Merge branch 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22
23 struct mempolicy;
24 struct anon_vma;
25 struct anon_vma_chain;
26 struct file_ra_state;
27 struct user_struct;
28 struct writeback_control;
29
30 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
31 extern unsigned long max_mapnr;
32
33 static inline void set_max_mapnr(unsigned long limit)
34 {
35 max_mapnr = limit;
36 }
37 #else
38 static inline void set_max_mapnr(unsigned long limit) { }
39 #endif
40
41 extern unsigned long totalram_pages;
42 extern void * high_memory;
43 extern int page_cluster;
44
45 #ifdef CONFIG_SYSCTL
46 extern int sysctl_legacy_va_layout;
47 #else
48 #define sysctl_legacy_va_layout 0
49 #endif
50
51 #include <asm/page.h>
52 #include <asm/pgtable.h>
53 #include <asm/processor.h>
54
55 #ifndef __pa_symbol
56 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
57 #endif
58
59 extern unsigned long sysctl_user_reserve_kbytes;
60 extern unsigned long sysctl_admin_reserve_kbytes;
61
62 extern int sysctl_overcommit_memory;
63 extern int sysctl_overcommit_ratio;
64 extern unsigned long sysctl_overcommit_kbytes;
65
66 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
67 size_t *, loff_t *);
68 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
69 size_t *, loff_t *);
70
71 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
72
73 /* to align the pointer to the (next) page boundary */
74 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
75
76 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
77 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
78
79 /*
80 * Linux kernel virtual memory manager primitives.
81 * The idea being to have a "virtual" mm in the same way
82 * we have a virtual fs - giving a cleaner interface to the
83 * mm details, and allowing different kinds of memory mappings
84 * (from shared memory to executable loading to arbitrary
85 * mmap() functions).
86 */
87
88 extern struct kmem_cache *vm_area_cachep;
89
90 #ifndef CONFIG_MMU
91 extern struct rb_root nommu_region_tree;
92 extern struct rw_semaphore nommu_region_sem;
93
94 extern unsigned int kobjsize(const void *objp);
95 #endif
96
97 /*
98 * vm_flags in vm_area_struct, see mm_types.h.
99 */
100 #define VM_NONE 0x00000000
101
102 #define VM_READ 0x00000001 /* currently active flags */
103 #define VM_WRITE 0x00000002
104 #define VM_EXEC 0x00000004
105 #define VM_SHARED 0x00000008
106
107 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
108 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
109 #define VM_MAYWRITE 0x00000020
110 #define VM_MAYEXEC 0x00000040
111 #define VM_MAYSHARE 0x00000080
112
113 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
114 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
115 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
116
117 #define VM_LOCKED 0x00002000
118 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
119
120 /* Used by sys_madvise() */
121 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
122 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
123
124 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
125 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
126 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
127 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
128 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
129 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
130 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
131 #define VM_ARCH_2 0x02000000
132 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
133
134 #ifdef CONFIG_MEM_SOFT_DIRTY
135 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
136 #else
137 # define VM_SOFTDIRTY 0
138 #endif
139
140 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
141 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
142 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
143 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
144
145 #if defined(CONFIG_X86)
146 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
147 #elif defined(CONFIG_PPC)
148 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
149 #elif defined(CONFIG_PARISC)
150 # define VM_GROWSUP VM_ARCH_1
151 #elif defined(CONFIG_METAG)
152 # define VM_GROWSUP VM_ARCH_1
153 #elif defined(CONFIG_IA64)
154 # define VM_GROWSUP VM_ARCH_1
155 #elif !defined(CONFIG_MMU)
156 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
157 #endif
158
159 #if defined(CONFIG_X86)
160 /* MPX specific bounds table or bounds directory */
161 # define VM_MPX VM_ARCH_2
162 #endif
163
164 #ifndef VM_GROWSUP
165 # define VM_GROWSUP VM_NONE
166 #endif
167
168 /* Bits set in the VMA until the stack is in its final location */
169 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
170
171 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
172 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
173 #endif
174
175 #ifdef CONFIG_STACK_GROWSUP
176 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
177 #else
178 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179 #endif
180
181 /*
182 * Special vmas that are non-mergable, non-mlock()able.
183 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
184 */
185 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
186
187 /* This mask defines which mm->def_flags a process can inherit its parent */
188 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
189
190 /*
191 * mapping from the currently active vm_flags protection bits (the
192 * low four bits) to a page protection mask..
193 */
194 extern pgprot_t protection_map[16];
195
196 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
197 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
198 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
199 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
200 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
201 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
202 #define FAULT_FLAG_TRIED 0x40 /* second try */
203 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
204
205 /*
206 * vm_fault is filled by the the pagefault handler and passed to the vma's
207 * ->fault function. The vma's ->fault is responsible for returning a bitmask
208 * of VM_FAULT_xxx flags that give details about how the fault was handled.
209 *
210 * pgoff should be used in favour of virtual_address, if possible. If pgoff
211 * is used, one may implement ->remap_pages to get nonlinear mapping support.
212 */
213 struct vm_fault {
214 unsigned int flags; /* FAULT_FLAG_xxx flags */
215 pgoff_t pgoff; /* Logical page offset based on vma */
216 void __user *virtual_address; /* Faulting virtual address */
217
218 struct page *page; /* ->fault handlers should return a
219 * page here, unless VM_FAULT_NOPAGE
220 * is set (which is also implied by
221 * VM_FAULT_ERROR).
222 */
223 /* for ->map_pages() only */
224 pgoff_t max_pgoff; /* map pages for offset from pgoff till
225 * max_pgoff inclusive */
226 pte_t *pte; /* pte entry associated with ->pgoff */
227 };
228
229 /*
230 * These are the virtual MM functions - opening of an area, closing and
231 * unmapping it (needed to keep files on disk up-to-date etc), pointer
232 * to the functions called when a no-page or a wp-page exception occurs.
233 */
234 struct vm_operations_struct {
235 void (*open)(struct vm_area_struct * area);
236 void (*close)(struct vm_area_struct * area);
237 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
238 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
239
240 /* notification that a previously read-only page is about to become
241 * writable, if an error is returned it will cause a SIGBUS */
242 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
243
244 /* called by access_process_vm when get_user_pages() fails, typically
245 * for use by special VMAs that can switch between memory and hardware
246 */
247 int (*access)(struct vm_area_struct *vma, unsigned long addr,
248 void *buf, int len, int write);
249
250 /* Called by the /proc/PID/maps code to ask the vma whether it
251 * has a special name. Returning non-NULL will also cause this
252 * vma to be dumped unconditionally. */
253 const char *(*name)(struct vm_area_struct *vma);
254
255 #ifdef CONFIG_NUMA
256 /*
257 * set_policy() op must add a reference to any non-NULL @new mempolicy
258 * to hold the policy upon return. Caller should pass NULL @new to
259 * remove a policy and fall back to surrounding context--i.e. do not
260 * install a MPOL_DEFAULT policy, nor the task or system default
261 * mempolicy.
262 */
263 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
264
265 /*
266 * get_policy() op must add reference [mpol_get()] to any policy at
267 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
268 * in mm/mempolicy.c will do this automatically.
269 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
270 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
271 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
272 * must return NULL--i.e., do not "fallback" to task or system default
273 * policy.
274 */
275 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
276 unsigned long addr);
277 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
278 const nodemask_t *to, unsigned long flags);
279 #endif
280 /* called by sys_remap_file_pages() to populate non-linear mapping */
281 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
282 unsigned long size, pgoff_t pgoff);
283 };
284
285 struct mmu_gather;
286 struct inode;
287
288 #define page_private(page) ((page)->private)
289 #define set_page_private(page, v) ((page)->private = (v))
290
291 /* It's valid only if the page is free path or free_list */
292 static inline void set_freepage_migratetype(struct page *page, int migratetype)
293 {
294 page->index = migratetype;
295 }
296
297 /* It's valid only if the page is free path or free_list */
298 static inline int get_freepage_migratetype(struct page *page)
299 {
300 return page->index;
301 }
302
303 /*
304 * FIXME: take this include out, include page-flags.h in
305 * files which need it (119 of them)
306 */
307 #include <linux/page-flags.h>
308 #include <linux/huge_mm.h>
309
310 /*
311 * Methods to modify the page usage count.
312 *
313 * What counts for a page usage:
314 * - cache mapping (page->mapping)
315 * - private data (page->private)
316 * - page mapped in a task's page tables, each mapping
317 * is counted separately
318 *
319 * Also, many kernel routines increase the page count before a critical
320 * routine so they can be sure the page doesn't go away from under them.
321 */
322
323 /*
324 * Drop a ref, return true if the refcount fell to zero (the page has no users)
325 */
326 static inline int put_page_testzero(struct page *page)
327 {
328 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
329 return atomic_dec_and_test(&page->_count);
330 }
331
332 /*
333 * Try to grab a ref unless the page has a refcount of zero, return false if
334 * that is the case.
335 * This can be called when MMU is off so it must not access
336 * any of the virtual mappings.
337 */
338 static inline int get_page_unless_zero(struct page *page)
339 {
340 return atomic_inc_not_zero(&page->_count);
341 }
342
343 /*
344 * Try to drop a ref unless the page has a refcount of one, return false if
345 * that is the case.
346 * This is to make sure that the refcount won't become zero after this drop.
347 * This can be called when MMU is off so it must not access
348 * any of the virtual mappings.
349 */
350 static inline int put_page_unless_one(struct page *page)
351 {
352 return atomic_add_unless(&page->_count, -1, 1);
353 }
354
355 extern int page_is_ram(unsigned long pfn);
356 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
357
358 /* Support for virtually mapped pages */
359 struct page *vmalloc_to_page(const void *addr);
360 unsigned long vmalloc_to_pfn(const void *addr);
361
362 /*
363 * Determine if an address is within the vmalloc range
364 *
365 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
366 * is no special casing required.
367 */
368 static inline int is_vmalloc_addr(const void *x)
369 {
370 #ifdef CONFIG_MMU
371 unsigned long addr = (unsigned long)x;
372
373 return addr >= VMALLOC_START && addr < VMALLOC_END;
374 #else
375 return 0;
376 #endif
377 }
378 #ifdef CONFIG_MMU
379 extern int is_vmalloc_or_module_addr(const void *x);
380 #else
381 static inline int is_vmalloc_or_module_addr(const void *x)
382 {
383 return 0;
384 }
385 #endif
386
387 extern void kvfree(const void *addr);
388
389 static inline void compound_lock(struct page *page)
390 {
391 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
392 VM_BUG_ON_PAGE(PageSlab(page), page);
393 bit_spin_lock(PG_compound_lock, &page->flags);
394 #endif
395 }
396
397 static inline void compound_unlock(struct page *page)
398 {
399 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
400 VM_BUG_ON_PAGE(PageSlab(page), page);
401 bit_spin_unlock(PG_compound_lock, &page->flags);
402 #endif
403 }
404
405 static inline unsigned long compound_lock_irqsave(struct page *page)
406 {
407 unsigned long uninitialized_var(flags);
408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
409 local_irq_save(flags);
410 compound_lock(page);
411 #endif
412 return flags;
413 }
414
415 static inline void compound_unlock_irqrestore(struct page *page,
416 unsigned long flags)
417 {
418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
419 compound_unlock(page);
420 local_irq_restore(flags);
421 #endif
422 }
423
424 static inline struct page *compound_head_by_tail(struct page *tail)
425 {
426 struct page *head = tail->first_page;
427
428 /*
429 * page->first_page may be a dangling pointer to an old
430 * compound page, so recheck that it is still a tail
431 * page before returning.
432 */
433 smp_rmb();
434 if (likely(PageTail(tail)))
435 return head;
436 return tail;
437 }
438
439 static inline struct page *compound_head(struct page *page)
440 {
441 if (unlikely(PageTail(page)))
442 return compound_head_by_tail(page);
443 return page;
444 }
445
446 /*
447 * The atomic page->_mapcount, starts from -1: so that transitions
448 * both from it and to it can be tracked, using atomic_inc_and_test
449 * and atomic_add_negative(-1).
450 */
451 static inline void page_mapcount_reset(struct page *page)
452 {
453 atomic_set(&(page)->_mapcount, -1);
454 }
455
456 static inline int page_mapcount(struct page *page)
457 {
458 return atomic_read(&(page)->_mapcount) + 1;
459 }
460
461 static inline int page_count(struct page *page)
462 {
463 return atomic_read(&compound_head(page)->_count);
464 }
465
466 #ifdef CONFIG_HUGETLB_PAGE
467 extern int PageHeadHuge(struct page *page_head);
468 #else /* CONFIG_HUGETLB_PAGE */
469 static inline int PageHeadHuge(struct page *page_head)
470 {
471 return 0;
472 }
473 #endif /* CONFIG_HUGETLB_PAGE */
474
475 static inline bool __compound_tail_refcounted(struct page *page)
476 {
477 return !PageSlab(page) && !PageHeadHuge(page);
478 }
479
480 /*
481 * This takes a head page as parameter and tells if the
482 * tail page reference counting can be skipped.
483 *
484 * For this to be safe, PageSlab and PageHeadHuge must remain true on
485 * any given page where they return true here, until all tail pins
486 * have been released.
487 */
488 static inline bool compound_tail_refcounted(struct page *page)
489 {
490 VM_BUG_ON_PAGE(!PageHead(page), page);
491 return __compound_tail_refcounted(page);
492 }
493
494 static inline void get_huge_page_tail(struct page *page)
495 {
496 /*
497 * __split_huge_page_refcount() cannot run from under us.
498 */
499 VM_BUG_ON_PAGE(!PageTail(page), page);
500 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
501 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
502 if (compound_tail_refcounted(page->first_page))
503 atomic_inc(&page->_mapcount);
504 }
505
506 extern bool __get_page_tail(struct page *page);
507
508 static inline void get_page(struct page *page)
509 {
510 if (unlikely(PageTail(page)))
511 if (likely(__get_page_tail(page)))
512 return;
513 /*
514 * Getting a normal page or the head of a compound page
515 * requires to already have an elevated page->_count.
516 */
517 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
518 atomic_inc(&page->_count);
519 }
520
521 static inline struct page *virt_to_head_page(const void *x)
522 {
523 struct page *page = virt_to_page(x);
524 return compound_head(page);
525 }
526
527 /*
528 * Setup the page count before being freed into the page allocator for
529 * the first time (boot or memory hotplug)
530 */
531 static inline void init_page_count(struct page *page)
532 {
533 atomic_set(&page->_count, 1);
534 }
535
536 /*
537 * PageBuddy() indicate that the page is free and in the buddy system
538 * (see mm/page_alloc.c).
539 *
540 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
541 * -2 so that an underflow of the page_mapcount() won't be mistaken
542 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
543 * efficiently by most CPU architectures.
544 */
545 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
546
547 static inline int PageBuddy(struct page *page)
548 {
549 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
550 }
551
552 static inline void __SetPageBuddy(struct page *page)
553 {
554 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
555 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
556 }
557
558 static inline void __ClearPageBuddy(struct page *page)
559 {
560 VM_BUG_ON_PAGE(!PageBuddy(page), page);
561 atomic_set(&page->_mapcount, -1);
562 }
563
564 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
565
566 static inline int PageBalloon(struct page *page)
567 {
568 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
569 }
570
571 static inline void __SetPageBalloon(struct page *page)
572 {
573 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
574 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
575 }
576
577 static inline void __ClearPageBalloon(struct page *page)
578 {
579 VM_BUG_ON_PAGE(!PageBalloon(page), page);
580 atomic_set(&page->_mapcount, -1);
581 }
582
583 void put_page(struct page *page);
584 void put_pages_list(struct list_head *pages);
585
586 void split_page(struct page *page, unsigned int order);
587 int split_free_page(struct page *page);
588
589 /*
590 * Compound pages have a destructor function. Provide a
591 * prototype for that function and accessor functions.
592 * These are _only_ valid on the head of a PG_compound page.
593 */
594 typedef void compound_page_dtor(struct page *);
595
596 static inline void set_compound_page_dtor(struct page *page,
597 compound_page_dtor *dtor)
598 {
599 page[1].lru.next = (void *)dtor;
600 }
601
602 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
603 {
604 return (compound_page_dtor *)page[1].lru.next;
605 }
606
607 static inline int compound_order(struct page *page)
608 {
609 if (!PageHead(page))
610 return 0;
611 return (unsigned long)page[1].lru.prev;
612 }
613
614 static inline void set_compound_order(struct page *page, unsigned long order)
615 {
616 page[1].lru.prev = (void *)order;
617 }
618
619 #ifdef CONFIG_MMU
620 /*
621 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
622 * servicing faults for write access. In the normal case, do always want
623 * pte_mkwrite. But get_user_pages can cause write faults for mappings
624 * that do not have writing enabled, when used by access_process_vm.
625 */
626 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
627 {
628 if (likely(vma->vm_flags & VM_WRITE))
629 pte = pte_mkwrite(pte);
630 return pte;
631 }
632
633 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
634 struct page *page, pte_t *pte, bool write, bool anon);
635 #endif
636
637 /*
638 * Multiple processes may "see" the same page. E.g. for untouched
639 * mappings of /dev/null, all processes see the same page full of
640 * zeroes, and text pages of executables and shared libraries have
641 * only one copy in memory, at most, normally.
642 *
643 * For the non-reserved pages, page_count(page) denotes a reference count.
644 * page_count() == 0 means the page is free. page->lru is then used for
645 * freelist management in the buddy allocator.
646 * page_count() > 0 means the page has been allocated.
647 *
648 * Pages are allocated by the slab allocator in order to provide memory
649 * to kmalloc and kmem_cache_alloc. In this case, the management of the
650 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
651 * unless a particular usage is carefully commented. (the responsibility of
652 * freeing the kmalloc memory is the caller's, of course).
653 *
654 * A page may be used by anyone else who does a __get_free_page().
655 * In this case, page_count still tracks the references, and should only
656 * be used through the normal accessor functions. The top bits of page->flags
657 * and page->virtual store page management information, but all other fields
658 * are unused and could be used privately, carefully. The management of this
659 * page is the responsibility of the one who allocated it, and those who have
660 * subsequently been given references to it.
661 *
662 * The other pages (we may call them "pagecache pages") are completely
663 * managed by the Linux memory manager: I/O, buffers, swapping etc.
664 * The following discussion applies only to them.
665 *
666 * A pagecache page contains an opaque `private' member, which belongs to the
667 * page's address_space. Usually, this is the address of a circular list of
668 * the page's disk buffers. PG_private must be set to tell the VM to call
669 * into the filesystem to release these pages.
670 *
671 * A page may belong to an inode's memory mapping. In this case, page->mapping
672 * is the pointer to the inode, and page->index is the file offset of the page,
673 * in units of PAGE_CACHE_SIZE.
674 *
675 * If pagecache pages are not associated with an inode, they are said to be
676 * anonymous pages. These may become associated with the swapcache, and in that
677 * case PG_swapcache is set, and page->private is an offset into the swapcache.
678 *
679 * In either case (swapcache or inode backed), the pagecache itself holds one
680 * reference to the page. Setting PG_private should also increment the
681 * refcount. The each user mapping also has a reference to the page.
682 *
683 * The pagecache pages are stored in a per-mapping radix tree, which is
684 * rooted at mapping->page_tree, and indexed by offset.
685 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
686 * lists, we instead now tag pages as dirty/writeback in the radix tree.
687 *
688 * All pagecache pages may be subject to I/O:
689 * - inode pages may need to be read from disk,
690 * - inode pages which have been modified and are MAP_SHARED may need
691 * to be written back to the inode on disk,
692 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
693 * modified may need to be swapped out to swap space and (later) to be read
694 * back into memory.
695 */
696
697 /*
698 * The zone field is never updated after free_area_init_core()
699 * sets it, so none of the operations on it need to be atomic.
700 */
701
702 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
703 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
704 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
705 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
706 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
707
708 /*
709 * Define the bit shifts to access each section. For non-existent
710 * sections we define the shift as 0; that plus a 0 mask ensures
711 * the compiler will optimise away reference to them.
712 */
713 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
714 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
715 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
716 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
717
718 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
719 #ifdef NODE_NOT_IN_PAGE_FLAGS
720 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
721 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
722 SECTIONS_PGOFF : ZONES_PGOFF)
723 #else
724 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
725 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
726 NODES_PGOFF : ZONES_PGOFF)
727 #endif
728
729 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
730
731 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
732 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
733 #endif
734
735 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
736 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
737 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
738 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
739 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
740
741 static inline enum zone_type page_zonenum(const struct page *page)
742 {
743 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
744 }
745
746 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
747 #define SECTION_IN_PAGE_FLAGS
748 #endif
749
750 /*
751 * The identification function is mainly used by the buddy allocator for
752 * determining if two pages could be buddies. We are not really identifying
753 * the zone since we could be using the section number id if we do not have
754 * node id available in page flags.
755 * We only guarantee that it will return the same value for two combinable
756 * pages in a zone.
757 */
758 static inline int page_zone_id(struct page *page)
759 {
760 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
761 }
762
763 static inline int zone_to_nid(struct zone *zone)
764 {
765 #ifdef CONFIG_NUMA
766 return zone->node;
767 #else
768 return 0;
769 #endif
770 }
771
772 #ifdef NODE_NOT_IN_PAGE_FLAGS
773 extern int page_to_nid(const struct page *page);
774 #else
775 static inline int page_to_nid(const struct page *page)
776 {
777 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
778 }
779 #endif
780
781 #ifdef CONFIG_NUMA_BALANCING
782 static inline int cpu_pid_to_cpupid(int cpu, int pid)
783 {
784 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
785 }
786
787 static inline int cpupid_to_pid(int cpupid)
788 {
789 return cpupid & LAST__PID_MASK;
790 }
791
792 static inline int cpupid_to_cpu(int cpupid)
793 {
794 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
795 }
796
797 static inline int cpupid_to_nid(int cpupid)
798 {
799 return cpu_to_node(cpupid_to_cpu(cpupid));
800 }
801
802 static inline bool cpupid_pid_unset(int cpupid)
803 {
804 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
805 }
806
807 static inline bool cpupid_cpu_unset(int cpupid)
808 {
809 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
810 }
811
812 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
813 {
814 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
815 }
816
817 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
818 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
819 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
820 {
821 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
822 }
823
824 static inline int page_cpupid_last(struct page *page)
825 {
826 return page->_last_cpupid;
827 }
828 static inline void page_cpupid_reset_last(struct page *page)
829 {
830 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
831 }
832 #else
833 static inline int page_cpupid_last(struct page *page)
834 {
835 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
836 }
837
838 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
839
840 static inline void page_cpupid_reset_last(struct page *page)
841 {
842 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
843
844 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
845 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
846 }
847 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
848 #else /* !CONFIG_NUMA_BALANCING */
849 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
850 {
851 return page_to_nid(page); /* XXX */
852 }
853
854 static inline int page_cpupid_last(struct page *page)
855 {
856 return page_to_nid(page); /* XXX */
857 }
858
859 static inline int cpupid_to_nid(int cpupid)
860 {
861 return -1;
862 }
863
864 static inline int cpupid_to_pid(int cpupid)
865 {
866 return -1;
867 }
868
869 static inline int cpupid_to_cpu(int cpupid)
870 {
871 return -1;
872 }
873
874 static inline int cpu_pid_to_cpupid(int nid, int pid)
875 {
876 return -1;
877 }
878
879 static inline bool cpupid_pid_unset(int cpupid)
880 {
881 return 1;
882 }
883
884 static inline void page_cpupid_reset_last(struct page *page)
885 {
886 }
887
888 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
889 {
890 return false;
891 }
892 #endif /* CONFIG_NUMA_BALANCING */
893
894 static inline struct zone *page_zone(const struct page *page)
895 {
896 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
897 }
898
899 #ifdef SECTION_IN_PAGE_FLAGS
900 static inline void set_page_section(struct page *page, unsigned long section)
901 {
902 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
903 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
904 }
905
906 static inline unsigned long page_to_section(const struct page *page)
907 {
908 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
909 }
910 #endif
911
912 static inline void set_page_zone(struct page *page, enum zone_type zone)
913 {
914 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
915 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
916 }
917
918 static inline void set_page_node(struct page *page, unsigned long node)
919 {
920 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
921 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
922 }
923
924 static inline void set_page_links(struct page *page, enum zone_type zone,
925 unsigned long node, unsigned long pfn)
926 {
927 set_page_zone(page, zone);
928 set_page_node(page, node);
929 #ifdef SECTION_IN_PAGE_FLAGS
930 set_page_section(page, pfn_to_section_nr(pfn));
931 #endif
932 }
933
934 /*
935 * Some inline functions in vmstat.h depend on page_zone()
936 */
937 #include <linux/vmstat.h>
938
939 static __always_inline void *lowmem_page_address(const struct page *page)
940 {
941 return __va(PFN_PHYS(page_to_pfn(page)));
942 }
943
944 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
945 #define HASHED_PAGE_VIRTUAL
946 #endif
947
948 #if defined(WANT_PAGE_VIRTUAL)
949 static inline void *page_address(const struct page *page)
950 {
951 return page->virtual;
952 }
953 static inline void set_page_address(struct page *page, void *address)
954 {
955 page->virtual = address;
956 }
957 #define page_address_init() do { } while(0)
958 #endif
959
960 #if defined(HASHED_PAGE_VIRTUAL)
961 void *page_address(const struct page *page);
962 void set_page_address(struct page *page, void *virtual);
963 void page_address_init(void);
964 #endif
965
966 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
967 #define page_address(page) lowmem_page_address(page)
968 #define set_page_address(page, address) do { } while(0)
969 #define page_address_init() do { } while(0)
970 #endif
971
972 /*
973 * On an anonymous page mapped into a user virtual memory area,
974 * page->mapping points to its anon_vma, not to a struct address_space;
975 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
976 *
977 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
978 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
979 * and then page->mapping points, not to an anon_vma, but to a private
980 * structure which KSM associates with that merged page. See ksm.h.
981 *
982 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
983 *
984 * Please note that, confusingly, "page_mapping" refers to the inode
985 * address_space which maps the page from disk; whereas "page_mapped"
986 * refers to user virtual address space into which the page is mapped.
987 */
988 #define PAGE_MAPPING_ANON 1
989 #define PAGE_MAPPING_KSM 2
990 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
991
992 extern struct address_space *page_mapping(struct page *page);
993
994 /* Neutral page->mapping pointer to address_space or anon_vma or other */
995 static inline void *page_rmapping(struct page *page)
996 {
997 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
998 }
999
1000 extern struct address_space *__page_file_mapping(struct page *);
1001
1002 static inline
1003 struct address_space *page_file_mapping(struct page *page)
1004 {
1005 if (unlikely(PageSwapCache(page)))
1006 return __page_file_mapping(page);
1007
1008 return page->mapping;
1009 }
1010
1011 static inline int PageAnon(struct page *page)
1012 {
1013 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1014 }
1015
1016 /*
1017 * Return the pagecache index of the passed page. Regular pagecache pages
1018 * use ->index whereas swapcache pages use ->private
1019 */
1020 static inline pgoff_t page_index(struct page *page)
1021 {
1022 if (unlikely(PageSwapCache(page)))
1023 return page_private(page);
1024 return page->index;
1025 }
1026
1027 extern pgoff_t __page_file_index(struct page *page);
1028
1029 /*
1030 * Return the file index of the page. Regular pagecache pages use ->index
1031 * whereas swapcache pages use swp_offset(->private)
1032 */
1033 static inline pgoff_t page_file_index(struct page *page)
1034 {
1035 if (unlikely(PageSwapCache(page)))
1036 return __page_file_index(page);
1037
1038 return page->index;
1039 }
1040
1041 /*
1042 * Return true if this page is mapped into pagetables.
1043 */
1044 static inline int page_mapped(struct page *page)
1045 {
1046 return atomic_read(&(page)->_mapcount) >= 0;
1047 }
1048
1049 /*
1050 * Different kinds of faults, as returned by handle_mm_fault().
1051 * Used to decide whether a process gets delivered SIGBUS or
1052 * just gets major/minor fault counters bumped up.
1053 */
1054
1055 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1056
1057 #define VM_FAULT_OOM 0x0001
1058 #define VM_FAULT_SIGBUS 0x0002
1059 #define VM_FAULT_MAJOR 0x0004
1060 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1061 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1062 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1063
1064 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1065 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1066 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1067 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1068
1069 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1070
1071 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1072 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1073
1074 /* Encode hstate index for a hwpoisoned large page */
1075 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1076 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1077
1078 /*
1079 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1080 */
1081 extern void pagefault_out_of_memory(void);
1082
1083 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1084
1085 /*
1086 * Flags passed to show_mem() and show_free_areas() to suppress output in
1087 * various contexts.
1088 */
1089 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1090
1091 extern void show_free_areas(unsigned int flags);
1092 extern bool skip_free_areas_node(unsigned int flags, int nid);
1093
1094 int shmem_zero_setup(struct vm_area_struct *);
1095 #ifdef CONFIG_SHMEM
1096 bool shmem_mapping(struct address_space *mapping);
1097 #else
1098 static inline bool shmem_mapping(struct address_space *mapping)
1099 {
1100 return false;
1101 }
1102 #endif
1103
1104 extern int can_do_mlock(void);
1105 extern int user_shm_lock(size_t, struct user_struct *);
1106 extern void user_shm_unlock(size_t, struct user_struct *);
1107
1108 /*
1109 * Parameter block passed down to zap_pte_range in exceptional cases.
1110 */
1111 struct zap_details {
1112 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1113 struct address_space *check_mapping; /* Check page->mapping if set */
1114 pgoff_t first_index; /* Lowest page->index to unmap */
1115 pgoff_t last_index; /* Highest page->index to unmap */
1116 };
1117
1118 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1119 pte_t pte);
1120
1121 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1122 unsigned long size);
1123 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1124 unsigned long size, struct zap_details *);
1125 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1126 unsigned long start, unsigned long end);
1127
1128 /**
1129 * mm_walk - callbacks for walk_page_range
1130 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1131 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1132 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1133 * this handler is required to be able to handle
1134 * pmd_trans_huge() pmds. They may simply choose to
1135 * split_huge_page() instead of handling it explicitly.
1136 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1137 * @pte_hole: if set, called for each hole at all levels
1138 * @hugetlb_entry: if set, called for each hugetlb entry
1139 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1140 * is used.
1141 *
1142 * (see walk_page_range for more details)
1143 */
1144 struct mm_walk {
1145 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1146 unsigned long next, struct mm_walk *walk);
1147 int (*pud_entry)(pud_t *pud, unsigned long addr,
1148 unsigned long next, struct mm_walk *walk);
1149 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1150 unsigned long next, struct mm_walk *walk);
1151 int (*pte_entry)(pte_t *pte, unsigned long addr,
1152 unsigned long next, struct mm_walk *walk);
1153 int (*pte_hole)(unsigned long addr, unsigned long next,
1154 struct mm_walk *walk);
1155 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1156 unsigned long addr, unsigned long next,
1157 struct mm_walk *walk);
1158 struct mm_struct *mm;
1159 void *private;
1160 };
1161
1162 int walk_page_range(unsigned long addr, unsigned long end,
1163 struct mm_walk *walk);
1164 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1165 unsigned long end, unsigned long floor, unsigned long ceiling);
1166 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1167 struct vm_area_struct *vma);
1168 void unmap_mapping_range(struct address_space *mapping,
1169 loff_t const holebegin, loff_t const holelen, int even_cows);
1170 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1171 unsigned long *pfn);
1172 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1173 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1174 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1175 void *buf, int len, int write);
1176
1177 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1178 loff_t const holebegin, loff_t const holelen)
1179 {
1180 unmap_mapping_range(mapping, holebegin, holelen, 0);
1181 }
1182
1183 extern void truncate_pagecache(struct inode *inode, loff_t new);
1184 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1185 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1186 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1187 int truncate_inode_page(struct address_space *mapping, struct page *page);
1188 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1189 int invalidate_inode_page(struct page *page);
1190
1191 #ifdef CONFIG_MMU
1192 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1193 unsigned long address, unsigned int flags);
1194 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1195 unsigned long address, unsigned int fault_flags);
1196 #else
1197 static inline int handle_mm_fault(struct mm_struct *mm,
1198 struct vm_area_struct *vma, unsigned long address,
1199 unsigned int flags)
1200 {
1201 /* should never happen if there's no MMU */
1202 BUG();
1203 return VM_FAULT_SIGBUS;
1204 }
1205 static inline int fixup_user_fault(struct task_struct *tsk,
1206 struct mm_struct *mm, unsigned long address,
1207 unsigned int fault_flags)
1208 {
1209 /* should never happen if there's no MMU */
1210 BUG();
1211 return -EFAULT;
1212 }
1213 #endif
1214
1215 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1216 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1217 void *buf, int len, int write);
1218
1219 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1220 unsigned long start, unsigned long nr_pages,
1221 unsigned int foll_flags, struct page **pages,
1222 struct vm_area_struct **vmas, int *nonblocking);
1223 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1224 unsigned long start, unsigned long nr_pages,
1225 int write, int force, struct page **pages,
1226 struct vm_area_struct **vmas);
1227 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1228 struct page **pages);
1229 struct kvec;
1230 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1231 struct page **pages);
1232 int get_kernel_page(unsigned long start, int write, struct page **pages);
1233 struct page *get_dump_page(unsigned long addr);
1234
1235 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1236 extern void do_invalidatepage(struct page *page, unsigned int offset,
1237 unsigned int length);
1238
1239 int __set_page_dirty_nobuffers(struct page *page);
1240 int __set_page_dirty_no_writeback(struct page *page);
1241 int redirty_page_for_writepage(struct writeback_control *wbc,
1242 struct page *page);
1243 void account_page_dirtied(struct page *page, struct address_space *mapping);
1244 int set_page_dirty(struct page *page);
1245 int set_page_dirty_lock(struct page *page);
1246 int clear_page_dirty_for_io(struct page *page);
1247 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1248
1249 /* Is the vma a continuation of the stack vma above it? */
1250 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1251 {
1252 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1253 }
1254
1255 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1256 unsigned long addr)
1257 {
1258 return (vma->vm_flags & VM_GROWSDOWN) &&
1259 (vma->vm_start == addr) &&
1260 !vma_growsdown(vma->vm_prev, addr);
1261 }
1262
1263 /* Is the vma a continuation of the stack vma below it? */
1264 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1265 {
1266 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1267 }
1268
1269 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1270 unsigned long addr)
1271 {
1272 return (vma->vm_flags & VM_GROWSUP) &&
1273 (vma->vm_end == addr) &&
1274 !vma_growsup(vma->vm_next, addr);
1275 }
1276
1277 extern struct task_struct *task_of_stack(struct task_struct *task,
1278 struct vm_area_struct *vma, bool in_group);
1279
1280 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1281 unsigned long old_addr, struct vm_area_struct *new_vma,
1282 unsigned long new_addr, unsigned long len,
1283 bool need_rmap_locks);
1284 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1285 unsigned long end, pgprot_t newprot,
1286 int dirty_accountable, int prot_numa);
1287 extern int mprotect_fixup(struct vm_area_struct *vma,
1288 struct vm_area_struct **pprev, unsigned long start,
1289 unsigned long end, unsigned long newflags);
1290
1291 /*
1292 * doesn't attempt to fault and will return short.
1293 */
1294 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1295 struct page **pages);
1296 /*
1297 * per-process(per-mm_struct) statistics.
1298 */
1299 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1300 {
1301 long val = atomic_long_read(&mm->rss_stat.count[member]);
1302
1303 #ifdef SPLIT_RSS_COUNTING
1304 /*
1305 * counter is updated in asynchronous manner and may go to minus.
1306 * But it's never be expected number for users.
1307 */
1308 if (val < 0)
1309 val = 0;
1310 #endif
1311 return (unsigned long)val;
1312 }
1313
1314 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1315 {
1316 atomic_long_add(value, &mm->rss_stat.count[member]);
1317 }
1318
1319 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1320 {
1321 atomic_long_inc(&mm->rss_stat.count[member]);
1322 }
1323
1324 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1325 {
1326 atomic_long_dec(&mm->rss_stat.count[member]);
1327 }
1328
1329 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1330 {
1331 return get_mm_counter(mm, MM_FILEPAGES) +
1332 get_mm_counter(mm, MM_ANONPAGES);
1333 }
1334
1335 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1336 {
1337 return max(mm->hiwater_rss, get_mm_rss(mm));
1338 }
1339
1340 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1341 {
1342 return max(mm->hiwater_vm, mm->total_vm);
1343 }
1344
1345 static inline void update_hiwater_rss(struct mm_struct *mm)
1346 {
1347 unsigned long _rss = get_mm_rss(mm);
1348
1349 if ((mm)->hiwater_rss < _rss)
1350 (mm)->hiwater_rss = _rss;
1351 }
1352
1353 static inline void update_hiwater_vm(struct mm_struct *mm)
1354 {
1355 if (mm->hiwater_vm < mm->total_vm)
1356 mm->hiwater_vm = mm->total_vm;
1357 }
1358
1359 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1360 struct mm_struct *mm)
1361 {
1362 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1363
1364 if (*maxrss < hiwater_rss)
1365 *maxrss = hiwater_rss;
1366 }
1367
1368 #if defined(SPLIT_RSS_COUNTING)
1369 void sync_mm_rss(struct mm_struct *mm);
1370 #else
1371 static inline void sync_mm_rss(struct mm_struct *mm)
1372 {
1373 }
1374 #endif
1375
1376 int vma_wants_writenotify(struct vm_area_struct *vma);
1377
1378 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1379 spinlock_t **ptl);
1380 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1381 spinlock_t **ptl)
1382 {
1383 pte_t *ptep;
1384 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1385 return ptep;
1386 }
1387
1388 #ifdef __PAGETABLE_PUD_FOLDED
1389 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1390 unsigned long address)
1391 {
1392 return 0;
1393 }
1394 #else
1395 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1396 #endif
1397
1398 #ifdef __PAGETABLE_PMD_FOLDED
1399 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1400 unsigned long address)
1401 {
1402 return 0;
1403 }
1404 #else
1405 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1406 #endif
1407
1408 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1409 pmd_t *pmd, unsigned long address);
1410 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1411
1412 /*
1413 * The following ifdef needed to get the 4level-fixup.h header to work.
1414 * Remove it when 4level-fixup.h has been removed.
1415 */
1416 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1417 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1418 {
1419 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1420 NULL: pud_offset(pgd, address);
1421 }
1422
1423 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1424 {
1425 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1426 NULL: pmd_offset(pud, address);
1427 }
1428 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1429
1430 #if USE_SPLIT_PTE_PTLOCKS
1431 #if ALLOC_SPLIT_PTLOCKS
1432 void __init ptlock_cache_init(void);
1433 extern bool ptlock_alloc(struct page *page);
1434 extern void ptlock_free(struct page *page);
1435
1436 static inline spinlock_t *ptlock_ptr(struct page *page)
1437 {
1438 return page->ptl;
1439 }
1440 #else /* ALLOC_SPLIT_PTLOCKS */
1441 static inline void ptlock_cache_init(void)
1442 {
1443 }
1444
1445 static inline bool ptlock_alloc(struct page *page)
1446 {
1447 return true;
1448 }
1449
1450 static inline void ptlock_free(struct page *page)
1451 {
1452 }
1453
1454 static inline spinlock_t *ptlock_ptr(struct page *page)
1455 {
1456 return &page->ptl;
1457 }
1458 #endif /* ALLOC_SPLIT_PTLOCKS */
1459
1460 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1461 {
1462 return ptlock_ptr(pmd_page(*pmd));
1463 }
1464
1465 static inline bool ptlock_init(struct page *page)
1466 {
1467 /*
1468 * prep_new_page() initialize page->private (and therefore page->ptl)
1469 * with 0. Make sure nobody took it in use in between.
1470 *
1471 * It can happen if arch try to use slab for page table allocation:
1472 * slab code uses page->slab_cache and page->first_page (for tail
1473 * pages), which share storage with page->ptl.
1474 */
1475 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1476 if (!ptlock_alloc(page))
1477 return false;
1478 spin_lock_init(ptlock_ptr(page));
1479 return true;
1480 }
1481
1482 /* Reset page->mapping so free_pages_check won't complain. */
1483 static inline void pte_lock_deinit(struct page *page)
1484 {
1485 page->mapping = NULL;
1486 ptlock_free(page);
1487 }
1488
1489 #else /* !USE_SPLIT_PTE_PTLOCKS */
1490 /*
1491 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1492 */
1493 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1494 {
1495 return &mm->page_table_lock;
1496 }
1497 static inline void ptlock_cache_init(void) {}
1498 static inline bool ptlock_init(struct page *page) { return true; }
1499 static inline void pte_lock_deinit(struct page *page) {}
1500 #endif /* USE_SPLIT_PTE_PTLOCKS */
1501
1502 static inline void pgtable_init(void)
1503 {
1504 ptlock_cache_init();
1505 pgtable_cache_init();
1506 }
1507
1508 static inline bool pgtable_page_ctor(struct page *page)
1509 {
1510 inc_zone_page_state(page, NR_PAGETABLE);
1511 return ptlock_init(page);
1512 }
1513
1514 static inline void pgtable_page_dtor(struct page *page)
1515 {
1516 pte_lock_deinit(page);
1517 dec_zone_page_state(page, NR_PAGETABLE);
1518 }
1519
1520 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1521 ({ \
1522 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1523 pte_t *__pte = pte_offset_map(pmd, address); \
1524 *(ptlp) = __ptl; \
1525 spin_lock(__ptl); \
1526 __pte; \
1527 })
1528
1529 #define pte_unmap_unlock(pte, ptl) do { \
1530 spin_unlock(ptl); \
1531 pte_unmap(pte); \
1532 } while (0)
1533
1534 #define pte_alloc_map(mm, vma, pmd, address) \
1535 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1536 pmd, address))? \
1537 NULL: pte_offset_map(pmd, address))
1538
1539 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1540 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1541 pmd, address))? \
1542 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1543
1544 #define pte_alloc_kernel(pmd, address) \
1545 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1546 NULL: pte_offset_kernel(pmd, address))
1547
1548 #if USE_SPLIT_PMD_PTLOCKS
1549
1550 static struct page *pmd_to_page(pmd_t *pmd)
1551 {
1552 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1553 return virt_to_page((void *)((unsigned long) pmd & mask));
1554 }
1555
1556 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1557 {
1558 return ptlock_ptr(pmd_to_page(pmd));
1559 }
1560
1561 static inline bool pgtable_pmd_page_ctor(struct page *page)
1562 {
1563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1564 page->pmd_huge_pte = NULL;
1565 #endif
1566 return ptlock_init(page);
1567 }
1568
1569 static inline void pgtable_pmd_page_dtor(struct page *page)
1570 {
1571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1572 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1573 #endif
1574 ptlock_free(page);
1575 }
1576
1577 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1578
1579 #else
1580
1581 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1582 {
1583 return &mm->page_table_lock;
1584 }
1585
1586 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1587 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1588
1589 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1590
1591 #endif
1592
1593 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1594 {
1595 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1596 spin_lock(ptl);
1597 return ptl;
1598 }
1599
1600 extern void free_area_init(unsigned long * zones_size);
1601 extern void free_area_init_node(int nid, unsigned long * zones_size,
1602 unsigned long zone_start_pfn, unsigned long *zholes_size);
1603 extern void free_initmem(void);
1604
1605 /*
1606 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1607 * into the buddy system. The freed pages will be poisoned with pattern
1608 * "poison" if it's within range [0, UCHAR_MAX].
1609 * Return pages freed into the buddy system.
1610 */
1611 extern unsigned long free_reserved_area(void *start, void *end,
1612 int poison, char *s);
1613
1614 #ifdef CONFIG_HIGHMEM
1615 /*
1616 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1617 * and totalram_pages.
1618 */
1619 extern void free_highmem_page(struct page *page);
1620 #endif
1621
1622 extern void adjust_managed_page_count(struct page *page, long count);
1623 extern void mem_init_print_info(const char *str);
1624
1625 /* Free the reserved page into the buddy system, so it gets managed. */
1626 static inline void __free_reserved_page(struct page *page)
1627 {
1628 ClearPageReserved(page);
1629 init_page_count(page);
1630 __free_page(page);
1631 }
1632
1633 static inline void free_reserved_page(struct page *page)
1634 {
1635 __free_reserved_page(page);
1636 adjust_managed_page_count(page, 1);
1637 }
1638
1639 static inline void mark_page_reserved(struct page *page)
1640 {
1641 SetPageReserved(page);
1642 adjust_managed_page_count(page, -1);
1643 }
1644
1645 /*
1646 * Default method to free all the __init memory into the buddy system.
1647 * The freed pages will be poisoned with pattern "poison" if it's within
1648 * range [0, UCHAR_MAX].
1649 * Return pages freed into the buddy system.
1650 */
1651 static inline unsigned long free_initmem_default(int poison)
1652 {
1653 extern char __init_begin[], __init_end[];
1654
1655 return free_reserved_area(&__init_begin, &__init_end,
1656 poison, "unused kernel");
1657 }
1658
1659 static inline unsigned long get_num_physpages(void)
1660 {
1661 int nid;
1662 unsigned long phys_pages = 0;
1663
1664 for_each_online_node(nid)
1665 phys_pages += node_present_pages(nid);
1666
1667 return phys_pages;
1668 }
1669
1670 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1671 /*
1672 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1673 * zones, allocate the backing mem_map and account for memory holes in a more
1674 * architecture independent manner. This is a substitute for creating the
1675 * zone_sizes[] and zholes_size[] arrays and passing them to
1676 * free_area_init_node()
1677 *
1678 * An architecture is expected to register range of page frames backed by
1679 * physical memory with memblock_add[_node]() before calling
1680 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1681 * usage, an architecture is expected to do something like
1682 *
1683 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1684 * max_highmem_pfn};
1685 * for_each_valid_physical_page_range()
1686 * memblock_add_node(base, size, nid)
1687 * free_area_init_nodes(max_zone_pfns);
1688 *
1689 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1690 * registered physical page range. Similarly
1691 * sparse_memory_present_with_active_regions() calls memory_present() for
1692 * each range when SPARSEMEM is enabled.
1693 *
1694 * See mm/page_alloc.c for more information on each function exposed by
1695 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1696 */
1697 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1698 unsigned long node_map_pfn_alignment(void);
1699 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1700 unsigned long end_pfn);
1701 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1702 unsigned long end_pfn);
1703 extern void get_pfn_range_for_nid(unsigned int nid,
1704 unsigned long *start_pfn, unsigned long *end_pfn);
1705 extern unsigned long find_min_pfn_with_active_regions(void);
1706 extern void free_bootmem_with_active_regions(int nid,
1707 unsigned long max_low_pfn);
1708 extern void sparse_memory_present_with_active_regions(int nid);
1709
1710 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1711
1712 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1713 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1714 static inline int __early_pfn_to_nid(unsigned long pfn)
1715 {
1716 return 0;
1717 }
1718 #else
1719 /* please see mm/page_alloc.c */
1720 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1721 /* there is a per-arch backend function. */
1722 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1723 #endif
1724
1725 extern void set_dma_reserve(unsigned long new_dma_reserve);
1726 extern void memmap_init_zone(unsigned long, int, unsigned long,
1727 unsigned long, enum memmap_context);
1728 extern void setup_per_zone_wmarks(void);
1729 extern int __meminit init_per_zone_wmark_min(void);
1730 extern void mem_init(void);
1731 extern void __init mmap_init(void);
1732 extern void show_mem(unsigned int flags);
1733 extern void si_meminfo(struct sysinfo * val);
1734 extern void si_meminfo_node(struct sysinfo *val, int nid);
1735
1736 extern __printf(3, 4)
1737 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1738
1739 extern void setup_per_cpu_pageset(void);
1740
1741 extern void zone_pcp_update(struct zone *zone);
1742 extern void zone_pcp_reset(struct zone *zone);
1743
1744 /* page_alloc.c */
1745 extern int min_free_kbytes;
1746
1747 /* nommu.c */
1748 extern atomic_long_t mmap_pages_allocated;
1749 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1750
1751 /* interval_tree.c */
1752 void vma_interval_tree_insert(struct vm_area_struct *node,
1753 struct rb_root *root);
1754 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1755 struct vm_area_struct *prev,
1756 struct rb_root *root);
1757 void vma_interval_tree_remove(struct vm_area_struct *node,
1758 struct rb_root *root);
1759 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1760 unsigned long start, unsigned long last);
1761 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1762 unsigned long start, unsigned long last);
1763
1764 #define vma_interval_tree_foreach(vma, root, start, last) \
1765 for (vma = vma_interval_tree_iter_first(root, start, last); \
1766 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1767
1768 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1769 struct list_head *list)
1770 {
1771 list_add_tail(&vma->shared.nonlinear, list);
1772 }
1773
1774 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1775 struct rb_root *root);
1776 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1777 struct rb_root *root);
1778 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1779 struct rb_root *root, unsigned long start, unsigned long last);
1780 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1781 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1782 #ifdef CONFIG_DEBUG_VM_RB
1783 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1784 #endif
1785
1786 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1787 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1788 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1789
1790 /* mmap.c */
1791 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1792 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1793 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1794 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1795 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1796 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1797 struct mempolicy *);
1798 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1799 extern int split_vma(struct mm_struct *,
1800 struct vm_area_struct *, unsigned long addr, int new_below);
1801 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1802 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1803 struct rb_node **, struct rb_node *);
1804 extern void unlink_file_vma(struct vm_area_struct *);
1805 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1806 unsigned long addr, unsigned long len, pgoff_t pgoff,
1807 bool *need_rmap_locks);
1808 extern void exit_mmap(struct mm_struct *);
1809
1810 static inline int check_data_rlimit(unsigned long rlim,
1811 unsigned long new,
1812 unsigned long start,
1813 unsigned long end_data,
1814 unsigned long start_data)
1815 {
1816 if (rlim < RLIM_INFINITY) {
1817 if (((new - start) + (end_data - start_data)) > rlim)
1818 return -ENOSPC;
1819 }
1820
1821 return 0;
1822 }
1823
1824 extern int mm_take_all_locks(struct mm_struct *mm);
1825 extern void mm_drop_all_locks(struct mm_struct *mm);
1826
1827 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1828 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1829
1830 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1831 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1832 unsigned long addr, unsigned long len,
1833 unsigned long flags,
1834 const struct vm_special_mapping *spec);
1835 /* This is an obsolete alternative to _install_special_mapping. */
1836 extern int install_special_mapping(struct mm_struct *mm,
1837 unsigned long addr, unsigned long len,
1838 unsigned long flags, struct page **pages);
1839
1840 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1841
1842 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1843 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1844 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1845 unsigned long len, unsigned long prot, unsigned long flags,
1846 unsigned long pgoff, unsigned long *populate);
1847 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1848
1849 #ifdef CONFIG_MMU
1850 extern int __mm_populate(unsigned long addr, unsigned long len,
1851 int ignore_errors);
1852 static inline void mm_populate(unsigned long addr, unsigned long len)
1853 {
1854 /* Ignore errors */
1855 (void) __mm_populate(addr, len, 1);
1856 }
1857 #else
1858 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1859 #endif
1860
1861 /* These take the mm semaphore themselves */
1862 extern unsigned long vm_brk(unsigned long, unsigned long);
1863 extern int vm_munmap(unsigned long, size_t);
1864 extern unsigned long vm_mmap(struct file *, unsigned long,
1865 unsigned long, unsigned long,
1866 unsigned long, unsigned long);
1867
1868 struct vm_unmapped_area_info {
1869 #define VM_UNMAPPED_AREA_TOPDOWN 1
1870 unsigned long flags;
1871 unsigned long length;
1872 unsigned long low_limit;
1873 unsigned long high_limit;
1874 unsigned long align_mask;
1875 unsigned long align_offset;
1876 };
1877
1878 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1879 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1880
1881 /*
1882 * Search for an unmapped address range.
1883 *
1884 * We are looking for a range that:
1885 * - does not intersect with any VMA;
1886 * - is contained within the [low_limit, high_limit) interval;
1887 * - is at least the desired size.
1888 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1889 */
1890 static inline unsigned long
1891 vm_unmapped_area(struct vm_unmapped_area_info *info)
1892 {
1893 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1894 return unmapped_area(info);
1895 else
1896 return unmapped_area_topdown(info);
1897 }
1898
1899 /* truncate.c */
1900 extern void truncate_inode_pages(struct address_space *, loff_t);
1901 extern void truncate_inode_pages_range(struct address_space *,
1902 loff_t lstart, loff_t lend);
1903 extern void truncate_inode_pages_final(struct address_space *);
1904
1905 /* generic vm_area_ops exported for stackable file systems */
1906 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1907 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1908 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1909
1910 /* mm/page-writeback.c */
1911 int write_one_page(struct page *page, int wait);
1912 void task_dirty_inc(struct task_struct *tsk);
1913
1914 /* readahead.c */
1915 #define VM_MAX_READAHEAD 128 /* kbytes */
1916 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1917
1918 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1919 pgoff_t offset, unsigned long nr_to_read);
1920
1921 void page_cache_sync_readahead(struct address_space *mapping,
1922 struct file_ra_state *ra,
1923 struct file *filp,
1924 pgoff_t offset,
1925 unsigned long size);
1926
1927 void page_cache_async_readahead(struct address_space *mapping,
1928 struct file_ra_state *ra,
1929 struct file *filp,
1930 struct page *pg,
1931 pgoff_t offset,
1932 unsigned long size);
1933
1934 unsigned long max_sane_readahead(unsigned long nr);
1935
1936 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1937 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1938
1939 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1940 extern int expand_downwards(struct vm_area_struct *vma,
1941 unsigned long address);
1942 #if VM_GROWSUP
1943 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1944 #else
1945 #define expand_upwards(vma, address) do { } while (0)
1946 #endif
1947
1948 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1949 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1950 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1951 struct vm_area_struct **pprev);
1952
1953 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1954 NULL if none. Assume start_addr < end_addr. */
1955 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1956 {
1957 struct vm_area_struct * vma = find_vma(mm,start_addr);
1958
1959 if (vma && end_addr <= vma->vm_start)
1960 vma = NULL;
1961 return vma;
1962 }
1963
1964 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1965 {
1966 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1967 }
1968
1969 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1970 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1971 unsigned long vm_start, unsigned long vm_end)
1972 {
1973 struct vm_area_struct *vma = find_vma(mm, vm_start);
1974
1975 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1976 vma = NULL;
1977
1978 return vma;
1979 }
1980
1981 #ifdef CONFIG_MMU
1982 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1983 void vma_set_page_prot(struct vm_area_struct *vma);
1984 #else
1985 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1986 {
1987 return __pgprot(0);
1988 }
1989 static inline void vma_set_page_prot(struct vm_area_struct *vma)
1990 {
1991 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1992 }
1993 #endif
1994
1995 #ifdef CONFIG_NUMA_BALANCING
1996 unsigned long change_prot_numa(struct vm_area_struct *vma,
1997 unsigned long start, unsigned long end);
1998 #endif
1999
2000 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2001 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2002 unsigned long pfn, unsigned long size, pgprot_t);
2003 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2004 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2005 unsigned long pfn);
2006 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2007 unsigned long pfn);
2008 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2009
2010
2011 struct page *follow_page_mask(struct vm_area_struct *vma,
2012 unsigned long address, unsigned int foll_flags,
2013 unsigned int *page_mask);
2014
2015 static inline struct page *follow_page(struct vm_area_struct *vma,
2016 unsigned long address, unsigned int foll_flags)
2017 {
2018 unsigned int unused_page_mask;
2019 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2020 }
2021
2022 #define FOLL_WRITE 0x01 /* check pte is writable */
2023 #define FOLL_TOUCH 0x02 /* mark page accessed */
2024 #define FOLL_GET 0x04 /* do get_page on page */
2025 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2026 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2027 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2028 * and return without waiting upon it */
2029 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
2030 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2031 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2032 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2033 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2034 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2035
2036 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2037 void *data);
2038 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2039 unsigned long size, pte_fn_t fn, void *data);
2040
2041 #ifdef CONFIG_PROC_FS
2042 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2043 #else
2044 static inline void vm_stat_account(struct mm_struct *mm,
2045 unsigned long flags, struct file *file, long pages)
2046 {
2047 mm->total_vm += pages;
2048 }
2049 #endif /* CONFIG_PROC_FS */
2050
2051 #ifdef CONFIG_DEBUG_PAGEALLOC
2052 extern void kernel_map_pages(struct page *page, int numpages, int enable);
2053 #ifdef CONFIG_HIBERNATION
2054 extern bool kernel_page_present(struct page *page);
2055 #endif /* CONFIG_HIBERNATION */
2056 #else
2057 static inline void
2058 kernel_map_pages(struct page *page, int numpages, int enable) {}
2059 #ifdef CONFIG_HIBERNATION
2060 static inline bool kernel_page_present(struct page *page) { return true; }
2061 #endif /* CONFIG_HIBERNATION */
2062 #endif
2063
2064 #ifdef __HAVE_ARCH_GATE_AREA
2065 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2066 extern int in_gate_area_no_mm(unsigned long addr);
2067 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2068 #else
2069 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2070 {
2071 return NULL;
2072 }
2073 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2074 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2075 {
2076 return 0;
2077 }
2078 #endif /* __HAVE_ARCH_GATE_AREA */
2079
2080 #ifdef CONFIG_SYSCTL
2081 extern int sysctl_drop_caches;
2082 int drop_caches_sysctl_handler(struct ctl_table *, int,
2083 void __user *, size_t *, loff_t *);
2084 #endif
2085
2086 unsigned long shrink_slab(struct shrink_control *shrink,
2087 unsigned long nr_pages_scanned,
2088 unsigned long lru_pages);
2089
2090 #ifndef CONFIG_MMU
2091 #define randomize_va_space 0
2092 #else
2093 extern int randomize_va_space;
2094 #endif
2095
2096 const char * arch_vma_name(struct vm_area_struct *vma);
2097 void print_vma_addr(char *prefix, unsigned long rip);
2098
2099 void sparse_mem_maps_populate_node(struct page **map_map,
2100 unsigned long pnum_begin,
2101 unsigned long pnum_end,
2102 unsigned long map_count,
2103 int nodeid);
2104
2105 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2106 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2107 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2108 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2109 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2110 void *vmemmap_alloc_block(unsigned long size, int node);
2111 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2112 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2113 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2114 int node);
2115 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2116 void vmemmap_populate_print_last(void);
2117 #ifdef CONFIG_MEMORY_HOTPLUG
2118 void vmemmap_free(unsigned long start, unsigned long end);
2119 #endif
2120 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2121 unsigned long size);
2122
2123 enum mf_flags {
2124 MF_COUNT_INCREASED = 1 << 0,
2125 MF_ACTION_REQUIRED = 1 << 1,
2126 MF_MUST_KILL = 1 << 2,
2127 MF_SOFT_OFFLINE = 1 << 3,
2128 };
2129 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2130 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2131 extern int unpoison_memory(unsigned long pfn);
2132 extern int sysctl_memory_failure_early_kill;
2133 extern int sysctl_memory_failure_recovery;
2134 extern void shake_page(struct page *p, int access);
2135 extern atomic_long_t num_poisoned_pages;
2136 extern int soft_offline_page(struct page *page, int flags);
2137
2138 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2139 extern void clear_huge_page(struct page *page,
2140 unsigned long addr,
2141 unsigned int pages_per_huge_page);
2142 extern void copy_user_huge_page(struct page *dst, struct page *src,
2143 unsigned long addr, struct vm_area_struct *vma,
2144 unsigned int pages_per_huge_page);
2145 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2146
2147 #ifdef CONFIG_DEBUG_PAGEALLOC
2148 extern unsigned int _debug_guardpage_minorder;
2149
2150 static inline unsigned int debug_guardpage_minorder(void)
2151 {
2152 return _debug_guardpage_minorder;
2153 }
2154
2155 static inline bool page_is_guard(struct page *page)
2156 {
2157 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2158 }
2159 #else
2160 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2161 static inline bool page_is_guard(struct page *page) { return false; }
2162 #endif /* CONFIG_DEBUG_PAGEALLOC */
2163
2164 #if MAX_NUMNODES > 1
2165 void __init setup_nr_node_ids(void);
2166 #else
2167 static inline void setup_nr_node_ids(void) {}
2168 #endif
2169
2170 #endif /* __KERNEL__ */
2171 #endif /* _LINUX_MM_H */
This page took 0.074747 seconds and 6 git commands to generate.