Merge tag 'v4.5-rc1' into x86/asm, to refresh the branch before merging new changes
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25
26 struct mempolicy;
27 struct anon_vma;
28 struct anon_vma_chain;
29 struct file_ra_state;
30 struct user_struct;
31 struct writeback_control;
32 struct bdi_writeback;
33
34 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
35 extern unsigned long max_mapnr;
36
37 static inline void set_max_mapnr(unsigned long limit)
38 {
39 max_mapnr = limit;
40 }
41 #else
42 static inline void set_max_mapnr(unsigned long limit) { }
43 #endif
44
45 extern unsigned long totalram_pages;
46 extern void * high_memory;
47 extern int page_cluster;
48
49 #ifdef CONFIG_SYSCTL
50 extern int sysctl_legacy_va_layout;
51 #else
52 #define sysctl_legacy_va_layout 0
53 #endif
54
55 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56 extern const int mmap_rnd_bits_min;
57 extern const int mmap_rnd_bits_max;
58 extern int mmap_rnd_bits __read_mostly;
59 #endif
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61 extern const int mmap_rnd_compat_bits_min;
62 extern const int mmap_rnd_compat_bits_max;
63 extern int mmap_rnd_compat_bits __read_mostly;
64 #endif
65
66 #include <asm/page.h>
67 #include <asm/pgtable.h>
68 #include <asm/processor.h>
69
70 #ifndef __pa_symbol
71 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72 #endif
73
74 /*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81 #ifndef mm_forbids_zeropage
82 #define mm_forbids_zeropage(X) (0)
83 #endif
84
85 extern unsigned long sysctl_user_reserve_kbytes;
86 extern unsigned long sysctl_admin_reserve_kbytes;
87
88 extern int sysctl_overcommit_memory;
89 extern int sysctl_overcommit_ratio;
90 extern unsigned long sysctl_overcommit_kbytes;
91
92 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 size_t *, loff_t *);
94 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 size_t *, loff_t *);
96
97 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
99 /* to align the pointer to the (next) page boundary */
100 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
102 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
105 /*
106 * Linux kernel virtual memory manager primitives.
107 * The idea being to have a "virtual" mm in the same way
108 * we have a virtual fs - giving a cleaner interface to the
109 * mm details, and allowing different kinds of memory mappings
110 * (from shared memory to executable loading to arbitrary
111 * mmap() functions).
112 */
113
114 extern struct kmem_cache *vm_area_cachep;
115
116 #ifndef CONFIG_MMU
117 extern struct rb_root nommu_region_tree;
118 extern struct rw_semaphore nommu_region_sem;
119
120 extern unsigned int kobjsize(const void *objp);
121 #endif
122
123 /*
124 * vm_flags in vm_area_struct, see mm_types.h.
125 */
126 #define VM_NONE 0x00000000
127
128 #define VM_READ 0x00000001 /* currently active flags */
129 #define VM_WRITE 0x00000002
130 #define VM_EXEC 0x00000004
131 #define VM_SHARED 0x00000008
132
133 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
134 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
135 #define VM_MAYWRITE 0x00000020
136 #define VM_MAYEXEC 0x00000040
137 #define VM_MAYSHARE 0x00000080
138
139 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
140 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
141 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
142 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
143 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
144
145 #define VM_LOCKED 0x00002000
146 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
147
148 /* Used by sys_madvise() */
149 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
150 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
151
152 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
153 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
154 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
155 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
156 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
157 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
158 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
159 #define VM_ARCH_2 0x02000000
160 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
161
162 #ifdef CONFIG_MEM_SOFT_DIRTY
163 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
164 #else
165 # define VM_SOFTDIRTY 0
166 #endif
167
168 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
169 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
170 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
171 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
172
173 #if defined(CONFIG_X86)
174 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
175 #elif defined(CONFIG_PPC)
176 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
177 #elif defined(CONFIG_PARISC)
178 # define VM_GROWSUP VM_ARCH_1
179 #elif defined(CONFIG_METAG)
180 # define VM_GROWSUP VM_ARCH_1
181 #elif defined(CONFIG_IA64)
182 # define VM_GROWSUP VM_ARCH_1
183 #elif !defined(CONFIG_MMU)
184 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
185 #endif
186
187 #if defined(CONFIG_X86)
188 /* MPX specific bounds table or bounds directory */
189 # define VM_MPX VM_ARCH_2
190 #endif
191
192 #ifndef VM_GROWSUP
193 # define VM_GROWSUP VM_NONE
194 #endif
195
196 /* Bits set in the VMA until the stack is in its final location */
197 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
198
199 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
200 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
201 #endif
202
203 #ifdef CONFIG_STACK_GROWSUP
204 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
205 #else
206 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
207 #endif
208
209 /*
210 * Special vmas that are non-mergable, non-mlock()able.
211 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
212 */
213 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
214
215 /* This mask defines which mm->def_flags a process can inherit its parent */
216 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
217
218 /* This mask is used to clear all the VMA flags used by mlock */
219 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
220
221 /*
222 * mapping from the currently active vm_flags protection bits (the
223 * low four bits) to a page protection mask..
224 */
225 extern pgprot_t protection_map[16];
226
227 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
228 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
229 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
230 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
231 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
232 #define FAULT_FLAG_TRIED 0x20 /* Second try */
233 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
234
235 /*
236 * vm_fault is filled by the the pagefault handler and passed to the vma's
237 * ->fault function. The vma's ->fault is responsible for returning a bitmask
238 * of VM_FAULT_xxx flags that give details about how the fault was handled.
239 *
240 * MM layer fills up gfp_mask for page allocations but fault handler might
241 * alter it if its implementation requires a different allocation context.
242 *
243 * pgoff should be used in favour of virtual_address, if possible.
244 */
245 struct vm_fault {
246 unsigned int flags; /* FAULT_FLAG_xxx flags */
247 gfp_t gfp_mask; /* gfp mask to be used for allocations */
248 pgoff_t pgoff; /* Logical page offset based on vma */
249 void __user *virtual_address; /* Faulting virtual address */
250
251 struct page *cow_page; /* Handler may choose to COW */
252 struct page *page; /* ->fault handlers should return a
253 * page here, unless VM_FAULT_NOPAGE
254 * is set (which is also implied by
255 * VM_FAULT_ERROR).
256 */
257 /* for ->map_pages() only */
258 pgoff_t max_pgoff; /* map pages for offset from pgoff till
259 * max_pgoff inclusive */
260 pte_t *pte; /* pte entry associated with ->pgoff */
261 };
262
263 /*
264 * These are the virtual MM functions - opening of an area, closing and
265 * unmapping it (needed to keep files on disk up-to-date etc), pointer
266 * to the functions called when a no-page or a wp-page exception occurs.
267 */
268 struct vm_operations_struct {
269 void (*open)(struct vm_area_struct * area);
270 void (*close)(struct vm_area_struct * area);
271 int (*mremap)(struct vm_area_struct * area);
272 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
273 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
274 pmd_t *, unsigned int flags);
275 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
276
277 /* notification that a previously read-only page is about to become
278 * writable, if an error is returned it will cause a SIGBUS */
279 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
280
281 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
282 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
283
284 /* called by access_process_vm when get_user_pages() fails, typically
285 * for use by special VMAs that can switch between memory and hardware
286 */
287 int (*access)(struct vm_area_struct *vma, unsigned long addr,
288 void *buf, int len, int write);
289
290 /* Called by the /proc/PID/maps code to ask the vma whether it
291 * has a special name. Returning non-NULL will also cause this
292 * vma to be dumped unconditionally. */
293 const char *(*name)(struct vm_area_struct *vma);
294
295 #ifdef CONFIG_NUMA
296 /*
297 * set_policy() op must add a reference to any non-NULL @new mempolicy
298 * to hold the policy upon return. Caller should pass NULL @new to
299 * remove a policy and fall back to surrounding context--i.e. do not
300 * install a MPOL_DEFAULT policy, nor the task or system default
301 * mempolicy.
302 */
303 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
304
305 /*
306 * get_policy() op must add reference [mpol_get()] to any policy at
307 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
308 * in mm/mempolicy.c will do this automatically.
309 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
310 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
311 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
312 * must return NULL--i.e., do not "fallback" to task or system default
313 * policy.
314 */
315 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
316 unsigned long addr);
317 #endif
318 /*
319 * Called by vm_normal_page() for special PTEs to find the
320 * page for @addr. This is useful if the default behavior
321 * (using pte_page()) would not find the correct page.
322 */
323 struct page *(*find_special_page)(struct vm_area_struct *vma,
324 unsigned long addr);
325 };
326
327 struct mmu_gather;
328 struct inode;
329
330 #define page_private(page) ((page)->private)
331 #define set_page_private(page, v) ((page)->private = (v))
332
333 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
334 static inline int pmd_devmap(pmd_t pmd)
335 {
336 return 0;
337 }
338 #endif
339
340 /*
341 * FIXME: take this include out, include page-flags.h in
342 * files which need it (119 of them)
343 */
344 #include <linux/page-flags.h>
345 #include <linux/huge_mm.h>
346
347 /*
348 * Methods to modify the page usage count.
349 *
350 * What counts for a page usage:
351 * - cache mapping (page->mapping)
352 * - private data (page->private)
353 * - page mapped in a task's page tables, each mapping
354 * is counted separately
355 *
356 * Also, many kernel routines increase the page count before a critical
357 * routine so they can be sure the page doesn't go away from under them.
358 */
359
360 /*
361 * Drop a ref, return true if the refcount fell to zero (the page has no users)
362 */
363 static inline int put_page_testzero(struct page *page)
364 {
365 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
366 return atomic_dec_and_test(&page->_count);
367 }
368
369 /*
370 * Try to grab a ref unless the page has a refcount of zero, return false if
371 * that is the case.
372 * This can be called when MMU is off so it must not access
373 * any of the virtual mappings.
374 */
375 static inline int get_page_unless_zero(struct page *page)
376 {
377 return atomic_inc_not_zero(&page->_count);
378 }
379
380 extern int page_is_ram(unsigned long pfn);
381
382 enum {
383 REGION_INTERSECTS,
384 REGION_DISJOINT,
385 REGION_MIXED,
386 };
387
388 int region_intersects(resource_size_t offset, size_t size, const char *type);
389
390 /* Support for virtually mapped pages */
391 struct page *vmalloc_to_page(const void *addr);
392 unsigned long vmalloc_to_pfn(const void *addr);
393
394 /*
395 * Determine if an address is within the vmalloc range
396 *
397 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
398 * is no special casing required.
399 */
400 static inline int is_vmalloc_addr(const void *x)
401 {
402 #ifdef CONFIG_MMU
403 unsigned long addr = (unsigned long)x;
404
405 return addr >= VMALLOC_START && addr < VMALLOC_END;
406 #else
407 return 0;
408 #endif
409 }
410 #ifdef CONFIG_MMU
411 extern int is_vmalloc_or_module_addr(const void *x);
412 #else
413 static inline int is_vmalloc_or_module_addr(const void *x)
414 {
415 return 0;
416 }
417 #endif
418
419 extern void kvfree(const void *addr);
420
421 static inline atomic_t *compound_mapcount_ptr(struct page *page)
422 {
423 return &page[1].compound_mapcount;
424 }
425
426 static inline int compound_mapcount(struct page *page)
427 {
428 if (!PageCompound(page))
429 return 0;
430 page = compound_head(page);
431 return atomic_read(compound_mapcount_ptr(page)) + 1;
432 }
433
434 /*
435 * The atomic page->_mapcount, starts from -1: so that transitions
436 * both from it and to it can be tracked, using atomic_inc_and_test
437 * and atomic_add_negative(-1).
438 */
439 static inline void page_mapcount_reset(struct page *page)
440 {
441 atomic_set(&(page)->_mapcount, -1);
442 }
443
444 int __page_mapcount(struct page *page);
445
446 static inline int page_mapcount(struct page *page)
447 {
448 VM_BUG_ON_PAGE(PageSlab(page), page);
449
450 if (unlikely(PageCompound(page)))
451 return __page_mapcount(page);
452 return atomic_read(&page->_mapcount) + 1;
453 }
454
455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
456 int total_mapcount(struct page *page);
457 #else
458 static inline int total_mapcount(struct page *page)
459 {
460 return page_mapcount(page);
461 }
462 #endif
463
464 static inline int page_count(struct page *page)
465 {
466 return atomic_read(&compound_head(page)->_count);
467 }
468
469 static inline struct page *virt_to_head_page(const void *x)
470 {
471 struct page *page = virt_to_page(x);
472
473 return compound_head(page);
474 }
475
476 /*
477 * Setup the page count before being freed into the page allocator for
478 * the first time (boot or memory hotplug)
479 */
480 static inline void init_page_count(struct page *page)
481 {
482 atomic_set(&page->_count, 1);
483 }
484
485 void __put_page(struct page *page);
486
487 void put_pages_list(struct list_head *pages);
488
489 void split_page(struct page *page, unsigned int order);
490 int split_free_page(struct page *page);
491
492 /*
493 * Compound pages have a destructor function. Provide a
494 * prototype for that function and accessor functions.
495 * These are _only_ valid on the head of a compound page.
496 */
497 typedef void compound_page_dtor(struct page *);
498
499 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
500 enum compound_dtor_id {
501 NULL_COMPOUND_DTOR,
502 COMPOUND_PAGE_DTOR,
503 #ifdef CONFIG_HUGETLB_PAGE
504 HUGETLB_PAGE_DTOR,
505 #endif
506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
507 TRANSHUGE_PAGE_DTOR,
508 #endif
509 NR_COMPOUND_DTORS,
510 };
511 extern compound_page_dtor * const compound_page_dtors[];
512
513 static inline void set_compound_page_dtor(struct page *page,
514 enum compound_dtor_id compound_dtor)
515 {
516 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
517 page[1].compound_dtor = compound_dtor;
518 }
519
520 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
521 {
522 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
523 return compound_page_dtors[page[1].compound_dtor];
524 }
525
526 static inline unsigned int compound_order(struct page *page)
527 {
528 if (!PageHead(page))
529 return 0;
530 return page[1].compound_order;
531 }
532
533 static inline void set_compound_order(struct page *page, unsigned int order)
534 {
535 page[1].compound_order = order;
536 }
537
538 void free_compound_page(struct page *page);
539
540 #ifdef CONFIG_MMU
541 /*
542 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
543 * servicing faults for write access. In the normal case, do always want
544 * pte_mkwrite. But get_user_pages can cause write faults for mappings
545 * that do not have writing enabled, when used by access_process_vm.
546 */
547 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
548 {
549 if (likely(vma->vm_flags & VM_WRITE))
550 pte = pte_mkwrite(pte);
551 return pte;
552 }
553
554 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
555 struct page *page, pte_t *pte, bool write, bool anon);
556 #endif
557
558 /*
559 * Multiple processes may "see" the same page. E.g. for untouched
560 * mappings of /dev/null, all processes see the same page full of
561 * zeroes, and text pages of executables and shared libraries have
562 * only one copy in memory, at most, normally.
563 *
564 * For the non-reserved pages, page_count(page) denotes a reference count.
565 * page_count() == 0 means the page is free. page->lru is then used for
566 * freelist management in the buddy allocator.
567 * page_count() > 0 means the page has been allocated.
568 *
569 * Pages are allocated by the slab allocator in order to provide memory
570 * to kmalloc and kmem_cache_alloc. In this case, the management of the
571 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
572 * unless a particular usage is carefully commented. (the responsibility of
573 * freeing the kmalloc memory is the caller's, of course).
574 *
575 * A page may be used by anyone else who does a __get_free_page().
576 * In this case, page_count still tracks the references, and should only
577 * be used through the normal accessor functions. The top bits of page->flags
578 * and page->virtual store page management information, but all other fields
579 * are unused and could be used privately, carefully. The management of this
580 * page is the responsibility of the one who allocated it, and those who have
581 * subsequently been given references to it.
582 *
583 * The other pages (we may call them "pagecache pages") are completely
584 * managed by the Linux memory manager: I/O, buffers, swapping etc.
585 * The following discussion applies only to them.
586 *
587 * A pagecache page contains an opaque `private' member, which belongs to the
588 * page's address_space. Usually, this is the address of a circular list of
589 * the page's disk buffers. PG_private must be set to tell the VM to call
590 * into the filesystem to release these pages.
591 *
592 * A page may belong to an inode's memory mapping. In this case, page->mapping
593 * is the pointer to the inode, and page->index is the file offset of the page,
594 * in units of PAGE_CACHE_SIZE.
595 *
596 * If pagecache pages are not associated with an inode, they are said to be
597 * anonymous pages. These may become associated with the swapcache, and in that
598 * case PG_swapcache is set, and page->private is an offset into the swapcache.
599 *
600 * In either case (swapcache or inode backed), the pagecache itself holds one
601 * reference to the page. Setting PG_private should also increment the
602 * refcount. The each user mapping also has a reference to the page.
603 *
604 * The pagecache pages are stored in a per-mapping radix tree, which is
605 * rooted at mapping->page_tree, and indexed by offset.
606 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
607 * lists, we instead now tag pages as dirty/writeback in the radix tree.
608 *
609 * All pagecache pages may be subject to I/O:
610 * - inode pages may need to be read from disk,
611 * - inode pages which have been modified and are MAP_SHARED may need
612 * to be written back to the inode on disk,
613 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
614 * modified may need to be swapped out to swap space and (later) to be read
615 * back into memory.
616 */
617
618 /*
619 * The zone field is never updated after free_area_init_core()
620 * sets it, so none of the operations on it need to be atomic.
621 */
622
623 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
624 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
625 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
626 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
627 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
628
629 /*
630 * Define the bit shifts to access each section. For non-existent
631 * sections we define the shift as 0; that plus a 0 mask ensures
632 * the compiler will optimise away reference to them.
633 */
634 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
636 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
637 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
638
639 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
640 #ifdef NODE_NOT_IN_PAGE_FLAGS
641 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
642 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
643 SECTIONS_PGOFF : ZONES_PGOFF)
644 #else
645 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
646 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
647 NODES_PGOFF : ZONES_PGOFF)
648 #endif
649
650 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
651
652 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
653 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
654 #endif
655
656 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
657 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
658 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
659 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
660 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
661
662 static inline enum zone_type page_zonenum(const struct page *page)
663 {
664 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
665 }
666
667 #ifdef CONFIG_ZONE_DEVICE
668 void get_zone_device_page(struct page *page);
669 void put_zone_device_page(struct page *page);
670 static inline bool is_zone_device_page(const struct page *page)
671 {
672 return page_zonenum(page) == ZONE_DEVICE;
673 }
674 #else
675 static inline void get_zone_device_page(struct page *page)
676 {
677 }
678 static inline void put_zone_device_page(struct page *page)
679 {
680 }
681 static inline bool is_zone_device_page(const struct page *page)
682 {
683 return false;
684 }
685 #endif
686
687 static inline void get_page(struct page *page)
688 {
689 page = compound_head(page);
690 /*
691 * Getting a normal page or the head of a compound page
692 * requires to already have an elevated page->_count.
693 */
694 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
695 atomic_inc(&page->_count);
696
697 if (unlikely(is_zone_device_page(page)))
698 get_zone_device_page(page);
699 }
700
701 static inline void put_page(struct page *page)
702 {
703 page = compound_head(page);
704
705 if (put_page_testzero(page))
706 __put_page(page);
707
708 if (unlikely(is_zone_device_page(page)))
709 put_zone_device_page(page);
710 }
711
712 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
713 #define SECTION_IN_PAGE_FLAGS
714 #endif
715
716 /*
717 * The identification function is mainly used by the buddy allocator for
718 * determining if two pages could be buddies. We are not really identifying
719 * the zone since we could be using the section number id if we do not have
720 * node id available in page flags.
721 * We only guarantee that it will return the same value for two combinable
722 * pages in a zone.
723 */
724 static inline int page_zone_id(struct page *page)
725 {
726 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
727 }
728
729 static inline int zone_to_nid(struct zone *zone)
730 {
731 #ifdef CONFIG_NUMA
732 return zone->node;
733 #else
734 return 0;
735 #endif
736 }
737
738 #ifdef NODE_NOT_IN_PAGE_FLAGS
739 extern int page_to_nid(const struct page *page);
740 #else
741 static inline int page_to_nid(const struct page *page)
742 {
743 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
744 }
745 #endif
746
747 #ifdef CONFIG_NUMA_BALANCING
748 static inline int cpu_pid_to_cpupid(int cpu, int pid)
749 {
750 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
751 }
752
753 static inline int cpupid_to_pid(int cpupid)
754 {
755 return cpupid & LAST__PID_MASK;
756 }
757
758 static inline int cpupid_to_cpu(int cpupid)
759 {
760 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
761 }
762
763 static inline int cpupid_to_nid(int cpupid)
764 {
765 return cpu_to_node(cpupid_to_cpu(cpupid));
766 }
767
768 static inline bool cpupid_pid_unset(int cpupid)
769 {
770 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
771 }
772
773 static inline bool cpupid_cpu_unset(int cpupid)
774 {
775 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
776 }
777
778 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
779 {
780 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
781 }
782
783 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
784 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
785 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
786 {
787 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
788 }
789
790 static inline int page_cpupid_last(struct page *page)
791 {
792 return page->_last_cpupid;
793 }
794 static inline void page_cpupid_reset_last(struct page *page)
795 {
796 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
797 }
798 #else
799 static inline int page_cpupid_last(struct page *page)
800 {
801 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
802 }
803
804 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
805
806 static inline void page_cpupid_reset_last(struct page *page)
807 {
808 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
809
810 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
811 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
812 }
813 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
814 #else /* !CONFIG_NUMA_BALANCING */
815 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
816 {
817 return page_to_nid(page); /* XXX */
818 }
819
820 static inline int page_cpupid_last(struct page *page)
821 {
822 return page_to_nid(page); /* XXX */
823 }
824
825 static inline int cpupid_to_nid(int cpupid)
826 {
827 return -1;
828 }
829
830 static inline int cpupid_to_pid(int cpupid)
831 {
832 return -1;
833 }
834
835 static inline int cpupid_to_cpu(int cpupid)
836 {
837 return -1;
838 }
839
840 static inline int cpu_pid_to_cpupid(int nid, int pid)
841 {
842 return -1;
843 }
844
845 static inline bool cpupid_pid_unset(int cpupid)
846 {
847 return 1;
848 }
849
850 static inline void page_cpupid_reset_last(struct page *page)
851 {
852 }
853
854 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
855 {
856 return false;
857 }
858 #endif /* CONFIG_NUMA_BALANCING */
859
860 static inline struct zone *page_zone(const struct page *page)
861 {
862 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
863 }
864
865 #ifdef SECTION_IN_PAGE_FLAGS
866 static inline void set_page_section(struct page *page, unsigned long section)
867 {
868 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
869 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
870 }
871
872 static inline unsigned long page_to_section(const struct page *page)
873 {
874 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
875 }
876 #endif
877
878 static inline void set_page_zone(struct page *page, enum zone_type zone)
879 {
880 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
881 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
882 }
883
884 static inline void set_page_node(struct page *page, unsigned long node)
885 {
886 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
887 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
888 }
889
890 static inline void set_page_links(struct page *page, enum zone_type zone,
891 unsigned long node, unsigned long pfn)
892 {
893 set_page_zone(page, zone);
894 set_page_node(page, node);
895 #ifdef SECTION_IN_PAGE_FLAGS
896 set_page_section(page, pfn_to_section_nr(pfn));
897 #endif
898 }
899
900 #ifdef CONFIG_MEMCG
901 static inline struct mem_cgroup *page_memcg(struct page *page)
902 {
903 return page->mem_cgroup;
904 }
905
906 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
907 {
908 page->mem_cgroup = memcg;
909 }
910 #else
911 static inline struct mem_cgroup *page_memcg(struct page *page)
912 {
913 return NULL;
914 }
915
916 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
917 {
918 }
919 #endif
920
921 /*
922 * Some inline functions in vmstat.h depend on page_zone()
923 */
924 #include <linux/vmstat.h>
925
926 static __always_inline void *lowmem_page_address(const struct page *page)
927 {
928 return __va(PFN_PHYS(page_to_pfn(page)));
929 }
930
931 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
932 #define HASHED_PAGE_VIRTUAL
933 #endif
934
935 #if defined(WANT_PAGE_VIRTUAL)
936 static inline void *page_address(const struct page *page)
937 {
938 return page->virtual;
939 }
940 static inline void set_page_address(struct page *page, void *address)
941 {
942 page->virtual = address;
943 }
944 #define page_address_init() do { } while(0)
945 #endif
946
947 #if defined(HASHED_PAGE_VIRTUAL)
948 void *page_address(const struct page *page);
949 void set_page_address(struct page *page, void *virtual);
950 void page_address_init(void);
951 #endif
952
953 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
954 #define page_address(page) lowmem_page_address(page)
955 #define set_page_address(page, address) do { } while(0)
956 #define page_address_init() do { } while(0)
957 #endif
958
959 extern void *page_rmapping(struct page *page);
960 extern struct anon_vma *page_anon_vma(struct page *page);
961 extern struct address_space *page_mapping(struct page *page);
962
963 extern struct address_space *__page_file_mapping(struct page *);
964
965 static inline
966 struct address_space *page_file_mapping(struct page *page)
967 {
968 if (unlikely(PageSwapCache(page)))
969 return __page_file_mapping(page);
970
971 return page->mapping;
972 }
973
974 /*
975 * Return the pagecache index of the passed page. Regular pagecache pages
976 * use ->index whereas swapcache pages use ->private
977 */
978 static inline pgoff_t page_index(struct page *page)
979 {
980 if (unlikely(PageSwapCache(page)))
981 return page_private(page);
982 return page->index;
983 }
984
985 extern pgoff_t __page_file_index(struct page *page);
986
987 /*
988 * Return the file index of the page. Regular pagecache pages use ->index
989 * whereas swapcache pages use swp_offset(->private)
990 */
991 static inline pgoff_t page_file_index(struct page *page)
992 {
993 if (unlikely(PageSwapCache(page)))
994 return __page_file_index(page);
995
996 return page->index;
997 }
998
999 /*
1000 * Return true if this page is mapped into pagetables.
1001 * For compound page it returns true if any subpage of compound page is mapped.
1002 */
1003 static inline bool page_mapped(struct page *page)
1004 {
1005 int i;
1006 if (likely(!PageCompound(page)))
1007 return atomic_read(&page->_mapcount) >= 0;
1008 page = compound_head(page);
1009 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1010 return true;
1011 for (i = 0; i < hpage_nr_pages(page); i++) {
1012 if (atomic_read(&page[i]._mapcount) >= 0)
1013 return true;
1014 }
1015 return false;
1016 }
1017
1018 /*
1019 * Return true only if the page has been allocated with
1020 * ALLOC_NO_WATERMARKS and the low watermark was not
1021 * met implying that the system is under some pressure.
1022 */
1023 static inline bool page_is_pfmemalloc(struct page *page)
1024 {
1025 /*
1026 * Page index cannot be this large so this must be
1027 * a pfmemalloc page.
1028 */
1029 return page->index == -1UL;
1030 }
1031
1032 /*
1033 * Only to be called by the page allocator on a freshly allocated
1034 * page.
1035 */
1036 static inline void set_page_pfmemalloc(struct page *page)
1037 {
1038 page->index = -1UL;
1039 }
1040
1041 static inline void clear_page_pfmemalloc(struct page *page)
1042 {
1043 page->index = 0;
1044 }
1045
1046 /*
1047 * Different kinds of faults, as returned by handle_mm_fault().
1048 * Used to decide whether a process gets delivered SIGBUS or
1049 * just gets major/minor fault counters bumped up.
1050 */
1051
1052 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1053
1054 #define VM_FAULT_OOM 0x0001
1055 #define VM_FAULT_SIGBUS 0x0002
1056 #define VM_FAULT_MAJOR 0x0004
1057 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1058 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1059 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1060 #define VM_FAULT_SIGSEGV 0x0040
1061
1062 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1063 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1064 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1065 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1066
1067 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1068
1069 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1070 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1071 VM_FAULT_FALLBACK)
1072
1073 /* Encode hstate index for a hwpoisoned large page */
1074 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1075 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1076
1077 /*
1078 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1079 */
1080 extern void pagefault_out_of_memory(void);
1081
1082 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1083
1084 /*
1085 * Flags passed to show_mem() and show_free_areas() to suppress output in
1086 * various contexts.
1087 */
1088 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1089
1090 extern void show_free_areas(unsigned int flags);
1091 extern bool skip_free_areas_node(unsigned int flags, int nid);
1092
1093 int shmem_zero_setup(struct vm_area_struct *);
1094 #ifdef CONFIG_SHMEM
1095 bool shmem_mapping(struct address_space *mapping);
1096 #else
1097 static inline bool shmem_mapping(struct address_space *mapping)
1098 {
1099 return false;
1100 }
1101 #endif
1102
1103 extern bool can_do_mlock(void);
1104 extern int user_shm_lock(size_t, struct user_struct *);
1105 extern void user_shm_unlock(size_t, struct user_struct *);
1106
1107 /*
1108 * Parameter block passed down to zap_pte_range in exceptional cases.
1109 */
1110 struct zap_details {
1111 struct address_space *check_mapping; /* Check page->mapping if set */
1112 pgoff_t first_index; /* Lowest page->index to unmap */
1113 pgoff_t last_index; /* Highest page->index to unmap */
1114 };
1115
1116 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1117 pte_t pte);
1118
1119 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1120 unsigned long size);
1121 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1122 unsigned long size, struct zap_details *);
1123 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1124 unsigned long start, unsigned long end);
1125
1126 /**
1127 * mm_walk - callbacks for walk_page_range
1128 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1129 * this handler is required to be able to handle
1130 * pmd_trans_huge() pmds. They may simply choose to
1131 * split_huge_page() instead of handling it explicitly.
1132 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1133 * @pte_hole: if set, called for each hole at all levels
1134 * @hugetlb_entry: if set, called for each hugetlb entry
1135 * @test_walk: caller specific callback function to determine whether
1136 * we walk over the current vma or not. A positive returned
1137 * value means "do page table walk over the current vma,"
1138 * and a negative one means "abort current page table walk
1139 * right now." 0 means "skip the current vma."
1140 * @mm: mm_struct representing the target process of page table walk
1141 * @vma: vma currently walked (NULL if walking outside vmas)
1142 * @private: private data for callbacks' usage
1143 *
1144 * (see the comment on walk_page_range() for more details)
1145 */
1146 struct mm_walk {
1147 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1148 unsigned long next, struct mm_walk *walk);
1149 int (*pte_entry)(pte_t *pte, unsigned long addr,
1150 unsigned long next, struct mm_walk *walk);
1151 int (*pte_hole)(unsigned long addr, unsigned long next,
1152 struct mm_walk *walk);
1153 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1154 unsigned long addr, unsigned long next,
1155 struct mm_walk *walk);
1156 int (*test_walk)(unsigned long addr, unsigned long next,
1157 struct mm_walk *walk);
1158 struct mm_struct *mm;
1159 struct vm_area_struct *vma;
1160 void *private;
1161 };
1162
1163 int walk_page_range(unsigned long addr, unsigned long end,
1164 struct mm_walk *walk);
1165 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1166 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1167 unsigned long end, unsigned long floor, unsigned long ceiling);
1168 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1169 struct vm_area_struct *vma);
1170 void unmap_mapping_range(struct address_space *mapping,
1171 loff_t const holebegin, loff_t const holelen, int even_cows);
1172 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1173 unsigned long *pfn);
1174 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1175 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1176 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1177 void *buf, int len, int write);
1178
1179 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1180 loff_t const holebegin, loff_t const holelen)
1181 {
1182 unmap_mapping_range(mapping, holebegin, holelen, 0);
1183 }
1184
1185 extern void truncate_pagecache(struct inode *inode, loff_t new);
1186 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1187 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1188 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1189 int truncate_inode_page(struct address_space *mapping, struct page *page);
1190 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1191 int invalidate_inode_page(struct page *page);
1192
1193 #ifdef CONFIG_MMU
1194 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1195 unsigned long address, unsigned int flags);
1196 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1197 unsigned long address, unsigned int fault_flags,
1198 bool *unlocked);
1199 #else
1200 static inline int handle_mm_fault(struct mm_struct *mm,
1201 struct vm_area_struct *vma, unsigned long address,
1202 unsigned int flags)
1203 {
1204 /* should never happen if there's no MMU */
1205 BUG();
1206 return VM_FAULT_SIGBUS;
1207 }
1208 static inline int fixup_user_fault(struct task_struct *tsk,
1209 struct mm_struct *mm, unsigned long address,
1210 unsigned int fault_flags, bool *unlocked)
1211 {
1212 /* should never happen if there's no MMU */
1213 BUG();
1214 return -EFAULT;
1215 }
1216 #endif
1217
1218 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1219 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1220 void *buf, int len, int write);
1221
1222 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1223 unsigned long start, unsigned long nr_pages,
1224 unsigned int foll_flags, struct page **pages,
1225 struct vm_area_struct **vmas, int *nonblocking);
1226 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1227 unsigned long start, unsigned long nr_pages,
1228 int write, int force, struct page **pages,
1229 struct vm_area_struct **vmas);
1230 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1231 unsigned long start, unsigned long nr_pages,
1232 int write, int force, struct page **pages,
1233 int *locked);
1234 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1235 unsigned long start, unsigned long nr_pages,
1236 int write, int force, struct page **pages,
1237 unsigned int gup_flags);
1238 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1239 unsigned long start, unsigned long nr_pages,
1240 int write, int force, struct page **pages);
1241 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1242 struct page **pages);
1243
1244 /* Container for pinned pfns / pages */
1245 struct frame_vector {
1246 unsigned int nr_allocated; /* Number of frames we have space for */
1247 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1248 bool got_ref; /* Did we pin pages by getting page ref? */
1249 bool is_pfns; /* Does array contain pages or pfns? */
1250 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1251 * pfns_vector_pages() or pfns_vector_pfns()
1252 * for access */
1253 };
1254
1255 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1256 void frame_vector_destroy(struct frame_vector *vec);
1257 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1258 bool write, bool force, struct frame_vector *vec);
1259 void put_vaddr_frames(struct frame_vector *vec);
1260 int frame_vector_to_pages(struct frame_vector *vec);
1261 void frame_vector_to_pfns(struct frame_vector *vec);
1262
1263 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1264 {
1265 return vec->nr_frames;
1266 }
1267
1268 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1269 {
1270 if (vec->is_pfns) {
1271 int err = frame_vector_to_pages(vec);
1272
1273 if (err)
1274 return ERR_PTR(err);
1275 }
1276 return (struct page **)(vec->ptrs);
1277 }
1278
1279 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1280 {
1281 if (!vec->is_pfns)
1282 frame_vector_to_pfns(vec);
1283 return (unsigned long *)(vec->ptrs);
1284 }
1285
1286 struct kvec;
1287 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1288 struct page **pages);
1289 int get_kernel_page(unsigned long start, int write, struct page **pages);
1290 struct page *get_dump_page(unsigned long addr);
1291
1292 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1293 extern void do_invalidatepage(struct page *page, unsigned int offset,
1294 unsigned int length);
1295
1296 int __set_page_dirty_nobuffers(struct page *page);
1297 int __set_page_dirty_no_writeback(struct page *page);
1298 int redirty_page_for_writepage(struct writeback_control *wbc,
1299 struct page *page);
1300 void account_page_dirtied(struct page *page, struct address_space *mapping,
1301 struct mem_cgroup *memcg);
1302 void account_page_cleaned(struct page *page, struct address_space *mapping,
1303 struct mem_cgroup *memcg, struct bdi_writeback *wb);
1304 int set_page_dirty(struct page *page);
1305 int set_page_dirty_lock(struct page *page);
1306 void cancel_dirty_page(struct page *page);
1307 int clear_page_dirty_for_io(struct page *page);
1308
1309 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1310
1311 /* Is the vma a continuation of the stack vma above it? */
1312 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1313 {
1314 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1315 }
1316
1317 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1318 {
1319 return !vma->vm_ops;
1320 }
1321
1322 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1323 unsigned long addr)
1324 {
1325 return (vma->vm_flags & VM_GROWSDOWN) &&
1326 (vma->vm_start == addr) &&
1327 !vma_growsdown(vma->vm_prev, addr);
1328 }
1329
1330 /* Is the vma a continuation of the stack vma below it? */
1331 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1332 {
1333 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1334 }
1335
1336 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1337 unsigned long addr)
1338 {
1339 return (vma->vm_flags & VM_GROWSUP) &&
1340 (vma->vm_end == addr) &&
1341 !vma_growsup(vma->vm_next, addr);
1342 }
1343
1344 extern struct task_struct *task_of_stack(struct task_struct *task,
1345 struct vm_area_struct *vma, bool in_group);
1346
1347 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1348 unsigned long old_addr, struct vm_area_struct *new_vma,
1349 unsigned long new_addr, unsigned long len,
1350 bool need_rmap_locks);
1351 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1352 unsigned long end, pgprot_t newprot,
1353 int dirty_accountable, int prot_numa);
1354 extern int mprotect_fixup(struct vm_area_struct *vma,
1355 struct vm_area_struct **pprev, unsigned long start,
1356 unsigned long end, unsigned long newflags);
1357
1358 /*
1359 * doesn't attempt to fault and will return short.
1360 */
1361 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1362 struct page **pages);
1363 /*
1364 * per-process(per-mm_struct) statistics.
1365 */
1366 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1367 {
1368 long val = atomic_long_read(&mm->rss_stat.count[member]);
1369
1370 #ifdef SPLIT_RSS_COUNTING
1371 /*
1372 * counter is updated in asynchronous manner and may go to minus.
1373 * But it's never be expected number for users.
1374 */
1375 if (val < 0)
1376 val = 0;
1377 #endif
1378 return (unsigned long)val;
1379 }
1380
1381 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1382 {
1383 atomic_long_add(value, &mm->rss_stat.count[member]);
1384 }
1385
1386 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1387 {
1388 atomic_long_inc(&mm->rss_stat.count[member]);
1389 }
1390
1391 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1392 {
1393 atomic_long_dec(&mm->rss_stat.count[member]);
1394 }
1395
1396 /* Optimized variant when page is already known not to be PageAnon */
1397 static inline int mm_counter_file(struct page *page)
1398 {
1399 if (PageSwapBacked(page))
1400 return MM_SHMEMPAGES;
1401 return MM_FILEPAGES;
1402 }
1403
1404 static inline int mm_counter(struct page *page)
1405 {
1406 if (PageAnon(page))
1407 return MM_ANONPAGES;
1408 return mm_counter_file(page);
1409 }
1410
1411 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1412 {
1413 return get_mm_counter(mm, MM_FILEPAGES) +
1414 get_mm_counter(mm, MM_ANONPAGES) +
1415 get_mm_counter(mm, MM_SHMEMPAGES);
1416 }
1417
1418 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1419 {
1420 return max(mm->hiwater_rss, get_mm_rss(mm));
1421 }
1422
1423 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1424 {
1425 return max(mm->hiwater_vm, mm->total_vm);
1426 }
1427
1428 static inline void update_hiwater_rss(struct mm_struct *mm)
1429 {
1430 unsigned long _rss = get_mm_rss(mm);
1431
1432 if ((mm)->hiwater_rss < _rss)
1433 (mm)->hiwater_rss = _rss;
1434 }
1435
1436 static inline void update_hiwater_vm(struct mm_struct *mm)
1437 {
1438 if (mm->hiwater_vm < mm->total_vm)
1439 mm->hiwater_vm = mm->total_vm;
1440 }
1441
1442 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1443 {
1444 mm->hiwater_rss = get_mm_rss(mm);
1445 }
1446
1447 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1448 struct mm_struct *mm)
1449 {
1450 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1451
1452 if (*maxrss < hiwater_rss)
1453 *maxrss = hiwater_rss;
1454 }
1455
1456 #if defined(SPLIT_RSS_COUNTING)
1457 void sync_mm_rss(struct mm_struct *mm);
1458 #else
1459 static inline void sync_mm_rss(struct mm_struct *mm)
1460 {
1461 }
1462 #endif
1463
1464 #ifndef __HAVE_ARCH_PTE_DEVMAP
1465 static inline int pte_devmap(pte_t pte)
1466 {
1467 return 0;
1468 }
1469 #endif
1470
1471 int vma_wants_writenotify(struct vm_area_struct *vma);
1472
1473 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1474 spinlock_t **ptl);
1475 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1476 spinlock_t **ptl)
1477 {
1478 pte_t *ptep;
1479 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1480 return ptep;
1481 }
1482
1483 #ifdef __PAGETABLE_PUD_FOLDED
1484 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1485 unsigned long address)
1486 {
1487 return 0;
1488 }
1489 #else
1490 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1491 #endif
1492
1493 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1494 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1495 unsigned long address)
1496 {
1497 return 0;
1498 }
1499
1500 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1501
1502 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1503 {
1504 return 0;
1505 }
1506
1507 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1508 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1509
1510 #else
1511 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1512
1513 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1514 {
1515 atomic_long_set(&mm->nr_pmds, 0);
1516 }
1517
1518 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1519 {
1520 return atomic_long_read(&mm->nr_pmds);
1521 }
1522
1523 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1524 {
1525 atomic_long_inc(&mm->nr_pmds);
1526 }
1527
1528 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1529 {
1530 atomic_long_dec(&mm->nr_pmds);
1531 }
1532 #endif
1533
1534 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1535 pmd_t *pmd, unsigned long address);
1536 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1537
1538 /*
1539 * The following ifdef needed to get the 4level-fixup.h header to work.
1540 * Remove it when 4level-fixup.h has been removed.
1541 */
1542 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1543 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1544 {
1545 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1546 NULL: pud_offset(pgd, address);
1547 }
1548
1549 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1550 {
1551 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1552 NULL: pmd_offset(pud, address);
1553 }
1554 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1555
1556 #if USE_SPLIT_PTE_PTLOCKS
1557 #if ALLOC_SPLIT_PTLOCKS
1558 void __init ptlock_cache_init(void);
1559 extern bool ptlock_alloc(struct page *page);
1560 extern void ptlock_free(struct page *page);
1561
1562 static inline spinlock_t *ptlock_ptr(struct page *page)
1563 {
1564 return page->ptl;
1565 }
1566 #else /* ALLOC_SPLIT_PTLOCKS */
1567 static inline void ptlock_cache_init(void)
1568 {
1569 }
1570
1571 static inline bool ptlock_alloc(struct page *page)
1572 {
1573 return true;
1574 }
1575
1576 static inline void ptlock_free(struct page *page)
1577 {
1578 }
1579
1580 static inline spinlock_t *ptlock_ptr(struct page *page)
1581 {
1582 return &page->ptl;
1583 }
1584 #endif /* ALLOC_SPLIT_PTLOCKS */
1585
1586 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1587 {
1588 return ptlock_ptr(pmd_page(*pmd));
1589 }
1590
1591 static inline bool ptlock_init(struct page *page)
1592 {
1593 /*
1594 * prep_new_page() initialize page->private (and therefore page->ptl)
1595 * with 0. Make sure nobody took it in use in between.
1596 *
1597 * It can happen if arch try to use slab for page table allocation:
1598 * slab code uses page->slab_cache, which share storage with page->ptl.
1599 */
1600 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1601 if (!ptlock_alloc(page))
1602 return false;
1603 spin_lock_init(ptlock_ptr(page));
1604 return true;
1605 }
1606
1607 /* Reset page->mapping so free_pages_check won't complain. */
1608 static inline void pte_lock_deinit(struct page *page)
1609 {
1610 page->mapping = NULL;
1611 ptlock_free(page);
1612 }
1613
1614 #else /* !USE_SPLIT_PTE_PTLOCKS */
1615 /*
1616 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1617 */
1618 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1619 {
1620 return &mm->page_table_lock;
1621 }
1622 static inline void ptlock_cache_init(void) {}
1623 static inline bool ptlock_init(struct page *page) { return true; }
1624 static inline void pte_lock_deinit(struct page *page) {}
1625 #endif /* USE_SPLIT_PTE_PTLOCKS */
1626
1627 static inline void pgtable_init(void)
1628 {
1629 ptlock_cache_init();
1630 pgtable_cache_init();
1631 }
1632
1633 static inline bool pgtable_page_ctor(struct page *page)
1634 {
1635 if (!ptlock_init(page))
1636 return false;
1637 inc_zone_page_state(page, NR_PAGETABLE);
1638 return true;
1639 }
1640
1641 static inline void pgtable_page_dtor(struct page *page)
1642 {
1643 pte_lock_deinit(page);
1644 dec_zone_page_state(page, NR_PAGETABLE);
1645 }
1646
1647 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1648 ({ \
1649 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1650 pte_t *__pte = pte_offset_map(pmd, address); \
1651 *(ptlp) = __ptl; \
1652 spin_lock(__ptl); \
1653 __pte; \
1654 })
1655
1656 #define pte_unmap_unlock(pte, ptl) do { \
1657 spin_unlock(ptl); \
1658 pte_unmap(pte); \
1659 } while (0)
1660
1661 #define pte_alloc_map(mm, vma, pmd, address) \
1662 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1663 pmd, address))? \
1664 NULL: pte_offset_map(pmd, address))
1665
1666 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1667 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1668 pmd, address))? \
1669 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1670
1671 #define pte_alloc_kernel(pmd, address) \
1672 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1673 NULL: pte_offset_kernel(pmd, address))
1674
1675 #if USE_SPLIT_PMD_PTLOCKS
1676
1677 static struct page *pmd_to_page(pmd_t *pmd)
1678 {
1679 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1680 return virt_to_page((void *)((unsigned long) pmd & mask));
1681 }
1682
1683 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1684 {
1685 return ptlock_ptr(pmd_to_page(pmd));
1686 }
1687
1688 static inline bool pgtable_pmd_page_ctor(struct page *page)
1689 {
1690 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1691 page->pmd_huge_pte = NULL;
1692 #endif
1693 return ptlock_init(page);
1694 }
1695
1696 static inline void pgtable_pmd_page_dtor(struct page *page)
1697 {
1698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1699 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1700 #endif
1701 ptlock_free(page);
1702 }
1703
1704 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1705
1706 #else
1707
1708 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1709 {
1710 return &mm->page_table_lock;
1711 }
1712
1713 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1714 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1715
1716 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1717
1718 #endif
1719
1720 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1721 {
1722 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1723 spin_lock(ptl);
1724 return ptl;
1725 }
1726
1727 extern void free_area_init(unsigned long * zones_size);
1728 extern void free_area_init_node(int nid, unsigned long * zones_size,
1729 unsigned long zone_start_pfn, unsigned long *zholes_size);
1730 extern void free_initmem(void);
1731
1732 /*
1733 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1734 * into the buddy system. The freed pages will be poisoned with pattern
1735 * "poison" if it's within range [0, UCHAR_MAX].
1736 * Return pages freed into the buddy system.
1737 */
1738 extern unsigned long free_reserved_area(void *start, void *end,
1739 int poison, char *s);
1740
1741 #ifdef CONFIG_HIGHMEM
1742 /*
1743 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1744 * and totalram_pages.
1745 */
1746 extern void free_highmem_page(struct page *page);
1747 #endif
1748
1749 extern void adjust_managed_page_count(struct page *page, long count);
1750 extern void mem_init_print_info(const char *str);
1751
1752 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1753
1754 /* Free the reserved page into the buddy system, so it gets managed. */
1755 static inline void __free_reserved_page(struct page *page)
1756 {
1757 ClearPageReserved(page);
1758 init_page_count(page);
1759 __free_page(page);
1760 }
1761
1762 static inline void free_reserved_page(struct page *page)
1763 {
1764 __free_reserved_page(page);
1765 adjust_managed_page_count(page, 1);
1766 }
1767
1768 static inline void mark_page_reserved(struct page *page)
1769 {
1770 SetPageReserved(page);
1771 adjust_managed_page_count(page, -1);
1772 }
1773
1774 /*
1775 * Default method to free all the __init memory into the buddy system.
1776 * The freed pages will be poisoned with pattern "poison" if it's within
1777 * range [0, UCHAR_MAX].
1778 * Return pages freed into the buddy system.
1779 */
1780 static inline unsigned long free_initmem_default(int poison)
1781 {
1782 extern char __init_begin[], __init_end[];
1783
1784 return free_reserved_area(&__init_begin, &__init_end,
1785 poison, "unused kernel");
1786 }
1787
1788 static inline unsigned long get_num_physpages(void)
1789 {
1790 int nid;
1791 unsigned long phys_pages = 0;
1792
1793 for_each_online_node(nid)
1794 phys_pages += node_present_pages(nid);
1795
1796 return phys_pages;
1797 }
1798
1799 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1800 /*
1801 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1802 * zones, allocate the backing mem_map and account for memory holes in a more
1803 * architecture independent manner. This is a substitute for creating the
1804 * zone_sizes[] and zholes_size[] arrays and passing them to
1805 * free_area_init_node()
1806 *
1807 * An architecture is expected to register range of page frames backed by
1808 * physical memory with memblock_add[_node]() before calling
1809 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1810 * usage, an architecture is expected to do something like
1811 *
1812 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1813 * max_highmem_pfn};
1814 * for_each_valid_physical_page_range()
1815 * memblock_add_node(base, size, nid)
1816 * free_area_init_nodes(max_zone_pfns);
1817 *
1818 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1819 * registered physical page range. Similarly
1820 * sparse_memory_present_with_active_regions() calls memory_present() for
1821 * each range when SPARSEMEM is enabled.
1822 *
1823 * See mm/page_alloc.c for more information on each function exposed by
1824 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1825 */
1826 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1827 unsigned long node_map_pfn_alignment(void);
1828 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1829 unsigned long end_pfn);
1830 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1831 unsigned long end_pfn);
1832 extern void get_pfn_range_for_nid(unsigned int nid,
1833 unsigned long *start_pfn, unsigned long *end_pfn);
1834 extern unsigned long find_min_pfn_with_active_regions(void);
1835 extern void free_bootmem_with_active_regions(int nid,
1836 unsigned long max_low_pfn);
1837 extern void sparse_memory_present_with_active_regions(int nid);
1838
1839 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1840
1841 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1842 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1843 static inline int __early_pfn_to_nid(unsigned long pfn,
1844 struct mminit_pfnnid_cache *state)
1845 {
1846 return 0;
1847 }
1848 #else
1849 /* please see mm/page_alloc.c */
1850 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1851 /* there is a per-arch backend function. */
1852 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1853 struct mminit_pfnnid_cache *state);
1854 #endif
1855
1856 extern void set_dma_reserve(unsigned long new_dma_reserve);
1857 extern void memmap_init_zone(unsigned long, int, unsigned long,
1858 unsigned long, enum memmap_context);
1859 extern void setup_per_zone_wmarks(void);
1860 extern int __meminit init_per_zone_wmark_min(void);
1861 extern void mem_init(void);
1862 extern void __init mmap_init(void);
1863 extern void show_mem(unsigned int flags);
1864 extern void si_meminfo(struct sysinfo * val);
1865 extern void si_meminfo_node(struct sysinfo *val, int nid);
1866
1867 extern __printf(3, 4)
1868 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1869 const char *fmt, ...);
1870
1871 extern void setup_per_cpu_pageset(void);
1872
1873 extern void zone_pcp_update(struct zone *zone);
1874 extern void zone_pcp_reset(struct zone *zone);
1875
1876 /* page_alloc.c */
1877 extern int min_free_kbytes;
1878
1879 /* nommu.c */
1880 extern atomic_long_t mmap_pages_allocated;
1881 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1882
1883 /* interval_tree.c */
1884 void vma_interval_tree_insert(struct vm_area_struct *node,
1885 struct rb_root *root);
1886 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1887 struct vm_area_struct *prev,
1888 struct rb_root *root);
1889 void vma_interval_tree_remove(struct vm_area_struct *node,
1890 struct rb_root *root);
1891 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1892 unsigned long start, unsigned long last);
1893 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1894 unsigned long start, unsigned long last);
1895
1896 #define vma_interval_tree_foreach(vma, root, start, last) \
1897 for (vma = vma_interval_tree_iter_first(root, start, last); \
1898 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1899
1900 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1901 struct rb_root *root);
1902 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1903 struct rb_root *root);
1904 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1905 struct rb_root *root, unsigned long start, unsigned long last);
1906 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1907 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1908 #ifdef CONFIG_DEBUG_VM_RB
1909 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1910 #endif
1911
1912 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1913 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1914 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1915
1916 /* mmap.c */
1917 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1918 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1919 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1920 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1921 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1922 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1923 struct mempolicy *, struct vm_userfaultfd_ctx);
1924 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1925 extern int split_vma(struct mm_struct *,
1926 struct vm_area_struct *, unsigned long addr, int new_below);
1927 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1928 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1929 struct rb_node **, struct rb_node *);
1930 extern void unlink_file_vma(struct vm_area_struct *);
1931 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1932 unsigned long addr, unsigned long len, pgoff_t pgoff,
1933 bool *need_rmap_locks);
1934 extern void exit_mmap(struct mm_struct *);
1935
1936 static inline int check_data_rlimit(unsigned long rlim,
1937 unsigned long new,
1938 unsigned long start,
1939 unsigned long end_data,
1940 unsigned long start_data)
1941 {
1942 if (rlim < RLIM_INFINITY) {
1943 if (((new - start) + (end_data - start_data)) > rlim)
1944 return -ENOSPC;
1945 }
1946
1947 return 0;
1948 }
1949
1950 extern int mm_take_all_locks(struct mm_struct *mm);
1951 extern void mm_drop_all_locks(struct mm_struct *mm);
1952
1953 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1954 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1955
1956 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1957 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1958
1959 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1960 unsigned long addr, unsigned long len,
1961 unsigned long flags,
1962 const struct vm_special_mapping *spec);
1963 /* This is an obsolete alternative to _install_special_mapping. */
1964 extern int install_special_mapping(struct mm_struct *mm,
1965 unsigned long addr, unsigned long len,
1966 unsigned long flags, struct page **pages);
1967
1968 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1969
1970 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1971 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1972 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1973 unsigned long len, unsigned long prot, unsigned long flags,
1974 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1975 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1976
1977 static inline unsigned long
1978 do_mmap_pgoff(struct file *file, unsigned long addr,
1979 unsigned long len, unsigned long prot, unsigned long flags,
1980 unsigned long pgoff, unsigned long *populate)
1981 {
1982 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1983 }
1984
1985 #ifdef CONFIG_MMU
1986 extern int __mm_populate(unsigned long addr, unsigned long len,
1987 int ignore_errors);
1988 static inline void mm_populate(unsigned long addr, unsigned long len)
1989 {
1990 /* Ignore errors */
1991 (void) __mm_populate(addr, len, 1);
1992 }
1993 #else
1994 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1995 #endif
1996
1997 /* These take the mm semaphore themselves */
1998 extern unsigned long vm_brk(unsigned long, unsigned long);
1999 extern int vm_munmap(unsigned long, size_t);
2000 extern unsigned long vm_mmap(struct file *, unsigned long,
2001 unsigned long, unsigned long,
2002 unsigned long, unsigned long);
2003
2004 struct vm_unmapped_area_info {
2005 #define VM_UNMAPPED_AREA_TOPDOWN 1
2006 unsigned long flags;
2007 unsigned long length;
2008 unsigned long low_limit;
2009 unsigned long high_limit;
2010 unsigned long align_mask;
2011 unsigned long align_offset;
2012 };
2013
2014 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2015 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2016
2017 /*
2018 * Search for an unmapped address range.
2019 *
2020 * We are looking for a range that:
2021 * - does not intersect with any VMA;
2022 * - is contained within the [low_limit, high_limit) interval;
2023 * - is at least the desired size.
2024 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2025 */
2026 static inline unsigned long
2027 vm_unmapped_area(struct vm_unmapped_area_info *info)
2028 {
2029 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2030 return unmapped_area_topdown(info);
2031 else
2032 return unmapped_area(info);
2033 }
2034
2035 /* truncate.c */
2036 extern void truncate_inode_pages(struct address_space *, loff_t);
2037 extern void truncate_inode_pages_range(struct address_space *,
2038 loff_t lstart, loff_t lend);
2039 extern void truncate_inode_pages_final(struct address_space *);
2040
2041 /* generic vm_area_ops exported for stackable file systems */
2042 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2043 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2044 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2045
2046 /* mm/page-writeback.c */
2047 int write_one_page(struct page *page, int wait);
2048 void task_dirty_inc(struct task_struct *tsk);
2049
2050 /* readahead.c */
2051 #define VM_MAX_READAHEAD 128 /* kbytes */
2052 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2053
2054 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2055 pgoff_t offset, unsigned long nr_to_read);
2056
2057 void page_cache_sync_readahead(struct address_space *mapping,
2058 struct file_ra_state *ra,
2059 struct file *filp,
2060 pgoff_t offset,
2061 unsigned long size);
2062
2063 void page_cache_async_readahead(struct address_space *mapping,
2064 struct file_ra_state *ra,
2065 struct file *filp,
2066 struct page *pg,
2067 pgoff_t offset,
2068 unsigned long size);
2069
2070 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2071 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2072
2073 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2074 extern int expand_downwards(struct vm_area_struct *vma,
2075 unsigned long address);
2076 #if VM_GROWSUP
2077 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2078 #else
2079 #define expand_upwards(vma, address) (0)
2080 #endif
2081
2082 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2083 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2084 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2085 struct vm_area_struct **pprev);
2086
2087 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2088 NULL if none. Assume start_addr < end_addr. */
2089 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2090 {
2091 struct vm_area_struct * vma = find_vma(mm,start_addr);
2092
2093 if (vma && end_addr <= vma->vm_start)
2094 vma = NULL;
2095 return vma;
2096 }
2097
2098 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2099 {
2100 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2101 }
2102
2103 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2104 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2105 unsigned long vm_start, unsigned long vm_end)
2106 {
2107 struct vm_area_struct *vma = find_vma(mm, vm_start);
2108
2109 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2110 vma = NULL;
2111
2112 return vma;
2113 }
2114
2115 #ifdef CONFIG_MMU
2116 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2117 void vma_set_page_prot(struct vm_area_struct *vma);
2118 #else
2119 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2120 {
2121 return __pgprot(0);
2122 }
2123 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2124 {
2125 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2126 }
2127 #endif
2128
2129 #ifdef CONFIG_NUMA_BALANCING
2130 unsigned long change_prot_numa(struct vm_area_struct *vma,
2131 unsigned long start, unsigned long end);
2132 #endif
2133
2134 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2135 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2136 unsigned long pfn, unsigned long size, pgprot_t);
2137 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2138 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2139 unsigned long pfn);
2140 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2141 unsigned long pfn, pgprot_t pgprot);
2142 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2143 pfn_t pfn);
2144 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2145
2146
2147 struct page *follow_page_mask(struct vm_area_struct *vma,
2148 unsigned long address, unsigned int foll_flags,
2149 unsigned int *page_mask);
2150
2151 static inline struct page *follow_page(struct vm_area_struct *vma,
2152 unsigned long address, unsigned int foll_flags)
2153 {
2154 unsigned int unused_page_mask;
2155 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2156 }
2157
2158 #define FOLL_WRITE 0x01 /* check pte is writable */
2159 #define FOLL_TOUCH 0x02 /* mark page accessed */
2160 #define FOLL_GET 0x04 /* do get_page on page */
2161 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2162 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2163 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2164 * and return without waiting upon it */
2165 #define FOLL_POPULATE 0x40 /* fault in page */
2166 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2167 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2168 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2169 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2170 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2171 #define FOLL_MLOCK 0x1000 /* lock present pages */
2172
2173 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2174 void *data);
2175 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2176 unsigned long size, pte_fn_t fn, void *data);
2177
2178
2179 #ifdef CONFIG_DEBUG_PAGEALLOC
2180 extern bool _debug_pagealloc_enabled;
2181 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2182
2183 static inline bool debug_pagealloc_enabled(void)
2184 {
2185 return _debug_pagealloc_enabled;
2186 }
2187
2188 static inline void
2189 kernel_map_pages(struct page *page, int numpages, int enable)
2190 {
2191 if (!debug_pagealloc_enabled())
2192 return;
2193
2194 __kernel_map_pages(page, numpages, enable);
2195 }
2196 #ifdef CONFIG_HIBERNATION
2197 extern bool kernel_page_present(struct page *page);
2198 #endif /* CONFIG_HIBERNATION */
2199 #else
2200 static inline void
2201 kernel_map_pages(struct page *page, int numpages, int enable) {}
2202 #ifdef CONFIG_HIBERNATION
2203 static inline bool kernel_page_present(struct page *page) { return true; }
2204 #endif /* CONFIG_HIBERNATION */
2205 #endif
2206
2207 #ifdef __HAVE_ARCH_GATE_AREA
2208 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2209 extern int in_gate_area_no_mm(unsigned long addr);
2210 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2211 #else
2212 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2213 {
2214 return NULL;
2215 }
2216 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2217 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2218 {
2219 return 0;
2220 }
2221 #endif /* __HAVE_ARCH_GATE_AREA */
2222
2223 #ifdef CONFIG_SYSCTL
2224 extern int sysctl_drop_caches;
2225 int drop_caches_sysctl_handler(struct ctl_table *, int,
2226 void __user *, size_t *, loff_t *);
2227 #endif
2228
2229 void drop_slab(void);
2230 void drop_slab_node(int nid);
2231
2232 #ifndef CONFIG_MMU
2233 #define randomize_va_space 0
2234 #else
2235 extern int randomize_va_space;
2236 #endif
2237
2238 const char * arch_vma_name(struct vm_area_struct *vma);
2239 void print_vma_addr(char *prefix, unsigned long rip);
2240
2241 void sparse_mem_maps_populate_node(struct page **map_map,
2242 unsigned long pnum_begin,
2243 unsigned long pnum_end,
2244 unsigned long map_count,
2245 int nodeid);
2246
2247 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2248 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2249 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2250 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2251 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2252 void *vmemmap_alloc_block(unsigned long size, int node);
2253 struct vmem_altmap;
2254 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2255 struct vmem_altmap *altmap);
2256 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2257 {
2258 return __vmemmap_alloc_block_buf(size, node, NULL);
2259 }
2260
2261 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2262 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2263 int node);
2264 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2265 void vmemmap_populate_print_last(void);
2266 #ifdef CONFIG_MEMORY_HOTPLUG
2267 void vmemmap_free(unsigned long start, unsigned long end);
2268 #endif
2269 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2270 unsigned long size);
2271
2272 enum mf_flags {
2273 MF_COUNT_INCREASED = 1 << 0,
2274 MF_ACTION_REQUIRED = 1 << 1,
2275 MF_MUST_KILL = 1 << 2,
2276 MF_SOFT_OFFLINE = 1 << 3,
2277 };
2278 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2279 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2280 extern int unpoison_memory(unsigned long pfn);
2281 extern int get_hwpoison_page(struct page *page);
2282 #define put_hwpoison_page(page) put_page(page)
2283 extern int sysctl_memory_failure_early_kill;
2284 extern int sysctl_memory_failure_recovery;
2285 extern void shake_page(struct page *p, int access);
2286 extern atomic_long_t num_poisoned_pages;
2287 extern int soft_offline_page(struct page *page, int flags);
2288
2289
2290 /*
2291 * Error handlers for various types of pages.
2292 */
2293 enum mf_result {
2294 MF_IGNORED, /* Error: cannot be handled */
2295 MF_FAILED, /* Error: handling failed */
2296 MF_DELAYED, /* Will be handled later */
2297 MF_RECOVERED, /* Successfully recovered */
2298 };
2299
2300 enum mf_action_page_type {
2301 MF_MSG_KERNEL,
2302 MF_MSG_KERNEL_HIGH_ORDER,
2303 MF_MSG_SLAB,
2304 MF_MSG_DIFFERENT_COMPOUND,
2305 MF_MSG_POISONED_HUGE,
2306 MF_MSG_HUGE,
2307 MF_MSG_FREE_HUGE,
2308 MF_MSG_UNMAP_FAILED,
2309 MF_MSG_DIRTY_SWAPCACHE,
2310 MF_MSG_CLEAN_SWAPCACHE,
2311 MF_MSG_DIRTY_MLOCKED_LRU,
2312 MF_MSG_CLEAN_MLOCKED_LRU,
2313 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2314 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2315 MF_MSG_DIRTY_LRU,
2316 MF_MSG_CLEAN_LRU,
2317 MF_MSG_TRUNCATED_LRU,
2318 MF_MSG_BUDDY,
2319 MF_MSG_BUDDY_2ND,
2320 MF_MSG_UNKNOWN,
2321 };
2322
2323 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2324 extern void clear_huge_page(struct page *page,
2325 unsigned long addr,
2326 unsigned int pages_per_huge_page);
2327 extern void copy_user_huge_page(struct page *dst, struct page *src,
2328 unsigned long addr, struct vm_area_struct *vma,
2329 unsigned int pages_per_huge_page);
2330 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2331
2332 extern struct page_ext_operations debug_guardpage_ops;
2333 extern struct page_ext_operations page_poisoning_ops;
2334
2335 #ifdef CONFIG_DEBUG_PAGEALLOC
2336 extern unsigned int _debug_guardpage_minorder;
2337 extern bool _debug_guardpage_enabled;
2338
2339 static inline unsigned int debug_guardpage_minorder(void)
2340 {
2341 return _debug_guardpage_minorder;
2342 }
2343
2344 static inline bool debug_guardpage_enabled(void)
2345 {
2346 return _debug_guardpage_enabled;
2347 }
2348
2349 static inline bool page_is_guard(struct page *page)
2350 {
2351 struct page_ext *page_ext;
2352
2353 if (!debug_guardpage_enabled())
2354 return false;
2355
2356 page_ext = lookup_page_ext(page);
2357 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2358 }
2359 #else
2360 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2361 static inline bool debug_guardpage_enabled(void) { return false; }
2362 static inline bool page_is_guard(struct page *page) { return false; }
2363 #endif /* CONFIG_DEBUG_PAGEALLOC */
2364
2365 #if MAX_NUMNODES > 1
2366 void __init setup_nr_node_ids(void);
2367 #else
2368 static inline void setup_nr_node_ids(void) {}
2369 #endif
2370
2371 #endif /* __KERNEL__ */
2372 #endif /* _LINUX_MM_H */
This page took 0.080261 seconds and 5 git commands to generate.