mm: make compound_head() robust
[deliverable/linux.git] / include / linux / mm_types.h
1 #ifndef _LINUX_MM_TYPES_H
2 #define _LINUX_MM_TYPES_H
3
4 #include <linux/auxvec.h>
5 #include <linux/types.h>
6 #include <linux/threads.h>
7 #include <linux/list.h>
8 #include <linux/spinlock.h>
9 #include <linux/rbtree.h>
10 #include <linux/rwsem.h>
11 #include <linux/completion.h>
12 #include <linux/cpumask.h>
13 #include <linux/uprobes.h>
14 #include <linux/page-flags-layout.h>
15 #include <asm/page.h>
16 #include <asm/mmu.h>
17
18 #ifndef AT_VECTOR_SIZE_ARCH
19 #define AT_VECTOR_SIZE_ARCH 0
20 #endif
21 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
22
23 struct address_space;
24 struct mem_cgroup;
25
26 #define USE_SPLIT_PTE_PTLOCKS (NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS)
27 #define USE_SPLIT_PMD_PTLOCKS (USE_SPLIT_PTE_PTLOCKS && \
28 IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK))
29 #define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8)
30
31 /*
32 * Each physical page in the system has a struct page associated with
33 * it to keep track of whatever it is we are using the page for at the
34 * moment. Note that we have no way to track which tasks are using
35 * a page, though if it is a pagecache page, rmap structures can tell us
36 * who is mapping it.
37 *
38 * The objects in struct page are organized in double word blocks in
39 * order to allows us to use atomic double word operations on portions
40 * of struct page. That is currently only used by slub but the arrangement
41 * allows the use of atomic double word operations on the flags/mapping
42 * and lru list pointers also.
43 */
44 struct page {
45 /* First double word block */
46 unsigned long flags; /* Atomic flags, some possibly
47 * updated asynchronously */
48 union {
49 struct address_space *mapping; /* If low bit clear, points to
50 * inode address_space, or NULL.
51 * If page mapped as anonymous
52 * memory, low bit is set, and
53 * it points to anon_vma object:
54 * see PAGE_MAPPING_ANON below.
55 */
56 void *s_mem; /* slab first object */
57 };
58
59 /* Second double word */
60 struct {
61 union {
62 pgoff_t index; /* Our offset within mapping. */
63 void *freelist; /* sl[aou]b first free object */
64 };
65
66 union {
67 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
68 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
69 /* Used for cmpxchg_double in slub */
70 unsigned long counters;
71 #else
72 /*
73 * Keep _count separate from slub cmpxchg_double data.
74 * As the rest of the double word is protected by
75 * slab_lock but _count is not.
76 */
77 unsigned counters;
78 #endif
79
80 struct {
81
82 union {
83 /*
84 * Count of ptes mapped in
85 * mms, to show when page is
86 * mapped & limit reverse map
87 * searches.
88 *
89 * Used also for tail pages
90 * refcounting instead of
91 * _count. Tail pages cannot
92 * be mapped and keeping the
93 * tail page _count zero at
94 * all times guarantees
95 * get_page_unless_zero() will
96 * never succeed on tail
97 * pages.
98 */
99 atomic_t _mapcount;
100
101 struct { /* SLUB */
102 unsigned inuse:16;
103 unsigned objects:15;
104 unsigned frozen:1;
105 };
106 int units; /* SLOB */
107 };
108 atomic_t _count; /* Usage count, see below. */
109 };
110 unsigned int active; /* SLAB */
111 };
112 };
113
114 /*
115 * Third double word block
116 *
117 * WARNING: bit 0 of the first word encode PageTail(). That means
118 * the rest users of the storage space MUST NOT use the bit to
119 * avoid collision and false-positive PageTail().
120 */
121 union {
122 struct list_head lru; /* Pageout list, eg. active_list
123 * protected by zone->lru_lock !
124 * Can be used as a generic list
125 * by the page owner.
126 */
127 struct { /* slub per cpu partial pages */
128 struct page *next; /* Next partial slab */
129 #ifdef CONFIG_64BIT
130 int pages; /* Nr of partial slabs left */
131 int pobjects; /* Approximate # of objects */
132 #else
133 short int pages;
134 short int pobjects;
135 #endif
136 };
137
138 struct rcu_head rcu_head; /* Used by SLAB
139 * when destroying via RCU
140 */
141 /* Tail pages of compound page */
142 struct {
143 unsigned long compound_head; /* If bit zero is set */
144
145 /* First tail page only */
146 unsigned short int compound_dtor;
147 unsigned short int compound_order;
148 };
149
150 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
151 struct {
152 unsigned long __pad; /* do not overlay pmd_huge_pte
153 * with compound_head to avoid
154 * possible bit 0 collision.
155 */
156 pgtable_t pmd_huge_pte; /* protected by page->ptl */
157 };
158 #endif
159 };
160
161 /* Remainder is not double word aligned */
162 union {
163 unsigned long private; /* Mapping-private opaque data:
164 * usually used for buffer_heads
165 * if PagePrivate set; used for
166 * swp_entry_t if PageSwapCache;
167 * indicates order in the buddy
168 * system if PG_buddy is set.
169 */
170 #if USE_SPLIT_PTE_PTLOCKS
171 #if ALLOC_SPLIT_PTLOCKS
172 spinlock_t *ptl;
173 #else
174 spinlock_t ptl;
175 #endif
176 #endif
177 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
178 };
179
180 #ifdef CONFIG_MEMCG
181 struct mem_cgroup *mem_cgroup;
182 #endif
183
184 /*
185 * On machines where all RAM is mapped into kernel address space,
186 * we can simply calculate the virtual address. On machines with
187 * highmem some memory is mapped into kernel virtual memory
188 * dynamically, so we need a place to store that address.
189 * Note that this field could be 16 bits on x86 ... ;)
190 *
191 * Architectures with slow multiplication can define
192 * WANT_PAGE_VIRTUAL in asm/page.h
193 */
194 #if defined(WANT_PAGE_VIRTUAL)
195 void *virtual; /* Kernel virtual address (NULL if
196 not kmapped, ie. highmem) */
197 #endif /* WANT_PAGE_VIRTUAL */
198
199 #ifdef CONFIG_KMEMCHECK
200 /*
201 * kmemcheck wants to track the status of each byte in a page; this
202 * is a pointer to such a status block. NULL if not tracked.
203 */
204 void *shadow;
205 #endif
206
207 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
208 int _last_cpupid;
209 #endif
210 }
211 /*
212 * The struct page can be forced to be double word aligned so that atomic ops
213 * on double words work. The SLUB allocator can make use of such a feature.
214 */
215 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
216 __aligned(2 * sizeof(unsigned long))
217 #endif
218 ;
219
220 struct page_frag {
221 struct page *page;
222 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
223 __u32 offset;
224 __u32 size;
225 #else
226 __u16 offset;
227 __u16 size;
228 #endif
229 };
230
231 #define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
232 #define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
233
234 struct page_frag_cache {
235 void * va;
236 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
237 __u16 offset;
238 __u16 size;
239 #else
240 __u32 offset;
241 #endif
242 /* we maintain a pagecount bias, so that we dont dirty cache line
243 * containing page->_count every time we allocate a fragment.
244 */
245 unsigned int pagecnt_bias;
246 bool pfmemalloc;
247 };
248
249 typedef unsigned long vm_flags_t;
250
251 /*
252 * A region containing a mapping of a non-memory backed file under NOMMU
253 * conditions. These are held in a global tree and are pinned by the VMAs that
254 * map parts of them.
255 */
256 struct vm_region {
257 struct rb_node vm_rb; /* link in global region tree */
258 vm_flags_t vm_flags; /* VMA vm_flags */
259 unsigned long vm_start; /* start address of region */
260 unsigned long vm_end; /* region initialised to here */
261 unsigned long vm_top; /* region allocated to here */
262 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
263 struct file *vm_file; /* the backing file or NULL */
264
265 int vm_usage; /* region usage count (access under nommu_region_sem) */
266 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
267 * this region */
268 };
269
270 #ifdef CONFIG_USERFAULTFD
271 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
272 struct vm_userfaultfd_ctx {
273 struct userfaultfd_ctx *ctx;
274 };
275 #else /* CONFIG_USERFAULTFD */
276 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
277 struct vm_userfaultfd_ctx {};
278 #endif /* CONFIG_USERFAULTFD */
279
280 /*
281 * This struct defines a memory VMM memory area. There is one of these
282 * per VM-area/task. A VM area is any part of the process virtual memory
283 * space that has a special rule for the page-fault handlers (ie a shared
284 * library, the executable area etc).
285 */
286 struct vm_area_struct {
287 /* The first cache line has the info for VMA tree walking. */
288
289 unsigned long vm_start; /* Our start address within vm_mm. */
290 unsigned long vm_end; /* The first byte after our end address
291 within vm_mm. */
292
293 /* linked list of VM areas per task, sorted by address */
294 struct vm_area_struct *vm_next, *vm_prev;
295
296 struct rb_node vm_rb;
297
298 /*
299 * Largest free memory gap in bytes to the left of this VMA.
300 * Either between this VMA and vma->vm_prev, or between one of the
301 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
302 * get_unmapped_area find a free area of the right size.
303 */
304 unsigned long rb_subtree_gap;
305
306 /* Second cache line starts here. */
307
308 struct mm_struct *vm_mm; /* The address space we belong to. */
309 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
310 unsigned long vm_flags; /* Flags, see mm.h. */
311
312 /*
313 * For areas with an address space and backing store,
314 * linkage into the address_space->i_mmap interval tree.
315 */
316 struct {
317 struct rb_node rb;
318 unsigned long rb_subtree_last;
319 } shared;
320
321 /*
322 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
323 * list, after a COW of one of the file pages. A MAP_SHARED vma
324 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
325 * or brk vma (with NULL file) can only be in an anon_vma list.
326 */
327 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
328 * page_table_lock */
329 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
330
331 /* Function pointers to deal with this struct. */
332 const struct vm_operations_struct *vm_ops;
333
334 /* Information about our backing store: */
335 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
336 units, *not* PAGE_CACHE_SIZE */
337 struct file * vm_file; /* File we map to (can be NULL). */
338 void * vm_private_data; /* was vm_pte (shared mem) */
339
340 #ifndef CONFIG_MMU
341 struct vm_region *vm_region; /* NOMMU mapping region */
342 #endif
343 #ifdef CONFIG_NUMA
344 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
345 #endif
346 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
347 };
348
349 struct core_thread {
350 struct task_struct *task;
351 struct core_thread *next;
352 };
353
354 struct core_state {
355 atomic_t nr_threads;
356 struct core_thread dumper;
357 struct completion startup;
358 };
359
360 enum {
361 MM_FILEPAGES,
362 MM_ANONPAGES,
363 MM_SWAPENTS,
364 NR_MM_COUNTERS
365 };
366
367 #if USE_SPLIT_PTE_PTLOCKS && defined(CONFIG_MMU)
368 #define SPLIT_RSS_COUNTING
369 /* per-thread cached information, */
370 struct task_rss_stat {
371 int events; /* for synchronization threshold */
372 int count[NR_MM_COUNTERS];
373 };
374 #endif /* USE_SPLIT_PTE_PTLOCKS */
375
376 struct mm_rss_stat {
377 atomic_long_t count[NR_MM_COUNTERS];
378 };
379
380 struct kioctx_table;
381 struct mm_struct {
382 struct vm_area_struct *mmap; /* list of VMAs */
383 struct rb_root mm_rb;
384 u32 vmacache_seqnum; /* per-thread vmacache */
385 #ifdef CONFIG_MMU
386 unsigned long (*get_unmapped_area) (struct file *filp,
387 unsigned long addr, unsigned long len,
388 unsigned long pgoff, unsigned long flags);
389 #endif
390 unsigned long mmap_base; /* base of mmap area */
391 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
392 unsigned long task_size; /* size of task vm space */
393 unsigned long highest_vm_end; /* highest vma end address */
394 pgd_t * pgd;
395 atomic_t mm_users; /* How many users with user space? */
396 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
397 atomic_long_t nr_ptes; /* PTE page table pages */
398 #if CONFIG_PGTABLE_LEVELS > 2
399 atomic_long_t nr_pmds; /* PMD page table pages */
400 #endif
401 int map_count; /* number of VMAs */
402
403 spinlock_t page_table_lock; /* Protects page tables and some counters */
404 struct rw_semaphore mmap_sem;
405
406 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
407 * together off init_mm.mmlist, and are protected
408 * by mmlist_lock
409 */
410
411
412 unsigned long hiwater_rss; /* High-watermark of RSS usage */
413 unsigned long hiwater_vm; /* High-water virtual memory usage */
414
415 unsigned long total_vm; /* Total pages mapped */
416 unsigned long locked_vm; /* Pages that have PG_mlocked set */
417 unsigned long pinned_vm; /* Refcount permanently increased */
418 unsigned long shared_vm; /* Shared pages (files) */
419 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE */
420 unsigned long stack_vm; /* VM_GROWSUP/DOWN */
421 unsigned long def_flags;
422 unsigned long start_code, end_code, start_data, end_data;
423 unsigned long start_brk, brk, start_stack;
424 unsigned long arg_start, arg_end, env_start, env_end;
425
426 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
427
428 /*
429 * Special counters, in some configurations protected by the
430 * page_table_lock, in other configurations by being atomic.
431 */
432 struct mm_rss_stat rss_stat;
433
434 struct linux_binfmt *binfmt;
435
436 cpumask_var_t cpu_vm_mask_var;
437
438 /* Architecture-specific MM context */
439 mm_context_t context;
440
441 unsigned long flags; /* Must use atomic bitops to access the bits */
442
443 struct core_state *core_state; /* coredumping support */
444 #ifdef CONFIG_AIO
445 spinlock_t ioctx_lock;
446 struct kioctx_table __rcu *ioctx_table;
447 #endif
448 #ifdef CONFIG_MEMCG
449 /*
450 * "owner" points to a task that is regarded as the canonical
451 * user/owner of this mm. All of the following must be true in
452 * order for it to be changed:
453 *
454 * current == mm->owner
455 * current->mm != mm
456 * new_owner->mm == mm
457 * new_owner->alloc_lock is held
458 */
459 struct task_struct __rcu *owner;
460 #endif
461
462 /* store ref to file /proc/<pid>/exe symlink points to */
463 struct file __rcu *exe_file;
464 #ifdef CONFIG_MMU_NOTIFIER
465 struct mmu_notifier_mm *mmu_notifier_mm;
466 #endif
467 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
468 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
469 #endif
470 #ifdef CONFIG_CPUMASK_OFFSTACK
471 struct cpumask cpumask_allocation;
472 #endif
473 #ifdef CONFIG_NUMA_BALANCING
474 /*
475 * numa_next_scan is the next time that the PTEs will be marked
476 * pte_numa. NUMA hinting faults will gather statistics and migrate
477 * pages to new nodes if necessary.
478 */
479 unsigned long numa_next_scan;
480
481 /* Restart point for scanning and setting pte_numa */
482 unsigned long numa_scan_offset;
483
484 /* numa_scan_seq prevents two threads setting pte_numa */
485 int numa_scan_seq;
486 #endif
487 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
488 /*
489 * An operation with batched TLB flushing is going on. Anything that
490 * can move process memory needs to flush the TLB when moving a
491 * PROT_NONE or PROT_NUMA mapped page.
492 */
493 bool tlb_flush_pending;
494 #endif
495 struct uprobes_state uprobes_state;
496 #ifdef CONFIG_X86_INTEL_MPX
497 /* address of the bounds directory */
498 void __user *bd_addr;
499 #endif
500 #ifdef CONFIG_HUGETLB_PAGE
501 atomic_long_t hugetlb_usage;
502 #endif
503 };
504
505 static inline void mm_init_cpumask(struct mm_struct *mm)
506 {
507 #ifdef CONFIG_CPUMASK_OFFSTACK
508 mm->cpu_vm_mask_var = &mm->cpumask_allocation;
509 #endif
510 cpumask_clear(mm->cpu_vm_mask_var);
511 }
512
513 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
514 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
515 {
516 return mm->cpu_vm_mask_var;
517 }
518
519 #if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
520 /*
521 * Memory barriers to keep this state in sync are graciously provided by
522 * the page table locks, outside of which no page table modifications happen.
523 * The barriers below prevent the compiler from re-ordering the instructions
524 * around the memory barriers that are already present in the code.
525 */
526 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
527 {
528 barrier();
529 return mm->tlb_flush_pending;
530 }
531 static inline void set_tlb_flush_pending(struct mm_struct *mm)
532 {
533 mm->tlb_flush_pending = true;
534
535 /*
536 * Guarantee that the tlb_flush_pending store does not leak into the
537 * critical section updating the page tables
538 */
539 smp_mb__before_spinlock();
540 }
541 /* Clearing is done after a TLB flush, which also provides a barrier. */
542 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
543 {
544 barrier();
545 mm->tlb_flush_pending = false;
546 }
547 #else
548 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
549 {
550 return false;
551 }
552 static inline void set_tlb_flush_pending(struct mm_struct *mm)
553 {
554 }
555 static inline void clear_tlb_flush_pending(struct mm_struct *mm)
556 {
557 }
558 #endif
559
560 struct vm_special_mapping
561 {
562 const char *name;
563 struct page **pages;
564 };
565
566 enum tlb_flush_reason {
567 TLB_FLUSH_ON_TASK_SWITCH,
568 TLB_REMOTE_SHOOTDOWN,
569 TLB_LOCAL_SHOOTDOWN,
570 TLB_LOCAL_MM_SHOOTDOWN,
571 TLB_REMOTE_SEND_IPI,
572 NR_TLB_FLUSH_REASONS,
573 };
574
575 /*
576 * A swap entry has to fit into a "unsigned long", as the entry is hidden
577 * in the "index" field of the swapper address space.
578 */
579 typedef struct {
580 unsigned long val;
581 } swp_entry_t;
582
583 #endif /* _LINUX_MM_TYPES_H */
This page took 0.045713 seconds and 5 git commands to generate.