mm: rework mapcount accounting to enable 4k mapping of THPs
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24
25 struct mempolicy;
26 struct anon_vma;
27 struct anon_vma_chain;
28 struct file_ra_state;
29 struct user_struct;
30 struct writeback_control;
31 struct bdi_writeback;
32
33 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
34 extern unsigned long max_mapnr;
35
36 static inline void set_max_mapnr(unsigned long limit)
37 {
38 max_mapnr = limit;
39 }
40 #else
41 static inline void set_max_mapnr(unsigned long limit) { }
42 #endif
43
44 extern unsigned long totalram_pages;
45 extern void * high_memory;
46 extern int page_cluster;
47
48 #ifdef CONFIG_SYSCTL
49 extern int sysctl_legacy_va_layout;
50 #else
51 #define sysctl_legacy_va_layout 0
52 #endif
53
54 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
55 extern const int mmap_rnd_bits_min;
56 extern const int mmap_rnd_bits_max;
57 extern int mmap_rnd_bits __read_mostly;
58 #endif
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
60 extern const int mmap_rnd_compat_bits_min;
61 extern const int mmap_rnd_compat_bits_max;
62 extern int mmap_rnd_compat_bits __read_mostly;
63 #endif
64
65 #include <asm/page.h>
66 #include <asm/pgtable.h>
67 #include <asm/processor.h>
68
69 #ifndef __pa_symbol
70 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
71 #endif
72
73 /*
74 * To prevent common memory management code establishing
75 * a zero page mapping on a read fault.
76 * This macro should be defined within <asm/pgtable.h>.
77 * s390 does this to prevent multiplexing of hardware bits
78 * related to the physical page in case of virtualization.
79 */
80 #ifndef mm_forbids_zeropage
81 #define mm_forbids_zeropage(X) (0)
82 #endif
83
84 extern unsigned long sysctl_user_reserve_kbytes;
85 extern unsigned long sysctl_admin_reserve_kbytes;
86
87 extern int sysctl_overcommit_memory;
88 extern int sysctl_overcommit_ratio;
89 extern unsigned long sysctl_overcommit_kbytes;
90
91 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
92 size_t *, loff_t *);
93 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
94 size_t *, loff_t *);
95
96 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
97
98 /* to align the pointer to the (next) page boundary */
99 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
100
101 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
102 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
103
104 /*
105 * Linux kernel virtual memory manager primitives.
106 * The idea being to have a "virtual" mm in the same way
107 * we have a virtual fs - giving a cleaner interface to the
108 * mm details, and allowing different kinds of memory mappings
109 * (from shared memory to executable loading to arbitrary
110 * mmap() functions).
111 */
112
113 extern struct kmem_cache *vm_area_cachep;
114
115 #ifndef CONFIG_MMU
116 extern struct rb_root nommu_region_tree;
117 extern struct rw_semaphore nommu_region_sem;
118
119 extern unsigned int kobjsize(const void *objp);
120 #endif
121
122 /*
123 * vm_flags in vm_area_struct, see mm_types.h.
124 */
125 #define VM_NONE 0x00000000
126
127 #define VM_READ 0x00000001 /* currently active flags */
128 #define VM_WRITE 0x00000002
129 #define VM_EXEC 0x00000004
130 #define VM_SHARED 0x00000008
131
132 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
133 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
134 #define VM_MAYWRITE 0x00000020
135 #define VM_MAYEXEC 0x00000040
136 #define VM_MAYSHARE 0x00000080
137
138 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
139 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
140 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
141 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
142 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
143
144 #define VM_LOCKED 0x00002000
145 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
146
147 /* Used by sys_madvise() */
148 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
149 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
150
151 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
152 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
153 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
154 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
155 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
156 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
157 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
158 #define VM_ARCH_2 0x02000000
159 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
160
161 #ifdef CONFIG_MEM_SOFT_DIRTY
162 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
163 #else
164 # define VM_SOFTDIRTY 0
165 #endif
166
167 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
168 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
169 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
170 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
171
172 #if defined(CONFIG_X86)
173 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
174 #elif defined(CONFIG_PPC)
175 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
176 #elif defined(CONFIG_PARISC)
177 # define VM_GROWSUP VM_ARCH_1
178 #elif defined(CONFIG_METAG)
179 # define VM_GROWSUP VM_ARCH_1
180 #elif defined(CONFIG_IA64)
181 # define VM_GROWSUP VM_ARCH_1
182 #elif !defined(CONFIG_MMU)
183 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
184 #endif
185
186 #if defined(CONFIG_X86)
187 /* MPX specific bounds table or bounds directory */
188 # define VM_MPX VM_ARCH_2
189 #endif
190
191 #ifndef VM_GROWSUP
192 # define VM_GROWSUP VM_NONE
193 #endif
194
195 /* Bits set in the VMA until the stack is in its final location */
196 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
197
198 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
199 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
200 #endif
201
202 #ifdef CONFIG_STACK_GROWSUP
203 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
204 #else
205 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
206 #endif
207
208 /*
209 * Special vmas that are non-mergable, non-mlock()able.
210 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
211 */
212 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
213
214 /* This mask defines which mm->def_flags a process can inherit its parent */
215 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
216
217 /* This mask is used to clear all the VMA flags used by mlock */
218 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
219
220 /*
221 * mapping from the currently active vm_flags protection bits (the
222 * low four bits) to a page protection mask..
223 */
224 extern pgprot_t protection_map[16];
225
226 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
227 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
228 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
229 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
230 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
231 #define FAULT_FLAG_TRIED 0x20 /* Second try */
232 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
233
234 /*
235 * vm_fault is filled by the the pagefault handler and passed to the vma's
236 * ->fault function. The vma's ->fault is responsible for returning a bitmask
237 * of VM_FAULT_xxx flags that give details about how the fault was handled.
238 *
239 * MM layer fills up gfp_mask for page allocations but fault handler might
240 * alter it if its implementation requires a different allocation context.
241 *
242 * pgoff should be used in favour of virtual_address, if possible.
243 */
244 struct vm_fault {
245 unsigned int flags; /* FAULT_FLAG_xxx flags */
246 gfp_t gfp_mask; /* gfp mask to be used for allocations */
247 pgoff_t pgoff; /* Logical page offset based on vma */
248 void __user *virtual_address; /* Faulting virtual address */
249
250 struct page *cow_page; /* Handler may choose to COW */
251 struct page *page; /* ->fault handlers should return a
252 * page here, unless VM_FAULT_NOPAGE
253 * is set (which is also implied by
254 * VM_FAULT_ERROR).
255 */
256 /* for ->map_pages() only */
257 pgoff_t max_pgoff; /* map pages for offset from pgoff till
258 * max_pgoff inclusive */
259 pte_t *pte; /* pte entry associated with ->pgoff */
260 };
261
262 /*
263 * These are the virtual MM functions - opening of an area, closing and
264 * unmapping it (needed to keep files on disk up-to-date etc), pointer
265 * to the functions called when a no-page or a wp-page exception occurs.
266 */
267 struct vm_operations_struct {
268 void (*open)(struct vm_area_struct * area);
269 void (*close)(struct vm_area_struct * area);
270 int (*mremap)(struct vm_area_struct * area);
271 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
272 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
273 pmd_t *, unsigned int flags);
274 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
275
276 /* notification that a previously read-only page is about to become
277 * writable, if an error is returned it will cause a SIGBUS */
278 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
279
280 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
281 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
283 /* called by access_process_vm when get_user_pages() fails, typically
284 * for use by special VMAs that can switch between memory and hardware
285 */
286 int (*access)(struct vm_area_struct *vma, unsigned long addr,
287 void *buf, int len, int write);
288
289 /* Called by the /proc/PID/maps code to ask the vma whether it
290 * has a special name. Returning non-NULL will also cause this
291 * vma to be dumped unconditionally. */
292 const char *(*name)(struct vm_area_struct *vma);
293
294 #ifdef CONFIG_NUMA
295 /*
296 * set_policy() op must add a reference to any non-NULL @new mempolicy
297 * to hold the policy upon return. Caller should pass NULL @new to
298 * remove a policy and fall back to surrounding context--i.e. do not
299 * install a MPOL_DEFAULT policy, nor the task or system default
300 * mempolicy.
301 */
302 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
303
304 /*
305 * get_policy() op must add reference [mpol_get()] to any policy at
306 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
307 * in mm/mempolicy.c will do this automatically.
308 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
309 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
310 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
311 * must return NULL--i.e., do not "fallback" to task or system default
312 * policy.
313 */
314 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
315 unsigned long addr);
316 #endif
317 /*
318 * Called by vm_normal_page() for special PTEs to find the
319 * page for @addr. This is useful if the default behavior
320 * (using pte_page()) would not find the correct page.
321 */
322 struct page *(*find_special_page)(struct vm_area_struct *vma,
323 unsigned long addr);
324 };
325
326 struct mmu_gather;
327 struct inode;
328
329 #define page_private(page) ((page)->private)
330 #define set_page_private(page, v) ((page)->private = (v))
331
332 /*
333 * FIXME: take this include out, include page-flags.h in
334 * files which need it (119 of them)
335 */
336 #include <linux/page-flags.h>
337 #include <linux/huge_mm.h>
338
339 /*
340 * Methods to modify the page usage count.
341 *
342 * What counts for a page usage:
343 * - cache mapping (page->mapping)
344 * - private data (page->private)
345 * - page mapped in a task's page tables, each mapping
346 * is counted separately
347 *
348 * Also, many kernel routines increase the page count before a critical
349 * routine so they can be sure the page doesn't go away from under them.
350 */
351
352 /*
353 * Drop a ref, return true if the refcount fell to zero (the page has no users)
354 */
355 static inline int put_page_testzero(struct page *page)
356 {
357 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
358 return atomic_dec_and_test(&page->_count);
359 }
360
361 /*
362 * Try to grab a ref unless the page has a refcount of zero, return false if
363 * that is the case.
364 * This can be called when MMU is off so it must not access
365 * any of the virtual mappings.
366 */
367 static inline int get_page_unless_zero(struct page *page)
368 {
369 return atomic_inc_not_zero(&page->_count);
370 }
371
372 extern int page_is_ram(unsigned long pfn);
373
374 enum {
375 REGION_INTERSECTS,
376 REGION_DISJOINT,
377 REGION_MIXED,
378 };
379
380 int region_intersects(resource_size_t offset, size_t size, const char *type);
381
382 /* Support for virtually mapped pages */
383 struct page *vmalloc_to_page(const void *addr);
384 unsigned long vmalloc_to_pfn(const void *addr);
385
386 /*
387 * Determine if an address is within the vmalloc range
388 *
389 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
390 * is no special casing required.
391 */
392 static inline int is_vmalloc_addr(const void *x)
393 {
394 #ifdef CONFIG_MMU
395 unsigned long addr = (unsigned long)x;
396
397 return addr >= VMALLOC_START && addr < VMALLOC_END;
398 #else
399 return 0;
400 #endif
401 }
402 #ifdef CONFIG_MMU
403 extern int is_vmalloc_or_module_addr(const void *x);
404 #else
405 static inline int is_vmalloc_or_module_addr(const void *x)
406 {
407 return 0;
408 }
409 #endif
410
411 extern void kvfree(const void *addr);
412
413 static inline atomic_t *compound_mapcount_ptr(struct page *page)
414 {
415 return &page[1].compound_mapcount;
416 }
417
418 static inline int compound_mapcount(struct page *page)
419 {
420 if (!PageCompound(page))
421 return 0;
422 page = compound_head(page);
423 return atomic_read(compound_mapcount_ptr(page)) + 1;
424 }
425
426 /*
427 * The atomic page->_mapcount, starts from -1: so that transitions
428 * both from it and to it can be tracked, using atomic_inc_and_test
429 * and atomic_add_negative(-1).
430 */
431 static inline void page_mapcount_reset(struct page *page)
432 {
433 atomic_set(&(page)->_mapcount, -1);
434 }
435
436 static inline int page_mapcount(struct page *page)
437 {
438 int ret;
439 VM_BUG_ON_PAGE(PageSlab(page), page);
440
441 ret = atomic_read(&page->_mapcount) + 1;
442 if (PageCompound(page)) {
443 page = compound_head(page);
444 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
445 if (PageDoubleMap(page))
446 ret--;
447 }
448 return ret;
449 }
450
451 static inline int page_count(struct page *page)
452 {
453 return atomic_read(&compound_head(page)->_count);
454 }
455
456 static inline void get_page(struct page *page)
457 {
458 page = compound_head(page);
459 /*
460 * Getting a normal page or the head of a compound page
461 * requires to already have an elevated page->_count.
462 */
463 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
464 atomic_inc(&page->_count);
465 }
466
467 static inline struct page *virt_to_head_page(const void *x)
468 {
469 struct page *page = virt_to_page(x);
470
471 return compound_head(page);
472 }
473
474 /*
475 * Setup the page count before being freed into the page allocator for
476 * the first time (boot or memory hotplug)
477 */
478 static inline void init_page_count(struct page *page)
479 {
480 atomic_set(&page->_count, 1);
481 }
482
483 void __put_page(struct page *page);
484
485 static inline void put_page(struct page *page)
486 {
487 page = compound_head(page);
488 if (put_page_testzero(page))
489 __put_page(page);
490 }
491
492 void put_pages_list(struct list_head *pages);
493
494 void split_page(struct page *page, unsigned int order);
495 int split_free_page(struct page *page);
496
497 /*
498 * Compound pages have a destructor function. Provide a
499 * prototype for that function and accessor functions.
500 * These are _only_ valid on the head of a compound page.
501 */
502 typedef void compound_page_dtor(struct page *);
503
504 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
505 enum compound_dtor_id {
506 NULL_COMPOUND_DTOR,
507 COMPOUND_PAGE_DTOR,
508 #ifdef CONFIG_HUGETLB_PAGE
509 HUGETLB_PAGE_DTOR,
510 #endif
511 NR_COMPOUND_DTORS,
512 };
513 extern compound_page_dtor * const compound_page_dtors[];
514
515 static inline void set_compound_page_dtor(struct page *page,
516 enum compound_dtor_id compound_dtor)
517 {
518 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
519 page[1].compound_dtor = compound_dtor;
520 }
521
522 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
523 {
524 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
525 return compound_page_dtors[page[1].compound_dtor];
526 }
527
528 static inline unsigned int compound_order(struct page *page)
529 {
530 if (!PageHead(page))
531 return 0;
532 return page[1].compound_order;
533 }
534
535 static inline void set_compound_order(struct page *page, unsigned int order)
536 {
537 page[1].compound_order = order;
538 }
539
540 #ifdef CONFIG_MMU
541 /*
542 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
543 * servicing faults for write access. In the normal case, do always want
544 * pte_mkwrite. But get_user_pages can cause write faults for mappings
545 * that do not have writing enabled, when used by access_process_vm.
546 */
547 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
548 {
549 if (likely(vma->vm_flags & VM_WRITE))
550 pte = pte_mkwrite(pte);
551 return pte;
552 }
553
554 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
555 struct page *page, pte_t *pte, bool write, bool anon);
556 #endif
557
558 /*
559 * Multiple processes may "see" the same page. E.g. for untouched
560 * mappings of /dev/null, all processes see the same page full of
561 * zeroes, and text pages of executables and shared libraries have
562 * only one copy in memory, at most, normally.
563 *
564 * For the non-reserved pages, page_count(page) denotes a reference count.
565 * page_count() == 0 means the page is free. page->lru is then used for
566 * freelist management in the buddy allocator.
567 * page_count() > 0 means the page has been allocated.
568 *
569 * Pages are allocated by the slab allocator in order to provide memory
570 * to kmalloc and kmem_cache_alloc. In this case, the management of the
571 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
572 * unless a particular usage is carefully commented. (the responsibility of
573 * freeing the kmalloc memory is the caller's, of course).
574 *
575 * A page may be used by anyone else who does a __get_free_page().
576 * In this case, page_count still tracks the references, and should only
577 * be used through the normal accessor functions. The top bits of page->flags
578 * and page->virtual store page management information, but all other fields
579 * are unused and could be used privately, carefully. The management of this
580 * page is the responsibility of the one who allocated it, and those who have
581 * subsequently been given references to it.
582 *
583 * The other pages (we may call them "pagecache pages") are completely
584 * managed by the Linux memory manager: I/O, buffers, swapping etc.
585 * The following discussion applies only to them.
586 *
587 * A pagecache page contains an opaque `private' member, which belongs to the
588 * page's address_space. Usually, this is the address of a circular list of
589 * the page's disk buffers. PG_private must be set to tell the VM to call
590 * into the filesystem to release these pages.
591 *
592 * A page may belong to an inode's memory mapping. In this case, page->mapping
593 * is the pointer to the inode, and page->index is the file offset of the page,
594 * in units of PAGE_CACHE_SIZE.
595 *
596 * If pagecache pages are not associated with an inode, they are said to be
597 * anonymous pages. These may become associated with the swapcache, and in that
598 * case PG_swapcache is set, and page->private is an offset into the swapcache.
599 *
600 * In either case (swapcache or inode backed), the pagecache itself holds one
601 * reference to the page. Setting PG_private should also increment the
602 * refcount. The each user mapping also has a reference to the page.
603 *
604 * The pagecache pages are stored in a per-mapping radix tree, which is
605 * rooted at mapping->page_tree, and indexed by offset.
606 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
607 * lists, we instead now tag pages as dirty/writeback in the radix tree.
608 *
609 * All pagecache pages may be subject to I/O:
610 * - inode pages may need to be read from disk,
611 * - inode pages which have been modified and are MAP_SHARED may need
612 * to be written back to the inode on disk,
613 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
614 * modified may need to be swapped out to swap space and (later) to be read
615 * back into memory.
616 */
617
618 /*
619 * The zone field is never updated after free_area_init_core()
620 * sets it, so none of the operations on it need to be atomic.
621 */
622
623 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
624 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
625 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
626 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
627 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
628
629 /*
630 * Define the bit shifts to access each section. For non-existent
631 * sections we define the shift as 0; that plus a 0 mask ensures
632 * the compiler will optimise away reference to them.
633 */
634 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
636 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
637 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
638
639 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
640 #ifdef NODE_NOT_IN_PAGE_FLAGS
641 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
642 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
643 SECTIONS_PGOFF : ZONES_PGOFF)
644 #else
645 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
646 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
647 NODES_PGOFF : ZONES_PGOFF)
648 #endif
649
650 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
651
652 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
653 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
654 #endif
655
656 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
657 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
658 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
659 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
660 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
661
662 static inline enum zone_type page_zonenum(const struct page *page)
663 {
664 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
665 }
666
667 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
668 #define SECTION_IN_PAGE_FLAGS
669 #endif
670
671 /*
672 * The identification function is mainly used by the buddy allocator for
673 * determining if two pages could be buddies. We are not really identifying
674 * the zone since we could be using the section number id if we do not have
675 * node id available in page flags.
676 * We only guarantee that it will return the same value for two combinable
677 * pages in a zone.
678 */
679 static inline int page_zone_id(struct page *page)
680 {
681 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
682 }
683
684 static inline int zone_to_nid(struct zone *zone)
685 {
686 #ifdef CONFIG_NUMA
687 return zone->node;
688 #else
689 return 0;
690 #endif
691 }
692
693 #ifdef NODE_NOT_IN_PAGE_FLAGS
694 extern int page_to_nid(const struct page *page);
695 #else
696 static inline int page_to_nid(const struct page *page)
697 {
698 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
699 }
700 #endif
701
702 #ifdef CONFIG_NUMA_BALANCING
703 static inline int cpu_pid_to_cpupid(int cpu, int pid)
704 {
705 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
706 }
707
708 static inline int cpupid_to_pid(int cpupid)
709 {
710 return cpupid & LAST__PID_MASK;
711 }
712
713 static inline int cpupid_to_cpu(int cpupid)
714 {
715 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
716 }
717
718 static inline int cpupid_to_nid(int cpupid)
719 {
720 return cpu_to_node(cpupid_to_cpu(cpupid));
721 }
722
723 static inline bool cpupid_pid_unset(int cpupid)
724 {
725 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
726 }
727
728 static inline bool cpupid_cpu_unset(int cpupid)
729 {
730 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
731 }
732
733 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
734 {
735 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
736 }
737
738 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
739 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
740 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
741 {
742 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
743 }
744
745 static inline int page_cpupid_last(struct page *page)
746 {
747 return page->_last_cpupid;
748 }
749 static inline void page_cpupid_reset_last(struct page *page)
750 {
751 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
752 }
753 #else
754 static inline int page_cpupid_last(struct page *page)
755 {
756 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
757 }
758
759 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
760
761 static inline void page_cpupid_reset_last(struct page *page)
762 {
763 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
764
765 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
766 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
767 }
768 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
769 #else /* !CONFIG_NUMA_BALANCING */
770 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
771 {
772 return page_to_nid(page); /* XXX */
773 }
774
775 static inline int page_cpupid_last(struct page *page)
776 {
777 return page_to_nid(page); /* XXX */
778 }
779
780 static inline int cpupid_to_nid(int cpupid)
781 {
782 return -1;
783 }
784
785 static inline int cpupid_to_pid(int cpupid)
786 {
787 return -1;
788 }
789
790 static inline int cpupid_to_cpu(int cpupid)
791 {
792 return -1;
793 }
794
795 static inline int cpu_pid_to_cpupid(int nid, int pid)
796 {
797 return -1;
798 }
799
800 static inline bool cpupid_pid_unset(int cpupid)
801 {
802 return 1;
803 }
804
805 static inline void page_cpupid_reset_last(struct page *page)
806 {
807 }
808
809 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
810 {
811 return false;
812 }
813 #endif /* CONFIG_NUMA_BALANCING */
814
815 static inline struct zone *page_zone(const struct page *page)
816 {
817 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
818 }
819
820 #ifdef SECTION_IN_PAGE_FLAGS
821 static inline void set_page_section(struct page *page, unsigned long section)
822 {
823 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
824 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
825 }
826
827 static inline unsigned long page_to_section(const struct page *page)
828 {
829 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
830 }
831 #endif
832
833 static inline void set_page_zone(struct page *page, enum zone_type zone)
834 {
835 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
836 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
837 }
838
839 static inline void set_page_node(struct page *page, unsigned long node)
840 {
841 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
842 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
843 }
844
845 static inline void set_page_links(struct page *page, enum zone_type zone,
846 unsigned long node, unsigned long pfn)
847 {
848 set_page_zone(page, zone);
849 set_page_node(page, node);
850 #ifdef SECTION_IN_PAGE_FLAGS
851 set_page_section(page, pfn_to_section_nr(pfn));
852 #endif
853 }
854
855 #ifdef CONFIG_MEMCG
856 static inline struct mem_cgroup *page_memcg(struct page *page)
857 {
858 return page->mem_cgroup;
859 }
860
861 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
862 {
863 page->mem_cgroup = memcg;
864 }
865 #else
866 static inline struct mem_cgroup *page_memcg(struct page *page)
867 {
868 return NULL;
869 }
870
871 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
872 {
873 }
874 #endif
875
876 /*
877 * Some inline functions in vmstat.h depend on page_zone()
878 */
879 #include <linux/vmstat.h>
880
881 static __always_inline void *lowmem_page_address(const struct page *page)
882 {
883 return __va(PFN_PHYS(page_to_pfn(page)));
884 }
885
886 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
887 #define HASHED_PAGE_VIRTUAL
888 #endif
889
890 #if defined(WANT_PAGE_VIRTUAL)
891 static inline void *page_address(const struct page *page)
892 {
893 return page->virtual;
894 }
895 static inline void set_page_address(struct page *page, void *address)
896 {
897 page->virtual = address;
898 }
899 #define page_address_init() do { } while(0)
900 #endif
901
902 #if defined(HASHED_PAGE_VIRTUAL)
903 void *page_address(const struct page *page);
904 void set_page_address(struct page *page, void *virtual);
905 void page_address_init(void);
906 #endif
907
908 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
909 #define page_address(page) lowmem_page_address(page)
910 #define set_page_address(page, address) do { } while(0)
911 #define page_address_init() do { } while(0)
912 #endif
913
914 extern void *page_rmapping(struct page *page);
915 extern struct anon_vma *page_anon_vma(struct page *page);
916 extern struct address_space *page_mapping(struct page *page);
917
918 extern struct address_space *__page_file_mapping(struct page *);
919
920 static inline
921 struct address_space *page_file_mapping(struct page *page)
922 {
923 if (unlikely(PageSwapCache(page)))
924 return __page_file_mapping(page);
925
926 return page->mapping;
927 }
928
929 /*
930 * Return the pagecache index of the passed page. Regular pagecache pages
931 * use ->index whereas swapcache pages use ->private
932 */
933 static inline pgoff_t page_index(struct page *page)
934 {
935 if (unlikely(PageSwapCache(page)))
936 return page_private(page);
937 return page->index;
938 }
939
940 extern pgoff_t __page_file_index(struct page *page);
941
942 /*
943 * Return the file index of the page. Regular pagecache pages use ->index
944 * whereas swapcache pages use swp_offset(->private)
945 */
946 static inline pgoff_t page_file_index(struct page *page)
947 {
948 if (unlikely(PageSwapCache(page)))
949 return __page_file_index(page);
950
951 return page->index;
952 }
953
954 /*
955 * Return true if this page is mapped into pagetables.
956 */
957 static inline int page_mapped(struct page *page)
958 {
959 return atomic_read(&(page)->_mapcount) + compound_mapcount(page) >= 0;
960 }
961
962 /*
963 * Return true only if the page has been allocated with
964 * ALLOC_NO_WATERMARKS and the low watermark was not
965 * met implying that the system is under some pressure.
966 */
967 static inline bool page_is_pfmemalloc(struct page *page)
968 {
969 /*
970 * Page index cannot be this large so this must be
971 * a pfmemalloc page.
972 */
973 return page->index == -1UL;
974 }
975
976 /*
977 * Only to be called by the page allocator on a freshly allocated
978 * page.
979 */
980 static inline void set_page_pfmemalloc(struct page *page)
981 {
982 page->index = -1UL;
983 }
984
985 static inline void clear_page_pfmemalloc(struct page *page)
986 {
987 page->index = 0;
988 }
989
990 /*
991 * Different kinds of faults, as returned by handle_mm_fault().
992 * Used to decide whether a process gets delivered SIGBUS or
993 * just gets major/minor fault counters bumped up.
994 */
995
996 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
997
998 #define VM_FAULT_OOM 0x0001
999 #define VM_FAULT_SIGBUS 0x0002
1000 #define VM_FAULT_MAJOR 0x0004
1001 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1002 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1003 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1004 #define VM_FAULT_SIGSEGV 0x0040
1005
1006 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1007 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1008 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1009 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1010
1011 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1012
1013 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1014 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1015 VM_FAULT_FALLBACK)
1016
1017 /* Encode hstate index for a hwpoisoned large page */
1018 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1019 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1020
1021 /*
1022 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1023 */
1024 extern void pagefault_out_of_memory(void);
1025
1026 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1027
1028 /*
1029 * Flags passed to show_mem() and show_free_areas() to suppress output in
1030 * various contexts.
1031 */
1032 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1033
1034 extern void show_free_areas(unsigned int flags);
1035 extern bool skip_free_areas_node(unsigned int flags, int nid);
1036
1037 int shmem_zero_setup(struct vm_area_struct *);
1038 #ifdef CONFIG_SHMEM
1039 bool shmem_mapping(struct address_space *mapping);
1040 #else
1041 static inline bool shmem_mapping(struct address_space *mapping)
1042 {
1043 return false;
1044 }
1045 #endif
1046
1047 extern int can_do_mlock(void);
1048 extern int user_shm_lock(size_t, struct user_struct *);
1049 extern void user_shm_unlock(size_t, struct user_struct *);
1050
1051 /*
1052 * Parameter block passed down to zap_pte_range in exceptional cases.
1053 */
1054 struct zap_details {
1055 struct address_space *check_mapping; /* Check page->mapping if set */
1056 pgoff_t first_index; /* Lowest page->index to unmap */
1057 pgoff_t last_index; /* Highest page->index to unmap */
1058 };
1059
1060 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1061 pte_t pte);
1062
1063 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1064 unsigned long size);
1065 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1066 unsigned long size, struct zap_details *);
1067 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1068 unsigned long start, unsigned long end);
1069
1070 /**
1071 * mm_walk - callbacks for walk_page_range
1072 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1073 * this handler is required to be able to handle
1074 * pmd_trans_huge() pmds. They may simply choose to
1075 * split_huge_page() instead of handling it explicitly.
1076 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1077 * @pte_hole: if set, called for each hole at all levels
1078 * @hugetlb_entry: if set, called for each hugetlb entry
1079 * @test_walk: caller specific callback function to determine whether
1080 * we walk over the current vma or not. A positive returned
1081 * value means "do page table walk over the current vma,"
1082 * and a negative one means "abort current page table walk
1083 * right now." 0 means "skip the current vma."
1084 * @mm: mm_struct representing the target process of page table walk
1085 * @vma: vma currently walked (NULL if walking outside vmas)
1086 * @private: private data for callbacks' usage
1087 *
1088 * (see the comment on walk_page_range() for more details)
1089 */
1090 struct mm_walk {
1091 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1092 unsigned long next, struct mm_walk *walk);
1093 int (*pte_entry)(pte_t *pte, unsigned long addr,
1094 unsigned long next, struct mm_walk *walk);
1095 int (*pte_hole)(unsigned long addr, unsigned long next,
1096 struct mm_walk *walk);
1097 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1098 unsigned long addr, unsigned long next,
1099 struct mm_walk *walk);
1100 int (*test_walk)(unsigned long addr, unsigned long next,
1101 struct mm_walk *walk);
1102 struct mm_struct *mm;
1103 struct vm_area_struct *vma;
1104 void *private;
1105 };
1106
1107 int walk_page_range(unsigned long addr, unsigned long end,
1108 struct mm_walk *walk);
1109 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1110 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1111 unsigned long end, unsigned long floor, unsigned long ceiling);
1112 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1113 struct vm_area_struct *vma);
1114 void unmap_mapping_range(struct address_space *mapping,
1115 loff_t const holebegin, loff_t const holelen, int even_cows);
1116 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1117 unsigned long *pfn);
1118 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1119 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1120 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1121 void *buf, int len, int write);
1122
1123 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1124 loff_t const holebegin, loff_t const holelen)
1125 {
1126 unmap_mapping_range(mapping, holebegin, holelen, 0);
1127 }
1128
1129 extern void truncate_pagecache(struct inode *inode, loff_t new);
1130 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1131 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1132 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1133 int truncate_inode_page(struct address_space *mapping, struct page *page);
1134 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1135 int invalidate_inode_page(struct page *page);
1136
1137 #ifdef CONFIG_MMU
1138 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1139 unsigned long address, unsigned int flags);
1140 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1141 unsigned long address, unsigned int fault_flags);
1142 #else
1143 static inline int handle_mm_fault(struct mm_struct *mm,
1144 struct vm_area_struct *vma, unsigned long address,
1145 unsigned int flags)
1146 {
1147 /* should never happen if there's no MMU */
1148 BUG();
1149 return VM_FAULT_SIGBUS;
1150 }
1151 static inline int fixup_user_fault(struct task_struct *tsk,
1152 struct mm_struct *mm, unsigned long address,
1153 unsigned int fault_flags)
1154 {
1155 /* should never happen if there's no MMU */
1156 BUG();
1157 return -EFAULT;
1158 }
1159 #endif
1160
1161 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1162 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1163 void *buf, int len, int write);
1164
1165 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1166 unsigned long start, unsigned long nr_pages,
1167 unsigned int foll_flags, struct page **pages,
1168 struct vm_area_struct **vmas, int *nonblocking);
1169 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1170 unsigned long start, unsigned long nr_pages,
1171 int write, int force, struct page **pages,
1172 struct vm_area_struct **vmas);
1173 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1174 unsigned long start, unsigned long nr_pages,
1175 int write, int force, struct page **pages,
1176 int *locked);
1177 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1178 unsigned long start, unsigned long nr_pages,
1179 int write, int force, struct page **pages,
1180 unsigned int gup_flags);
1181 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1182 unsigned long start, unsigned long nr_pages,
1183 int write, int force, struct page **pages);
1184 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1185 struct page **pages);
1186
1187 /* Container for pinned pfns / pages */
1188 struct frame_vector {
1189 unsigned int nr_allocated; /* Number of frames we have space for */
1190 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1191 bool got_ref; /* Did we pin pages by getting page ref? */
1192 bool is_pfns; /* Does array contain pages or pfns? */
1193 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1194 * pfns_vector_pages() or pfns_vector_pfns()
1195 * for access */
1196 };
1197
1198 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1199 void frame_vector_destroy(struct frame_vector *vec);
1200 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1201 bool write, bool force, struct frame_vector *vec);
1202 void put_vaddr_frames(struct frame_vector *vec);
1203 int frame_vector_to_pages(struct frame_vector *vec);
1204 void frame_vector_to_pfns(struct frame_vector *vec);
1205
1206 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1207 {
1208 return vec->nr_frames;
1209 }
1210
1211 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1212 {
1213 if (vec->is_pfns) {
1214 int err = frame_vector_to_pages(vec);
1215
1216 if (err)
1217 return ERR_PTR(err);
1218 }
1219 return (struct page **)(vec->ptrs);
1220 }
1221
1222 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1223 {
1224 if (!vec->is_pfns)
1225 frame_vector_to_pfns(vec);
1226 return (unsigned long *)(vec->ptrs);
1227 }
1228
1229 struct kvec;
1230 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1231 struct page **pages);
1232 int get_kernel_page(unsigned long start, int write, struct page **pages);
1233 struct page *get_dump_page(unsigned long addr);
1234
1235 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1236 extern void do_invalidatepage(struct page *page, unsigned int offset,
1237 unsigned int length);
1238
1239 int __set_page_dirty_nobuffers(struct page *page);
1240 int __set_page_dirty_no_writeback(struct page *page);
1241 int redirty_page_for_writepage(struct writeback_control *wbc,
1242 struct page *page);
1243 void account_page_dirtied(struct page *page, struct address_space *mapping,
1244 struct mem_cgroup *memcg);
1245 void account_page_cleaned(struct page *page, struct address_space *mapping,
1246 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1247 int set_page_dirty(struct page *page);
1248 int set_page_dirty_lock(struct page *page);
1249 void cancel_dirty_page(struct page *page);
1250 int clear_page_dirty_for_io(struct page *page);
1251
1252 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1253
1254 /* Is the vma a continuation of the stack vma above it? */
1255 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1256 {
1257 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1258 }
1259
1260 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1261 {
1262 return !vma->vm_ops;
1263 }
1264
1265 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1266 unsigned long addr)
1267 {
1268 return (vma->vm_flags & VM_GROWSDOWN) &&
1269 (vma->vm_start == addr) &&
1270 !vma_growsdown(vma->vm_prev, addr);
1271 }
1272
1273 /* Is the vma a continuation of the stack vma below it? */
1274 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1275 {
1276 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1277 }
1278
1279 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1280 unsigned long addr)
1281 {
1282 return (vma->vm_flags & VM_GROWSUP) &&
1283 (vma->vm_end == addr) &&
1284 !vma_growsup(vma->vm_next, addr);
1285 }
1286
1287 extern struct task_struct *task_of_stack(struct task_struct *task,
1288 struct vm_area_struct *vma, bool in_group);
1289
1290 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1291 unsigned long old_addr, struct vm_area_struct *new_vma,
1292 unsigned long new_addr, unsigned long len,
1293 bool need_rmap_locks);
1294 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1295 unsigned long end, pgprot_t newprot,
1296 int dirty_accountable, int prot_numa);
1297 extern int mprotect_fixup(struct vm_area_struct *vma,
1298 struct vm_area_struct **pprev, unsigned long start,
1299 unsigned long end, unsigned long newflags);
1300
1301 /*
1302 * doesn't attempt to fault and will return short.
1303 */
1304 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1305 struct page **pages);
1306 /*
1307 * per-process(per-mm_struct) statistics.
1308 */
1309 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1310 {
1311 long val = atomic_long_read(&mm->rss_stat.count[member]);
1312
1313 #ifdef SPLIT_RSS_COUNTING
1314 /*
1315 * counter is updated in asynchronous manner and may go to minus.
1316 * But it's never be expected number for users.
1317 */
1318 if (val < 0)
1319 val = 0;
1320 #endif
1321 return (unsigned long)val;
1322 }
1323
1324 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1325 {
1326 atomic_long_add(value, &mm->rss_stat.count[member]);
1327 }
1328
1329 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1330 {
1331 atomic_long_inc(&mm->rss_stat.count[member]);
1332 }
1333
1334 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1335 {
1336 atomic_long_dec(&mm->rss_stat.count[member]);
1337 }
1338
1339 /* Optimized variant when page is already known not to be PageAnon */
1340 static inline int mm_counter_file(struct page *page)
1341 {
1342 if (PageSwapBacked(page))
1343 return MM_SHMEMPAGES;
1344 return MM_FILEPAGES;
1345 }
1346
1347 static inline int mm_counter(struct page *page)
1348 {
1349 if (PageAnon(page))
1350 return MM_ANONPAGES;
1351 return mm_counter_file(page);
1352 }
1353
1354 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1355 {
1356 return get_mm_counter(mm, MM_FILEPAGES) +
1357 get_mm_counter(mm, MM_ANONPAGES) +
1358 get_mm_counter(mm, MM_SHMEMPAGES);
1359 }
1360
1361 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1362 {
1363 return max(mm->hiwater_rss, get_mm_rss(mm));
1364 }
1365
1366 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1367 {
1368 return max(mm->hiwater_vm, mm->total_vm);
1369 }
1370
1371 static inline void update_hiwater_rss(struct mm_struct *mm)
1372 {
1373 unsigned long _rss = get_mm_rss(mm);
1374
1375 if ((mm)->hiwater_rss < _rss)
1376 (mm)->hiwater_rss = _rss;
1377 }
1378
1379 static inline void update_hiwater_vm(struct mm_struct *mm)
1380 {
1381 if (mm->hiwater_vm < mm->total_vm)
1382 mm->hiwater_vm = mm->total_vm;
1383 }
1384
1385 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1386 {
1387 mm->hiwater_rss = get_mm_rss(mm);
1388 }
1389
1390 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1391 struct mm_struct *mm)
1392 {
1393 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1394
1395 if (*maxrss < hiwater_rss)
1396 *maxrss = hiwater_rss;
1397 }
1398
1399 #if defined(SPLIT_RSS_COUNTING)
1400 void sync_mm_rss(struct mm_struct *mm);
1401 #else
1402 static inline void sync_mm_rss(struct mm_struct *mm)
1403 {
1404 }
1405 #endif
1406
1407 int vma_wants_writenotify(struct vm_area_struct *vma);
1408
1409 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1410 spinlock_t **ptl);
1411 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1412 spinlock_t **ptl)
1413 {
1414 pte_t *ptep;
1415 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1416 return ptep;
1417 }
1418
1419 #ifdef __PAGETABLE_PUD_FOLDED
1420 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1421 unsigned long address)
1422 {
1423 return 0;
1424 }
1425 #else
1426 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1427 #endif
1428
1429 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1430 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1431 unsigned long address)
1432 {
1433 return 0;
1434 }
1435
1436 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1437
1438 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1439 {
1440 return 0;
1441 }
1442
1443 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1444 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1445
1446 #else
1447 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1448
1449 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1450 {
1451 atomic_long_set(&mm->nr_pmds, 0);
1452 }
1453
1454 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1455 {
1456 return atomic_long_read(&mm->nr_pmds);
1457 }
1458
1459 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1460 {
1461 atomic_long_inc(&mm->nr_pmds);
1462 }
1463
1464 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1465 {
1466 atomic_long_dec(&mm->nr_pmds);
1467 }
1468 #endif
1469
1470 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1471 pmd_t *pmd, unsigned long address);
1472 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1473
1474 /*
1475 * The following ifdef needed to get the 4level-fixup.h header to work.
1476 * Remove it when 4level-fixup.h has been removed.
1477 */
1478 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1479 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1480 {
1481 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1482 NULL: pud_offset(pgd, address);
1483 }
1484
1485 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1486 {
1487 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1488 NULL: pmd_offset(pud, address);
1489 }
1490 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1491
1492 #if USE_SPLIT_PTE_PTLOCKS
1493 #if ALLOC_SPLIT_PTLOCKS
1494 void __init ptlock_cache_init(void);
1495 extern bool ptlock_alloc(struct page *page);
1496 extern void ptlock_free(struct page *page);
1497
1498 static inline spinlock_t *ptlock_ptr(struct page *page)
1499 {
1500 return page->ptl;
1501 }
1502 #else /* ALLOC_SPLIT_PTLOCKS */
1503 static inline void ptlock_cache_init(void)
1504 {
1505 }
1506
1507 static inline bool ptlock_alloc(struct page *page)
1508 {
1509 return true;
1510 }
1511
1512 static inline void ptlock_free(struct page *page)
1513 {
1514 }
1515
1516 static inline spinlock_t *ptlock_ptr(struct page *page)
1517 {
1518 return &page->ptl;
1519 }
1520 #endif /* ALLOC_SPLIT_PTLOCKS */
1521
1522 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1523 {
1524 return ptlock_ptr(pmd_page(*pmd));
1525 }
1526
1527 static inline bool ptlock_init(struct page *page)
1528 {
1529 /*
1530 * prep_new_page() initialize page->private (and therefore page->ptl)
1531 * with 0. Make sure nobody took it in use in between.
1532 *
1533 * It can happen if arch try to use slab for page table allocation:
1534 * slab code uses page->slab_cache, which share storage with page->ptl.
1535 */
1536 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1537 if (!ptlock_alloc(page))
1538 return false;
1539 spin_lock_init(ptlock_ptr(page));
1540 return true;
1541 }
1542
1543 /* Reset page->mapping so free_pages_check won't complain. */
1544 static inline void pte_lock_deinit(struct page *page)
1545 {
1546 page->mapping = NULL;
1547 ptlock_free(page);
1548 }
1549
1550 #else /* !USE_SPLIT_PTE_PTLOCKS */
1551 /*
1552 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1553 */
1554 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1555 {
1556 return &mm->page_table_lock;
1557 }
1558 static inline void ptlock_cache_init(void) {}
1559 static inline bool ptlock_init(struct page *page) { return true; }
1560 static inline void pte_lock_deinit(struct page *page) {}
1561 #endif /* USE_SPLIT_PTE_PTLOCKS */
1562
1563 static inline void pgtable_init(void)
1564 {
1565 ptlock_cache_init();
1566 pgtable_cache_init();
1567 }
1568
1569 static inline bool pgtable_page_ctor(struct page *page)
1570 {
1571 if (!ptlock_init(page))
1572 return false;
1573 inc_zone_page_state(page, NR_PAGETABLE);
1574 return true;
1575 }
1576
1577 static inline void pgtable_page_dtor(struct page *page)
1578 {
1579 pte_lock_deinit(page);
1580 dec_zone_page_state(page, NR_PAGETABLE);
1581 }
1582
1583 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1584 ({ \
1585 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1586 pte_t *__pte = pte_offset_map(pmd, address); \
1587 *(ptlp) = __ptl; \
1588 spin_lock(__ptl); \
1589 __pte; \
1590 })
1591
1592 #define pte_unmap_unlock(pte, ptl) do { \
1593 spin_unlock(ptl); \
1594 pte_unmap(pte); \
1595 } while (0)
1596
1597 #define pte_alloc_map(mm, vma, pmd, address) \
1598 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1599 pmd, address))? \
1600 NULL: pte_offset_map(pmd, address))
1601
1602 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1603 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1604 pmd, address))? \
1605 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1606
1607 #define pte_alloc_kernel(pmd, address) \
1608 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1609 NULL: pte_offset_kernel(pmd, address))
1610
1611 #if USE_SPLIT_PMD_PTLOCKS
1612
1613 static struct page *pmd_to_page(pmd_t *pmd)
1614 {
1615 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1616 return virt_to_page((void *)((unsigned long) pmd & mask));
1617 }
1618
1619 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1620 {
1621 return ptlock_ptr(pmd_to_page(pmd));
1622 }
1623
1624 static inline bool pgtable_pmd_page_ctor(struct page *page)
1625 {
1626 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1627 page->pmd_huge_pte = NULL;
1628 #endif
1629 return ptlock_init(page);
1630 }
1631
1632 static inline void pgtable_pmd_page_dtor(struct page *page)
1633 {
1634 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1635 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1636 #endif
1637 ptlock_free(page);
1638 }
1639
1640 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1641
1642 #else
1643
1644 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1645 {
1646 return &mm->page_table_lock;
1647 }
1648
1649 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1650 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1651
1652 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1653
1654 #endif
1655
1656 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1657 {
1658 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1659 spin_lock(ptl);
1660 return ptl;
1661 }
1662
1663 extern void free_area_init(unsigned long * zones_size);
1664 extern void free_area_init_node(int nid, unsigned long * zones_size,
1665 unsigned long zone_start_pfn, unsigned long *zholes_size);
1666 extern void free_initmem(void);
1667
1668 /*
1669 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1670 * into the buddy system. The freed pages will be poisoned with pattern
1671 * "poison" if it's within range [0, UCHAR_MAX].
1672 * Return pages freed into the buddy system.
1673 */
1674 extern unsigned long free_reserved_area(void *start, void *end,
1675 int poison, char *s);
1676
1677 #ifdef CONFIG_HIGHMEM
1678 /*
1679 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1680 * and totalram_pages.
1681 */
1682 extern void free_highmem_page(struct page *page);
1683 #endif
1684
1685 extern void adjust_managed_page_count(struct page *page, long count);
1686 extern void mem_init_print_info(const char *str);
1687
1688 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1689
1690 /* Free the reserved page into the buddy system, so it gets managed. */
1691 static inline void __free_reserved_page(struct page *page)
1692 {
1693 ClearPageReserved(page);
1694 init_page_count(page);
1695 __free_page(page);
1696 }
1697
1698 static inline void free_reserved_page(struct page *page)
1699 {
1700 __free_reserved_page(page);
1701 adjust_managed_page_count(page, 1);
1702 }
1703
1704 static inline void mark_page_reserved(struct page *page)
1705 {
1706 SetPageReserved(page);
1707 adjust_managed_page_count(page, -1);
1708 }
1709
1710 /*
1711 * Default method to free all the __init memory into the buddy system.
1712 * The freed pages will be poisoned with pattern "poison" if it's within
1713 * range [0, UCHAR_MAX].
1714 * Return pages freed into the buddy system.
1715 */
1716 static inline unsigned long free_initmem_default(int poison)
1717 {
1718 extern char __init_begin[], __init_end[];
1719
1720 return free_reserved_area(&__init_begin, &__init_end,
1721 poison, "unused kernel");
1722 }
1723
1724 static inline unsigned long get_num_physpages(void)
1725 {
1726 int nid;
1727 unsigned long phys_pages = 0;
1728
1729 for_each_online_node(nid)
1730 phys_pages += node_present_pages(nid);
1731
1732 return phys_pages;
1733 }
1734
1735 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1736 /*
1737 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1738 * zones, allocate the backing mem_map and account for memory holes in a more
1739 * architecture independent manner. This is a substitute for creating the
1740 * zone_sizes[] and zholes_size[] arrays and passing them to
1741 * free_area_init_node()
1742 *
1743 * An architecture is expected to register range of page frames backed by
1744 * physical memory with memblock_add[_node]() before calling
1745 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1746 * usage, an architecture is expected to do something like
1747 *
1748 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1749 * max_highmem_pfn};
1750 * for_each_valid_physical_page_range()
1751 * memblock_add_node(base, size, nid)
1752 * free_area_init_nodes(max_zone_pfns);
1753 *
1754 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1755 * registered physical page range. Similarly
1756 * sparse_memory_present_with_active_regions() calls memory_present() for
1757 * each range when SPARSEMEM is enabled.
1758 *
1759 * See mm/page_alloc.c for more information on each function exposed by
1760 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1761 */
1762 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1763 unsigned long node_map_pfn_alignment(void);
1764 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1765 unsigned long end_pfn);
1766 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1767 unsigned long end_pfn);
1768 extern void get_pfn_range_for_nid(unsigned int nid,
1769 unsigned long *start_pfn, unsigned long *end_pfn);
1770 extern unsigned long find_min_pfn_with_active_regions(void);
1771 extern void free_bootmem_with_active_regions(int nid,
1772 unsigned long max_low_pfn);
1773 extern void sparse_memory_present_with_active_regions(int nid);
1774
1775 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1776
1777 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1778 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1779 static inline int __early_pfn_to_nid(unsigned long pfn,
1780 struct mminit_pfnnid_cache *state)
1781 {
1782 return 0;
1783 }
1784 #else
1785 /* please see mm/page_alloc.c */
1786 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1787 /* there is a per-arch backend function. */
1788 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1789 struct mminit_pfnnid_cache *state);
1790 #endif
1791
1792 extern void set_dma_reserve(unsigned long new_dma_reserve);
1793 extern void memmap_init_zone(unsigned long, int, unsigned long,
1794 unsigned long, enum memmap_context);
1795 extern void setup_per_zone_wmarks(void);
1796 extern int __meminit init_per_zone_wmark_min(void);
1797 extern void mem_init(void);
1798 extern void __init mmap_init(void);
1799 extern void show_mem(unsigned int flags);
1800 extern void si_meminfo(struct sysinfo * val);
1801 extern void si_meminfo_node(struct sysinfo *val, int nid);
1802
1803 extern __printf(3, 4)
1804 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1805 const char *fmt, ...);
1806
1807 extern void setup_per_cpu_pageset(void);
1808
1809 extern void zone_pcp_update(struct zone *zone);
1810 extern void zone_pcp_reset(struct zone *zone);
1811
1812 /* page_alloc.c */
1813 extern int min_free_kbytes;
1814
1815 /* nommu.c */
1816 extern atomic_long_t mmap_pages_allocated;
1817 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1818
1819 /* interval_tree.c */
1820 void vma_interval_tree_insert(struct vm_area_struct *node,
1821 struct rb_root *root);
1822 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1823 struct vm_area_struct *prev,
1824 struct rb_root *root);
1825 void vma_interval_tree_remove(struct vm_area_struct *node,
1826 struct rb_root *root);
1827 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1828 unsigned long start, unsigned long last);
1829 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1830 unsigned long start, unsigned long last);
1831
1832 #define vma_interval_tree_foreach(vma, root, start, last) \
1833 for (vma = vma_interval_tree_iter_first(root, start, last); \
1834 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1835
1836 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1837 struct rb_root *root);
1838 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1839 struct rb_root *root);
1840 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1841 struct rb_root *root, unsigned long start, unsigned long last);
1842 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1843 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1844 #ifdef CONFIG_DEBUG_VM_RB
1845 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1846 #endif
1847
1848 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1849 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1850 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1851
1852 /* mmap.c */
1853 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1854 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1855 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1856 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1857 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1858 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1859 struct mempolicy *, struct vm_userfaultfd_ctx);
1860 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1861 extern int split_vma(struct mm_struct *,
1862 struct vm_area_struct *, unsigned long addr, int new_below);
1863 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1864 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1865 struct rb_node **, struct rb_node *);
1866 extern void unlink_file_vma(struct vm_area_struct *);
1867 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1868 unsigned long addr, unsigned long len, pgoff_t pgoff,
1869 bool *need_rmap_locks);
1870 extern void exit_mmap(struct mm_struct *);
1871
1872 static inline int check_data_rlimit(unsigned long rlim,
1873 unsigned long new,
1874 unsigned long start,
1875 unsigned long end_data,
1876 unsigned long start_data)
1877 {
1878 if (rlim < RLIM_INFINITY) {
1879 if (((new - start) + (end_data - start_data)) > rlim)
1880 return -ENOSPC;
1881 }
1882
1883 return 0;
1884 }
1885
1886 extern int mm_take_all_locks(struct mm_struct *mm);
1887 extern void mm_drop_all_locks(struct mm_struct *mm);
1888
1889 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1890 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1891
1892 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1893 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1894
1895 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1896 unsigned long addr, unsigned long len,
1897 unsigned long flags,
1898 const struct vm_special_mapping *spec);
1899 /* This is an obsolete alternative to _install_special_mapping. */
1900 extern int install_special_mapping(struct mm_struct *mm,
1901 unsigned long addr, unsigned long len,
1902 unsigned long flags, struct page **pages);
1903
1904 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1905
1906 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1907 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1908 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1909 unsigned long len, unsigned long prot, unsigned long flags,
1910 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1911 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1912
1913 static inline unsigned long
1914 do_mmap_pgoff(struct file *file, unsigned long addr,
1915 unsigned long len, unsigned long prot, unsigned long flags,
1916 unsigned long pgoff, unsigned long *populate)
1917 {
1918 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1919 }
1920
1921 #ifdef CONFIG_MMU
1922 extern int __mm_populate(unsigned long addr, unsigned long len,
1923 int ignore_errors);
1924 static inline void mm_populate(unsigned long addr, unsigned long len)
1925 {
1926 /* Ignore errors */
1927 (void) __mm_populate(addr, len, 1);
1928 }
1929 #else
1930 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1931 #endif
1932
1933 /* These take the mm semaphore themselves */
1934 extern unsigned long vm_brk(unsigned long, unsigned long);
1935 extern int vm_munmap(unsigned long, size_t);
1936 extern unsigned long vm_mmap(struct file *, unsigned long,
1937 unsigned long, unsigned long,
1938 unsigned long, unsigned long);
1939
1940 struct vm_unmapped_area_info {
1941 #define VM_UNMAPPED_AREA_TOPDOWN 1
1942 unsigned long flags;
1943 unsigned long length;
1944 unsigned long low_limit;
1945 unsigned long high_limit;
1946 unsigned long align_mask;
1947 unsigned long align_offset;
1948 };
1949
1950 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1951 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1952
1953 /*
1954 * Search for an unmapped address range.
1955 *
1956 * We are looking for a range that:
1957 * - does not intersect with any VMA;
1958 * - is contained within the [low_limit, high_limit) interval;
1959 * - is at least the desired size.
1960 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1961 */
1962 static inline unsigned long
1963 vm_unmapped_area(struct vm_unmapped_area_info *info)
1964 {
1965 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1966 return unmapped_area_topdown(info);
1967 else
1968 return unmapped_area(info);
1969 }
1970
1971 /* truncate.c */
1972 extern void truncate_inode_pages(struct address_space *, loff_t);
1973 extern void truncate_inode_pages_range(struct address_space *,
1974 loff_t lstart, loff_t lend);
1975 extern void truncate_inode_pages_final(struct address_space *);
1976
1977 /* generic vm_area_ops exported for stackable file systems */
1978 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1979 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1980 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1981
1982 /* mm/page-writeback.c */
1983 int write_one_page(struct page *page, int wait);
1984 void task_dirty_inc(struct task_struct *tsk);
1985
1986 /* readahead.c */
1987 #define VM_MAX_READAHEAD 128 /* kbytes */
1988 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1989
1990 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1991 pgoff_t offset, unsigned long nr_to_read);
1992
1993 void page_cache_sync_readahead(struct address_space *mapping,
1994 struct file_ra_state *ra,
1995 struct file *filp,
1996 pgoff_t offset,
1997 unsigned long size);
1998
1999 void page_cache_async_readahead(struct address_space *mapping,
2000 struct file_ra_state *ra,
2001 struct file *filp,
2002 struct page *pg,
2003 pgoff_t offset,
2004 unsigned long size);
2005
2006 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2007 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2008
2009 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2010 extern int expand_downwards(struct vm_area_struct *vma,
2011 unsigned long address);
2012 #if VM_GROWSUP
2013 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2014 #else
2015 #define expand_upwards(vma, address) (0)
2016 #endif
2017
2018 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2019 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2020 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2021 struct vm_area_struct **pprev);
2022
2023 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2024 NULL if none. Assume start_addr < end_addr. */
2025 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2026 {
2027 struct vm_area_struct * vma = find_vma(mm,start_addr);
2028
2029 if (vma && end_addr <= vma->vm_start)
2030 vma = NULL;
2031 return vma;
2032 }
2033
2034 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2035 {
2036 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2037 }
2038
2039 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2040 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2041 unsigned long vm_start, unsigned long vm_end)
2042 {
2043 struct vm_area_struct *vma = find_vma(mm, vm_start);
2044
2045 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2046 vma = NULL;
2047
2048 return vma;
2049 }
2050
2051 #ifdef CONFIG_MMU
2052 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2053 void vma_set_page_prot(struct vm_area_struct *vma);
2054 #else
2055 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2056 {
2057 return __pgprot(0);
2058 }
2059 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2060 {
2061 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2062 }
2063 #endif
2064
2065 #ifdef CONFIG_NUMA_BALANCING
2066 unsigned long change_prot_numa(struct vm_area_struct *vma,
2067 unsigned long start, unsigned long end);
2068 #endif
2069
2070 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2071 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2072 unsigned long pfn, unsigned long size, pgprot_t);
2073 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2074 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2075 unsigned long pfn);
2076 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2077 unsigned long pfn);
2078 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2079
2080
2081 struct page *follow_page_mask(struct vm_area_struct *vma,
2082 unsigned long address, unsigned int foll_flags,
2083 unsigned int *page_mask);
2084
2085 static inline struct page *follow_page(struct vm_area_struct *vma,
2086 unsigned long address, unsigned int foll_flags)
2087 {
2088 unsigned int unused_page_mask;
2089 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2090 }
2091
2092 #define FOLL_WRITE 0x01 /* check pte is writable */
2093 #define FOLL_TOUCH 0x02 /* mark page accessed */
2094 #define FOLL_GET 0x04 /* do get_page on page */
2095 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2096 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2097 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2098 * and return without waiting upon it */
2099 #define FOLL_POPULATE 0x40 /* fault in page */
2100 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2101 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2102 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2103 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2104 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2105 #define FOLL_MLOCK 0x1000 /* lock present pages */
2106
2107 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2108 void *data);
2109 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2110 unsigned long size, pte_fn_t fn, void *data);
2111
2112
2113 #ifdef CONFIG_DEBUG_PAGEALLOC
2114 extern bool _debug_pagealloc_enabled;
2115 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2116
2117 static inline bool debug_pagealloc_enabled(void)
2118 {
2119 return _debug_pagealloc_enabled;
2120 }
2121
2122 static inline void
2123 kernel_map_pages(struct page *page, int numpages, int enable)
2124 {
2125 if (!debug_pagealloc_enabled())
2126 return;
2127
2128 __kernel_map_pages(page, numpages, enable);
2129 }
2130 #ifdef CONFIG_HIBERNATION
2131 extern bool kernel_page_present(struct page *page);
2132 #endif /* CONFIG_HIBERNATION */
2133 #else
2134 static inline void
2135 kernel_map_pages(struct page *page, int numpages, int enable) {}
2136 #ifdef CONFIG_HIBERNATION
2137 static inline bool kernel_page_present(struct page *page) { return true; }
2138 #endif /* CONFIG_HIBERNATION */
2139 #endif
2140
2141 #ifdef __HAVE_ARCH_GATE_AREA
2142 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2143 extern int in_gate_area_no_mm(unsigned long addr);
2144 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2145 #else
2146 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2147 {
2148 return NULL;
2149 }
2150 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2151 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2152 {
2153 return 0;
2154 }
2155 #endif /* __HAVE_ARCH_GATE_AREA */
2156
2157 #ifdef CONFIG_SYSCTL
2158 extern int sysctl_drop_caches;
2159 int drop_caches_sysctl_handler(struct ctl_table *, int,
2160 void __user *, size_t *, loff_t *);
2161 #endif
2162
2163 void drop_slab(void);
2164 void drop_slab_node(int nid);
2165
2166 #ifndef CONFIG_MMU
2167 #define randomize_va_space 0
2168 #else
2169 extern int randomize_va_space;
2170 #endif
2171
2172 const char * arch_vma_name(struct vm_area_struct *vma);
2173 void print_vma_addr(char *prefix, unsigned long rip);
2174
2175 void sparse_mem_maps_populate_node(struct page **map_map,
2176 unsigned long pnum_begin,
2177 unsigned long pnum_end,
2178 unsigned long map_count,
2179 int nodeid);
2180
2181 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2182 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2183 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2184 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2185 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2186 void *vmemmap_alloc_block(unsigned long size, int node);
2187 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2188 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2189 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2190 int node);
2191 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2192 void vmemmap_populate_print_last(void);
2193 #ifdef CONFIG_MEMORY_HOTPLUG
2194 void vmemmap_free(unsigned long start, unsigned long end);
2195 #endif
2196 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2197 unsigned long size);
2198
2199 enum mf_flags {
2200 MF_COUNT_INCREASED = 1 << 0,
2201 MF_ACTION_REQUIRED = 1 << 1,
2202 MF_MUST_KILL = 1 << 2,
2203 MF_SOFT_OFFLINE = 1 << 3,
2204 };
2205 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2206 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2207 extern int unpoison_memory(unsigned long pfn);
2208 extern int get_hwpoison_page(struct page *page);
2209 extern void put_hwpoison_page(struct page *page);
2210 extern int sysctl_memory_failure_early_kill;
2211 extern int sysctl_memory_failure_recovery;
2212 extern void shake_page(struct page *p, int access);
2213 extern atomic_long_t num_poisoned_pages;
2214 extern int soft_offline_page(struct page *page, int flags);
2215
2216
2217 /*
2218 * Error handlers for various types of pages.
2219 */
2220 enum mf_result {
2221 MF_IGNORED, /* Error: cannot be handled */
2222 MF_FAILED, /* Error: handling failed */
2223 MF_DELAYED, /* Will be handled later */
2224 MF_RECOVERED, /* Successfully recovered */
2225 };
2226
2227 enum mf_action_page_type {
2228 MF_MSG_KERNEL,
2229 MF_MSG_KERNEL_HIGH_ORDER,
2230 MF_MSG_SLAB,
2231 MF_MSG_DIFFERENT_COMPOUND,
2232 MF_MSG_POISONED_HUGE,
2233 MF_MSG_HUGE,
2234 MF_MSG_FREE_HUGE,
2235 MF_MSG_UNMAP_FAILED,
2236 MF_MSG_DIRTY_SWAPCACHE,
2237 MF_MSG_CLEAN_SWAPCACHE,
2238 MF_MSG_DIRTY_MLOCKED_LRU,
2239 MF_MSG_CLEAN_MLOCKED_LRU,
2240 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2241 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2242 MF_MSG_DIRTY_LRU,
2243 MF_MSG_CLEAN_LRU,
2244 MF_MSG_TRUNCATED_LRU,
2245 MF_MSG_BUDDY,
2246 MF_MSG_BUDDY_2ND,
2247 MF_MSG_UNKNOWN,
2248 };
2249
2250 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2251 extern void clear_huge_page(struct page *page,
2252 unsigned long addr,
2253 unsigned int pages_per_huge_page);
2254 extern void copy_user_huge_page(struct page *dst, struct page *src,
2255 unsigned long addr, struct vm_area_struct *vma,
2256 unsigned int pages_per_huge_page);
2257 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2258
2259 extern struct page_ext_operations debug_guardpage_ops;
2260 extern struct page_ext_operations page_poisoning_ops;
2261
2262 #ifdef CONFIG_DEBUG_PAGEALLOC
2263 extern unsigned int _debug_guardpage_minorder;
2264 extern bool _debug_guardpage_enabled;
2265
2266 static inline unsigned int debug_guardpage_minorder(void)
2267 {
2268 return _debug_guardpage_minorder;
2269 }
2270
2271 static inline bool debug_guardpage_enabled(void)
2272 {
2273 return _debug_guardpage_enabled;
2274 }
2275
2276 static inline bool page_is_guard(struct page *page)
2277 {
2278 struct page_ext *page_ext;
2279
2280 if (!debug_guardpage_enabled())
2281 return false;
2282
2283 page_ext = lookup_page_ext(page);
2284 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2285 }
2286 #else
2287 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2288 static inline bool debug_guardpage_enabled(void) { return false; }
2289 static inline bool page_is_guard(struct page *page) { return false; }
2290 #endif /* CONFIG_DEBUG_PAGEALLOC */
2291
2292 #if MAX_NUMNODES > 1
2293 void __init setup_nr_node_ids(void);
2294 #else
2295 static inline void setup_nr_node_ids(void) {}
2296 #endif
2297
2298 #endif /* __KERNEL__ */
2299 #endif /* _LINUX_MM_H */
This page took 0.092637 seconds and 5 git commands to generate.