Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec...
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22
23 struct mempolicy;
24 struct anon_vma;
25 struct anon_vma_chain;
26 struct file_ra_state;
27 struct user_struct;
28 struct writeback_control;
29
30 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
31 extern unsigned long max_mapnr;
32
33 static inline void set_max_mapnr(unsigned long limit)
34 {
35 max_mapnr = limit;
36 }
37 #else
38 static inline void set_max_mapnr(unsigned long limit) { }
39 #endif
40
41 extern unsigned long totalram_pages;
42 extern void * high_memory;
43 extern int page_cluster;
44
45 #ifdef CONFIG_SYSCTL
46 extern int sysctl_legacy_va_layout;
47 #else
48 #define sysctl_legacy_va_layout 0
49 #endif
50
51 #include <asm/page.h>
52 #include <asm/pgtable.h>
53 #include <asm/processor.h>
54
55 #ifndef __pa_symbol
56 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
57 #endif
58
59 extern unsigned long sysctl_user_reserve_kbytes;
60 extern unsigned long sysctl_admin_reserve_kbytes;
61
62 extern int sysctl_overcommit_memory;
63 extern int sysctl_overcommit_ratio;
64 extern unsigned long sysctl_overcommit_kbytes;
65
66 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
67 size_t *, loff_t *);
68 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
69 size_t *, loff_t *);
70
71 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
72
73 /* to align the pointer to the (next) page boundary */
74 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
75
76 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
77 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
78
79 /*
80 * Linux kernel virtual memory manager primitives.
81 * The idea being to have a "virtual" mm in the same way
82 * we have a virtual fs - giving a cleaner interface to the
83 * mm details, and allowing different kinds of memory mappings
84 * (from shared memory to executable loading to arbitrary
85 * mmap() functions).
86 */
87
88 extern struct kmem_cache *vm_area_cachep;
89
90 #ifndef CONFIG_MMU
91 extern struct rb_root nommu_region_tree;
92 extern struct rw_semaphore nommu_region_sem;
93
94 extern unsigned int kobjsize(const void *objp);
95 #endif
96
97 /*
98 * vm_flags in vm_area_struct, see mm_types.h.
99 */
100 #define VM_NONE 0x00000000
101
102 #define VM_READ 0x00000001 /* currently active flags */
103 #define VM_WRITE 0x00000002
104 #define VM_EXEC 0x00000004
105 #define VM_SHARED 0x00000008
106
107 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
108 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
109 #define VM_MAYWRITE 0x00000020
110 #define VM_MAYEXEC 0x00000040
111 #define VM_MAYSHARE 0x00000080
112
113 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
114 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
115 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
116
117 #define VM_LOCKED 0x00002000
118 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
119
120 /* Used by sys_madvise() */
121 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
122 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
123
124 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
125 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
126 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
127 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
128 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
129 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
130 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
131 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
132
133 #ifdef CONFIG_MEM_SOFT_DIRTY
134 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
135 #else
136 # define VM_SOFTDIRTY 0
137 #endif
138
139 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
140 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
141 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
142 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
143
144 #if defined(CONFIG_X86)
145 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
146 #elif defined(CONFIG_PPC)
147 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
148 #elif defined(CONFIG_PARISC)
149 # define VM_GROWSUP VM_ARCH_1
150 #elif defined(CONFIG_METAG)
151 # define VM_GROWSUP VM_ARCH_1
152 #elif defined(CONFIG_IA64)
153 # define VM_GROWSUP VM_ARCH_1
154 #elif !defined(CONFIG_MMU)
155 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
156 #endif
157
158 #ifndef VM_GROWSUP
159 # define VM_GROWSUP VM_NONE
160 #endif
161
162 /* Bits set in the VMA until the stack is in its final location */
163 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
164
165 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
166 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
167 #endif
168
169 #ifdef CONFIG_STACK_GROWSUP
170 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
171 #else
172 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
173 #endif
174
175 /*
176 * Special vmas that are non-mergable, non-mlock()able.
177 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
178 */
179 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
180
181 /* This mask defines which mm->def_flags a process can inherit its parent */
182 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
183
184 /*
185 * mapping from the currently active vm_flags protection bits (the
186 * low four bits) to a page protection mask..
187 */
188 extern pgprot_t protection_map[16];
189
190 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
191 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
192 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
193 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
194 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
195 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
196 #define FAULT_FLAG_TRIED 0x40 /* second try */
197 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
198
199 /*
200 * vm_fault is filled by the the pagefault handler and passed to the vma's
201 * ->fault function. The vma's ->fault is responsible for returning a bitmask
202 * of VM_FAULT_xxx flags that give details about how the fault was handled.
203 *
204 * pgoff should be used in favour of virtual_address, if possible. If pgoff
205 * is used, one may implement ->remap_pages to get nonlinear mapping support.
206 */
207 struct vm_fault {
208 unsigned int flags; /* FAULT_FLAG_xxx flags */
209 pgoff_t pgoff; /* Logical page offset based on vma */
210 void __user *virtual_address; /* Faulting virtual address */
211
212 struct page *page; /* ->fault handlers should return a
213 * page here, unless VM_FAULT_NOPAGE
214 * is set (which is also implied by
215 * VM_FAULT_ERROR).
216 */
217 /* for ->map_pages() only */
218 pgoff_t max_pgoff; /* map pages for offset from pgoff till
219 * max_pgoff inclusive */
220 pte_t *pte; /* pte entry associated with ->pgoff */
221 };
222
223 /*
224 * These are the virtual MM functions - opening of an area, closing and
225 * unmapping it (needed to keep files on disk up-to-date etc), pointer
226 * to the functions called when a no-page or a wp-page exception occurs.
227 */
228 struct vm_operations_struct {
229 void (*open)(struct vm_area_struct * area);
230 void (*close)(struct vm_area_struct * area);
231 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
232 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
233
234 /* notification that a previously read-only page is about to become
235 * writable, if an error is returned it will cause a SIGBUS */
236 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
237
238 /* called by access_process_vm when get_user_pages() fails, typically
239 * for use by special VMAs that can switch between memory and hardware
240 */
241 int (*access)(struct vm_area_struct *vma, unsigned long addr,
242 void *buf, int len, int write);
243
244 /* Called by the /proc/PID/maps code to ask the vma whether it
245 * has a special name. Returning non-NULL will also cause this
246 * vma to be dumped unconditionally. */
247 const char *(*name)(struct vm_area_struct *vma);
248
249 #ifdef CONFIG_NUMA
250 /*
251 * set_policy() op must add a reference to any non-NULL @new mempolicy
252 * to hold the policy upon return. Caller should pass NULL @new to
253 * remove a policy and fall back to surrounding context--i.e. do not
254 * install a MPOL_DEFAULT policy, nor the task or system default
255 * mempolicy.
256 */
257 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
258
259 /*
260 * get_policy() op must add reference [mpol_get()] to any policy at
261 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
262 * in mm/mempolicy.c will do this automatically.
263 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
264 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
265 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
266 * must return NULL--i.e., do not "fallback" to task or system default
267 * policy.
268 */
269 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
270 unsigned long addr);
271 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
272 const nodemask_t *to, unsigned long flags);
273 #endif
274 /* called by sys_remap_file_pages() to populate non-linear mapping */
275 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
276 unsigned long size, pgoff_t pgoff);
277 };
278
279 struct mmu_gather;
280 struct inode;
281
282 #define page_private(page) ((page)->private)
283 #define set_page_private(page, v) ((page)->private = (v))
284
285 /* It's valid only if the page is free path or free_list */
286 static inline void set_freepage_migratetype(struct page *page, int migratetype)
287 {
288 page->index = migratetype;
289 }
290
291 /* It's valid only if the page is free path or free_list */
292 static inline int get_freepage_migratetype(struct page *page)
293 {
294 return page->index;
295 }
296
297 /*
298 * FIXME: take this include out, include page-flags.h in
299 * files which need it (119 of them)
300 */
301 #include <linux/page-flags.h>
302 #include <linux/huge_mm.h>
303
304 /*
305 * Methods to modify the page usage count.
306 *
307 * What counts for a page usage:
308 * - cache mapping (page->mapping)
309 * - private data (page->private)
310 * - page mapped in a task's page tables, each mapping
311 * is counted separately
312 *
313 * Also, many kernel routines increase the page count before a critical
314 * routine so they can be sure the page doesn't go away from under them.
315 */
316
317 /*
318 * Drop a ref, return true if the refcount fell to zero (the page has no users)
319 */
320 static inline int put_page_testzero(struct page *page)
321 {
322 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
323 return atomic_dec_and_test(&page->_count);
324 }
325
326 /*
327 * Try to grab a ref unless the page has a refcount of zero, return false if
328 * that is the case.
329 * This can be called when MMU is off so it must not access
330 * any of the virtual mappings.
331 */
332 static inline int get_page_unless_zero(struct page *page)
333 {
334 return atomic_inc_not_zero(&page->_count);
335 }
336
337 /*
338 * Try to drop a ref unless the page has a refcount of one, return false if
339 * that is the case.
340 * This is to make sure that the refcount won't become zero after this drop.
341 * This can be called when MMU is off so it must not access
342 * any of the virtual mappings.
343 */
344 static inline int put_page_unless_one(struct page *page)
345 {
346 return atomic_add_unless(&page->_count, -1, 1);
347 }
348
349 extern int page_is_ram(unsigned long pfn);
350 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
351
352 /* Support for virtually mapped pages */
353 struct page *vmalloc_to_page(const void *addr);
354 unsigned long vmalloc_to_pfn(const void *addr);
355
356 /*
357 * Determine if an address is within the vmalloc range
358 *
359 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
360 * is no special casing required.
361 */
362 static inline int is_vmalloc_addr(const void *x)
363 {
364 #ifdef CONFIG_MMU
365 unsigned long addr = (unsigned long)x;
366
367 return addr >= VMALLOC_START && addr < VMALLOC_END;
368 #else
369 return 0;
370 #endif
371 }
372 #ifdef CONFIG_MMU
373 extern int is_vmalloc_or_module_addr(const void *x);
374 #else
375 static inline int is_vmalloc_or_module_addr(const void *x)
376 {
377 return 0;
378 }
379 #endif
380
381 extern void kvfree(const void *addr);
382
383 static inline void compound_lock(struct page *page)
384 {
385 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
386 VM_BUG_ON_PAGE(PageSlab(page), page);
387 bit_spin_lock(PG_compound_lock, &page->flags);
388 #endif
389 }
390
391 static inline void compound_unlock(struct page *page)
392 {
393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
394 VM_BUG_ON_PAGE(PageSlab(page), page);
395 bit_spin_unlock(PG_compound_lock, &page->flags);
396 #endif
397 }
398
399 static inline unsigned long compound_lock_irqsave(struct page *page)
400 {
401 unsigned long uninitialized_var(flags);
402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
403 local_irq_save(flags);
404 compound_lock(page);
405 #endif
406 return flags;
407 }
408
409 static inline void compound_unlock_irqrestore(struct page *page,
410 unsigned long flags)
411 {
412 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
413 compound_unlock(page);
414 local_irq_restore(flags);
415 #endif
416 }
417
418 static inline struct page *compound_head_by_tail(struct page *tail)
419 {
420 struct page *head = tail->first_page;
421
422 /*
423 * page->first_page may be a dangling pointer to an old
424 * compound page, so recheck that it is still a tail
425 * page before returning.
426 */
427 smp_rmb();
428 if (likely(PageTail(tail)))
429 return head;
430 return tail;
431 }
432
433 static inline struct page *compound_head(struct page *page)
434 {
435 if (unlikely(PageTail(page)))
436 return compound_head_by_tail(page);
437 return page;
438 }
439
440 /*
441 * The atomic page->_mapcount, starts from -1: so that transitions
442 * both from it and to it can be tracked, using atomic_inc_and_test
443 * and atomic_add_negative(-1).
444 */
445 static inline void page_mapcount_reset(struct page *page)
446 {
447 atomic_set(&(page)->_mapcount, -1);
448 }
449
450 static inline int page_mapcount(struct page *page)
451 {
452 return atomic_read(&(page)->_mapcount) + 1;
453 }
454
455 static inline int page_count(struct page *page)
456 {
457 return atomic_read(&compound_head(page)->_count);
458 }
459
460 #ifdef CONFIG_HUGETLB_PAGE
461 extern int PageHeadHuge(struct page *page_head);
462 #else /* CONFIG_HUGETLB_PAGE */
463 static inline int PageHeadHuge(struct page *page_head)
464 {
465 return 0;
466 }
467 #endif /* CONFIG_HUGETLB_PAGE */
468
469 static inline bool __compound_tail_refcounted(struct page *page)
470 {
471 return !PageSlab(page) && !PageHeadHuge(page);
472 }
473
474 /*
475 * This takes a head page as parameter and tells if the
476 * tail page reference counting can be skipped.
477 *
478 * For this to be safe, PageSlab and PageHeadHuge must remain true on
479 * any given page where they return true here, until all tail pins
480 * have been released.
481 */
482 static inline bool compound_tail_refcounted(struct page *page)
483 {
484 VM_BUG_ON_PAGE(!PageHead(page), page);
485 return __compound_tail_refcounted(page);
486 }
487
488 static inline void get_huge_page_tail(struct page *page)
489 {
490 /*
491 * __split_huge_page_refcount() cannot run from under us.
492 */
493 VM_BUG_ON_PAGE(!PageTail(page), page);
494 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
495 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
496 if (compound_tail_refcounted(page->first_page))
497 atomic_inc(&page->_mapcount);
498 }
499
500 extern bool __get_page_tail(struct page *page);
501
502 static inline void get_page(struct page *page)
503 {
504 if (unlikely(PageTail(page)))
505 if (likely(__get_page_tail(page)))
506 return;
507 /*
508 * Getting a normal page or the head of a compound page
509 * requires to already have an elevated page->_count.
510 */
511 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
512 atomic_inc(&page->_count);
513 }
514
515 static inline struct page *virt_to_head_page(const void *x)
516 {
517 struct page *page = virt_to_page(x);
518 return compound_head(page);
519 }
520
521 /*
522 * Setup the page count before being freed into the page allocator for
523 * the first time (boot or memory hotplug)
524 */
525 static inline void init_page_count(struct page *page)
526 {
527 atomic_set(&page->_count, 1);
528 }
529
530 /*
531 * PageBuddy() indicate that the page is free and in the buddy system
532 * (see mm/page_alloc.c).
533 *
534 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
535 * -2 so that an underflow of the page_mapcount() won't be mistaken
536 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
537 * efficiently by most CPU architectures.
538 */
539 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
540
541 static inline int PageBuddy(struct page *page)
542 {
543 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
544 }
545
546 static inline void __SetPageBuddy(struct page *page)
547 {
548 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
549 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
550 }
551
552 static inline void __ClearPageBuddy(struct page *page)
553 {
554 VM_BUG_ON_PAGE(!PageBuddy(page), page);
555 atomic_set(&page->_mapcount, -1);
556 }
557
558 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
559
560 static inline int PageBalloon(struct page *page)
561 {
562 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
563 }
564
565 static inline void __SetPageBalloon(struct page *page)
566 {
567 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
568 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
569 }
570
571 static inline void __ClearPageBalloon(struct page *page)
572 {
573 VM_BUG_ON_PAGE(!PageBalloon(page), page);
574 atomic_set(&page->_mapcount, -1);
575 }
576
577 void put_page(struct page *page);
578 void put_pages_list(struct list_head *pages);
579
580 void split_page(struct page *page, unsigned int order);
581 int split_free_page(struct page *page);
582
583 /*
584 * Compound pages have a destructor function. Provide a
585 * prototype for that function and accessor functions.
586 * These are _only_ valid on the head of a PG_compound page.
587 */
588 typedef void compound_page_dtor(struct page *);
589
590 static inline void set_compound_page_dtor(struct page *page,
591 compound_page_dtor *dtor)
592 {
593 page[1].lru.next = (void *)dtor;
594 }
595
596 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
597 {
598 return (compound_page_dtor *)page[1].lru.next;
599 }
600
601 static inline int compound_order(struct page *page)
602 {
603 if (!PageHead(page))
604 return 0;
605 return (unsigned long)page[1].lru.prev;
606 }
607
608 static inline void set_compound_order(struct page *page, unsigned long order)
609 {
610 page[1].lru.prev = (void *)order;
611 }
612
613 #ifdef CONFIG_MMU
614 /*
615 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
616 * servicing faults for write access. In the normal case, do always want
617 * pte_mkwrite. But get_user_pages can cause write faults for mappings
618 * that do not have writing enabled, when used by access_process_vm.
619 */
620 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
621 {
622 if (likely(vma->vm_flags & VM_WRITE))
623 pte = pte_mkwrite(pte);
624 return pte;
625 }
626
627 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
628 struct page *page, pte_t *pte, bool write, bool anon);
629 #endif
630
631 /*
632 * Multiple processes may "see" the same page. E.g. for untouched
633 * mappings of /dev/null, all processes see the same page full of
634 * zeroes, and text pages of executables and shared libraries have
635 * only one copy in memory, at most, normally.
636 *
637 * For the non-reserved pages, page_count(page) denotes a reference count.
638 * page_count() == 0 means the page is free. page->lru is then used for
639 * freelist management in the buddy allocator.
640 * page_count() > 0 means the page has been allocated.
641 *
642 * Pages are allocated by the slab allocator in order to provide memory
643 * to kmalloc and kmem_cache_alloc. In this case, the management of the
644 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
645 * unless a particular usage is carefully commented. (the responsibility of
646 * freeing the kmalloc memory is the caller's, of course).
647 *
648 * A page may be used by anyone else who does a __get_free_page().
649 * In this case, page_count still tracks the references, and should only
650 * be used through the normal accessor functions. The top bits of page->flags
651 * and page->virtual store page management information, but all other fields
652 * are unused and could be used privately, carefully. The management of this
653 * page is the responsibility of the one who allocated it, and those who have
654 * subsequently been given references to it.
655 *
656 * The other pages (we may call them "pagecache pages") are completely
657 * managed by the Linux memory manager: I/O, buffers, swapping etc.
658 * The following discussion applies only to them.
659 *
660 * A pagecache page contains an opaque `private' member, which belongs to the
661 * page's address_space. Usually, this is the address of a circular list of
662 * the page's disk buffers. PG_private must be set to tell the VM to call
663 * into the filesystem to release these pages.
664 *
665 * A page may belong to an inode's memory mapping. In this case, page->mapping
666 * is the pointer to the inode, and page->index is the file offset of the page,
667 * in units of PAGE_CACHE_SIZE.
668 *
669 * If pagecache pages are not associated with an inode, they are said to be
670 * anonymous pages. These may become associated with the swapcache, and in that
671 * case PG_swapcache is set, and page->private is an offset into the swapcache.
672 *
673 * In either case (swapcache or inode backed), the pagecache itself holds one
674 * reference to the page. Setting PG_private should also increment the
675 * refcount. The each user mapping also has a reference to the page.
676 *
677 * The pagecache pages are stored in a per-mapping radix tree, which is
678 * rooted at mapping->page_tree, and indexed by offset.
679 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
680 * lists, we instead now tag pages as dirty/writeback in the radix tree.
681 *
682 * All pagecache pages may be subject to I/O:
683 * - inode pages may need to be read from disk,
684 * - inode pages which have been modified and are MAP_SHARED may need
685 * to be written back to the inode on disk,
686 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
687 * modified may need to be swapped out to swap space and (later) to be read
688 * back into memory.
689 */
690
691 /*
692 * The zone field is never updated after free_area_init_core()
693 * sets it, so none of the operations on it need to be atomic.
694 */
695
696 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
697 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
698 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
699 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
700 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
701
702 /*
703 * Define the bit shifts to access each section. For non-existent
704 * sections we define the shift as 0; that plus a 0 mask ensures
705 * the compiler will optimise away reference to them.
706 */
707 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
708 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
709 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
710 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
711
712 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
713 #ifdef NODE_NOT_IN_PAGE_FLAGS
714 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
715 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
716 SECTIONS_PGOFF : ZONES_PGOFF)
717 #else
718 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
719 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
720 NODES_PGOFF : ZONES_PGOFF)
721 #endif
722
723 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
724
725 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
726 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
727 #endif
728
729 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
730 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
731 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
732 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
733 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
734
735 static inline enum zone_type page_zonenum(const struct page *page)
736 {
737 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
738 }
739
740 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
741 #define SECTION_IN_PAGE_FLAGS
742 #endif
743
744 /*
745 * The identification function is mainly used by the buddy allocator for
746 * determining if two pages could be buddies. We are not really identifying
747 * the zone since we could be using the section number id if we do not have
748 * node id available in page flags.
749 * We only guarantee that it will return the same value for two combinable
750 * pages in a zone.
751 */
752 static inline int page_zone_id(struct page *page)
753 {
754 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
755 }
756
757 static inline int zone_to_nid(struct zone *zone)
758 {
759 #ifdef CONFIG_NUMA
760 return zone->node;
761 #else
762 return 0;
763 #endif
764 }
765
766 #ifdef NODE_NOT_IN_PAGE_FLAGS
767 extern int page_to_nid(const struct page *page);
768 #else
769 static inline int page_to_nid(const struct page *page)
770 {
771 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
772 }
773 #endif
774
775 #ifdef CONFIG_NUMA_BALANCING
776 static inline int cpu_pid_to_cpupid(int cpu, int pid)
777 {
778 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
779 }
780
781 static inline int cpupid_to_pid(int cpupid)
782 {
783 return cpupid & LAST__PID_MASK;
784 }
785
786 static inline int cpupid_to_cpu(int cpupid)
787 {
788 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
789 }
790
791 static inline int cpupid_to_nid(int cpupid)
792 {
793 return cpu_to_node(cpupid_to_cpu(cpupid));
794 }
795
796 static inline bool cpupid_pid_unset(int cpupid)
797 {
798 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
799 }
800
801 static inline bool cpupid_cpu_unset(int cpupid)
802 {
803 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
804 }
805
806 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
807 {
808 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
809 }
810
811 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
812 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
813 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
814 {
815 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
816 }
817
818 static inline int page_cpupid_last(struct page *page)
819 {
820 return page->_last_cpupid;
821 }
822 static inline void page_cpupid_reset_last(struct page *page)
823 {
824 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
825 }
826 #else
827 static inline int page_cpupid_last(struct page *page)
828 {
829 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
830 }
831
832 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
833
834 static inline void page_cpupid_reset_last(struct page *page)
835 {
836 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
837
838 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
839 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
840 }
841 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
842 #else /* !CONFIG_NUMA_BALANCING */
843 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
844 {
845 return page_to_nid(page); /* XXX */
846 }
847
848 static inline int page_cpupid_last(struct page *page)
849 {
850 return page_to_nid(page); /* XXX */
851 }
852
853 static inline int cpupid_to_nid(int cpupid)
854 {
855 return -1;
856 }
857
858 static inline int cpupid_to_pid(int cpupid)
859 {
860 return -1;
861 }
862
863 static inline int cpupid_to_cpu(int cpupid)
864 {
865 return -1;
866 }
867
868 static inline int cpu_pid_to_cpupid(int nid, int pid)
869 {
870 return -1;
871 }
872
873 static inline bool cpupid_pid_unset(int cpupid)
874 {
875 return 1;
876 }
877
878 static inline void page_cpupid_reset_last(struct page *page)
879 {
880 }
881
882 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
883 {
884 return false;
885 }
886 #endif /* CONFIG_NUMA_BALANCING */
887
888 static inline struct zone *page_zone(const struct page *page)
889 {
890 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
891 }
892
893 #ifdef SECTION_IN_PAGE_FLAGS
894 static inline void set_page_section(struct page *page, unsigned long section)
895 {
896 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
897 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
898 }
899
900 static inline unsigned long page_to_section(const struct page *page)
901 {
902 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
903 }
904 #endif
905
906 static inline void set_page_zone(struct page *page, enum zone_type zone)
907 {
908 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
909 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
910 }
911
912 static inline void set_page_node(struct page *page, unsigned long node)
913 {
914 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
915 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
916 }
917
918 static inline void set_page_links(struct page *page, enum zone_type zone,
919 unsigned long node, unsigned long pfn)
920 {
921 set_page_zone(page, zone);
922 set_page_node(page, node);
923 #ifdef SECTION_IN_PAGE_FLAGS
924 set_page_section(page, pfn_to_section_nr(pfn));
925 #endif
926 }
927
928 /*
929 * Some inline functions in vmstat.h depend on page_zone()
930 */
931 #include <linux/vmstat.h>
932
933 static __always_inline void *lowmem_page_address(const struct page *page)
934 {
935 return __va(PFN_PHYS(page_to_pfn(page)));
936 }
937
938 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
939 #define HASHED_PAGE_VIRTUAL
940 #endif
941
942 #if defined(WANT_PAGE_VIRTUAL)
943 static inline void *page_address(const struct page *page)
944 {
945 return page->virtual;
946 }
947 static inline void set_page_address(struct page *page, void *address)
948 {
949 page->virtual = address;
950 }
951 #define page_address_init() do { } while(0)
952 #endif
953
954 #if defined(HASHED_PAGE_VIRTUAL)
955 void *page_address(const struct page *page);
956 void set_page_address(struct page *page, void *virtual);
957 void page_address_init(void);
958 #endif
959
960 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
961 #define page_address(page) lowmem_page_address(page)
962 #define set_page_address(page, address) do { } while(0)
963 #define page_address_init() do { } while(0)
964 #endif
965
966 /*
967 * On an anonymous page mapped into a user virtual memory area,
968 * page->mapping points to its anon_vma, not to a struct address_space;
969 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
970 *
971 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
972 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
973 * and then page->mapping points, not to an anon_vma, but to a private
974 * structure which KSM associates with that merged page. See ksm.h.
975 *
976 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
977 *
978 * Please note that, confusingly, "page_mapping" refers to the inode
979 * address_space which maps the page from disk; whereas "page_mapped"
980 * refers to user virtual address space into which the page is mapped.
981 */
982 #define PAGE_MAPPING_ANON 1
983 #define PAGE_MAPPING_KSM 2
984 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
985
986 extern struct address_space *page_mapping(struct page *page);
987
988 /* Neutral page->mapping pointer to address_space or anon_vma or other */
989 static inline void *page_rmapping(struct page *page)
990 {
991 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
992 }
993
994 extern struct address_space *__page_file_mapping(struct page *);
995
996 static inline
997 struct address_space *page_file_mapping(struct page *page)
998 {
999 if (unlikely(PageSwapCache(page)))
1000 return __page_file_mapping(page);
1001
1002 return page->mapping;
1003 }
1004
1005 static inline int PageAnon(struct page *page)
1006 {
1007 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1008 }
1009
1010 /*
1011 * Return the pagecache index of the passed page. Regular pagecache pages
1012 * use ->index whereas swapcache pages use ->private
1013 */
1014 static inline pgoff_t page_index(struct page *page)
1015 {
1016 if (unlikely(PageSwapCache(page)))
1017 return page_private(page);
1018 return page->index;
1019 }
1020
1021 extern pgoff_t __page_file_index(struct page *page);
1022
1023 /*
1024 * Return the file index of the page. Regular pagecache pages use ->index
1025 * whereas swapcache pages use swp_offset(->private)
1026 */
1027 static inline pgoff_t page_file_index(struct page *page)
1028 {
1029 if (unlikely(PageSwapCache(page)))
1030 return __page_file_index(page);
1031
1032 return page->index;
1033 }
1034
1035 /*
1036 * Return true if this page is mapped into pagetables.
1037 */
1038 static inline int page_mapped(struct page *page)
1039 {
1040 return atomic_read(&(page)->_mapcount) >= 0;
1041 }
1042
1043 /*
1044 * Different kinds of faults, as returned by handle_mm_fault().
1045 * Used to decide whether a process gets delivered SIGBUS or
1046 * just gets major/minor fault counters bumped up.
1047 */
1048
1049 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1050
1051 #define VM_FAULT_OOM 0x0001
1052 #define VM_FAULT_SIGBUS 0x0002
1053 #define VM_FAULT_MAJOR 0x0004
1054 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1055 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1056 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1057
1058 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1059 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1060 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1061 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1062
1063 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1064
1065 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1066 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1067
1068 /* Encode hstate index for a hwpoisoned large page */
1069 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1070 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1071
1072 /*
1073 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1074 */
1075 extern void pagefault_out_of_memory(void);
1076
1077 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1078
1079 /*
1080 * Flags passed to show_mem() and show_free_areas() to suppress output in
1081 * various contexts.
1082 */
1083 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1084
1085 extern void show_free_areas(unsigned int flags);
1086 extern bool skip_free_areas_node(unsigned int flags, int nid);
1087
1088 int shmem_zero_setup(struct vm_area_struct *);
1089 #ifdef CONFIG_SHMEM
1090 bool shmem_mapping(struct address_space *mapping);
1091 #else
1092 static inline bool shmem_mapping(struct address_space *mapping)
1093 {
1094 return false;
1095 }
1096 #endif
1097
1098 extern int can_do_mlock(void);
1099 extern int user_shm_lock(size_t, struct user_struct *);
1100 extern void user_shm_unlock(size_t, struct user_struct *);
1101
1102 /*
1103 * Parameter block passed down to zap_pte_range in exceptional cases.
1104 */
1105 struct zap_details {
1106 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1107 struct address_space *check_mapping; /* Check page->mapping if set */
1108 pgoff_t first_index; /* Lowest page->index to unmap */
1109 pgoff_t last_index; /* Highest page->index to unmap */
1110 };
1111
1112 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1113 pte_t pte);
1114
1115 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1116 unsigned long size);
1117 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1118 unsigned long size, struct zap_details *);
1119 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1120 unsigned long start, unsigned long end);
1121
1122 /**
1123 * mm_walk - callbacks for walk_page_range
1124 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1125 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1126 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1127 * this handler is required to be able to handle
1128 * pmd_trans_huge() pmds. They may simply choose to
1129 * split_huge_page() instead of handling it explicitly.
1130 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1131 * @pte_hole: if set, called for each hole at all levels
1132 * @hugetlb_entry: if set, called for each hugetlb entry
1133 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1134 * is used.
1135 *
1136 * (see walk_page_range for more details)
1137 */
1138 struct mm_walk {
1139 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1140 unsigned long next, struct mm_walk *walk);
1141 int (*pud_entry)(pud_t *pud, unsigned long addr,
1142 unsigned long next, struct mm_walk *walk);
1143 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1144 unsigned long next, struct mm_walk *walk);
1145 int (*pte_entry)(pte_t *pte, unsigned long addr,
1146 unsigned long next, struct mm_walk *walk);
1147 int (*pte_hole)(unsigned long addr, unsigned long next,
1148 struct mm_walk *walk);
1149 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1150 unsigned long addr, unsigned long next,
1151 struct mm_walk *walk);
1152 struct mm_struct *mm;
1153 void *private;
1154 };
1155
1156 int walk_page_range(unsigned long addr, unsigned long end,
1157 struct mm_walk *walk);
1158 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1159 unsigned long end, unsigned long floor, unsigned long ceiling);
1160 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1161 struct vm_area_struct *vma);
1162 void unmap_mapping_range(struct address_space *mapping,
1163 loff_t const holebegin, loff_t const holelen, int even_cows);
1164 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1165 unsigned long *pfn);
1166 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1167 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1168 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1169 void *buf, int len, int write);
1170
1171 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1172 loff_t const holebegin, loff_t const holelen)
1173 {
1174 unmap_mapping_range(mapping, holebegin, holelen, 0);
1175 }
1176
1177 extern void truncate_pagecache(struct inode *inode, loff_t new);
1178 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1179 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1180 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1181 int truncate_inode_page(struct address_space *mapping, struct page *page);
1182 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1183 int invalidate_inode_page(struct page *page);
1184
1185 #ifdef CONFIG_MMU
1186 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1187 unsigned long address, unsigned int flags);
1188 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1189 unsigned long address, unsigned int fault_flags);
1190 #else
1191 static inline int handle_mm_fault(struct mm_struct *mm,
1192 struct vm_area_struct *vma, unsigned long address,
1193 unsigned int flags)
1194 {
1195 /* should never happen if there's no MMU */
1196 BUG();
1197 return VM_FAULT_SIGBUS;
1198 }
1199 static inline int fixup_user_fault(struct task_struct *tsk,
1200 struct mm_struct *mm, unsigned long address,
1201 unsigned int fault_flags)
1202 {
1203 /* should never happen if there's no MMU */
1204 BUG();
1205 return -EFAULT;
1206 }
1207 #endif
1208
1209 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1210 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1211 void *buf, int len, int write);
1212
1213 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1214 unsigned long start, unsigned long nr_pages,
1215 unsigned int foll_flags, struct page **pages,
1216 struct vm_area_struct **vmas, int *nonblocking);
1217 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1218 unsigned long start, unsigned long nr_pages,
1219 int write, int force, struct page **pages,
1220 struct vm_area_struct **vmas);
1221 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1222 struct page **pages);
1223 struct kvec;
1224 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1225 struct page **pages);
1226 int get_kernel_page(unsigned long start, int write, struct page **pages);
1227 struct page *get_dump_page(unsigned long addr);
1228
1229 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1230 extern void do_invalidatepage(struct page *page, unsigned int offset,
1231 unsigned int length);
1232
1233 int __set_page_dirty_nobuffers(struct page *page);
1234 int __set_page_dirty_no_writeback(struct page *page);
1235 int redirty_page_for_writepage(struct writeback_control *wbc,
1236 struct page *page);
1237 void account_page_dirtied(struct page *page, struct address_space *mapping);
1238 int set_page_dirty(struct page *page);
1239 int set_page_dirty_lock(struct page *page);
1240 int clear_page_dirty_for_io(struct page *page);
1241 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1242
1243 /* Is the vma a continuation of the stack vma above it? */
1244 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1245 {
1246 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1247 }
1248
1249 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1250 unsigned long addr)
1251 {
1252 return (vma->vm_flags & VM_GROWSDOWN) &&
1253 (vma->vm_start == addr) &&
1254 !vma_growsdown(vma->vm_prev, addr);
1255 }
1256
1257 /* Is the vma a continuation of the stack vma below it? */
1258 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1259 {
1260 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1261 }
1262
1263 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1264 unsigned long addr)
1265 {
1266 return (vma->vm_flags & VM_GROWSUP) &&
1267 (vma->vm_end == addr) &&
1268 !vma_growsup(vma->vm_next, addr);
1269 }
1270
1271 extern struct task_struct *task_of_stack(struct task_struct *task,
1272 struct vm_area_struct *vma, bool in_group);
1273
1274 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1275 unsigned long old_addr, struct vm_area_struct *new_vma,
1276 unsigned long new_addr, unsigned long len,
1277 bool need_rmap_locks);
1278 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1279 unsigned long end, pgprot_t newprot,
1280 int dirty_accountable, int prot_numa);
1281 extern int mprotect_fixup(struct vm_area_struct *vma,
1282 struct vm_area_struct **pprev, unsigned long start,
1283 unsigned long end, unsigned long newflags);
1284
1285 /*
1286 * doesn't attempt to fault and will return short.
1287 */
1288 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1289 struct page **pages);
1290 /*
1291 * per-process(per-mm_struct) statistics.
1292 */
1293 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1294 {
1295 long val = atomic_long_read(&mm->rss_stat.count[member]);
1296
1297 #ifdef SPLIT_RSS_COUNTING
1298 /*
1299 * counter is updated in asynchronous manner and may go to minus.
1300 * But it's never be expected number for users.
1301 */
1302 if (val < 0)
1303 val = 0;
1304 #endif
1305 return (unsigned long)val;
1306 }
1307
1308 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1309 {
1310 atomic_long_add(value, &mm->rss_stat.count[member]);
1311 }
1312
1313 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1314 {
1315 atomic_long_inc(&mm->rss_stat.count[member]);
1316 }
1317
1318 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1319 {
1320 atomic_long_dec(&mm->rss_stat.count[member]);
1321 }
1322
1323 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1324 {
1325 return get_mm_counter(mm, MM_FILEPAGES) +
1326 get_mm_counter(mm, MM_ANONPAGES);
1327 }
1328
1329 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1330 {
1331 return max(mm->hiwater_rss, get_mm_rss(mm));
1332 }
1333
1334 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1335 {
1336 return max(mm->hiwater_vm, mm->total_vm);
1337 }
1338
1339 static inline void update_hiwater_rss(struct mm_struct *mm)
1340 {
1341 unsigned long _rss = get_mm_rss(mm);
1342
1343 if ((mm)->hiwater_rss < _rss)
1344 (mm)->hiwater_rss = _rss;
1345 }
1346
1347 static inline void update_hiwater_vm(struct mm_struct *mm)
1348 {
1349 if (mm->hiwater_vm < mm->total_vm)
1350 mm->hiwater_vm = mm->total_vm;
1351 }
1352
1353 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1354 struct mm_struct *mm)
1355 {
1356 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1357
1358 if (*maxrss < hiwater_rss)
1359 *maxrss = hiwater_rss;
1360 }
1361
1362 #if defined(SPLIT_RSS_COUNTING)
1363 void sync_mm_rss(struct mm_struct *mm);
1364 #else
1365 static inline void sync_mm_rss(struct mm_struct *mm)
1366 {
1367 }
1368 #endif
1369
1370 int vma_wants_writenotify(struct vm_area_struct *vma);
1371
1372 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1373 spinlock_t **ptl);
1374 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1375 spinlock_t **ptl)
1376 {
1377 pte_t *ptep;
1378 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1379 return ptep;
1380 }
1381
1382 #ifdef __PAGETABLE_PUD_FOLDED
1383 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1384 unsigned long address)
1385 {
1386 return 0;
1387 }
1388 #else
1389 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1390 #endif
1391
1392 #ifdef __PAGETABLE_PMD_FOLDED
1393 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1394 unsigned long address)
1395 {
1396 return 0;
1397 }
1398 #else
1399 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1400 #endif
1401
1402 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1403 pmd_t *pmd, unsigned long address);
1404 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1405
1406 /*
1407 * The following ifdef needed to get the 4level-fixup.h header to work.
1408 * Remove it when 4level-fixup.h has been removed.
1409 */
1410 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1411 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1412 {
1413 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1414 NULL: pud_offset(pgd, address);
1415 }
1416
1417 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1418 {
1419 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1420 NULL: pmd_offset(pud, address);
1421 }
1422 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1423
1424 #if USE_SPLIT_PTE_PTLOCKS
1425 #if ALLOC_SPLIT_PTLOCKS
1426 void __init ptlock_cache_init(void);
1427 extern bool ptlock_alloc(struct page *page);
1428 extern void ptlock_free(struct page *page);
1429
1430 static inline spinlock_t *ptlock_ptr(struct page *page)
1431 {
1432 return page->ptl;
1433 }
1434 #else /* ALLOC_SPLIT_PTLOCKS */
1435 static inline void ptlock_cache_init(void)
1436 {
1437 }
1438
1439 static inline bool ptlock_alloc(struct page *page)
1440 {
1441 return true;
1442 }
1443
1444 static inline void ptlock_free(struct page *page)
1445 {
1446 }
1447
1448 static inline spinlock_t *ptlock_ptr(struct page *page)
1449 {
1450 return &page->ptl;
1451 }
1452 #endif /* ALLOC_SPLIT_PTLOCKS */
1453
1454 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1455 {
1456 return ptlock_ptr(pmd_page(*pmd));
1457 }
1458
1459 static inline bool ptlock_init(struct page *page)
1460 {
1461 /*
1462 * prep_new_page() initialize page->private (and therefore page->ptl)
1463 * with 0. Make sure nobody took it in use in between.
1464 *
1465 * It can happen if arch try to use slab for page table allocation:
1466 * slab code uses page->slab_cache and page->first_page (for tail
1467 * pages), which share storage with page->ptl.
1468 */
1469 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1470 if (!ptlock_alloc(page))
1471 return false;
1472 spin_lock_init(ptlock_ptr(page));
1473 return true;
1474 }
1475
1476 /* Reset page->mapping so free_pages_check won't complain. */
1477 static inline void pte_lock_deinit(struct page *page)
1478 {
1479 page->mapping = NULL;
1480 ptlock_free(page);
1481 }
1482
1483 #else /* !USE_SPLIT_PTE_PTLOCKS */
1484 /*
1485 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1486 */
1487 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1488 {
1489 return &mm->page_table_lock;
1490 }
1491 static inline void ptlock_cache_init(void) {}
1492 static inline bool ptlock_init(struct page *page) { return true; }
1493 static inline void pte_lock_deinit(struct page *page) {}
1494 #endif /* USE_SPLIT_PTE_PTLOCKS */
1495
1496 static inline void pgtable_init(void)
1497 {
1498 ptlock_cache_init();
1499 pgtable_cache_init();
1500 }
1501
1502 static inline bool pgtable_page_ctor(struct page *page)
1503 {
1504 inc_zone_page_state(page, NR_PAGETABLE);
1505 return ptlock_init(page);
1506 }
1507
1508 static inline void pgtable_page_dtor(struct page *page)
1509 {
1510 pte_lock_deinit(page);
1511 dec_zone_page_state(page, NR_PAGETABLE);
1512 }
1513
1514 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1515 ({ \
1516 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1517 pte_t *__pte = pte_offset_map(pmd, address); \
1518 *(ptlp) = __ptl; \
1519 spin_lock(__ptl); \
1520 __pte; \
1521 })
1522
1523 #define pte_unmap_unlock(pte, ptl) do { \
1524 spin_unlock(ptl); \
1525 pte_unmap(pte); \
1526 } while (0)
1527
1528 #define pte_alloc_map(mm, vma, pmd, address) \
1529 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1530 pmd, address))? \
1531 NULL: pte_offset_map(pmd, address))
1532
1533 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1534 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1535 pmd, address))? \
1536 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1537
1538 #define pte_alloc_kernel(pmd, address) \
1539 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1540 NULL: pte_offset_kernel(pmd, address))
1541
1542 #if USE_SPLIT_PMD_PTLOCKS
1543
1544 static struct page *pmd_to_page(pmd_t *pmd)
1545 {
1546 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1547 return virt_to_page((void *)((unsigned long) pmd & mask));
1548 }
1549
1550 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1551 {
1552 return ptlock_ptr(pmd_to_page(pmd));
1553 }
1554
1555 static inline bool pgtable_pmd_page_ctor(struct page *page)
1556 {
1557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1558 page->pmd_huge_pte = NULL;
1559 #endif
1560 return ptlock_init(page);
1561 }
1562
1563 static inline void pgtable_pmd_page_dtor(struct page *page)
1564 {
1565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1566 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1567 #endif
1568 ptlock_free(page);
1569 }
1570
1571 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1572
1573 #else
1574
1575 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1576 {
1577 return &mm->page_table_lock;
1578 }
1579
1580 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1581 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1582
1583 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1584
1585 #endif
1586
1587 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1588 {
1589 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1590 spin_lock(ptl);
1591 return ptl;
1592 }
1593
1594 extern void free_area_init(unsigned long * zones_size);
1595 extern void free_area_init_node(int nid, unsigned long * zones_size,
1596 unsigned long zone_start_pfn, unsigned long *zholes_size);
1597 extern void free_initmem(void);
1598
1599 /*
1600 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1601 * into the buddy system. The freed pages will be poisoned with pattern
1602 * "poison" if it's within range [0, UCHAR_MAX].
1603 * Return pages freed into the buddy system.
1604 */
1605 extern unsigned long free_reserved_area(void *start, void *end,
1606 int poison, char *s);
1607
1608 #ifdef CONFIG_HIGHMEM
1609 /*
1610 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1611 * and totalram_pages.
1612 */
1613 extern void free_highmem_page(struct page *page);
1614 #endif
1615
1616 extern void adjust_managed_page_count(struct page *page, long count);
1617 extern void mem_init_print_info(const char *str);
1618
1619 /* Free the reserved page into the buddy system, so it gets managed. */
1620 static inline void __free_reserved_page(struct page *page)
1621 {
1622 ClearPageReserved(page);
1623 init_page_count(page);
1624 __free_page(page);
1625 }
1626
1627 static inline void free_reserved_page(struct page *page)
1628 {
1629 __free_reserved_page(page);
1630 adjust_managed_page_count(page, 1);
1631 }
1632
1633 static inline void mark_page_reserved(struct page *page)
1634 {
1635 SetPageReserved(page);
1636 adjust_managed_page_count(page, -1);
1637 }
1638
1639 /*
1640 * Default method to free all the __init memory into the buddy system.
1641 * The freed pages will be poisoned with pattern "poison" if it's within
1642 * range [0, UCHAR_MAX].
1643 * Return pages freed into the buddy system.
1644 */
1645 static inline unsigned long free_initmem_default(int poison)
1646 {
1647 extern char __init_begin[], __init_end[];
1648
1649 return free_reserved_area(&__init_begin, &__init_end,
1650 poison, "unused kernel");
1651 }
1652
1653 static inline unsigned long get_num_physpages(void)
1654 {
1655 int nid;
1656 unsigned long phys_pages = 0;
1657
1658 for_each_online_node(nid)
1659 phys_pages += node_present_pages(nid);
1660
1661 return phys_pages;
1662 }
1663
1664 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1665 /*
1666 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1667 * zones, allocate the backing mem_map and account for memory holes in a more
1668 * architecture independent manner. This is a substitute for creating the
1669 * zone_sizes[] and zholes_size[] arrays and passing them to
1670 * free_area_init_node()
1671 *
1672 * An architecture is expected to register range of page frames backed by
1673 * physical memory with memblock_add[_node]() before calling
1674 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1675 * usage, an architecture is expected to do something like
1676 *
1677 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1678 * max_highmem_pfn};
1679 * for_each_valid_physical_page_range()
1680 * memblock_add_node(base, size, nid)
1681 * free_area_init_nodes(max_zone_pfns);
1682 *
1683 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1684 * registered physical page range. Similarly
1685 * sparse_memory_present_with_active_regions() calls memory_present() for
1686 * each range when SPARSEMEM is enabled.
1687 *
1688 * See mm/page_alloc.c for more information on each function exposed by
1689 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1690 */
1691 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1692 unsigned long node_map_pfn_alignment(void);
1693 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1694 unsigned long end_pfn);
1695 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1696 unsigned long end_pfn);
1697 extern void get_pfn_range_for_nid(unsigned int nid,
1698 unsigned long *start_pfn, unsigned long *end_pfn);
1699 extern unsigned long find_min_pfn_with_active_regions(void);
1700 extern void free_bootmem_with_active_regions(int nid,
1701 unsigned long max_low_pfn);
1702 extern void sparse_memory_present_with_active_regions(int nid);
1703
1704 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1705
1706 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1707 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1708 static inline int __early_pfn_to_nid(unsigned long pfn)
1709 {
1710 return 0;
1711 }
1712 #else
1713 /* please see mm/page_alloc.c */
1714 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1715 /* there is a per-arch backend function. */
1716 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1717 #endif
1718
1719 extern void set_dma_reserve(unsigned long new_dma_reserve);
1720 extern void memmap_init_zone(unsigned long, int, unsigned long,
1721 unsigned long, enum memmap_context);
1722 extern void setup_per_zone_wmarks(void);
1723 extern int __meminit init_per_zone_wmark_min(void);
1724 extern void mem_init(void);
1725 extern void __init mmap_init(void);
1726 extern void show_mem(unsigned int flags);
1727 extern void si_meminfo(struct sysinfo * val);
1728 extern void si_meminfo_node(struct sysinfo *val, int nid);
1729
1730 extern __printf(3, 4)
1731 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1732
1733 extern void setup_per_cpu_pageset(void);
1734
1735 extern void zone_pcp_update(struct zone *zone);
1736 extern void zone_pcp_reset(struct zone *zone);
1737
1738 /* page_alloc.c */
1739 extern int min_free_kbytes;
1740
1741 /* nommu.c */
1742 extern atomic_long_t mmap_pages_allocated;
1743 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1744
1745 /* interval_tree.c */
1746 void vma_interval_tree_insert(struct vm_area_struct *node,
1747 struct rb_root *root);
1748 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1749 struct vm_area_struct *prev,
1750 struct rb_root *root);
1751 void vma_interval_tree_remove(struct vm_area_struct *node,
1752 struct rb_root *root);
1753 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1754 unsigned long start, unsigned long last);
1755 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1756 unsigned long start, unsigned long last);
1757
1758 #define vma_interval_tree_foreach(vma, root, start, last) \
1759 for (vma = vma_interval_tree_iter_first(root, start, last); \
1760 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1761
1762 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1763 struct list_head *list)
1764 {
1765 list_add_tail(&vma->shared.nonlinear, list);
1766 }
1767
1768 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1769 struct rb_root *root);
1770 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1771 struct rb_root *root);
1772 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1773 struct rb_root *root, unsigned long start, unsigned long last);
1774 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1775 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1776 #ifdef CONFIG_DEBUG_VM_RB
1777 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1778 #endif
1779
1780 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1781 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1782 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1783
1784 /* mmap.c */
1785 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1786 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1787 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1788 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1789 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1790 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1791 struct mempolicy *);
1792 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1793 extern int split_vma(struct mm_struct *,
1794 struct vm_area_struct *, unsigned long addr, int new_below);
1795 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1796 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1797 struct rb_node **, struct rb_node *);
1798 extern void unlink_file_vma(struct vm_area_struct *);
1799 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1800 unsigned long addr, unsigned long len, pgoff_t pgoff,
1801 bool *need_rmap_locks);
1802 extern void exit_mmap(struct mm_struct *);
1803
1804 static inline int check_data_rlimit(unsigned long rlim,
1805 unsigned long new,
1806 unsigned long start,
1807 unsigned long end_data,
1808 unsigned long start_data)
1809 {
1810 if (rlim < RLIM_INFINITY) {
1811 if (((new - start) + (end_data - start_data)) > rlim)
1812 return -ENOSPC;
1813 }
1814
1815 return 0;
1816 }
1817
1818 extern int mm_take_all_locks(struct mm_struct *mm);
1819 extern void mm_drop_all_locks(struct mm_struct *mm);
1820
1821 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1822 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1823
1824 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1825 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1826 unsigned long addr, unsigned long len,
1827 unsigned long flags,
1828 const struct vm_special_mapping *spec);
1829 /* This is an obsolete alternative to _install_special_mapping. */
1830 extern int install_special_mapping(struct mm_struct *mm,
1831 unsigned long addr, unsigned long len,
1832 unsigned long flags, struct page **pages);
1833
1834 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1835
1836 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1837 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1838 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1839 unsigned long len, unsigned long prot, unsigned long flags,
1840 unsigned long pgoff, unsigned long *populate);
1841 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1842
1843 #ifdef CONFIG_MMU
1844 extern int __mm_populate(unsigned long addr, unsigned long len,
1845 int ignore_errors);
1846 static inline void mm_populate(unsigned long addr, unsigned long len)
1847 {
1848 /* Ignore errors */
1849 (void) __mm_populate(addr, len, 1);
1850 }
1851 #else
1852 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1853 #endif
1854
1855 /* These take the mm semaphore themselves */
1856 extern unsigned long vm_brk(unsigned long, unsigned long);
1857 extern int vm_munmap(unsigned long, size_t);
1858 extern unsigned long vm_mmap(struct file *, unsigned long,
1859 unsigned long, unsigned long,
1860 unsigned long, unsigned long);
1861
1862 struct vm_unmapped_area_info {
1863 #define VM_UNMAPPED_AREA_TOPDOWN 1
1864 unsigned long flags;
1865 unsigned long length;
1866 unsigned long low_limit;
1867 unsigned long high_limit;
1868 unsigned long align_mask;
1869 unsigned long align_offset;
1870 };
1871
1872 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1873 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1874
1875 /*
1876 * Search for an unmapped address range.
1877 *
1878 * We are looking for a range that:
1879 * - does not intersect with any VMA;
1880 * - is contained within the [low_limit, high_limit) interval;
1881 * - is at least the desired size.
1882 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1883 */
1884 static inline unsigned long
1885 vm_unmapped_area(struct vm_unmapped_area_info *info)
1886 {
1887 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1888 return unmapped_area(info);
1889 else
1890 return unmapped_area_topdown(info);
1891 }
1892
1893 /* truncate.c */
1894 extern void truncate_inode_pages(struct address_space *, loff_t);
1895 extern void truncate_inode_pages_range(struct address_space *,
1896 loff_t lstart, loff_t lend);
1897 extern void truncate_inode_pages_final(struct address_space *);
1898
1899 /* generic vm_area_ops exported for stackable file systems */
1900 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1901 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1902 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1903
1904 /* mm/page-writeback.c */
1905 int write_one_page(struct page *page, int wait);
1906 void task_dirty_inc(struct task_struct *tsk);
1907
1908 /* readahead.c */
1909 #define VM_MAX_READAHEAD 128 /* kbytes */
1910 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1911
1912 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1913 pgoff_t offset, unsigned long nr_to_read);
1914
1915 void page_cache_sync_readahead(struct address_space *mapping,
1916 struct file_ra_state *ra,
1917 struct file *filp,
1918 pgoff_t offset,
1919 unsigned long size);
1920
1921 void page_cache_async_readahead(struct address_space *mapping,
1922 struct file_ra_state *ra,
1923 struct file *filp,
1924 struct page *pg,
1925 pgoff_t offset,
1926 unsigned long size);
1927
1928 unsigned long max_sane_readahead(unsigned long nr);
1929
1930 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1931 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1932
1933 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1934 extern int expand_downwards(struct vm_area_struct *vma,
1935 unsigned long address);
1936 #if VM_GROWSUP
1937 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1938 #else
1939 #define expand_upwards(vma, address) do { } while (0)
1940 #endif
1941
1942 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1943 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1944 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1945 struct vm_area_struct **pprev);
1946
1947 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1948 NULL if none. Assume start_addr < end_addr. */
1949 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1950 {
1951 struct vm_area_struct * vma = find_vma(mm,start_addr);
1952
1953 if (vma && end_addr <= vma->vm_start)
1954 vma = NULL;
1955 return vma;
1956 }
1957
1958 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1959 {
1960 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1961 }
1962
1963 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1964 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1965 unsigned long vm_start, unsigned long vm_end)
1966 {
1967 struct vm_area_struct *vma = find_vma(mm, vm_start);
1968
1969 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1970 vma = NULL;
1971
1972 return vma;
1973 }
1974
1975 #ifdef CONFIG_MMU
1976 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1977 void vma_set_page_prot(struct vm_area_struct *vma);
1978 #else
1979 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1980 {
1981 return __pgprot(0);
1982 }
1983 static inline void vma_set_page_prot(struct vm_area_struct *vma)
1984 {
1985 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1986 }
1987 #endif
1988
1989 #ifdef CONFIG_NUMA_BALANCING
1990 unsigned long change_prot_numa(struct vm_area_struct *vma,
1991 unsigned long start, unsigned long end);
1992 #endif
1993
1994 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1995 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1996 unsigned long pfn, unsigned long size, pgprot_t);
1997 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1998 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1999 unsigned long pfn);
2000 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2001 unsigned long pfn);
2002 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2003
2004
2005 struct page *follow_page_mask(struct vm_area_struct *vma,
2006 unsigned long address, unsigned int foll_flags,
2007 unsigned int *page_mask);
2008
2009 static inline struct page *follow_page(struct vm_area_struct *vma,
2010 unsigned long address, unsigned int foll_flags)
2011 {
2012 unsigned int unused_page_mask;
2013 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2014 }
2015
2016 #define FOLL_WRITE 0x01 /* check pte is writable */
2017 #define FOLL_TOUCH 0x02 /* mark page accessed */
2018 #define FOLL_GET 0x04 /* do get_page on page */
2019 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2020 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2021 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2022 * and return without waiting upon it */
2023 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
2024 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2025 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2026 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2027 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2028 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2029
2030 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2031 void *data);
2032 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2033 unsigned long size, pte_fn_t fn, void *data);
2034
2035 #ifdef CONFIG_PROC_FS
2036 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2037 #else
2038 static inline void vm_stat_account(struct mm_struct *mm,
2039 unsigned long flags, struct file *file, long pages)
2040 {
2041 mm->total_vm += pages;
2042 }
2043 #endif /* CONFIG_PROC_FS */
2044
2045 #ifdef CONFIG_DEBUG_PAGEALLOC
2046 extern void kernel_map_pages(struct page *page, int numpages, int enable);
2047 #ifdef CONFIG_HIBERNATION
2048 extern bool kernel_page_present(struct page *page);
2049 #endif /* CONFIG_HIBERNATION */
2050 #else
2051 static inline void
2052 kernel_map_pages(struct page *page, int numpages, int enable) {}
2053 #ifdef CONFIG_HIBERNATION
2054 static inline bool kernel_page_present(struct page *page) { return true; }
2055 #endif /* CONFIG_HIBERNATION */
2056 #endif
2057
2058 #ifdef __HAVE_ARCH_GATE_AREA
2059 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2060 extern int in_gate_area_no_mm(unsigned long addr);
2061 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2062 #else
2063 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2064 {
2065 return NULL;
2066 }
2067 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2068 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2069 {
2070 return 0;
2071 }
2072 #endif /* __HAVE_ARCH_GATE_AREA */
2073
2074 #ifdef CONFIG_SYSCTL
2075 extern int sysctl_drop_caches;
2076 int drop_caches_sysctl_handler(struct ctl_table *, int,
2077 void __user *, size_t *, loff_t *);
2078 #endif
2079
2080 unsigned long shrink_slab(struct shrink_control *shrink,
2081 unsigned long nr_pages_scanned,
2082 unsigned long lru_pages);
2083
2084 #ifndef CONFIG_MMU
2085 #define randomize_va_space 0
2086 #else
2087 extern int randomize_va_space;
2088 #endif
2089
2090 const char * arch_vma_name(struct vm_area_struct *vma);
2091 void print_vma_addr(char *prefix, unsigned long rip);
2092
2093 void sparse_mem_maps_populate_node(struct page **map_map,
2094 unsigned long pnum_begin,
2095 unsigned long pnum_end,
2096 unsigned long map_count,
2097 int nodeid);
2098
2099 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2100 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2101 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2102 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2103 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2104 void *vmemmap_alloc_block(unsigned long size, int node);
2105 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2106 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2107 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2108 int node);
2109 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2110 void vmemmap_populate_print_last(void);
2111 #ifdef CONFIG_MEMORY_HOTPLUG
2112 void vmemmap_free(unsigned long start, unsigned long end);
2113 #endif
2114 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2115 unsigned long size);
2116
2117 enum mf_flags {
2118 MF_COUNT_INCREASED = 1 << 0,
2119 MF_ACTION_REQUIRED = 1 << 1,
2120 MF_MUST_KILL = 1 << 2,
2121 MF_SOFT_OFFLINE = 1 << 3,
2122 };
2123 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2124 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2125 extern int unpoison_memory(unsigned long pfn);
2126 extern int sysctl_memory_failure_early_kill;
2127 extern int sysctl_memory_failure_recovery;
2128 extern void shake_page(struct page *p, int access);
2129 extern atomic_long_t num_poisoned_pages;
2130 extern int soft_offline_page(struct page *page, int flags);
2131
2132 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2133 extern void clear_huge_page(struct page *page,
2134 unsigned long addr,
2135 unsigned int pages_per_huge_page);
2136 extern void copy_user_huge_page(struct page *dst, struct page *src,
2137 unsigned long addr, struct vm_area_struct *vma,
2138 unsigned int pages_per_huge_page);
2139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2140
2141 #ifdef CONFIG_DEBUG_PAGEALLOC
2142 extern unsigned int _debug_guardpage_minorder;
2143
2144 static inline unsigned int debug_guardpage_minorder(void)
2145 {
2146 return _debug_guardpage_minorder;
2147 }
2148
2149 static inline bool page_is_guard(struct page *page)
2150 {
2151 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2152 }
2153 #else
2154 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2155 static inline bool page_is_guard(struct page *page) { return false; }
2156 #endif /* CONFIG_DEBUG_PAGEALLOC */
2157
2158 #if MAX_NUMNODES > 1
2159 void __init setup_nr_node_ids(void);
2160 #else
2161 static inline void setup_nr_node_ids(void) {}
2162 #endif
2163
2164 #endif /* __KERNEL__ */
2165 #endif /* _LINUX_MM_H */
This page took 0.071458 seconds and 6 git commands to generate.