it will cause a SIGBUS */
281 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
283 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
284 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
285
286 /* called by access_process_vm when get_user_pages() fails, typically
287 * for use by special VMAs that can switch between memory and hardware
288 */
289 int (*access)(struct vm_area_struct *vma, unsigned long addr,
290 void *buf, int len, int write);
291
292 /* Called by the /proc/PID/maps code to ask the vma whether it
293 * has a special name. Returning non-NULL will also cause this
294 * vma to be dumped unconditionally. */
295 const char *(*name)(struct vm_area_struct *vma);
296
297 #ifdef CONFIG_NUMA
298 /*
299 * set_policy() op must add a reference to any non-NULL @new mempolicy
300 * to hold the policy upon return. Caller should pass NULL @new to
301 * remove a policy and fall back to surrounding context--i.e. do not
302 * install a MPOL_DEFAULT policy, nor the task or system default
303 * mempolicy.
304 */
305 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
306
307 /*
308 * get_policy() op must add reference [mpol_get()] to any policy at
309 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
310 * in mm/mempolicy.c will do this automatically.
311 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
312 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
313 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
314 * must return NULL--i.e., do not "fallback" to task or system default
315 * policy.
316 */
317 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
318 unsigned long addr);
319 #endif
320 /*
321 * Called by vm_normal_page() for special PTEs to find the
322 * page for @addr. This is useful if the default behavior
323 * (using pte_page()) would not find the correct page.
324 */
325 struct page *(*find_special_page)(struct vm_area_struct *vma,
326 unsigned long addr);
327 };
328
329 struct mmu_gather;
330 struct inode;
331
332 #define page_private(page) ((page)->private)
333 #define set_page_private(page, v) ((page)->private = (v))
334
335 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
336 static inline int pmd_devmap(pmd_t pmd)
337 {
338 return 0;
339 }
340 #endif
341
342 /*
343 * FIXME: take this include out, include page-flags.h in
344 * files which need it (119 of them)
345 */
346 #include <linux/page-flags.h>
347 #include <linux/huge_mm.h>
348
349 /*
350 * Methods to modify the page usage count.
351 *
352 * What counts for a page usage:
353 * - cache mapping (page->mapping)
354 * - private data (page->private)
355 * - page mapped in a task's page tables, each mapping
356 * is counted separately
357 *
358 * Also, many kernel routines increase the page count before a critical
359 * routine so they can be sure the page doesn't go away from under them.
360 */
361
362 /*
363 * Drop a ref, return true if the refcount fell to zero (the page has no users)
364 */
365 static inline int put_page_testzero(struct page *page)
366 {
367 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
368 return atomic_dec_and_test(&page->_count);
369 }
370
371 /*
372 * Try to grab a ref unless the page has a refcount of zero, return false if
373 * that is the case.
374 * This can be called when MMU is off so it must not access
375 * any of the virtual mappings.
376 */
377 static inline int get_page_unless_zero(struct page *page)
378 {
379 return atomic_inc_not_zero(&page->_count);
380 }
381
382 extern int page_is_ram(unsigned long pfn);
383
384 enum {
385 REGION_INTERSECTS,
386 REGION_DISJOINT,
387 REGION_MIXED,
388 };
389
390 int region_intersects(resource_size_t offset, size_t size, const char *type);
391
392 /* Support for virtually mapped pages */
393 struct page *vmalloc_to_page(const void *addr);
394 unsigned long vmalloc_to_pfn(const void *addr);
395
396 /*
397 * Determine if an address is within the vmalloc range
398 *
399 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
400 * is no special casing required.
401 */
402 static inline int is_vmalloc_addr(const void *x)
403 {
404 #ifdef CONFIG_MMU
405 unsigned long addr = (unsigned long)x;
406
407 return addr >= VMALLOC_START && addr < VMALLOC_END;
408 #else
409 return 0;
410 #endif
411 }
412 #ifdef CONFIG_MMU
413 extern int is_vmalloc_or_module_addr(const void *x);
414 #else
415 static inline int is_vmalloc_or_module_addr(const void *x)
416 {
417 return 0;
418 }
419 #endif
420
421 extern void kvfree(const void *addr);
422
423 static inline atomic_t *compound_mapcount_ptr(struct page *page)
424 {
425 return &page[1].compound_mapcount;
426 }
427
428 static inline int compound_mapcount(struct page *page)
429 {
430 if (!PageCompound(page))
431 return 0;
432 page = compound_head(page);
433 return atomic_read(compound_mapcount_ptr(page)) + 1;
434 }
435
436 /*
437 * The atomic page->_mapcount, starts from -1: so that transitions
438 * both from it and to it can be tracked, using atomic_inc_and_test
439 * and atomic_add_negative(-1).
440 */
441 static inline void page_mapcount_reset(struct page *page)
442 {
443 atomic_set(&(page)->_mapcount, -1);
444 }
445
446 int __page_mapcount(struct page *page);
447
448 static inline int page_mapcount(struct page *page)
449 {
450 VM_BUG_ON_PAGE(PageSlab(page), page);
451
452 if (unlikely(PageCompound(page)))
453 return __page_mapcount(page);
454 return atomic_read(&page->_mapcount) + 1;
455 }
456
457 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
458 int total_mapcount(struct page *page);
459 #else
460 static inline int total_mapcount(struct page *page)
461 {
462 return page_mapcount(page);
463 }
464 #endif
465
466 static inline int page_count(struct page *page)
467 {
468 return atomic_read(&compound_head(page)->_count);
469 }
470
471 static inline struct page *virt_to_head_page(const void *x)
472 {
473 struct page *page = virt_to_page(x);
474
475 return compound_head(page);
476 }
477
478 /*
479 * Setup the page count before being freed into the page allocator for
480 * the first time (boot or memory hotplug)
481 */
482 static inline void init_page_count(struct page *page)
483 {
484 atomic_set(&page->_count, 1);
485 }
486
487 void __put_page(struct page *page);
488
489 void put_pages_list(struct list_head *pages);
490
491 void split_page(struct page *page, unsigned int order);
492 int split_free_page(struct page *page);
493
494 /*
495 * Compound pages have a destructor function. Provide a
496 * prototype for that function and accessor functions.
497 * These are _only_ valid on the head of a compound page.
498 */
499 typedef void compound_page_dtor(struct page *);
500
501 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
502 enum compound_dtor_id {
503 NULL_COMPOUND_DTOR,
504 COMPOUND_PAGE_DTOR,
505 #ifdef CONFIG_HUGETLB_PAGE
506 HUGETLB_PAGE_DTOR,
507 #endif
508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
509 TRANSHUGE_PAGE_DTOR,
510 #endif
511 NR_COMPOUND_DTORS,
512 };
513 extern compound_page_dtor * const compound_page_dtors[];
514
515 static inline void set_compound_page_dtor(struct page *page,
516 enum compound_dtor_id compound_dtor)
517 {
518 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
519 page[1].compound_dtor = compound_dtor;
520 }
521
522 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
523 {
524 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
525 return compound_page_dtors[page[1].compound_dtor];
526 }
527
528 static inline unsigned int compound_order(struct page *page)
529 {
530 if (!PageHead(page))
531 return 0;
532 return page[1].compound_order;
533 }
534
535 static inline void set_compound_order(struct page *page, unsigned int order)
536 {
537 page[1].compound_order = order;
538 }
539
540 void free_compound_page(struct page *page);
541
542 #ifdef CONFIG_MMU
543 /*
544 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
545 * servicing faults for write access. In the normal case, do always want
546 * pte_mkwrite. But get_user_pages can cause write faults for mappings
547 * that do not have writing enabled, when used by access_process_vm.
548 */
549 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
550 {
551 if (likely(vma->vm_flags & VM_WRITE))
552 pte = pte_mkwrite(pte);
553 return pte;
554 }
555
556 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
557 struct page *page, pte_t *pte, bool write, bool anon);
558 #endif
559
560 /*
561 * Multiple processes may "see" the same page. E.g. for untouched
562 * mappings of /dev/null, all processes see the same page full of
563 * zeroes, and text pages of executables and shared libraries have
564 * only one copy in memory, at most, normally.
565 *
566 * For the non-reserved pages, page_count(page) denotes a reference count.
567 * page_count() == 0 means the page is free. page->lru is then used for
568 * freelist management in the buddy allocator.
569 * page_count() > 0 means the page has been allocated.
570 *
571 * Pages are allocated by the slab allocator in order to provide memory
572 * to kmalloc and kmem_cache_alloc. In this case, the management of the
573 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
574 * unless a particular usage is carefully commented. (the responsibility of
575 * freeing the kmalloc memory is the caller's, of course).
576 *
577 * A page may be used by anyone else who does a __get_free_page().
578 * In this case, page_count still tracks the references, and should only
579 * be used through the normal accessor functions. The top bits of page->flags
580 * and page->virtual store page management information, but all other fields
581 * are unused and could be used privately, carefully. The management of this
582 * page is the responsibility of the one who allocated it, and those who have
583 * subsequently been given references to it.
584 *
585 * The other pages (we may call them "pagecache pages") are completely
586 * managed by the Linux memory manager: I/O, buffers, swapping etc.
587 * The following discussion applies only to them.
588 *
589 * A pagecache page contains an opaque `private' member, which belongs to the
590 * page's address_space. Usually, this is the address of a circular list of
591 * the page's disk buffers. PG_private must be set to tell the VM to call
592 * into the filesystem to release these pages.
593 *
594 * A page may belong to an inode's memory mapping. In this case, page->mapping
595 * is the pointer to the inode, and page->index is the file offset of the page,
596 * in units of PAGE_CACHE_SIZE.
597 *
598 * If pagecache pages are not associated with an inode, they are said to be
599 * anonymous pages. These may become associated with the swapcache, and in that
600 * case PG_swapcache is set, and page->private is an offset into the swapcache.
601 *
602 * In either case (swapcache or inode backed), the pagecache itself holds one
603 * reference to the page. Setting PG_private should also increment the
604 * refcount. The each user mapping also has a reference to the page.
605 *
606 * The pagecache pages are stored in a per-mapping radix tree, which is
607 * rooted at mapping->page_tree, and indexed by offset.
608 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
609 * lists, we instead now tag pages as dirty/writeback in the radix tree.
610 *
611 * All pagecache pages may be subject to I/O:
612 * - inode pages may need to be read from disk,
613 * - inode pages which have been modified and are MAP_SHARED may need
614 * to be written back to the inode on disk,
615 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
616 * modified may need to be swapped out to swap space and (later) to be read
617 * back into memory.
618 */
619
620 /*
621 * The zone field is never updated after free_area_init_core()
622 * sets it, so none of the operations on it need to be atomic.
623 */
624
625 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
626 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
627 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
628 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
629 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
630
631 /*
632 * Define the bit shifts to access each section. For non-existent
633 * sections we define the shift as 0; that plus a 0 mask ensures
634 * the compiler will optimise away reference to them.
635 */
636 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
637 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
638 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
639 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
640
641 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
642 #ifdef NODE_NOT_IN_PAGE_FLAGS
643 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
644 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
645 SECTIONS_PGOFF : ZONES_PGOFF)
646 #else
647 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
648 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
649 NODES_PGOFF : ZONES_PGOFF)
650 #endif
651
652 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
653
654 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
655 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
656 #endif
657
658 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
659 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
660 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
661 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
662 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
663
664 static inline enum zone_type page_zonenum(const struct page *page)
665 {
666 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
667 }
668
669 #ifdef CONFIG_ZONE_DEVICE
670 void get_zone_device_page(struct page *page);
671 void put_zone_device_page(struct page *page);
672 static inline bool is_zone_device_page(const struct page *page)
673 {
674 return page_zonenum(page) == ZONE_DEVICE;
675 }
676 #else
677 static inline void get_zone_device_page(struct page *page)
678 {
679 }
680 static inline void put_zone_device_page(struct page *page)
681 {
682 }
683 static inline bool is_zone_device_page(const struct page *page)
684 {
685 return false;
686 }
687 #endif
688
689 static inline void get_page(struct page *page)
690 {
691 page = compound_head(page);
692 /*
693 * Getting a normal page or the head of a compound page
694 * requires to already have an elevated page->_count.
695 */
696 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
697 atomic_inc(&page->_count);
698
699 if (unlikely(is_zone_device_page(page)))
700 get_zone_device_page(page);
701 }
702
703 static inline void put_page(struct page *page)
704 {
705 page = compound_head(page);
706
707 if (put_page_testzero(page))
708 __put_page(page);
709
710 if (unlikely(is_zone_device_page(page)))
711 put_zone_device_page(page);
712 }
713
714 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
715 #define SECTION_IN_PAGE_FLAGS
716 #endif
717
718 /*
719 * The identification function is mainly used by the buddy allocator for
720 * determining if two pages could be buddies. We are not really identifying
721 * the zone since we could be using the section number id if we do not have
722 * node id available in page flags.
723 * We only guarantee that it will return the same value for two combinable
724 * pages in a zone.
725 */
726 static inline int page_zone_id(struct page *page)
727 {
728 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
729 }
730
731 static inline int zone_to_nid(struct zone *zone)
732 {
733 #ifdef CONFIG_NUMA
734 return zone->node;
735 #else
736 return 0;
737 #endif
738 }
739
740 #ifdef NODE_NOT_IN_PAGE_FLAGS
741 extern int page_to_nid(const struct page *page);
742 #else
743 static inline int page_to_nid(const struct page *page)
744 {
745 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
746 }
747 #endif
748
749 #ifdef CONFIG_NUMA_BALANCING
750 static inline int cpu_pid_to_cpupid(int cpu, int pid)
751 {
752 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
753 }
754
755 static inline int cpupid_to_pid(int cpupid)
756 {
757 return cpupid & LAST__PID_MASK;
758 }
759
760 static inline int cpupid_to_cpu(int cpupid)
761 {
762 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
763 }
764
765 static inline int cpupid_to_nid(int cpupid)
766 {
767 return cpu_to_node(cpupid_to_cpu(cpupid));
768 }
769
770 static inline bool cpupid_pid_unset(int cpupid)
771 {
772 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
773 }
774
775 static inline bool cpupid_cpu_unset(int cpupid)
776 {
777 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
778 }
779
780 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
781 {
782 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
783 }
784
785 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
786 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
787 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
788 {
789 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
790 }
791
792 static inline int page_cpupid_last(struct page *page)
793 {
794 return page->_last_cpupid;
795 }
796 static inline void page_cpupid_reset_last(struct page *page)
797 {
798 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
799 }
800 #else
801 static inline int page_cpupid_last(struct page *page)
802 {
803 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
804 }
805
806 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
807
808 static inline void page_cpupid_reset_last(struct page *page)
809 {
810 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
811
812 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
813 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
814 }
815 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
816 #else /* !CONFIG_NUMA_BALANCING */
817 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
818 {
819 return page_to_nid(page); /* XXX */
820 }
821
822 static inline int page_cpupid_last(struct page *page)
823 {
824 return page_to_nid(page); /* XXX */
825 }
826
827 static inline int cpupid_to_nid(int cpupid)
828 {
829 return -1;
830 }
831
832 static inline int cpupid_to_pid(int cpupid)
833 {
834 return -1;
835 }
836
837 static inline int cpupid_to_cpu(int cpupid)
838 {
839 return -1;
840 }
841
842 static inline int cpu_pid_to_cpupid(int nid, int pid)
843 {
844 return -1;
845 }
846
847 static inline bool cpupid_pid_unset(int cpupid)
848 {
849 return 1;
850 }
851
852 static inline void page_cpupid_reset_last(struct page *page)
853 {
854 }
855
856 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
857 {
858 return false;
859 }
860 #endif /* CONFIG_NUMA_BALANCING */
861
862 static inline struct zone *page_zone(const struct page *page)
863 {
864 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
865 }
866
867 #ifdef SECTION_IN_PAGE_FLAGS
868 static inline void set_page_section(struct page *page, unsigned long section)
869 {
870 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
871 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
872 }
873
874 static inline unsigned long page_to_section(const struct page *page)
875 {
876 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
877 }
878 #endif
879
880 static inline void set_page_zone(struct page *page, enum zone_type zone)
881 {
882 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
883 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
884 }
885
886 static inline void set_page_node(struct page *page, unsigned long node)
887 {
888 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
889 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
890 }
891
892 static inline void set_page_links(struct page *page, enum zone_type zone,
893 unsigned long node, unsigned long pfn)
894 {
895 set_page_zone(page, zone);
896 set_page_node(page, node);
897 #ifdef SECTION_IN_PAGE_FLAGS
898 set_page_section(page, pfn_to_section_nr(pfn));
899 #endif
900 }
901
902 #ifdef CONFIG_MEMCG
903 static inline struct mem_cgroup *page_memcg(struct page *page)
904 {
905 return page->mem_cgroup;
906 }
907
908 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
909 {
910 page->mem_cgroup = memcg;
911 }
912 #else
913 static inline struct mem_cgroup *page_memcg(struct page *page)
914 {
915 return NULL;
916 }
917
918 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
919 {
920 }
921 #endif
922
923 /*
924 * Some inline functions in vmstat.h depend on page_zone()
925 */
926 #include <linux/vmstat.h>
927
928 static __always_inline void *lowmem_page_address(const struct page *page)
929 {
930 return __va(PFN_PHYS(page_to_pfn(page)));
931 }
932
933 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
934 #define HASHED_PAGE_VIRTUAL
935 #endif
936
937 #if defined(WANT_PAGE_VIRTUAL)
938 static inline void *page_address(const struct page *page)
939 {
940 return page->virtual;
941 }
942 static inline void set_page_address(struct page *page, void *address)
943 {
944 page->virtual = address;
945 }
946 #define page_address_init() do { } while(0)
947 #endif
948
949 #if defined(HASHED_PAGE_VIRTUAL)
950 void *page_address(const struct page *page);
951 void set_page_address(struct page *page, void *virtual);
952 void page_address_init(void);
953 #endif
954
955 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
956 #define page_address(page) lowmem_page_address(page)
957 #define set_page_address(page, address) do { } while(0)
958 #define page_address_init() do { } while(0)
959 #endif
960
961 extern void *page_rmapping(struct page *page);
962 extern struct anon_vma *page_anon_vma(struct page *page);
963 extern struct address_space *page_mapping(struct page *page);
964
965 extern struct address_space *__page_file_mapping(struct page *);
966
967 static inline
968 struct address_space *page_file_mapping(struct page *page)
969 {
970 if (unlikely(PageSwapCache(page)))
971 return __page_file_mapping(page);
972
973 return page->mapping;
974 }
975
976 /*
977 * Return the pagecache index of the passed page. Regular pagecache pages
978 * use ->index whereas swapcache pages use ->private
979 */
980 static inline pgoff_t page_index(struct page *page)
981 {
982 if (unlikely(PageSwapCache(page)))
983 return page_private(page);
984 return page->index;
985 }
986
987 extern pgoff_t __page_file_index(struct page *page);
988
989 /*
990 * Return the file index of the page. Regular pagecache pages use ->index
991 * whereas swapcache pages use swp_offset(->private)
992 */
993 static inline pgoff_t page_file_index(struct page *page)
994 {
995 if (unlikely(PageSwapCache(page)))
996 return __page_file_index(page);
997
998 return page->index;
999 }
1000
1001 /*
1002 * Return true if this page is mapped into pagetables.
1003 * For compound page it returns true if any subpage of compound page is mapped.
1004 */
1005 static inline bool page_mapped(struct page *page)
1006 {
1007 int i;
1008 if (likely(!PageCompound(page)))
1009 return atomic_read(&page->_mapcount) >= 0;
1010 page = compound_head(page);
1011 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1012 return true;
1013 for (i = 0; i < hpage_nr_pages(page); i++) {
1014 if (atomic_read(&page[i]._mapcount) >= 0)
1015 return true;
1016 }
1017 return false;
1018 }
1019
1020 /*
1021 * Return true only if the page has been allocated with
1022 * ALLOC_NO_WATERMARKS and the low watermark was not
1023 * met implying that the system is under some pressure.
1024 */
1025 static inline bool page_is_pfmemalloc(struct page *page)
1026 {
1027 /*
1028 * Page index cannot be this large so this must be
1029 * a pfmemalloc page.
1030 */
1031 return page->index == -1UL;
1032 }
1033
1034 /*
1035 * Only to be called by the page allocator on a freshly allocated
1036 * page.
1037 */
1038 static inline void set_page_pfmemalloc(struct page *page)
1039 {
1040 page->index = -1UL;
1041 }
1042
1043 static inline void clear_page_pfmemalloc(struct page *page)
1044 {
1045 page->index = 0;
1046 }
1047
1048 /*
1049 * Different kinds of faults, as returned by handle_mm_fault().
1050 * Used to decide whether a process gets delivered SIGBUS or
1051 * just gets major/minor fault counters bumped up.
1052 */
1053
1054 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1055
1056 #define VM_FAULT_OOM 0x0001
1057 #define VM_FAULT_SIGBUS 0x0002
1058 #define VM_FAULT_MAJOR 0x0004
1059 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1060 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1061 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1062 #define VM_FAULT_SIGSEGV 0x0040
1063
1064 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1065 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1066 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1067 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1068
1069 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1070
1071 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1072 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1073 VM_FAULT_FALLBACK)
1074
1075 /* Encode hstate index for a hwpoisoned large page */
1076 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1077 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1078
1079 /*
1080 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1081 */
1082 extern void pagefault_out_of_memory(void);
1083
1084 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1085
1086 /*
1087 * Flags passed to show_mem() and show_free_areas() to suppress output in
1088 * various contexts.
1089 */
1090 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1091
1092 extern void show_free_areas(unsigned int flags);
1093 extern bool skip_free_areas_node(unsigned int flags, int nid);
1094
1095 int shmem_zero_setup(struct vm_area_struct *);
1096 #ifdef CONFIG_SHMEM
1097 bool shmem_mapping(struct address_space *mapping);
1098 #else
1099 static inline bool shmem_mapping(struct address_space *mapping)
1100 {
1101 return false;
1102 }
1103 #endif
1104
1105 extern bool can_do_mlock(void);
1106 extern int user_shm_lock(size_t, struct user_struct *);
1107 extern void user_shm_unlock(size_t, struct user_struct *);
1108
1109 /*
1110 * Parameter block passed down to zap_pte_range in exceptional cases.
1111 */
1112 struct zap_details {
1113 struct address_space *check_mapping; /* Check page->mapping if set */
1114 pgoff_t first_index; /* Lowest page->index to unmap */
1115 pgoff_t last_index; /* Highest page->index to unmap */
1116 };
1117
1118 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1119 pte_t pte);
1120
1121 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1122 unsigned long size);
1123 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1124 unsigned long size, struct zap_details *);
1125 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1126 unsigned long start, unsigned long end);
1127
1128 /**
1129 * mm_walk - callbacks for walk_page_range
1130 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1131 * this handler is required to be able to handle
1132 * pmd_trans_huge() pmds. They may simply choose to
1133 * split_huge_page() instead of handling it explicitly.
1134 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1135 * @pte_hole: if set, called for each hole at all levels
1136 * @hugetlb_entry: if set, called for each hugetlb entry
1137 * @test_walk: caller specific callback function to determine whether
1138 * we walk over the current vma or not. A positive returned
1139 * value means "do page table walk over the current vma,"
1140 * and a negative one means "abort current page table walk
1141 * right now." 0 means "skip the current vma."
1142 * @mm: mm_struct representing the target process of page table walk
1143 * @vma: vma currently walked (NULL if walking outside vmas)
1144 * @private: private data for callbacks' usage
1145 *
1146 * (see the comment on walk_page_range() for more details)
1147 */
1148 struct mm_walk {
1149 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1150 unsigned long next, struct mm_walk *walk);
1151 int (*pte_entry)(pte_t *pte, unsigned long addr,
1152 unsigned long next, struct mm_walk *walk);
1153 int (*pte_hole)(unsigned long addr, unsigned long next,
1154 struct mm_walk *walk);
1155 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1156 unsigned long addr, unsigned long next,
1157 struct mm_walk *walk);
1158 int (*test_walk)(unsigned long addr, unsigned long next,
1159 struct mm_walk *walk);
1160 struct mm_struct *mm;
1161 struct vm_area_struct *vma;
1162 void *private;
1163 };
1164
1165 int walk_page_range(unsigned long addr, unsigned long end,
1166 struct mm_walk *walk);
1167 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1168 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1169 unsigned long end, unsigned long floor, unsigned long ceiling);
1170 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1171 struct vm_area_struct *vma);
1172 void unmap_mapping_range(struct address_space *mapping,
1173 loff_t const holebegin, loff_t const holelen, int even_cows);
1174 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1175 unsigned long *pfn);
1176 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1177 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1178 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1179 void *buf, int len, int write);
1180
1181 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1182 loff_t const holebegin, loff_t const holelen)
1183 {
1184 unmap_mapping_range(mapping, holebegin, holelen, 0);
1185 }
1186
1187 extern void truncate_pagecache(struct inode *inode, loff_t new);
1188 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1189 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1190 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1191 int truncate_inode_page(struct address_space *mapping, struct page *page);
1192 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1193 int invalidate_inode_page(struct page *page);
1194
1195 #ifdef CONFIG_MMU
1196 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1197 unsigned long address, unsigned int flags);
1198 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1199 unsigned long address, unsigned int fault_flags,
1200 bool *unlocked);
1201 #else
1202 static inline int handle_mm_fault(struct mm_struct *mm,
1203 struct vm_area_struct *vma, unsigned long address,
1204 unsigned int flags)
1205 {
1206 /* should never happen if there's no MMU */
1207 BUG();
1208 return VM_FAULT_SIGBUS;
1209 }
1210 static inline int fixup_user_fault(struct task_struct *tsk,
1211 struct mm_struct *mm, unsigned long address,
1212 unsigned int fault_flags, bool *unlocked)
1213 {
1214 /* should never happen if there's no MMU */
1215 BUG();
1216 return -EFAULT;
1217 }
1218 #endif
1219
1220 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1221 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1222 void *buf, int len, int write);
1223
1224 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1225 unsigned long start, unsigned long nr_pages,
1226 unsigned int foll_flags, struct page **pages,
1227 struct vm_area_struct **vmas, int *nonblocking);
1228 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1229 unsigned long start, unsigned long nr_pages,
1230 int write, int force, struct page **pages,
1231 struct vm_area_struct **vmas);
1232 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1233 unsigned long start, unsigned long nr_pages,
1234 int write, int force, struct page **pages,
1235 int *locked);
1236 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1237 unsigned long start, unsigned long nr_pages,
1238 int write, int force, struct page **pages,
1239 unsigned int gup_flags);
1240 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1241 unsigned long start, unsigned long nr_pages,
1242 int write, int force, struct page **pages);
1243 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1244 struct page **pages);
1245
1246 /* Container for pinned pfns / pages */
1247 struct frame_vector {
1248 unsigned int nr_allocated; /* Number of frames we have space for */
1249 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1250 bool got_ref; /* Did we pin pages by getting page ref? */
1251 bool is_pfns; /* Does array contain pages or pfns? */
1252 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1253 * pfns_vector_pages() or pfns_vector_pfns()
1254 * for access */
1255 };
1256
1257 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1258 void frame_vector_destroy(struct frame_vector *vec);
1259 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1260 bool write, bool force, struct frame_vector *vec);
1261 void put_vaddr_frames(struct frame_vector *vec);
1262 int frame_vector_to_pages(struct frame_vector *vec);
1263 void frame_vector_to_pfns(struct frame_vector *vec);
1264
1265 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1266 {
1267 return vec->nr_frames;
1268 }
1269
1270 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1271 {
1272 if (vec->is_pfns) {
1273 int err = frame_vector_to_pages(vec);
1274
1275 if (err)
1276 return ERR_PTR(err);
1277 }
1278 return (struct page **)(vec->ptrs);
1279 }
1280
1281 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1282 {
1283 if (!vec->is_pfns)
1284 frame_vector_to_pfns(vec);
1285 return (unsigned long *)(vec->ptrs);
1286 }
1287
1288 struct kvec;
1289 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1290 struct page **pages);
1291 int get_kernel_page(unsigned long start, int write, struct page **pages);
1292 struct page *get_dump_page(unsigned long addr);
1293
1294 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1295 extern void do_invalidatepage(struct page *page, unsigned int offset,
1296 unsigned int length);
1297
1298 int __set_page_dirty_nobuffers(struct page *page);
1299 int __set_page_dirty_no_writeback(struct page *page);
1300 int redirty_page_for_writepage(struct writeback_control *wbc,
1301 struct page *page);
1302 void account_page_dirtied(struct page *page, struct address_space *mapping,
1303 struct mem_cgroup *memcg);
1304 void account_page_cleaned(struct page *page, struct address_space *mapping,
1305 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1306 int set_page_dirty(struct page *page);
1307 int set_page_dirty_lock(struct page *page);
1308 void cancel_dirty_page(struct page *page);
1309 int clear_page_dirty_for_io(struct page *page);
1310
1311 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1312
1313 /* Is the vma a continuation of the stack vma above it? */
1314 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1315 {
1316 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1317 }
1318
1319 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1320 {
1321 return !vma->vm_ops;
1322 }
1323
1324 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1325 unsigned long addr)
1326 {
1327 return (vma->vm_flags & VM_GROWSDOWN) &&
1328 (vma->vm_start == addr) &&
1329 !vma_growsdown(vma->vm_prev, addr);
1330 }
1331
1332 /* Is the vma a continuation of the stack vma below it? */
1333 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1334 {
1335 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1336 }
1337
1338 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1339 unsigned long addr)
1340 {
1341 return (vma->vm_flags & VM_GROWSUP) &&
1342 (vma->vm_end == addr) &&
1343 !vma_growsup(vma->vm_next, addr);
1344 }
1345
1346 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1347
1348 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1349 unsigned long old_addr, struct vm_area_struct *new_vma,
1350 unsigned long new_addr, unsigned long len,
1351 bool need_rmap_locks);
1352 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1353 unsigned long end, pgprot_t newprot,
1354 int dirty_accountable, int prot_numa);
1355 extern int mprotect_fixup(struct vm_area_struct *vma,
1356 struct vm_area_struct **pprev, unsigned long start,
1357 unsigned long end, unsigned long newflags);
1358
1359 /*
1360 * doesn't attempt to fault and will return short.
1361 */
1362 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1363 struct page **pages);
1364 /*
1365 * per-process(per-mm_struct) statistics.
1366 */
1367 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1368 {
1369 long val = atomic_long_read(&mm->rss_stat.count[member]);
1370
1371 #ifdef SPLIT_RSS_COUNTING
1372 /*
1373 * counter is updated in asynchronous manner and may go to minus.
1374 * But it's never be expected number for users.
1375 */
1376 if (val < 0)
1377 val = 0;
1378 #endif
1379 return (unsigned long)val;
1380 }
1381
1382 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1383 {
1384 atomic_long_add(value, &mm->rss_stat.count[member]);
1385 }
1386
1387 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1388 {
1389 atomic_long_inc(&mm->rss_stat.count[member]);
1390 }
1391
1392 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1393 {
1394 atomic_long_dec(&mm->rss_stat.count[member]);
1395 }
1396
1397 /* Optimized variant when page is already known not to be PageAnon */
1398 static inline int mm_counter_file(struct page *page)
1399 {
1400 if (PageSwapBacked(page))
1401 return MM_SHMEMPAGES;
1402 return MM_FILEPAGES;
1403 }
1404
1405 static inline int mm_counter(struct page *page)
1406 {
1407 if (PageAnon(page))
1408 return MM_ANONPAGES;
1409 return mm_counter_file(page);
1410 }
1411
1412 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1413 {
1414 return get_mm_counter(mm, MM_FILEPAGES) +
1415 get_mm_counter(mm, MM_ANONPAGES) +
1416 get_mm_counter(mm, MM_SHMEMPAGES);
1417 }
1418
1419 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1420 {
1421 return max(mm->hiwater_rss, get_mm_rss(mm));
1422 }
1423
1424 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1425 {
1426 return max(mm->hiwater_vm, mm->total_vm);
1427 }
1428
1429 static inline void update_hiwater_rss(struct mm_struct *mm)
1430 {
1431 unsigned long _rss = get_mm_rss(mm);
1432
1433 if ((mm)->hiwater_rss < _rss)
1434 (mm)->hiwater_rss = _rss;
1435 }
1436
1437 static inline void update_hiwater_vm(struct mm_struct *mm)
1438 {
1439 if (mm->hiwater_vm < mm->total_vm)
1440 mm->hiwater_vm = mm->total_vm;
1441 }
1442
1443 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1444 {
1445 mm->hiwater_rss = get_mm_rss(mm);
1446 }
1447
1448 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1449 struct mm_struct *mm)
1450 {
1451 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1452
1453 if (*maxrss < hiwater_rss)
1454 *maxrss = hiwater_rss;
1455 }
1456
1457 #if defined(SPLIT_RSS_COUNTING)
1458 void sync_mm_rss(struct mm_struct *mm);
1459 #else
1460 static inline void sync_mm_rss(struct mm_struct *mm)
1461 {
1462 }
1463 #endif
1464
1465 #ifndef __HAVE_ARCH_PTE_DEVMAP
1466 static inline int pte_devmap(pte_t pte)
1467 {
1468 return 0;
1469 }
1470 #endif
1471
1472 int vma_wants_writenotify(struct vm_area_struct *vma);
1473
1474 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1475 spinlock_t **ptl);
1476 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1477 spinlock_t **ptl)
1478 {
1479 pte_t *ptep;
1480 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1481 return ptep;
1482 }
1483
1484 #ifdef __PAGETABLE_PUD_FOLDED
1485 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1486 unsigned long address)
1487 {
1488 return 0;
1489 }
1490 #else
1491 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1492 #endif
1493
1494 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1495 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1496 unsigned long address)
1497 {
1498 return 0;
1499 }
1500
1501 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1502
1503 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1504 {
1505 return 0;
1506 }
1507
1508 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1509 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1510
1511 #else
1512 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1513
1514 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1515 {
1516 atomic_long_set(&mm->nr_pmds, 0);
1517 }
1518
1519 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1520 {
1521 return atomic_long_read(&mm->nr_pmds);
1522 }
1523
1524 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1525 {
1526 atomic_long_inc(&mm->nr_pmds);
1527 }
1528
1529 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1530 {
1531 atomic_long_dec(&mm->nr_pmds);
1532 }
1533 #endif
1534
1535 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1536 pmd_t *pmd, unsigned long address);
1537 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1538
1539 /*
1540 * The following ifdef needed to get the 4level-fixup.h header to work.
1541 * Remove it when 4level-fixup.h has been removed.
1542 */
1543 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1544 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1545 {
1546 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1547 NULL: pud_offset(pgd, address);
1548 }
1549
1550 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1551 {
1552 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1553 NULL: pmd_offset(pud, address);
1554 }
1555 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1556
1557 #if USE_SPLIT_PTE_PTLOCKS
1558 #if ALLOC_SPLIT_PTLOCKS
1559 void __init ptlock_cache_init(void);
1560 extern bool ptlock_alloc(struct page *page);
1561 extern void ptlock_free(struct page *page);
1562
1563 static inline spinlock_t *ptlock_ptr(struct page *page)
1564 {
1565 return page->ptl;
1566 }
1567 #else /* ALLOC_SPLIT_PTLOCKS */
1568 static inline void ptlock_cache_init(void)
1569 {
1570 }
1571
1572 static inline bool ptlock_alloc(struct page *page)
1573 {
1574 return true;
1575 }
1576
1577 static inline void ptlock_free(struct page *page)
1578 {
1579 }
1580
1581 static inline spinlock_t *ptlock_ptr(struct page *page)
1582 {
1583 return &page->ptl;
1584 }
1585 #endif /* ALLOC_SPLIT_PTLOCKS */
1586
1587 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1588 {
1589 return ptlock_ptr(pmd_page(*pmd));
1590 }
1591
1592 static inline bool ptlock_init(struct page *page)
1593 {
1594 /*
1595 * prep_new_page() initialize page->private (and therefore page->ptl)
1596 * with 0. Make sure nobody took it in use in between.
1597 *
1598 * It can happen if arch try to use slab for page table allocation:
1599 * slab code uses page->slab_cache, which share storage with page->ptl.
1600 */
1601 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1602 if (!ptlock_alloc(page))
1603 return false;
1604 spin_lock_init(ptlock_ptr(page));
1605 return true;
1606 }
1607
1608 /* Reset page->mapping so free_pages_check won't complain. */
1609 static inline void pte_lock_deinit(struct page *page)
1610 {
1611 page->mapping = NULL;
1612 ptlock_free(page);
1613 }
1614
1615 #else /* !USE_SPLIT_PTE_PTLOCKS */
1616 /*
1617 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1618 */
1619 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1620 {
1621 return &mm->page_table_lock;
1622 }
1623 static inline void ptlock_cache_init(void) {}
1624 static inline bool ptlock_init(struct page *page) { return true; }
1625 static inline void pte_lock_deinit(struct page *page) {}
1626 #endif /* USE_SPLIT_PTE_PTLOCKS */
1627
1628 static inline void pgtable_init(void)
1629 {
1630 ptlock_cache_init();
1631 pgtable_cache_init();
1632 }
1633
1634 static inline bool pgtable_page_ctor(struct page *page)
1635 {
1636 if (!ptlock_init(page))
1637 return false;
1638 inc_zone_page_state(page, NR_PAGETABLE);
1639 return true;
1640 }
1641
1642 static inline void pgtable_page_dtor(struct page *page)
1643 {
1644 pte_lock_deinit(page);
1645 dec_zone_page_state(page, NR_PAGETABLE);
1646 }
1647
1648 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1649 ({ \
1650 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1651 pte_t *__pte = pte_offset_map(pmd, address); \
1652 *(ptlp) = __ptl; \
1653 spin_lock(__ptl); \
1654 __pte; \
1655 })
1656
1657 #define pte_unmap_unlock(pte, ptl) do { \
1658 spin_unlock(ptl); \
1659 pte_unmap(pte); \
1660 } while (0)
1661
1662 #define pte_alloc_map(mm, vma, pmd, address) \
1663 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1664 pmd, address))? \
1665 NULL: pte_offset_map(pmd, address))
1666
1667 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1668 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1669 pmd, address))? \
1670 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1671
1672 #define pte_alloc_kernel(pmd, address) \
1673 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1674 NULL: pte_offset_kernel(pmd, address))
1675
1676 #if USE_SPLIT_PMD_PTLOCKS
1677
1678 static struct page *pmd_to_page(pmd_t *pmd)
1679 {
1680 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1681 return virt_to_page((void *)((unsigned long) pmd & mask));
1682 }
1683
1684 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1685 {
1686 return ptlock_ptr(pmd_to_page(pmd));
1687 }
1688
1689 static inline bool pgtable_pmd_page_ctor(struct page *page)
1690 {
1691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1692 page->pmd_huge_pte = NULL;
1693 #endif
1694 return ptlock_init(page);
1695 }
1696
1697 static inline void pgtable_pmd_page_dtor(struct page *page)
1698 {
1699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1700 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1701 #endif
1702 ptlock_free(page);
1703 }
1704
1705 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1706
1707 #else
1708
1709 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1710 {
1711 return &mm->page_table_lock;
1712 }
1713
1714 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1715 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1716
1717 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1718
1719 #endif
1720
1721 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1722 {
1723 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1724 spin_lock(ptl);
1725 return ptl;
1726 }
1727
1728 extern void free_area_init(unsigned long * zones_size);
1729 extern void free_area_init_node(int nid, unsigned long * zones_size,
1730 unsigned long zone_start_pfn, unsigned long *zholes_size);
1731 extern void free_initmem(void);
1732
1733 /*
1734 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1735 * into the buddy system. The freed pages will be poisoned with pattern
1736 * "poison" if it's within range [0, UCHAR_MAX].
1737 * Return pages freed into the buddy system.
1738 */
1739 extern unsigned long free_reserved_area(void *start, void *end,
1740 int poison, char *s);
1741
1742 #ifdef CONFIG_HIGHMEM
1743 /*
1744 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1745 * and totalram_pages.
1746 */
1747 extern void free_highmem_page(struct page *page);
1748 #endif
1749
1750 extern void adjust_managed_page_count(struct page *page, long count);
1751 extern void mem_init_print_info(const char *str);
1752
1753 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1754
1755 /* Free the reserved page into the buddy system, so it gets managed. */
1756 static inline void __free_reserved_page(struct page *page)
1757 {
1758 ClearPageReserved(page);
1759 init_page_count(page);
1760 __free_page(page);
1761 }
1762
1763 static inline void free_reserved_page(struct page *page)
1764 {
1765 __free_reserved_page(page);
1766 adjust_managed_page_count(page, 1);
1767 }
1768
1769 static inline void mark_page_reserved(struct page *page)
1770 {
1771 SetPageReserved(page);
1772 adjust_managed_page_count(page, -1);
1773 }
1774
1775 /*
1776 * Default method to free all the __init memory into the buddy system.
1777 * The freed pages will be poisoned with pattern "poison" if it's within
1778 * range [0, UCHAR_MAX].
1779 * Return pages freed into the buddy system.
1780 */
1781 static inline unsigned long free_initmem_default(int poison)
1782 {
1783 extern char __init_begin[], __init_end[];
1784
1785 return free_reserved_area(&__init_begin, &__init_end,
1786 poison, "unused kernel");
1787 }
1788
1789 static inline unsigned long get_num_physpages(void)
1790 {
1791 int nid;
1792 unsigned long phys_pages = 0;
1793
1794 for_each_online_node(nid)
1795 phys_pages += node_present_pages(nid);
1796
1797 return phys_pages;
1798 }
1799
1800 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1801 /*
1802 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1803 * zones, allocate the backing mem_map and account for memory holes in a more
1804 * architecture independent manner. This is a substitute for creating the
1805 * zone_sizes[] and zholes_size[] arrays and passing them to
1806 * free_area_init_node()
1807 *
1808 * An architecture is expected to register range of page frames backed by
1809 * physical memory with memblock_add[_node]() before calling
1810 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1811 * usage, an architecture is expected to do something like
1812 *
1813 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1814 * max_highmem_pfn};
1815 * for_each_valid_physical_page_range()
1816 * memblock_add_node(base, size, nid)
1817 * free_area_init_nodes(max_zone_pfns);
1818 *
1819 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1820 * registered physical page range. Similarly
1821 * sparse_memory_present_with_active_regions() calls memory_present() for
1822 * each range when SPARSEMEM is enabled.
1823 *
1824 * See mm/page_alloc.c for more information on each function exposed by
1825 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1826 */
1827 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1828 unsigned long node_map_pfn_alignment(void);
1829 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1830 unsigned long end_pfn);
1831 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1832 unsigned long end_pfn);
1833 extern void get_pfn_range_for_nid(unsigned int nid,
1834 unsigned long *start_pfn, unsigned long *end_pfn);
1835 extern unsigned long find_min_pfn_with_active_regions(void);
1836 extern void free_bootmem_with_active_regions(int nid,
1837 unsigned long max_low_pfn);
1838 extern void sparse_memory_present_with_active_regions(int nid);
1839
1840 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1841
1842 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1843 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1844 static inline int __early_pfn_to_nid(unsigned long pfn,
1845 struct mminit_pfnnid_cache *state)
1846 {
1847 return 0;
1848 }
1849 #else
1850 /* please see mm/page_alloc.c */
1851 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1852 /* there is a per-arch backend function. */
1853 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1854 struct mminit_pfnnid_cache *state);
1855 #endif
1856
1857 extern void set_dma_reserve(unsigned long new_dma_reserve);
1858 extern void memmap_init_zone(unsigned long, int, unsigned long,
1859 unsigned long, enum memmap_context);
1860 extern void setup_per_zone_wmarks(void);
1861 extern int __meminit init_per_zone_wmark_min(void);
1862 extern void mem_init(void);
1863 extern void __init mmap_init(void);
1864 extern void show_mem(unsigned int flags);
1865 extern void si_meminfo(struct sysinfo * val);
1866 extern void si_meminfo_node(struct sysinfo *val, int nid);
1867
1868 extern __printf(3, 4)
1869 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1870 const char *fmt, ...);
1871
1872 extern void setup_per_cpu_pageset(void);
1873
1874 extern void zone_pcp_update(struct zone *zone);
1875 extern void zone_pcp_reset(struct zone *zone);
1876
1877 /* page_alloc.c */
1878 extern int min_free_kbytes;
1879
1880 /* nommu.c */
1881 extern atomic_long_t mmap_pages_allocated;
1882 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1883
1884 /* interval_tree.c */
1885 void vma_interval_tree_insert(struct vm_area_struct *node,
1886 struct rb_root *root);
1887 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1888 struct vm_area_struct *prev,
1889 struct rb_root *root);
1890 void vma_interval_tree_remove(struct vm_area_struct *node,
1891 struct rb_root *root);
1892 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1893 unsigned long start, unsigned long last);
1894 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1895 unsigned long start, unsigned long last);
1896
1897 #define vma_interval_tree_foreach(vma, root, start, last) \
1898 for (vma = vma_interval_tree_iter_first(root, start, last); \
1899 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1900
1901 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1902 struct rb_root *root);
1903 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1904 struct rb_root *root);
1905 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1906 struct rb_root *root, unsigned long start, unsigned long last);
1907 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1908 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1909 #ifdef CONFIG_DEBUG_VM_RB
1910 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1911 #endif
1912
1913 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1914 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1915 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1916
1917 /* mmap.c */
1918 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1919 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1920 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1921 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1922 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1923 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1924 struct mempolicy *, struct vm_userfaultfd_ctx);
1925 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1926 extern int split_vma(struct mm_struct *,
1927 struct vm_area_struct *, unsigned long addr, int new_below);
1928 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1929 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1930 struct rb_node **, struct rb_node *);
1931 extern void unlink_file_vma(struct vm_area_struct *);
1932 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1933 unsigned long addr, unsigned long len, pgoff_t pgoff,
1934 bool *need_rmap_locks);
1935 extern void exit_mmap(struct mm_struct *);
1936
1937 static inline int check_data_rlimit(unsigned long rlim,
1938 unsigned long new,
1939 unsigned long start,
1940 unsigned long end_data,
1941 unsigned long start_data)
1942 {
1943 if (rlim < RLIM_INFINITY) {
1944 if (((new - start) + (end_data - start_data)) > rlim)
1945 return -ENOSPC;
1946 }
1947
1948 return 0;
1949 }
1950
1951 extern int mm_take_all_locks(struct mm_struct *mm);
1952 extern void mm_drop_all_locks(struct mm_struct *mm);
1953
1954 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1955 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1956
1957 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1958 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1959
1960 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1961 unsigned long addr, unsigned long len,
1962 unsigned long flags,
1963 const struct vm_special_mapping *spec);
1964 /* This is an obsolete alternative to _install_special_mapping. */
1965 extern int install_special_mapping(struct mm_struct *mm,
1966 unsigned long addr, unsigned long len,
1967 unsigned long flags, struct page **pages);
1968
1969 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1970
1971 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1972 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1973 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1974 unsigned long len, unsigned long prot, unsigned long flags,
1975 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1976 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1977
1978 static inline unsigned long
1979 do_mmap_pgoff(struct file *file, unsigned long addr,
1980 unsigned long len, unsigned long prot, unsigned long flags,
1981 unsigned long pgoff, unsigned long *populate)
1982 {
1983 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1984 }
1985
1986 #ifdef CONFIG_MMU
1987 extern int __mm_populate(unsigned long addr, unsigned long len,
1988 int ignore_errors);
1989 static inline void mm_populate(unsigned long addr, unsigned long len)
1990 {
1991 /* Ignore errors */
1992 (void) __mm_populate(addr, len, 1);
1993 }
1994 #else
1995 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1996 #endif
1997
1998 /* These take the mm semaphore themselves */
1999 extern unsigned long vm_brk(unsigned long, unsigned long);
2000 extern int vm_munmap(unsigned long, size_t);
2001 extern unsigned long vm_mmap(struct file *, unsigned long,
2002 unsigned long, unsigned long,
2003 unsigned long, unsigned long);
2004
2005 struct vm_unmapped_area_info {
2006 #define VM_UNMAPPED_AREA_TOPDOWN 1
2007 unsigned long flags;
2008 unsigned long length;
2009 unsigned long low_limit;
2010 unsigned long high_limit;
2011 unsigned long align_mask;
2012 unsigned long align_offset;
2013 };
2014
2015 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2016 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2017
2018 /*
2019 * Search for an unmapped address range.
2020 *
2021 * We are looking for a range that:
2022 * - does not intersect with any VMA;
2023 * - is contained within the [low_limit, high_limit) interval;
2024 * - is at least the desired size.
2025 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2026 */
2027 static inline unsigned long
2028 vm_unmapped_area(struct vm_unmapped_area_info *info)
2029 {
2030 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2031 return unmapped_area_topdown(info);
2032 else
2033 return unmapped_area(info);
2034 }
2035
2036 /* truncate.c */
2037 extern void truncate_inode_pages(struct address_space *, loff_t);
2038 extern void truncate_inode_pages_range(struct address_space *,
2039 loff_t lstart, loff_t lend);
2040 extern void truncate_inode_pages_final(struct address_space *);
2041
2042 /* generic vm_area_ops exported for stackable file systems */
2043 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2044 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2045 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2046
2047 /* mm/page-writeback.c */
2048 int write_one_page(struct page *page, int wait);
2049 void task_dirty_inc(struct task_struct *tsk);
2050
2051 /* readahead.c */
2052 #define VM_MAX_READAHEAD 128 /* kbytes */
2053 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2054
2055 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2056 pgoff_t offset, unsigned long nr_to_read);
2057
2058 void page_cache_sync_readahead(struct address_space *mapping,
2059 struct file_ra_state *ra,
2060 struct file *filp,
2061 pgoff_t offset,
2062 unsigned long size);
2063
2064 void page_cache_async_readahead(struct address_space *mapping,
2065 struct file_ra_state *ra,
2066 struct file *filp,
2067 struct page *pg,
2068 pgoff_t offset,
2069 unsigned long size);
2070
2071 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2072 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2073
2074 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2075 extern int expand_downwards(struct vm_area_struct *vma,
2076 unsigned long address);
2077 #if VM_GROWSUP
2078 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2079 #else
2080 #define expand_upwards(vma, address) (0)
2081 #endif
2082
2083 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2084 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2085 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2086 struct vm_area_struct **pprev);
2087
2088 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2089 NULL if none. Assume start_addr < end_addr. */
2090 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2091 {
2092 struct vm_area_struct * vma = find_vma(mm,start_addr);
2093
2094 if (vma && end_addr <= vma->vm_start)
2095 vma = NULL;
2096 return vma;
2097 }
2098
2099 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2100 {
2101 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2102 }
2103
2104 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2105 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2106 unsigned long vm_start, unsigned long vm_end)
2107 {
2108 struct vm_area_struct *vma = find_vma(mm, vm_start);
2109
2110 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2111 vma = NULL;
2112
2113 return vma;
2114 }
2115
2116 #ifdef CONFIG_MMU
2117 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2118 void vma_set_page_prot(struct vm_area_struct *vma);
2119 #else
2120 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2121 {
2122 return __pgprot(0);
2123 }
2124 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2125 {
2126 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2127 }
2128 #endif
2129
2130 #ifdef CONFIG_NUMA_BALANCING
2131 unsigned long change_prot_numa(struct vm_area_struct *vma,
2132 unsigned long start, unsigned long end);
2133 #endif
2134
2135 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2136 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2137 unsigned long pfn, unsigned long size, pgprot_t);
2138 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2139 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140 unsigned long pfn);
2141 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2142 pfn_t pfn);
2143 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2144
2145
2146 struct page *follow_page_mask(struct vm_area_struct *vma,
2147 unsigned long address, unsigned int foll_flags,
2148 unsigned int *page_mask);
2149
2150 static inline struct page *follow_page(struct vm_area_struct *vma,
2151 unsigned long address, unsigned int foll_flags)
2152 {
2153 unsigned int unused_page_mask;
2154 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2155 }
2156
2157 #define FOLL_WRITE 0x01 /* check pte is writable */
2158 #define FOLL_TOUCH 0x02 /* mark page accessed */
2159 #define FOLL_GET 0x04 /* do get_page on page */
2160 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2161 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2162 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2163 * and return without waiting upon it */
2164 #define FOLL_POPULATE 0x40 /* fault in page */
2165 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2166 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2167 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2168 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2169 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2170 #define FOLL_MLOCK 0x1000 /* lock present pages */
2171
2172 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2173 void *data);
2174 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2175 unsigned long size, pte_fn_t fn, void *data);
2176
2177
2178 #ifdef CONFIG_DEBUG_PAGEALLOC
2179 extern bool _debug_pagealloc_enabled;
2180 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2181
2182 static inline bool debug_pagealloc_enabled(void)
2183 {
2184 return _debug_pagealloc_enabled;
2185 }
2186
2187 static inline void
2188 kernel_map_pages(struct page *page, int numpages, int enable)
2189 {
2190 if (!debug_pagealloc_enabled())
2191 return;
2192
2193 __kernel_map_pages(page, numpages, enable);
2194 }
2195 #ifdef CONFIG_HIBERNATION
2196 extern bool kernel_page_present(struct page *page);
2197 #endif /* CONFIG_HIBERNATION */
2198 #else
2199 static inline void
2200 kernel_map_pages(struct page *page, int numpages, int enable) {}
2201 #ifdef CONFIG_HIBERNATION
2202 static inline bool kernel_page_present(struct page *page) { return true; }
2203 #endif /* CONFIG_HIBERNATION */
2204 #endif
2205
2206 #ifdef __HAVE_ARCH_GATE_AREA
2207 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2208 extern int in_gate_area_no_mm(unsigned long addr);
2209 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2210 #else
2211 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2212 {
2213 return NULL;
2214 }
2215 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2216 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2217 {
2218 return 0;
2219 }
2220 #endif /* __HAVE_ARCH_GATE_AREA */
2221
2222 #ifdef CONFIG_SYSCTL
2223 extern int sysctl_drop_caches;
2224 int drop_caches_sysctl_handler(struct ctl_table *, int,
2225 void __user *, size_t *, loff_t *);
2226 #endif
2227
2228 void drop_slab(void);
2229 void drop_slab_node(int nid);
2230
2231 #ifndef CONFIG_MMU
2232 #define randomize_va_space 0
2233 #else
2234 extern int randomize_va_space;
2235 #endif
2236
2237 const char * arch_vma_name(struct vm_area_struct *vma);
2238 void print_vma_addr(char *prefix, unsigned long rip);
2239
2240 void sparse_mem_maps_populate_node(struct page **map_map,
2241 unsigned long pnum_begin,
2242 unsigned long pnum_end,
2243 unsigned long map_count,
2244 int nodeid);
2245
2246 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2247 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2248 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2249 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2250 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2251 void *vmemmap_alloc_block(unsigned long size, int node);
2252 struct vmem_altmap;
2253 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2254 struct vmem_altmap *altmap);
2255 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2256 {
2257 return __vmemmap_alloc_block_buf(size, node, NULL);
2258 }
2259
2260 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2261 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2262 int node);
2263 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2264 void vmemmap_populate_print_last(void);
2265 #ifdef CONFIG_MEMORY_HOTPLUG
2266 void vmemmap_free(unsigned long start, unsigned long end);
2267 #endif
2268 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2269 unsigned long size);
2270
2271 enum mf_flags {
2272 MF_COUNT_INCREASED = 1 << 0,
2273 MF_ACTION_REQUIRED = 1 << 1,
2274 MF_MUST_KILL = 1 << 2,
2275 MF_SOFT_OFFLINE = 1 << 3,
2276 };
2277 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2278 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2279 extern int unpoison_memory(unsigned long pfn);
2280 extern int get_hwpoison_page(struct page *page);
2281 #define put_hwpoison_page(page) put_page(page)
2282 extern int sysctl_memory_failure_early_kill;
2283 extern int sysctl_memory_failure_recovery;
2284 extern void shake_page(struct page *p, int access);
2285 extern atomic_long_t num_poisoned_pages;
2286 extern int soft_offline_page(struct page *page, int flags);
2287
2288
2289 /*
2290 * Error handlers for various types of pages.
2291 */
2292 enum mf_result {
2293 MF_IGNORED, /* Error: cannot be handled */
2294 MF_FAILED, /* Error: handling failed */
2295 MF_DELAYED, /* Will be handled later */
2296 MF_RECOVERED, /* Successfully recovered */
2297 };
2298
2299 enum mf_action_page_type {
2300 MF_MSG_KERNEL,
2301 MF_MSG_KERNEL_HIGH_ORDER,
2302 MF_MSG_SLAB,
2303 MF_MSG_DIFFERENT_COMPOUND,
2304 MF_MSG_POISONED_HUGE,
2305 MF_MSG_HUGE,
2306 MF_MSG_FREE_HUGE,
2307 MF_MSG_UNMAP_FAILED,
2308 MF_MSG_DIRTY_SWAPCACHE,
2309 MF_MSG_CLEAN_SWAPCACHE,
2310 MF_MSG_DIRTY_MLOCKED_LRU,
2311 MF_MSG_CLEAN_MLOCKED_LRU,
2312 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2313 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2314 MF_MSG_DIRTY_LRU,
2315 MF_MSG_CLEAN_LRU,
2316 MF_MSG_TRUNCATED_LRU,
2317 MF_MSG_BUDDY,
2318 MF_MSG_BUDDY_2ND,
2319 MF_MSG_UNKNOWN,
2320 };
2321
2322 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2323 extern void clear_huge_page(struct page *page,
2324 unsigned long addr,
2325 unsigned int pages_per_huge_page);
2326 extern void copy_user_huge_page(struct page *dst, struct page *src,
2327 unsigned long addr, struct vm_area_struct *vma,
2328 unsigned int pages_per_huge_page);
2329 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2330
2331 extern struct page_ext_operations debug_guardpage_ops;
2332 extern struct page_ext_operations page_poisoning_ops;
2333
2334 #ifdef CONFIG_DEBUG_PAGEALLOC
2335 extern unsigned int _debug_guardpage_minorder;
2336 extern bool _debug_guardpage_enabled;
2337
2338 static inline unsigned int debug_guardpage_minorder(void)
2339 {
2340 return _debug_guardpage_minorder;
2341 }
2342
2343 static inline bool debug_guardpage_enabled(void)
2344 {
2345 return _debug_guardpage_enabled;
2346 }
2347
2348 static inline bool page_is_guard(struct page *page)
2349 {
2350 struct page_ext *page_ext;
2351
2352 if (!debug_guardpage_enabled())
2353 return false;
2354
2355 page_ext = lookup_page_ext(page);
2356 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2357 }
2358 #else
2359 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2360 static inline bool debug_guardpage_enabled(void) { return false; }
2361 static inline bool page_is_guard(struct page *page) { return false; }
2362 #endif /* CONFIG_DEBUG_PAGEALLOC */
2363
2364 #if MAX_NUMNODES > 1
2365 void __init setup_nr_node_ids(void);
2366 #else
2367 static inline void setup_nr_node_ids(void) {}
2368 #endif
2369
2370 #endif /* __KERNEL__ */
2371 #endif /* _LINUX_MM_H */
This page took 0.13178 seconds and 5 git commands to generate.