Merge remote-tracking branch 'lightnvm/for-next'
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55 #include <linux/hashtable.h>
56
57 struct netpoll_info;
58 struct device;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 const struct ethtool_ops *ops);
71
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
74 #define NET_RX_DROP 1 /* packet dropped */
75
76 /*
77 * Transmit return codes: transmit return codes originate from three different
78 * namespaces:
79 *
80 * - qdisc return codes
81 * - driver transmit return codes
82 * - errno values
83 *
84 * Drivers are allowed to return any one of those in their hard_start_xmit()
85 * function. Real network devices commonly used with qdiscs should only return
86 * the driver transmit return codes though - when qdiscs are used, the actual
87 * transmission happens asynchronously, so the value is not propagated to
88 * higher layers. Virtual network devices transmit synchronously; in this case
89 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
90 * others are propagated to higher layers.
91 */
92
93 /* qdisc ->enqueue() return codes. */
94 #define NET_XMIT_SUCCESS 0x00
95 #define NET_XMIT_DROP 0x01 /* skb dropped */
96 #define NET_XMIT_CN 0x02 /* congestion notification */
97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
98
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100 * indicates that the device will soon be dropping packets, or already drops
101 * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK 0xf0
107
108 enum netdev_tx {
109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
110 NETDEV_TX_OK = 0x00, /* driver took care of packet */
111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114
115 /*
116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118 */
119 static inline bool dev_xmit_complete(int rc)
120 {
121 /*
122 * Positive cases with an skb consumed by a driver:
123 * - successful transmission (rc == NETDEV_TX_OK)
124 * - error while transmitting (rc < 0)
125 * - error while queueing to a different device (rc & NET_XMIT_MASK)
126 */
127 if (likely(rc < NET_XMIT_MASK))
128 return true;
129
130 return false;
131 }
132
133 /*
134 * Compute the worst-case header length according to the protocols
135 * used.
136 */
137
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 # define LL_MAX_HEADER 128
143 # else
144 # define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156
157 /*
158 * Old network device statistics. Fields are native words
159 * (unsigned long) so they can be read and written atomically.
160 */
161
162 struct net_device_stats {
163 unsigned long rx_packets;
164 unsigned long tx_packets;
165 unsigned long rx_bytes;
166 unsigned long tx_bytes;
167 unsigned long rx_errors;
168 unsigned long tx_errors;
169 unsigned long rx_dropped;
170 unsigned long tx_dropped;
171 unsigned long multicast;
172 unsigned long collisions;
173 unsigned long rx_length_errors;
174 unsigned long rx_over_errors;
175 unsigned long rx_crc_errors;
176 unsigned long rx_frame_errors;
177 unsigned long rx_fifo_errors;
178 unsigned long rx_missed_errors;
179 unsigned long tx_aborted_errors;
180 unsigned long tx_carrier_errors;
181 unsigned long tx_fifo_errors;
182 unsigned long tx_heartbeat_errors;
183 unsigned long tx_window_errors;
184 unsigned long rx_compressed;
185 unsigned long tx_compressed;
186 };
187
188
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 #endif
196
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200
201 struct netdev_hw_addr {
202 struct list_head list;
203 unsigned char addr[MAX_ADDR_LEN];
204 unsigned char type;
205 #define NETDEV_HW_ADDR_T_LAN 1
206 #define NETDEV_HW_ADDR_T_SAN 2
207 #define NETDEV_HW_ADDR_T_SLAVE 3
208 #define NETDEV_HW_ADDR_T_UNICAST 4
209 #define NETDEV_HW_ADDR_T_MULTICAST 5
210 bool global_use;
211 int sync_cnt;
212 int refcount;
213 int synced;
214 struct rcu_head rcu_head;
215 };
216
217 struct netdev_hw_addr_list {
218 struct list_head list;
219 int count;
220 };
221
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225 list_for_each_entry(ha, &(l)->list, list)
226
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236
237 struct hh_cache {
238 u16 hh_len;
239 u16 __pad;
240 seqlock_t hh_lock;
241
242 /* cached hardware header; allow for machine alignment needs. */
243 #define HH_DATA_MOD 16
244 #define HH_DATA_OFF(__len) \
245 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
246 #define HH_DATA_ALIGN(__len) \
247 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
248 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
249 };
250
251 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
252 * Alternative is:
253 * dev->hard_header_len ? (dev->hard_header_len +
254 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
255 *
256 * We could use other alignment values, but we must maintain the
257 * relationship HH alignment <= LL alignment.
258 */
259 #define LL_RESERVED_SPACE(dev) \
260 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
262 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263
264 struct header_ops {
265 int (*create) (struct sk_buff *skb, struct net_device *dev,
266 unsigned short type, const void *daddr,
267 const void *saddr, unsigned int len);
268 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
269 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
270 void (*cache_update)(struct hh_cache *hh,
271 const struct net_device *dev,
272 const unsigned char *haddr);
273 bool (*validate)(const char *ll_header, unsigned int len);
274 };
275
276 /* These flag bits are private to the generic network queueing
277 * layer; they may not be explicitly referenced by any other
278 * code.
279 */
280
281 enum netdev_state_t {
282 __LINK_STATE_START,
283 __LINK_STATE_PRESENT,
284 __LINK_STATE_NOCARRIER,
285 __LINK_STATE_LINKWATCH_PENDING,
286 __LINK_STATE_DORMANT,
287 };
288
289
290 /*
291 * This structure holds boot-time configured netdevice settings. They
292 * are then used in the device probing.
293 */
294 struct netdev_boot_setup {
295 char name[IFNAMSIZ];
296 struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299
300 int __init netdev_boot_setup(char *str);
301
302 /*
303 * Structure for NAPI scheduling similar to tasklet but with weighting
304 */
305 struct napi_struct {
306 /* The poll_list must only be managed by the entity which
307 * changes the state of the NAPI_STATE_SCHED bit. This means
308 * whoever atomically sets that bit can add this napi_struct
309 * to the per-CPU poll_list, and whoever clears that bit
310 * can remove from the list right before clearing the bit.
311 */
312 struct list_head poll_list;
313
314 unsigned long state;
315 int weight;
316 unsigned int gro_count;
317 int (*poll)(struct napi_struct *, int);
318 #ifdef CONFIG_NETPOLL
319 spinlock_t poll_lock;
320 int poll_owner;
321 #endif
322 struct net_device *dev;
323 struct sk_buff *gro_list;
324 struct sk_buff *skb;
325 struct hrtimer timer;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
336 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 };
338
339 enum gro_result {
340 GRO_MERGED,
341 GRO_MERGED_FREE,
342 GRO_HELD,
343 GRO_NORMAL,
344 GRO_DROP,
345 };
346 typedef enum gro_result gro_result_t;
347
348 /*
349 * enum rx_handler_result - Possible return values for rx_handlers.
350 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
351 * further.
352 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
353 * case skb->dev was changed by rx_handler.
354 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
355 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
356 *
357 * rx_handlers are functions called from inside __netif_receive_skb(), to do
358 * special processing of the skb, prior to delivery to protocol handlers.
359 *
360 * Currently, a net_device can only have a single rx_handler registered. Trying
361 * to register a second rx_handler will return -EBUSY.
362 *
363 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
364 * To unregister a rx_handler on a net_device, use
365 * netdev_rx_handler_unregister().
366 *
367 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
368 * do with the skb.
369 *
370 * If the rx_handler consumed the skb in some way, it should return
371 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
372 * the skb to be delivered in some other way.
373 *
374 * If the rx_handler changed skb->dev, to divert the skb to another
375 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
376 * new device will be called if it exists.
377 *
378 * If the rx_handler decides the skb should be ignored, it should return
379 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
380 * are registered on exact device (ptype->dev == skb->dev).
381 *
382 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
383 * delivered, it should return RX_HANDLER_PASS.
384 *
385 * A device without a registered rx_handler will behave as if rx_handler
386 * returned RX_HANDLER_PASS.
387 */
388
389 enum rx_handler_result {
390 RX_HANDLER_CONSUMED,
391 RX_HANDLER_ANOTHER,
392 RX_HANDLER_EXACT,
393 RX_HANDLER_PASS,
394 };
395 typedef enum rx_handler_result rx_handler_result_t;
396 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
397
398 void __napi_schedule(struct napi_struct *n);
399 void __napi_schedule_irqoff(struct napi_struct *n);
400
401 static inline bool napi_disable_pending(struct napi_struct *n)
402 {
403 return test_bit(NAPI_STATE_DISABLE, &n->state);
404 }
405
406 /**
407 * napi_schedule_prep - check if NAPI can be scheduled
408 * @n: NAPI context
409 *
410 * Test if NAPI routine is already running, and if not mark
411 * it as running. This is used as a condition variable to
412 * insure only one NAPI poll instance runs. We also make
413 * sure there is no pending NAPI disable.
414 */
415 static inline bool napi_schedule_prep(struct napi_struct *n)
416 {
417 return !napi_disable_pending(n) &&
418 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
419 }
420
421 /**
422 * napi_schedule - schedule NAPI poll
423 * @n: NAPI context
424 *
425 * Schedule NAPI poll routine to be called if it is not already
426 * running.
427 */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 if (napi_schedule_prep(n))
431 __napi_schedule(n);
432 }
433
434 /**
435 * napi_schedule_irqoff - schedule NAPI poll
436 * @n: NAPI context
437 *
438 * Variant of napi_schedule(), assuming hard irqs are masked.
439 */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 if (napi_schedule_prep(n))
443 __napi_schedule_irqoff(n);
444 }
445
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 if (napi_schedule_prep(napi)) {
450 __napi_schedule(napi);
451 return true;
452 }
453 return false;
454 }
455
456 void __napi_complete(struct napi_struct *n);
457 void napi_complete_done(struct napi_struct *n, int work_done);
458 /**
459 * napi_complete - NAPI processing complete
460 * @n: NAPI context
461 *
462 * Mark NAPI processing as complete.
463 * Consider using napi_complete_done() instead.
464 */
465 static inline void napi_complete(struct napi_struct *n)
466 {
467 return napi_complete_done(n, 0);
468 }
469
470 /**
471 * napi_hash_add - add a NAPI to global hashtable
472 * @napi: NAPI context
473 *
474 * Generate a new napi_id and store a @napi under it in napi_hash.
475 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
476 * Note: This is normally automatically done from netif_napi_add(),
477 * so might disappear in a future Linux version.
478 */
479 void napi_hash_add(struct napi_struct *napi);
480
481 /**
482 * napi_hash_del - remove a NAPI from global table
483 * @napi: NAPI context
484 *
485 * Warning: caller must observe RCU grace period
486 * before freeing memory containing @napi, if
487 * this function returns true.
488 * Note: core networking stack automatically calls it
489 * from netif_napi_del().
490 * Drivers might want to call this helper to combine all
491 * the needed RCU grace periods into a single one.
492 */
493 bool napi_hash_del(struct napi_struct *napi);
494
495 /**
496 * napi_disable - prevent NAPI from scheduling
497 * @n: NAPI context
498 *
499 * Stop NAPI from being scheduled on this context.
500 * Waits till any outstanding processing completes.
501 */
502 void napi_disable(struct napi_struct *n);
503
504 /**
505 * napi_enable - enable NAPI scheduling
506 * @n: NAPI context
507 *
508 * Resume NAPI from being scheduled on this context.
509 * Must be paired with napi_disable.
510 */
511 static inline void napi_enable(struct napi_struct *n)
512 {
513 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514 smp_mb__before_atomic();
515 clear_bit(NAPI_STATE_SCHED, &n->state);
516 clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518
519 /**
520 * napi_synchronize - wait until NAPI is not running
521 * @n: NAPI context
522 *
523 * Wait until NAPI is done being scheduled on this context.
524 * Waits till any outstanding processing completes but
525 * does not disable future activations.
526 */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529 if (IS_ENABLED(CONFIG_SMP))
530 while (test_bit(NAPI_STATE_SCHED, &n->state))
531 msleep(1);
532 else
533 barrier();
534 }
535
536 enum netdev_queue_state_t {
537 __QUEUE_STATE_DRV_XOFF,
538 __QUEUE_STATE_STACK_XOFF,
539 __QUEUE_STATE_FROZEN,
540 };
541
542 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
545
546 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548 QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550 QUEUE_STATE_FROZEN)
551
552 /*
553 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
554 * netif_tx_* functions below are used to manipulate this flag. The
555 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556 * queue independently. The netif_xmit_*stopped functions below are called
557 * to check if the queue has been stopped by the driver or stack (either
558 * of the XOFF bits are set in the state). Drivers should not need to call
559 * netif_xmit*stopped functions, they should only be using netif_tx_*.
560 */
561
562 struct netdev_queue {
563 /*
564 * read-mostly part
565 */
566 struct net_device *dev;
567 struct Qdisc __rcu *qdisc;
568 struct Qdisc *qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570 struct kobject kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573 int numa_node;
574 #endif
575 unsigned long tx_maxrate;
576 /*
577 * Number of TX timeouts for this queue
578 * (/sys/class/net/DEV/Q/trans_timeout)
579 */
580 unsigned long trans_timeout;
581 /*
582 * write-mostly part
583 */
584 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
585 int xmit_lock_owner;
586 /*
587 * Time (in jiffies) of last Tx
588 */
589 unsigned long trans_start;
590
591 unsigned long state;
592
593 #ifdef CONFIG_BQL
594 struct dql dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601 return q->numa_node;
602 #else
603 return NUMA_NO_NODE;
604 #endif
605 }
606
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610 q->numa_node = node;
611 #endif
612 }
613
614 #ifdef CONFIG_RPS
615 /*
616 * This structure holds an RPS map which can be of variable length. The
617 * map is an array of CPUs.
618 */
619 struct rps_map {
620 unsigned int len;
621 struct rcu_head rcu;
622 u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625
626 /*
627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628 * tail pointer for that CPU's input queue at the time of last enqueue, and
629 * a hardware filter index.
630 */
631 struct rps_dev_flow {
632 u16 cpu;
633 u16 filter;
634 unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637
638 /*
639 * The rps_dev_flow_table structure contains a table of flow mappings.
640 */
641 struct rps_dev_flow_table {
642 unsigned int mask;
643 struct rcu_head rcu;
644 struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647 ((_num) * sizeof(struct rps_dev_flow)))
648
649 /*
650 * The rps_sock_flow_table contains mappings of flows to the last CPU
651 * on which they were processed by the application (set in recvmsg).
652 * Each entry is a 32bit value. Upper part is the high-order bits
653 * of flow hash, lower part is CPU number.
654 * rps_cpu_mask is used to partition the space, depending on number of
655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657 * meaning we use 32-6=26 bits for the hash.
658 */
659 struct rps_sock_flow_table {
660 u32 mask;
661
662 u32 ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665
666 #define RPS_NO_CPU 0xffff
667
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672 u32 hash)
673 {
674 if (table && hash) {
675 unsigned int index = hash & table->mask;
676 u32 val = hash & ~rps_cpu_mask;
677
678 /* We only give a hint, preemption can change CPU under us */
679 val |= raw_smp_processor_id();
680
681 if (table->ents[index] != val)
682 table->ents[index] = val;
683 }
684 }
685
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688 u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695 struct rps_map __rcu *rps_map;
696 struct rps_dev_flow_table __rcu *rps_flow_table;
697 #endif
698 struct kobject kobj;
699 struct net_device *dev;
700 } ____cacheline_aligned_in_smp;
701
702 /*
703 * RX queue sysfs structures and functions.
704 */
705 struct rx_queue_attribute {
706 struct attribute attr;
707 ssize_t (*show)(struct netdev_rx_queue *queue,
708 struct rx_queue_attribute *attr, char *buf);
709 ssize_t (*store)(struct netdev_rx_queue *queue,
710 struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712
713 #ifdef CONFIG_XPS
714 /*
715 * This structure holds an XPS map which can be of variable length. The
716 * map is an array of queues.
717 */
718 struct xps_map {
719 unsigned int len;
720 unsigned int alloc_len;
721 struct rcu_head rcu;
722 u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726 - sizeof(struct xps_map)) / sizeof(u16))
727
728 /*
729 * This structure holds all XPS maps for device. Maps are indexed by CPU.
730 */
731 struct xps_dev_maps {
732 struct rcu_head rcu;
733 struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
736 (nr_cpu_ids * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738
739 #define TC_MAX_QUEUE 16
740 #define TC_BITMASK 15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743 u16 count;
744 u16 offset;
745 };
746
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749 * This structure is to hold information about the device
750 * configured to run FCoE protocol stack.
751 */
752 struct netdev_fcoe_hbainfo {
753 char manufacturer[64];
754 char serial_number[64];
755 char hardware_version[64];
756 char driver_version[64];
757 char optionrom_version[64];
758 char firmware_version[64];
759 char model[256];
760 char model_description[256];
761 };
762 #endif
763
764 #define MAX_PHYS_ITEM_ID_LEN 32
765
766 /* This structure holds a unique identifier to identify some
767 * physical item (port for example) used by a netdevice.
768 */
769 struct netdev_phys_item_id {
770 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771 unsigned char id_len;
772 };
773
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775 struct netdev_phys_item_id *b)
776 {
777 return a->id_len == b->id_len &&
778 memcmp(a->id, b->id, a->id_len) == 0;
779 }
780
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782 struct sk_buff *skb);
783
784 /* These structures hold the attributes of qdisc and classifiers
785 * that are being passed to the netdevice through the setup_tc op.
786 */
787 enum {
788 TC_SETUP_MQPRIO,
789 TC_SETUP_CLSU32,
790 TC_SETUP_CLSFLOWER,
791 TC_SETUP_MATCHALL,
792 };
793
794 struct tc_cls_u32_offload;
795
796 struct tc_to_netdev {
797 unsigned int type;
798 union {
799 u8 tc;
800 struct tc_cls_u32_offload *cls_u32;
801 struct tc_cls_flower_offload *cls_flower;
802 struct tc_cls_matchall_offload *cls_mall;
803 };
804 };
805
806 /* These structures hold the attributes of xdp state that are being passed
807 * to the netdevice through the xdp op.
808 */
809 enum xdp_netdev_command {
810 /* Set or clear a bpf program used in the earliest stages of packet
811 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
812 * is responsible for calling bpf_prog_put on any old progs that are
813 * stored. In case of error, the callee need not release the new prog
814 * reference, but on success it takes ownership and must bpf_prog_put
815 * when it is no longer used.
816 */
817 XDP_SETUP_PROG,
818 /* Check if a bpf program is set on the device. The callee should
819 * return true if a program is currently attached and running.
820 */
821 XDP_QUERY_PROG,
822 };
823
824 struct netdev_xdp {
825 enum xdp_netdev_command command;
826 union {
827 /* XDP_SETUP_PROG */
828 struct bpf_prog *prog;
829 /* XDP_QUERY_PROG */
830 bool prog_attached;
831 };
832 };
833
834 /*
835 * This structure defines the management hooks for network devices.
836 * The following hooks can be defined; unless noted otherwise, they are
837 * optional and can be filled with a null pointer.
838 *
839 * int (*ndo_init)(struct net_device *dev);
840 * This function is called once when a network device is registered.
841 * The network device can use this for any late stage initialization
842 * or semantic validation. It can fail with an error code which will
843 * be propagated back to register_netdev.
844 *
845 * void (*ndo_uninit)(struct net_device *dev);
846 * This function is called when device is unregistered or when registration
847 * fails. It is not called if init fails.
848 *
849 * int (*ndo_open)(struct net_device *dev);
850 * This function is called when a network device transitions to the up
851 * state.
852 *
853 * int (*ndo_stop)(struct net_device *dev);
854 * This function is called when a network device transitions to the down
855 * state.
856 *
857 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
858 * struct net_device *dev);
859 * Called when a packet needs to be transmitted.
860 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
861 * the queue before that can happen; it's for obsolete devices and weird
862 * corner cases, but the stack really does a non-trivial amount
863 * of useless work if you return NETDEV_TX_BUSY.
864 * Required; cannot be NULL.
865 *
866 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
867 * netdev_features_t features);
868 * Adjusts the requested feature flags according to device-specific
869 * constraints, and returns the resulting flags. Must not modify
870 * the device state.
871 *
872 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
873 * void *accel_priv, select_queue_fallback_t fallback);
874 * Called to decide which queue to use when device supports multiple
875 * transmit queues.
876 *
877 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
878 * This function is called to allow device receiver to make
879 * changes to configuration when multicast or promiscuous is enabled.
880 *
881 * void (*ndo_set_rx_mode)(struct net_device *dev);
882 * This function is called device changes address list filtering.
883 * If driver handles unicast address filtering, it should set
884 * IFF_UNICAST_FLT in its priv_flags.
885 *
886 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
887 * This function is called when the Media Access Control address
888 * needs to be changed. If this interface is not defined, the
889 * MAC address can not be changed.
890 *
891 * int (*ndo_validate_addr)(struct net_device *dev);
892 * Test if Media Access Control address is valid for the device.
893 *
894 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
895 * Called when a user requests an ioctl which can't be handled by
896 * the generic interface code. If not defined ioctls return
897 * not supported error code.
898 *
899 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
900 * Used to set network devices bus interface parameters. This interface
901 * is retained for legacy reasons; new devices should use the bus
902 * interface (PCI) for low level management.
903 *
904 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
905 * Called when a user wants to change the Maximum Transfer Unit
906 * of a device. If not defined, any request to change MTU will
907 * will return an error.
908 *
909 * void (*ndo_tx_timeout)(struct net_device *dev);
910 * Callback used when the transmitter has not made any progress
911 * for dev->watchdog ticks.
912 *
913 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
914 * struct rtnl_link_stats64 *storage);
915 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
916 * Called when a user wants to get the network device usage
917 * statistics. Drivers must do one of the following:
918 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
919 * rtnl_link_stats64 structure passed by the caller.
920 * 2. Define @ndo_get_stats to update a net_device_stats structure
921 * (which should normally be dev->stats) and return a pointer to
922 * it. The structure may be changed asynchronously only if each
923 * field is written atomically.
924 * 3. Update dev->stats asynchronously and atomically, and define
925 * neither operation.
926 *
927 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
928 * If device supports VLAN filtering this function is called when a
929 * VLAN id is registered.
930 *
931 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
932 * If device supports VLAN filtering this function is called when a
933 * VLAN id is unregistered.
934 *
935 * void (*ndo_poll_controller)(struct net_device *dev);
936 *
937 * SR-IOV management functions.
938 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
939 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
940 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
941 * int max_tx_rate);
942 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
943 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
944 * int (*ndo_get_vf_config)(struct net_device *dev,
945 * int vf, struct ifla_vf_info *ivf);
946 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
947 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
948 * struct nlattr *port[]);
949 *
950 * Enable or disable the VF ability to query its RSS Redirection Table and
951 * Hash Key. This is needed since on some devices VF share this information
952 * with PF and querying it may introduce a theoretical security risk.
953 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
954 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
955 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
956 * Called to setup 'tc' number of traffic classes in the net device. This
957 * is always called from the stack with the rtnl lock held and netif tx
958 * queues stopped. This allows the netdevice to perform queue management
959 * safely.
960 *
961 * Fiber Channel over Ethernet (FCoE) offload functions.
962 * int (*ndo_fcoe_enable)(struct net_device *dev);
963 * Called when the FCoE protocol stack wants to start using LLD for FCoE
964 * so the underlying device can perform whatever needed configuration or
965 * initialization to support acceleration of FCoE traffic.
966 *
967 * int (*ndo_fcoe_disable)(struct net_device *dev);
968 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
969 * so the underlying device can perform whatever needed clean-ups to
970 * stop supporting acceleration of FCoE traffic.
971 *
972 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
973 * struct scatterlist *sgl, unsigned int sgc);
974 * Called when the FCoE Initiator wants to initialize an I/O that
975 * is a possible candidate for Direct Data Placement (DDP). The LLD can
976 * perform necessary setup and returns 1 to indicate the device is set up
977 * successfully to perform DDP on this I/O, otherwise this returns 0.
978 *
979 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
980 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
981 * indicated by the FC exchange id 'xid', so the underlying device can
982 * clean up and reuse resources for later DDP requests.
983 *
984 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
985 * struct scatterlist *sgl, unsigned int sgc);
986 * Called when the FCoE Target wants to initialize an I/O that
987 * is a possible candidate for Direct Data Placement (DDP). The LLD can
988 * perform necessary setup and returns 1 to indicate the device is set up
989 * successfully to perform DDP on this I/O, otherwise this returns 0.
990 *
991 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
992 * struct netdev_fcoe_hbainfo *hbainfo);
993 * Called when the FCoE Protocol stack wants information on the underlying
994 * device. This information is utilized by the FCoE protocol stack to
995 * register attributes with Fiber Channel management service as per the
996 * FC-GS Fabric Device Management Information(FDMI) specification.
997 *
998 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
999 * Called when the underlying device wants to override default World Wide
1000 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1001 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1002 * protocol stack to use.
1003 *
1004 * RFS acceleration.
1005 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1006 * u16 rxq_index, u32 flow_id);
1007 * Set hardware filter for RFS. rxq_index is the target queue index;
1008 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1009 * Return the filter ID on success, or a negative error code.
1010 *
1011 * Slave management functions (for bridge, bonding, etc).
1012 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1013 * Called to make another netdev an underling.
1014 *
1015 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1016 * Called to release previously enslaved netdev.
1017 *
1018 * Feature/offload setting functions.
1019 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1020 * Called to update device configuration to new features. Passed
1021 * feature set might be less than what was returned by ndo_fix_features()).
1022 * Must return >0 or -errno if it changed dev->features itself.
1023 *
1024 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1025 * struct net_device *dev,
1026 * const unsigned char *addr, u16 vid, u16 flags)
1027 * Adds an FDB entry to dev for addr.
1028 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1029 * struct net_device *dev,
1030 * const unsigned char *addr, u16 vid)
1031 * Deletes the FDB entry from dev coresponding to addr.
1032 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1033 * struct net_device *dev, struct net_device *filter_dev,
1034 * int *idx)
1035 * Used to add FDB entries to dump requests. Implementers should add
1036 * entries to skb and update idx with the number of entries.
1037 *
1038 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1039 * u16 flags)
1040 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1041 * struct net_device *dev, u32 filter_mask,
1042 * int nlflags)
1043 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1044 * u16 flags);
1045 *
1046 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1047 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1048 * which do not represent real hardware may define this to allow their
1049 * userspace components to manage their virtual carrier state. Devices
1050 * that determine carrier state from physical hardware properties (eg
1051 * network cables) or protocol-dependent mechanisms (eg
1052 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1053 *
1054 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1055 * struct netdev_phys_item_id *ppid);
1056 * Called to get ID of physical port of this device. If driver does
1057 * not implement this, it is assumed that the hw is not able to have
1058 * multiple net devices on single physical port.
1059 *
1060 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1061 * struct udp_tunnel_info *ti);
1062 * Called by UDP tunnel to notify a driver about the UDP port and socket
1063 * address family that a UDP tunnel is listnening to. It is called only
1064 * when a new port starts listening. The operation is protected by the
1065 * RTNL.
1066 *
1067 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1068 * struct udp_tunnel_info *ti);
1069 * Called by UDP tunnel to notify the driver about a UDP port and socket
1070 * address family that the UDP tunnel is not listening to anymore. The
1071 * operation is protected by the RTNL.
1072 *
1073 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1074 * struct net_device *dev)
1075 * Called by upper layer devices to accelerate switching or other
1076 * station functionality into hardware. 'pdev is the lowerdev
1077 * to use for the offload and 'dev' is the net device that will
1078 * back the offload. Returns a pointer to the private structure
1079 * the upper layer will maintain.
1080 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1081 * Called by upper layer device to delete the station created
1082 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1083 * the station and priv is the structure returned by the add
1084 * operation.
1085 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1086 * struct net_device *dev,
1087 * void *priv);
1088 * Callback to use for xmit over the accelerated station. This
1089 * is used in place of ndo_start_xmit on accelerated net
1090 * devices.
1091 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1092 * struct net_device *dev
1093 * netdev_features_t features);
1094 * Called by core transmit path to determine if device is capable of
1095 * performing offload operations on a given packet. This is to give
1096 * the device an opportunity to implement any restrictions that cannot
1097 * be otherwise expressed by feature flags. The check is called with
1098 * the set of features that the stack has calculated and it returns
1099 * those the driver believes to be appropriate.
1100 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1101 * int queue_index, u32 maxrate);
1102 * Called when a user wants to set a max-rate limitation of specific
1103 * TX queue.
1104 * int (*ndo_get_iflink)(const struct net_device *dev);
1105 * Called to get the iflink value of this device.
1106 * void (*ndo_change_proto_down)(struct net_device *dev,
1107 * bool proto_down);
1108 * This function is used to pass protocol port error state information
1109 * to the switch driver. The switch driver can react to the proto_down
1110 * by doing a phys down on the associated switch port.
1111 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1112 * This function is used to get egress tunnel information for given skb.
1113 * This is useful for retrieving outer tunnel header parameters while
1114 * sampling packet.
1115 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1116 * This function is used to specify the headroom that the skb must
1117 * consider when allocation skb during packet reception. Setting
1118 * appropriate rx headroom value allows avoiding skb head copy on
1119 * forward. Setting a negative value resets the rx headroom to the
1120 * default value.
1121 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1122 * This function is used to set or query state related to XDP on the
1123 * netdevice. See definition of enum xdp_netdev_command for details.
1124 *
1125 */
1126 struct net_device_ops {
1127 int (*ndo_init)(struct net_device *dev);
1128 void (*ndo_uninit)(struct net_device *dev);
1129 int (*ndo_open)(struct net_device *dev);
1130 int (*ndo_stop)(struct net_device *dev);
1131 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1132 struct net_device *dev);
1133 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1134 struct net_device *dev,
1135 netdev_features_t features);
1136 u16 (*ndo_select_queue)(struct net_device *dev,
1137 struct sk_buff *skb,
1138 void *accel_priv,
1139 select_queue_fallback_t fallback);
1140 void (*ndo_change_rx_flags)(struct net_device *dev,
1141 int flags);
1142 void (*ndo_set_rx_mode)(struct net_device *dev);
1143 int (*ndo_set_mac_address)(struct net_device *dev,
1144 void *addr);
1145 int (*ndo_validate_addr)(struct net_device *dev);
1146 int (*ndo_do_ioctl)(struct net_device *dev,
1147 struct ifreq *ifr, int cmd);
1148 int (*ndo_set_config)(struct net_device *dev,
1149 struct ifmap *map);
1150 int (*ndo_change_mtu)(struct net_device *dev,
1151 int new_mtu);
1152 int (*ndo_neigh_setup)(struct net_device *dev,
1153 struct neigh_parms *);
1154 void (*ndo_tx_timeout) (struct net_device *dev);
1155
1156 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1157 struct rtnl_link_stats64 *storage);
1158 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1159
1160 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1161 __be16 proto, u16 vid);
1162 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1163 __be16 proto, u16 vid);
1164 #ifdef CONFIG_NET_POLL_CONTROLLER
1165 void (*ndo_poll_controller)(struct net_device *dev);
1166 int (*ndo_netpoll_setup)(struct net_device *dev,
1167 struct netpoll_info *info);
1168 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1169 #endif
1170 #ifdef CONFIG_NET_RX_BUSY_POLL
1171 int (*ndo_busy_poll)(struct napi_struct *dev);
1172 #endif
1173 int (*ndo_set_vf_mac)(struct net_device *dev,
1174 int queue, u8 *mac);
1175 int (*ndo_set_vf_vlan)(struct net_device *dev,
1176 int queue, u16 vlan, u8 qos);
1177 int (*ndo_set_vf_rate)(struct net_device *dev,
1178 int vf, int min_tx_rate,
1179 int max_tx_rate);
1180 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1181 int vf, bool setting);
1182 int (*ndo_set_vf_trust)(struct net_device *dev,
1183 int vf, bool setting);
1184 int (*ndo_get_vf_config)(struct net_device *dev,
1185 int vf,
1186 struct ifla_vf_info *ivf);
1187 int (*ndo_set_vf_link_state)(struct net_device *dev,
1188 int vf, int link_state);
1189 int (*ndo_get_vf_stats)(struct net_device *dev,
1190 int vf,
1191 struct ifla_vf_stats
1192 *vf_stats);
1193 int (*ndo_set_vf_port)(struct net_device *dev,
1194 int vf,
1195 struct nlattr *port[]);
1196 int (*ndo_get_vf_port)(struct net_device *dev,
1197 int vf, struct sk_buff *skb);
1198 int (*ndo_set_vf_guid)(struct net_device *dev,
1199 int vf, u64 guid,
1200 int guid_type);
1201 int (*ndo_set_vf_rss_query_en)(
1202 struct net_device *dev,
1203 int vf, bool setting);
1204 int (*ndo_setup_tc)(struct net_device *dev,
1205 u32 handle,
1206 __be16 protocol,
1207 struct tc_to_netdev *tc);
1208 #if IS_ENABLED(CONFIG_FCOE)
1209 int (*ndo_fcoe_enable)(struct net_device *dev);
1210 int (*ndo_fcoe_disable)(struct net_device *dev);
1211 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1212 u16 xid,
1213 struct scatterlist *sgl,
1214 unsigned int sgc);
1215 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1216 u16 xid);
1217 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1218 u16 xid,
1219 struct scatterlist *sgl,
1220 unsigned int sgc);
1221 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1222 struct netdev_fcoe_hbainfo *hbainfo);
1223 #endif
1224
1225 #if IS_ENABLED(CONFIG_LIBFCOE)
1226 #define NETDEV_FCOE_WWNN 0
1227 #define NETDEV_FCOE_WWPN 1
1228 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1229 u64 *wwn, int type);
1230 #endif
1231
1232 #ifdef CONFIG_RFS_ACCEL
1233 int (*ndo_rx_flow_steer)(struct net_device *dev,
1234 const struct sk_buff *skb,
1235 u16 rxq_index,
1236 u32 flow_id);
1237 #endif
1238 int (*ndo_add_slave)(struct net_device *dev,
1239 struct net_device *slave_dev);
1240 int (*ndo_del_slave)(struct net_device *dev,
1241 struct net_device *slave_dev);
1242 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1243 netdev_features_t features);
1244 int (*ndo_set_features)(struct net_device *dev,
1245 netdev_features_t features);
1246 int (*ndo_neigh_construct)(struct net_device *dev,
1247 struct neighbour *n);
1248 void (*ndo_neigh_destroy)(struct net_device *dev,
1249 struct neighbour *n);
1250
1251 int (*ndo_fdb_add)(struct ndmsg *ndm,
1252 struct nlattr *tb[],
1253 struct net_device *dev,
1254 const unsigned char *addr,
1255 u16 vid,
1256 u16 flags);
1257 int (*ndo_fdb_del)(struct ndmsg *ndm,
1258 struct nlattr *tb[],
1259 struct net_device *dev,
1260 const unsigned char *addr,
1261 u16 vid);
1262 int (*ndo_fdb_dump)(struct sk_buff *skb,
1263 struct netlink_callback *cb,
1264 struct net_device *dev,
1265 struct net_device *filter_dev,
1266 int *idx);
1267
1268 int (*ndo_bridge_setlink)(struct net_device *dev,
1269 struct nlmsghdr *nlh,
1270 u16 flags);
1271 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1272 u32 pid, u32 seq,
1273 struct net_device *dev,
1274 u32 filter_mask,
1275 int nlflags);
1276 int (*ndo_bridge_dellink)(struct net_device *dev,
1277 struct nlmsghdr *nlh,
1278 u16 flags);
1279 int (*ndo_change_carrier)(struct net_device *dev,
1280 bool new_carrier);
1281 int (*ndo_get_phys_port_id)(struct net_device *dev,
1282 struct netdev_phys_item_id *ppid);
1283 int (*ndo_get_phys_port_name)(struct net_device *dev,
1284 char *name, size_t len);
1285 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1286 struct udp_tunnel_info *ti);
1287 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1288 struct udp_tunnel_info *ti);
1289 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1290 struct net_device *dev);
1291 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1292 void *priv);
1293
1294 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1295 struct net_device *dev,
1296 void *priv);
1297 int (*ndo_get_lock_subclass)(struct net_device *dev);
1298 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1299 int queue_index,
1300 u32 maxrate);
1301 int (*ndo_get_iflink)(const struct net_device *dev);
1302 int (*ndo_change_proto_down)(struct net_device *dev,
1303 bool proto_down);
1304 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1305 struct sk_buff *skb);
1306 void (*ndo_set_rx_headroom)(struct net_device *dev,
1307 int needed_headroom);
1308 int (*ndo_xdp)(struct net_device *dev,
1309 struct netdev_xdp *xdp);
1310 };
1311
1312 /**
1313 * enum net_device_priv_flags - &struct net_device priv_flags
1314 *
1315 * These are the &struct net_device, they are only set internally
1316 * by drivers and used in the kernel. These flags are invisible to
1317 * userspace; this means that the order of these flags can change
1318 * during any kernel release.
1319 *
1320 * You should have a pretty good reason to be extending these flags.
1321 *
1322 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1323 * @IFF_EBRIDGE: Ethernet bridging device
1324 * @IFF_BONDING: bonding master or slave
1325 * @IFF_ISATAP: ISATAP interface (RFC4214)
1326 * @IFF_WAN_HDLC: WAN HDLC device
1327 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1328 * release skb->dst
1329 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1330 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1331 * @IFF_MACVLAN_PORT: device used as macvlan port
1332 * @IFF_BRIDGE_PORT: device used as bridge port
1333 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1334 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1335 * @IFF_UNICAST_FLT: Supports unicast filtering
1336 * @IFF_TEAM_PORT: device used as team port
1337 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1338 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1339 * change when it's running
1340 * @IFF_MACVLAN: Macvlan device
1341 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1342 * underlying stacked devices
1343 * @IFF_IPVLAN_MASTER: IPvlan master device
1344 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1345 * @IFF_L3MDEV_MASTER: device is an L3 master device
1346 * @IFF_NO_QUEUE: device can run without qdisc attached
1347 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1348 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1349 * @IFF_TEAM: device is a team device
1350 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1351 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1352 * entity (i.e. the master device for bridged veth)
1353 * @IFF_MACSEC: device is a MACsec device
1354 */
1355 enum netdev_priv_flags {
1356 IFF_802_1Q_VLAN = 1<<0,
1357 IFF_EBRIDGE = 1<<1,
1358 IFF_BONDING = 1<<2,
1359 IFF_ISATAP = 1<<3,
1360 IFF_WAN_HDLC = 1<<4,
1361 IFF_XMIT_DST_RELEASE = 1<<5,
1362 IFF_DONT_BRIDGE = 1<<6,
1363 IFF_DISABLE_NETPOLL = 1<<7,
1364 IFF_MACVLAN_PORT = 1<<8,
1365 IFF_BRIDGE_PORT = 1<<9,
1366 IFF_OVS_DATAPATH = 1<<10,
1367 IFF_TX_SKB_SHARING = 1<<11,
1368 IFF_UNICAST_FLT = 1<<12,
1369 IFF_TEAM_PORT = 1<<13,
1370 IFF_SUPP_NOFCS = 1<<14,
1371 IFF_LIVE_ADDR_CHANGE = 1<<15,
1372 IFF_MACVLAN = 1<<16,
1373 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1374 IFF_IPVLAN_MASTER = 1<<18,
1375 IFF_IPVLAN_SLAVE = 1<<19,
1376 IFF_L3MDEV_MASTER = 1<<20,
1377 IFF_NO_QUEUE = 1<<21,
1378 IFF_OPENVSWITCH = 1<<22,
1379 IFF_L3MDEV_SLAVE = 1<<23,
1380 IFF_TEAM = 1<<24,
1381 IFF_RXFH_CONFIGURED = 1<<25,
1382 IFF_PHONY_HEADROOM = 1<<26,
1383 IFF_MACSEC = 1<<27,
1384 };
1385
1386 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1387 #define IFF_EBRIDGE IFF_EBRIDGE
1388 #define IFF_BONDING IFF_BONDING
1389 #define IFF_ISATAP IFF_ISATAP
1390 #define IFF_WAN_HDLC IFF_WAN_HDLC
1391 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1392 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1393 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1394 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1395 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1396 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1397 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1398 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1399 #define IFF_TEAM_PORT IFF_TEAM_PORT
1400 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1401 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1402 #define IFF_MACVLAN IFF_MACVLAN
1403 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1404 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1405 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1406 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1407 #define IFF_NO_QUEUE IFF_NO_QUEUE
1408 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1409 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1410 #define IFF_TEAM IFF_TEAM
1411 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1412 #define IFF_MACSEC IFF_MACSEC
1413
1414 /**
1415 * struct net_device - The DEVICE structure.
1416 * Actually, this whole structure is a big mistake. It mixes I/O
1417 * data with strictly "high-level" data, and it has to know about
1418 * almost every data structure used in the INET module.
1419 *
1420 * @name: This is the first field of the "visible" part of this structure
1421 * (i.e. as seen by users in the "Space.c" file). It is the name
1422 * of the interface.
1423 *
1424 * @name_hlist: Device name hash chain, please keep it close to name[]
1425 * @ifalias: SNMP alias
1426 * @mem_end: Shared memory end
1427 * @mem_start: Shared memory start
1428 * @base_addr: Device I/O address
1429 * @irq: Device IRQ number
1430 *
1431 * @carrier_changes: Stats to monitor carrier on<->off transitions
1432 *
1433 * @state: Generic network queuing layer state, see netdev_state_t
1434 * @dev_list: The global list of network devices
1435 * @napi_list: List entry used for polling NAPI devices
1436 * @unreg_list: List entry when we are unregistering the
1437 * device; see the function unregister_netdev
1438 * @close_list: List entry used when we are closing the device
1439 * @ptype_all: Device-specific packet handlers for all protocols
1440 * @ptype_specific: Device-specific, protocol-specific packet handlers
1441 *
1442 * @adj_list: Directly linked devices, like slaves for bonding
1443 * @all_adj_list: All linked devices, *including* neighbours
1444 * @features: Currently active device features
1445 * @hw_features: User-changeable features
1446 *
1447 * @wanted_features: User-requested features
1448 * @vlan_features: Mask of features inheritable by VLAN devices
1449 *
1450 * @hw_enc_features: Mask of features inherited by encapsulating devices
1451 * This field indicates what encapsulation
1452 * offloads the hardware is capable of doing,
1453 * and drivers will need to set them appropriately.
1454 *
1455 * @mpls_features: Mask of features inheritable by MPLS
1456 *
1457 * @ifindex: interface index
1458 * @group: The group the device belongs to
1459 *
1460 * @stats: Statistics struct, which was left as a legacy, use
1461 * rtnl_link_stats64 instead
1462 *
1463 * @rx_dropped: Dropped packets by core network,
1464 * do not use this in drivers
1465 * @tx_dropped: Dropped packets by core network,
1466 * do not use this in drivers
1467 * @rx_nohandler: nohandler dropped packets by core network on
1468 * inactive devices, do not use this in drivers
1469 *
1470 * @wireless_handlers: List of functions to handle Wireless Extensions,
1471 * instead of ioctl,
1472 * see <net/iw_handler.h> for details.
1473 * @wireless_data: Instance data managed by the core of wireless extensions
1474 *
1475 * @netdev_ops: Includes several pointers to callbacks,
1476 * if one wants to override the ndo_*() functions
1477 * @ethtool_ops: Management operations
1478 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1479 * discovery handling. Necessary for e.g. 6LoWPAN.
1480 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1481 * of Layer 2 headers.
1482 *
1483 * @flags: Interface flags (a la BSD)
1484 * @priv_flags: Like 'flags' but invisible to userspace,
1485 * see if.h for the definitions
1486 * @gflags: Global flags ( kept as legacy )
1487 * @padded: How much padding added by alloc_netdev()
1488 * @operstate: RFC2863 operstate
1489 * @link_mode: Mapping policy to operstate
1490 * @if_port: Selectable AUI, TP, ...
1491 * @dma: DMA channel
1492 * @mtu: Interface MTU value
1493 * @type: Interface hardware type
1494 * @hard_header_len: Maximum hardware header length.
1495 *
1496 * @needed_headroom: Extra headroom the hardware may need, but not in all
1497 * cases can this be guaranteed
1498 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1499 * cases can this be guaranteed. Some cases also use
1500 * LL_MAX_HEADER instead to allocate the skb
1501 *
1502 * interface address info:
1503 *
1504 * @perm_addr: Permanent hw address
1505 * @addr_assign_type: Hw address assignment type
1506 * @addr_len: Hardware address length
1507 * @neigh_priv_len: Used in neigh_alloc()
1508 * @dev_id: Used to differentiate devices that share
1509 * the same link layer address
1510 * @dev_port: Used to differentiate devices that share
1511 * the same function
1512 * @addr_list_lock: XXX: need comments on this one
1513 * @uc_promisc: Counter that indicates promiscuous mode
1514 * has been enabled due to the need to listen to
1515 * additional unicast addresses in a device that
1516 * does not implement ndo_set_rx_mode()
1517 * @uc: unicast mac addresses
1518 * @mc: multicast mac addresses
1519 * @dev_addrs: list of device hw addresses
1520 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1521 * @promiscuity: Number of times the NIC is told to work in
1522 * promiscuous mode; if it becomes 0 the NIC will
1523 * exit promiscuous mode
1524 * @allmulti: Counter, enables or disables allmulticast mode
1525 *
1526 * @vlan_info: VLAN info
1527 * @dsa_ptr: dsa specific data
1528 * @tipc_ptr: TIPC specific data
1529 * @atalk_ptr: AppleTalk link
1530 * @ip_ptr: IPv4 specific data
1531 * @dn_ptr: DECnet specific data
1532 * @ip6_ptr: IPv6 specific data
1533 * @ax25_ptr: AX.25 specific data
1534 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1535 *
1536 * @last_rx: Time of last Rx
1537 * @dev_addr: Hw address (before bcast,
1538 * because most packets are unicast)
1539 *
1540 * @_rx: Array of RX queues
1541 * @num_rx_queues: Number of RX queues
1542 * allocated at register_netdev() time
1543 * @real_num_rx_queues: Number of RX queues currently active in device
1544 *
1545 * @rx_handler: handler for received packets
1546 * @rx_handler_data: XXX: need comments on this one
1547 * @ingress_queue: XXX: need comments on this one
1548 * @broadcast: hw bcast address
1549 *
1550 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1551 * indexed by RX queue number. Assigned by driver.
1552 * This must only be set if the ndo_rx_flow_steer
1553 * operation is defined
1554 * @index_hlist: Device index hash chain
1555 *
1556 * @_tx: Array of TX queues
1557 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1558 * @real_num_tx_queues: Number of TX queues currently active in device
1559 * @qdisc: Root qdisc from userspace point of view
1560 * @tx_queue_len: Max frames per queue allowed
1561 * @tx_global_lock: XXX: need comments on this one
1562 *
1563 * @xps_maps: XXX: need comments on this one
1564 *
1565 * @watchdog_timeo: Represents the timeout that is used by
1566 * the watchdog (see dev_watchdog())
1567 * @watchdog_timer: List of timers
1568 *
1569 * @pcpu_refcnt: Number of references to this device
1570 * @todo_list: Delayed register/unregister
1571 * @link_watch_list: XXX: need comments on this one
1572 *
1573 * @reg_state: Register/unregister state machine
1574 * @dismantle: Device is going to be freed
1575 * @rtnl_link_state: This enum represents the phases of creating
1576 * a new link
1577 *
1578 * @destructor: Called from unregister,
1579 * can be used to call free_netdev
1580 * @npinfo: XXX: need comments on this one
1581 * @nd_net: Network namespace this network device is inside
1582 *
1583 * @ml_priv: Mid-layer private
1584 * @lstats: Loopback statistics
1585 * @tstats: Tunnel statistics
1586 * @dstats: Dummy statistics
1587 * @vstats: Virtual ethernet statistics
1588 *
1589 * @garp_port: GARP
1590 * @mrp_port: MRP
1591 *
1592 * @dev: Class/net/name entry
1593 * @sysfs_groups: Space for optional device, statistics and wireless
1594 * sysfs groups
1595 *
1596 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1597 * @rtnl_link_ops: Rtnl_link_ops
1598 *
1599 * @gso_max_size: Maximum size of generic segmentation offload
1600 * @gso_max_segs: Maximum number of segments that can be passed to the
1601 * NIC for GSO
1602 *
1603 * @dcbnl_ops: Data Center Bridging netlink ops
1604 * @num_tc: Number of traffic classes in the net device
1605 * @tc_to_txq: XXX: need comments on this one
1606 * @prio_tc_map XXX: need comments on this one
1607 *
1608 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1609 *
1610 * @priomap: XXX: need comments on this one
1611 * @phydev: Physical device may attach itself
1612 * for hardware timestamping
1613 *
1614 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1615 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1616 *
1617 * @proto_down: protocol port state information can be sent to the
1618 * switch driver and used to set the phys state of the
1619 * switch port.
1620 *
1621 * FIXME: cleanup struct net_device such that network protocol info
1622 * moves out.
1623 */
1624
1625 struct net_device {
1626 char name[IFNAMSIZ];
1627 struct hlist_node name_hlist;
1628 char *ifalias;
1629 /*
1630 * I/O specific fields
1631 * FIXME: Merge these and struct ifmap into one
1632 */
1633 unsigned long mem_end;
1634 unsigned long mem_start;
1635 unsigned long base_addr;
1636 int irq;
1637
1638 atomic_t carrier_changes;
1639
1640 /*
1641 * Some hardware also needs these fields (state,dev_list,
1642 * napi_list,unreg_list,close_list) but they are not
1643 * part of the usual set specified in Space.c.
1644 */
1645
1646 unsigned long state;
1647
1648 struct list_head dev_list;
1649 struct list_head napi_list;
1650 struct list_head unreg_list;
1651 struct list_head close_list;
1652 struct list_head ptype_all;
1653 struct list_head ptype_specific;
1654
1655 struct {
1656 struct list_head upper;
1657 struct list_head lower;
1658 } adj_list;
1659
1660 struct {
1661 struct list_head upper;
1662 struct list_head lower;
1663 } all_adj_list;
1664
1665 netdev_features_t features;
1666 netdev_features_t hw_features;
1667 netdev_features_t wanted_features;
1668 netdev_features_t vlan_features;
1669 netdev_features_t hw_enc_features;
1670 netdev_features_t mpls_features;
1671 netdev_features_t gso_partial_features;
1672
1673 int ifindex;
1674 int group;
1675
1676 struct net_device_stats stats;
1677
1678 atomic_long_t rx_dropped;
1679 atomic_long_t tx_dropped;
1680 atomic_long_t rx_nohandler;
1681
1682 #ifdef CONFIG_WIRELESS_EXT
1683 const struct iw_handler_def *wireless_handlers;
1684 struct iw_public_data *wireless_data;
1685 #endif
1686 const struct net_device_ops *netdev_ops;
1687 const struct ethtool_ops *ethtool_ops;
1688 #ifdef CONFIG_NET_SWITCHDEV
1689 const struct switchdev_ops *switchdev_ops;
1690 #endif
1691 #ifdef CONFIG_NET_L3_MASTER_DEV
1692 const struct l3mdev_ops *l3mdev_ops;
1693 #endif
1694 #if IS_ENABLED(CONFIG_IPV6)
1695 const struct ndisc_ops *ndisc_ops;
1696 #endif
1697
1698 const struct header_ops *header_ops;
1699
1700 unsigned int flags;
1701 unsigned int priv_flags;
1702
1703 unsigned short gflags;
1704 unsigned short padded;
1705
1706 unsigned char operstate;
1707 unsigned char link_mode;
1708
1709 unsigned char if_port;
1710 unsigned char dma;
1711
1712 unsigned int mtu;
1713 unsigned short type;
1714 unsigned short hard_header_len;
1715
1716 unsigned short needed_headroom;
1717 unsigned short needed_tailroom;
1718
1719 /* Interface address info. */
1720 unsigned char perm_addr[MAX_ADDR_LEN];
1721 unsigned char addr_assign_type;
1722 unsigned char addr_len;
1723 unsigned short neigh_priv_len;
1724 unsigned short dev_id;
1725 unsigned short dev_port;
1726 spinlock_t addr_list_lock;
1727 unsigned char name_assign_type;
1728 bool uc_promisc;
1729 struct netdev_hw_addr_list uc;
1730 struct netdev_hw_addr_list mc;
1731 struct netdev_hw_addr_list dev_addrs;
1732
1733 #ifdef CONFIG_SYSFS
1734 struct kset *queues_kset;
1735 #endif
1736 unsigned int promiscuity;
1737 unsigned int allmulti;
1738
1739
1740 /* Protocol-specific pointers */
1741
1742 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1743 struct vlan_info __rcu *vlan_info;
1744 #endif
1745 #if IS_ENABLED(CONFIG_NET_DSA)
1746 struct dsa_switch_tree *dsa_ptr;
1747 #endif
1748 #if IS_ENABLED(CONFIG_TIPC)
1749 struct tipc_bearer __rcu *tipc_ptr;
1750 #endif
1751 void *atalk_ptr;
1752 struct in_device __rcu *ip_ptr;
1753 struct dn_dev __rcu *dn_ptr;
1754 struct inet6_dev __rcu *ip6_ptr;
1755 void *ax25_ptr;
1756 struct wireless_dev *ieee80211_ptr;
1757 struct wpan_dev *ieee802154_ptr;
1758 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1759 struct mpls_dev __rcu *mpls_ptr;
1760 #endif
1761
1762 /*
1763 * Cache lines mostly used on receive path (including eth_type_trans())
1764 */
1765 unsigned long last_rx;
1766
1767 /* Interface address info used in eth_type_trans() */
1768 unsigned char *dev_addr;
1769
1770 #ifdef CONFIG_SYSFS
1771 struct netdev_rx_queue *_rx;
1772
1773 unsigned int num_rx_queues;
1774 unsigned int real_num_rx_queues;
1775 #endif
1776
1777 unsigned long gro_flush_timeout;
1778 rx_handler_func_t __rcu *rx_handler;
1779 void __rcu *rx_handler_data;
1780
1781 #ifdef CONFIG_NET_CLS_ACT
1782 struct tcf_proto __rcu *ingress_cl_list;
1783 #endif
1784 struct netdev_queue __rcu *ingress_queue;
1785 #ifdef CONFIG_NETFILTER_INGRESS
1786 struct list_head nf_hooks_ingress;
1787 #endif
1788
1789 unsigned char broadcast[MAX_ADDR_LEN];
1790 #ifdef CONFIG_RFS_ACCEL
1791 struct cpu_rmap *rx_cpu_rmap;
1792 #endif
1793 struct hlist_node index_hlist;
1794
1795 /*
1796 * Cache lines mostly used on transmit path
1797 */
1798 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1799 unsigned int num_tx_queues;
1800 unsigned int real_num_tx_queues;
1801 struct Qdisc *qdisc;
1802 #ifdef CONFIG_NET_SCHED
1803 DECLARE_HASHTABLE (qdisc_hash, 4);
1804 #endif
1805 unsigned long tx_queue_len;
1806 spinlock_t tx_global_lock;
1807 int watchdog_timeo;
1808
1809 #ifdef CONFIG_XPS
1810 struct xps_dev_maps __rcu *xps_maps;
1811 #endif
1812 #ifdef CONFIG_NET_CLS_ACT
1813 struct tcf_proto __rcu *egress_cl_list;
1814 #endif
1815
1816 /* These may be needed for future network-power-down code. */
1817 struct timer_list watchdog_timer;
1818
1819 int __percpu *pcpu_refcnt;
1820 struct list_head todo_list;
1821
1822 struct list_head link_watch_list;
1823
1824 enum { NETREG_UNINITIALIZED=0,
1825 NETREG_REGISTERED, /* completed register_netdevice */
1826 NETREG_UNREGISTERING, /* called unregister_netdevice */
1827 NETREG_UNREGISTERED, /* completed unregister todo */
1828 NETREG_RELEASED, /* called free_netdev */
1829 NETREG_DUMMY, /* dummy device for NAPI poll */
1830 } reg_state:8;
1831
1832 bool dismantle;
1833
1834 enum {
1835 RTNL_LINK_INITIALIZED,
1836 RTNL_LINK_INITIALIZING,
1837 } rtnl_link_state:16;
1838
1839 void (*destructor)(struct net_device *dev);
1840
1841 #ifdef CONFIG_NETPOLL
1842 struct netpoll_info __rcu *npinfo;
1843 #endif
1844
1845 possible_net_t nd_net;
1846
1847 /* mid-layer private */
1848 union {
1849 void *ml_priv;
1850 struct pcpu_lstats __percpu *lstats;
1851 struct pcpu_sw_netstats __percpu *tstats;
1852 struct pcpu_dstats __percpu *dstats;
1853 struct pcpu_vstats __percpu *vstats;
1854 };
1855
1856 struct garp_port __rcu *garp_port;
1857 struct mrp_port __rcu *mrp_port;
1858
1859 struct device dev;
1860 const struct attribute_group *sysfs_groups[4];
1861 const struct attribute_group *sysfs_rx_queue_group;
1862
1863 const struct rtnl_link_ops *rtnl_link_ops;
1864
1865 /* for setting kernel sock attribute on TCP connection setup */
1866 #define GSO_MAX_SIZE 65536
1867 unsigned int gso_max_size;
1868 #define GSO_MAX_SEGS 65535
1869 u16 gso_max_segs;
1870
1871 #ifdef CONFIG_DCB
1872 const struct dcbnl_rtnl_ops *dcbnl_ops;
1873 #endif
1874 u8 num_tc;
1875 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1876 u8 prio_tc_map[TC_BITMASK + 1];
1877
1878 #if IS_ENABLED(CONFIG_FCOE)
1879 unsigned int fcoe_ddp_xid;
1880 #endif
1881 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1882 struct netprio_map __rcu *priomap;
1883 #endif
1884 struct phy_device *phydev;
1885 struct lock_class_key *qdisc_tx_busylock;
1886 struct lock_class_key *qdisc_running_key;
1887 bool proto_down;
1888 };
1889 #define to_net_dev(d) container_of(d, struct net_device, dev)
1890
1891 #define NETDEV_ALIGN 32
1892
1893 static inline
1894 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1895 {
1896 return dev->prio_tc_map[prio & TC_BITMASK];
1897 }
1898
1899 static inline
1900 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1901 {
1902 if (tc >= dev->num_tc)
1903 return -EINVAL;
1904
1905 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1906 return 0;
1907 }
1908
1909 static inline
1910 void netdev_reset_tc(struct net_device *dev)
1911 {
1912 dev->num_tc = 0;
1913 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1914 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1915 }
1916
1917 static inline
1918 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1919 {
1920 if (tc >= dev->num_tc)
1921 return -EINVAL;
1922
1923 dev->tc_to_txq[tc].count = count;
1924 dev->tc_to_txq[tc].offset = offset;
1925 return 0;
1926 }
1927
1928 static inline
1929 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1930 {
1931 if (num_tc > TC_MAX_QUEUE)
1932 return -EINVAL;
1933
1934 dev->num_tc = num_tc;
1935 return 0;
1936 }
1937
1938 static inline
1939 int netdev_get_num_tc(struct net_device *dev)
1940 {
1941 return dev->num_tc;
1942 }
1943
1944 static inline
1945 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1946 unsigned int index)
1947 {
1948 return &dev->_tx[index];
1949 }
1950
1951 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1952 const struct sk_buff *skb)
1953 {
1954 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1955 }
1956
1957 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1958 void (*f)(struct net_device *,
1959 struct netdev_queue *,
1960 void *),
1961 void *arg)
1962 {
1963 unsigned int i;
1964
1965 for (i = 0; i < dev->num_tx_queues; i++)
1966 f(dev, &dev->_tx[i], arg);
1967 }
1968
1969 #define netdev_lockdep_set_classes(dev) \
1970 { \
1971 static struct lock_class_key qdisc_tx_busylock_key; \
1972 static struct lock_class_key qdisc_running_key; \
1973 static struct lock_class_key qdisc_xmit_lock_key; \
1974 static struct lock_class_key dev_addr_list_lock_key; \
1975 unsigned int i; \
1976 \
1977 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
1978 (dev)->qdisc_running_key = &qdisc_running_key; \
1979 lockdep_set_class(&(dev)->addr_list_lock, \
1980 &dev_addr_list_lock_key); \
1981 for (i = 0; i < (dev)->num_tx_queues; i++) \
1982 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
1983 &qdisc_xmit_lock_key); \
1984 }
1985
1986 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1987 struct sk_buff *skb,
1988 void *accel_priv);
1989
1990 /* returns the headroom that the master device needs to take in account
1991 * when forwarding to this dev
1992 */
1993 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1994 {
1995 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1996 }
1997
1998 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1999 {
2000 if (dev->netdev_ops->ndo_set_rx_headroom)
2001 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2002 }
2003
2004 /* set the device rx headroom to the dev's default */
2005 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2006 {
2007 netdev_set_rx_headroom(dev, -1);
2008 }
2009
2010 /*
2011 * Net namespace inlines
2012 */
2013 static inline
2014 struct net *dev_net(const struct net_device *dev)
2015 {
2016 return read_pnet(&dev->nd_net);
2017 }
2018
2019 static inline
2020 void dev_net_set(struct net_device *dev, struct net *net)
2021 {
2022 write_pnet(&dev->nd_net, net);
2023 }
2024
2025 static inline bool netdev_uses_dsa(struct net_device *dev)
2026 {
2027 #if IS_ENABLED(CONFIG_NET_DSA)
2028 if (dev->dsa_ptr != NULL)
2029 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2030 #endif
2031 return false;
2032 }
2033
2034 /**
2035 * netdev_priv - access network device private data
2036 * @dev: network device
2037 *
2038 * Get network device private data
2039 */
2040 static inline void *netdev_priv(const struct net_device *dev)
2041 {
2042 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2043 }
2044
2045 /* Set the sysfs physical device reference for the network logical device
2046 * if set prior to registration will cause a symlink during initialization.
2047 */
2048 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2049
2050 /* Set the sysfs device type for the network logical device to allow
2051 * fine-grained identification of different network device types. For
2052 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2053 */
2054 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2055
2056 /* Default NAPI poll() weight
2057 * Device drivers are strongly advised to not use bigger value
2058 */
2059 #define NAPI_POLL_WEIGHT 64
2060
2061 /**
2062 * netif_napi_add - initialize a NAPI context
2063 * @dev: network device
2064 * @napi: NAPI context
2065 * @poll: polling function
2066 * @weight: default weight
2067 *
2068 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2069 * *any* of the other NAPI-related functions.
2070 */
2071 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2072 int (*poll)(struct napi_struct *, int), int weight);
2073
2074 /**
2075 * netif_tx_napi_add - initialize a NAPI context
2076 * @dev: network device
2077 * @napi: NAPI context
2078 * @poll: polling function
2079 * @weight: default weight
2080 *
2081 * This variant of netif_napi_add() should be used from drivers using NAPI
2082 * to exclusively poll a TX queue.
2083 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2084 */
2085 static inline void netif_tx_napi_add(struct net_device *dev,
2086 struct napi_struct *napi,
2087 int (*poll)(struct napi_struct *, int),
2088 int weight)
2089 {
2090 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2091 netif_napi_add(dev, napi, poll, weight);
2092 }
2093
2094 /**
2095 * netif_napi_del - remove a NAPI context
2096 * @napi: NAPI context
2097 *
2098 * netif_napi_del() removes a NAPI context from the network device NAPI list
2099 */
2100 void netif_napi_del(struct napi_struct *napi);
2101
2102 struct napi_gro_cb {
2103 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2104 void *frag0;
2105
2106 /* Length of frag0. */
2107 unsigned int frag0_len;
2108
2109 /* This indicates where we are processing relative to skb->data. */
2110 int data_offset;
2111
2112 /* This is non-zero if the packet cannot be merged with the new skb. */
2113 u16 flush;
2114
2115 /* Save the IP ID here and check when we get to the transport layer */
2116 u16 flush_id;
2117
2118 /* Number of segments aggregated. */
2119 u16 count;
2120
2121 /* Start offset for remote checksum offload */
2122 u16 gro_remcsum_start;
2123
2124 /* jiffies when first packet was created/queued */
2125 unsigned long age;
2126
2127 /* Used in ipv6_gro_receive() and foo-over-udp */
2128 u16 proto;
2129
2130 /* This is non-zero if the packet may be of the same flow. */
2131 u8 same_flow:1;
2132
2133 /* Used in tunnel GRO receive */
2134 u8 encap_mark:1;
2135
2136 /* GRO checksum is valid */
2137 u8 csum_valid:1;
2138
2139 /* Number of checksums via CHECKSUM_UNNECESSARY */
2140 u8 csum_cnt:3;
2141
2142 /* Free the skb? */
2143 u8 free:2;
2144 #define NAPI_GRO_FREE 1
2145 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2146
2147 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2148 u8 is_ipv6:1;
2149
2150 /* Used in GRE, set in fou/gue_gro_receive */
2151 u8 is_fou:1;
2152
2153 /* Used to determine if flush_id can be ignored */
2154 u8 is_atomic:1;
2155
2156 /* 5 bit hole */
2157
2158 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2159 __wsum csum;
2160
2161 /* used in skb_gro_receive() slow path */
2162 struct sk_buff *last;
2163 };
2164
2165 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2166
2167 struct packet_type {
2168 __be16 type; /* This is really htons(ether_type). */
2169 struct net_device *dev; /* NULL is wildcarded here */
2170 int (*func) (struct sk_buff *,
2171 struct net_device *,
2172 struct packet_type *,
2173 struct net_device *);
2174 bool (*id_match)(struct packet_type *ptype,
2175 struct sock *sk);
2176 void *af_packet_priv;
2177 struct list_head list;
2178 };
2179
2180 struct offload_callbacks {
2181 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2182 netdev_features_t features);
2183 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2184 struct sk_buff *skb);
2185 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2186 };
2187
2188 struct packet_offload {
2189 __be16 type; /* This is really htons(ether_type). */
2190 u16 priority;
2191 struct offload_callbacks callbacks;
2192 struct list_head list;
2193 };
2194
2195 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2196 struct pcpu_sw_netstats {
2197 u64 rx_packets;
2198 u64 rx_bytes;
2199 u64 tx_packets;
2200 u64 tx_bytes;
2201 struct u64_stats_sync syncp;
2202 };
2203
2204 #define __netdev_alloc_pcpu_stats(type, gfp) \
2205 ({ \
2206 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2207 if (pcpu_stats) { \
2208 int __cpu; \
2209 for_each_possible_cpu(__cpu) { \
2210 typeof(type) *stat; \
2211 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2212 u64_stats_init(&stat->syncp); \
2213 } \
2214 } \
2215 pcpu_stats; \
2216 })
2217
2218 #define netdev_alloc_pcpu_stats(type) \
2219 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2220
2221 enum netdev_lag_tx_type {
2222 NETDEV_LAG_TX_TYPE_UNKNOWN,
2223 NETDEV_LAG_TX_TYPE_RANDOM,
2224 NETDEV_LAG_TX_TYPE_BROADCAST,
2225 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2226 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2227 NETDEV_LAG_TX_TYPE_HASH,
2228 };
2229
2230 struct netdev_lag_upper_info {
2231 enum netdev_lag_tx_type tx_type;
2232 };
2233
2234 struct netdev_lag_lower_state_info {
2235 u8 link_up : 1,
2236 tx_enabled : 1;
2237 };
2238
2239 #include <linux/notifier.h>
2240
2241 /* netdevice notifier chain. Please remember to update the rtnetlink
2242 * notification exclusion list in rtnetlink_event() when adding new
2243 * types.
2244 */
2245 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2246 #define NETDEV_DOWN 0x0002
2247 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2248 detected a hardware crash and restarted
2249 - we can use this eg to kick tcp sessions
2250 once done */
2251 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2252 #define NETDEV_REGISTER 0x0005
2253 #define NETDEV_UNREGISTER 0x0006
2254 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2255 #define NETDEV_CHANGEADDR 0x0008
2256 #define NETDEV_GOING_DOWN 0x0009
2257 #define NETDEV_CHANGENAME 0x000A
2258 #define NETDEV_FEAT_CHANGE 0x000B
2259 #define NETDEV_BONDING_FAILOVER 0x000C
2260 #define NETDEV_PRE_UP 0x000D
2261 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2262 #define NETDEV_POST_TYPE_CHANGE 0x000F
2263 #define NETDEV_POST_INIT 0x0010
2264 #define NETDEV_UNREGISTER_FINAL 0x0011
2265 #define NETDEV_RELEASE 0x0012
2266 #define NETDEV_NOTIFY_PEERS 0x0013
2267 #define NETDEV_JOIN 0x0014
2268 #define NETDEV_CHANGEUPPER 0x0015
2269 #define NETDEV_RESEND_IGMP 0x0016
2270 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2271 #define NETDEV_CHANGEINFODATA 0x0018
2272 #define NETDEV_BONDING_INFO 0x0019
2273 #define NETDEV_PRECHANGEUPPER 0x001A
2274 #define NETDEV_CHANGELOWERSTATE 0x001B
2275 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2276 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2277
2278 int register_netdevice_notifier(struct notifier_block *nb);
2279 int unregister_netdevice_notifier(struct notifier_block *nb);
2280
2281 struct netdev_notifier_info {
2282 struct net_device *dev;
2283 };
2284
2285 struct netdev_notifier_change_info {
2286 struct netdev_notifier_info info; /* must be first */
2287 unsigned int flags_changed;
2288 };
2289
2290 struct netdev_notifier_changeupper_info {
2291 struct netdev_notifier_info info; /* must be first */
2292 struct net_device *upper_dev; /* new upper dev */
2293 bool master; /* is upper dev master */
2294 bool linking; /* is the notification for link or unlink */
2295 void *upper_info; /* upper dev info */
2296 };
2297
2298 struct netdev_notifier_changelowerstate_info {
2299 struct netdev_notifier_info info; /* must be first */
2300 void *lower_state_info; /* is lower dev state */
2301 };
2302
2303 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2304 struct net_device *dev)
2305 {
2306 info->dev = dev;
2307 }
2308
2309 static inline struct net_device *
2310 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2311 {
2312 return info->dev;
2313 }
2314
2315 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2316
2317
2318 extern rwlock_t dev_base_lock; /* Device list lock */
2319
2320 #define for_each_netdev(net, d) \
2321 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2322 #define for_each_netdev_reverse(net, d) \
2323 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2324 #define for_each_netdev_rcu(net, d) \
2325 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2326 #define for_each_netdev_safe(net, d, n) \
2327 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2328 #define for_each_netdev_continue(net, d) \
2329 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2330 #define for_each_netdev_continue_rcu(net, d) \
2331 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2332 #define for_each_netdev_in_bond_rcu(bond, slave) \
2333 for_each_netdev_rcu(&init_net, slave) \
2334 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2335 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2336
2337 static inline struct net_device *next_net_device(struct net_device *dev)
2338 {
2339 struct list_head *lh;
2340 struct net *net;
2341
2342 net = dev_net(dev);
2343 lh = dev->dev_list.next;
2344 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2345 }
2346
2347 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2348 {
2349 struct list_head *lh;
2350 struct net *net;
2351
2352 net = dev_net(dev);
2353 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2354 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2355 }
2356
2357 static inline struct net_device *first_net_device(struct net *net)
2358 {
2359 return list_empty(&net->dev_base_head) ? NULL :
2360 net_device_entry(net->dev_base_head.next);
2361 }
2362
2363 static inline struct net_device *first_net_device_rcu(struct net *net)
2364 {
2365 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2366
2367 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2368 }
2369
2370 int netdev_boot_setup_check(struct net_device *dev);
2371 unsigned long netdev_boot_base(const char *prefix, int unit);
2372 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2373 const char *hwaddr);
2374 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2375 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2376 void dev_add_pack(struct packet_type *pt);
2377 void dev_remove_pack(struct packet_type *pt);
2378 void __dev_remove_pack(struct packet_type *pt);
2379 void dev_add_offload(struct packet_offload *po);
2380 void dev_remove_offload(struct packet_offload *po);
2381
2382 int dev_get_iflink(const struct net_device *dev);
2383 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2384 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2385 unsigned short mask);
2386 struct net_device *dev_get_by_name(struct net *net, const char *name);
2387 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2388 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2389 int dev_alloc_name(struct net_device *dev, const char *name);
2390 int dev_open(struct net_device *dev);
2391 int dev_close(struct net_device *dev);
2392 int dev_close_many(struct list_head *head, bool unlink);
2393 void dev_disable_lro(struct net_device *dev);
2394 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2395 int dev_queue_xmit(struct sk_buff *skb);
2396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2397 int register_netdevice(struct net_device *dev);
2398 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2399 void unregister_netdevice_many(struct list_head *head);
2400 static inline void unregister_netdevice(struct net_device *dev)
2401 {
2402 unregister_netdevice_queue(dev, NULL);
2403 }
2404
2405 int netdev_refcnt_read(const struct net_device *dev);
2406 void free_netdev(struct net_device *dev);
2407 void netdev_freemem(struct net_device *dev);
2408 void synchronize_net(void);
2409 int init_dummy_netdev(struct net_device *dev);
2410
2411 DECLARE_PER_CPU(int, xmit_recursion);
2412 #define XMIT_RECURSION_LIMIT 10
2413
2414 static inline int dev_recursion_level(void)
2415 {
2416 return this_cpu_read(xmit_recursion);
2417 }
2418
2419 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2420 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2421 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2422 int netdev_get_name(struct net *net, char *name, int ifindex);
2423 int dev_restart(struct net_device *dev);
2424 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2425
2426 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2427 {
2428 return NAPI_GRO_CB(skb)->data_offset;
2429 }
2430
2431 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2432 {
2433 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2434 }
2435
2436 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2437 {
2438 NAPI_GRO_CB(skb)->data_offset += len;
2439 }
2440
2441 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2442 unsigned int offset)
2443 {
2444 return NAPI_GRO_CB(skb)->frag0 + offset;
2445 }
2446
2447 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2448 {
2449 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2450 }
2451
2452 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2453 unsigned int offset)
2454 {
2455 if (!pskb_may_pull(skb, hlen))
2456 return NULL;
2457
2458 NAPI_GRO_CB(skb)->frag0 = NULL;
2459 NAPI_GRO_CB(skb)->frag0_len = 0;
2460 return skb->data + offset;
2461 }
2462
2463 static inline void *skb_gro_network_header(struct sk_buff *skb)
2464 {
2465 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2466 skb_network_offset(skb);
2467 }
2468
2469 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2470 const void *start, unsigned int len)
2471 {
2472 if (NAPI_GRO_CB(skb)->csum_valid)
2473 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2474 csum_partial(start, len, 0));
2475 }
2476
2477 /* GRO checksum functions. These are logical equivalents of the normal
2478 * checksum functions (in skbuff.h) except that they operate on the GRO
2479 * offsets and fields in sk_buff.
2480 */
2481
2482 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2483
2484 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2485 {
2486 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2487 }
2488
2489 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2490 bool zero_okay,
2491 __sum16 check)
2492 {
2493 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2494 skb_checksum_start_offset(skb) <
2495 skb_gro_offset(skb)) &&
2496 !skb_at_gro_remcsum_start(skb) &&
2497 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2498 (!zero_okay || check));
2499 }
2500
2501 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2502 __wsum psum)
2503 {
2504 if (NAPI_GRO_CB(skb)->csum_valid &&
2505 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2506 return 0;
2507
2508 NAPI_GRO_CB(skb)->csum = psum;
2509
2510 return __skb_gro_checksum_complete(skb);
2511 }
2512
2513 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2514 {
2515 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2516 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2517 NAPI_GRO_CB(skb)->csum_cnt--;
2518 } else {
2519 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2520 * verified a new top level checksum or an encapsulated one
2521 * during GRO. This saves work if we fallback to normal path.
2522 */
2523 __skb_incr_checksum_unnecessary(skb);
2524 }
2525 }
2526
2527 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2528 compute_pseudo) \
2529 ({ \
2530 __sum16 __ret = 0; \
2531 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2532 __ret = __skb_gro_checksum_validate_complete(skb, \
2533 compute_pseudo(skb, proto)); \
2534 if (__ret) \
2535 __skb_mark_checksum_bad(skb); \
2536 else \
2537 skb_gro_incr_csum_unnecessary(skb); \
2538 __ret; \
2539 })
2540
2541 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2542 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2543
2544 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2545 compute_pseudo) \
2546 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2547
2548 #define skb_gro_checksum_simple_validate(skb) \
2549 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2550
2551 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2552 {
2553 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2554 !NAPI_GRO_CB(skb)->csum_valid);
2555 }
2556
2557 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2558 __sum16 check, __wsum pseudo)
2559 {
2560 NAPI_GRO_CB(skb)->csum = ~pseudo;
2561 NAPI_GRO_CB(skb)->csum_valid = 1;
2562 }
2563
2564 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2565 do { \
2566 if (__skb_gro_checksum_convert_check(skb)) \
2567 __skb_gro_checksum_convert(skb, check, \
2568 compute_pseudo(skb, proto)); \
2569 } while (0)
2570
2571 struct gro_remcsum {
2572 int offset;
2573 __wsum delta;
2574 };
2575
2576 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2577 {
2578 grc->offset = 0;
2579 grc->delta = 0;
2580 }
2581
2582 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2583 unsigned int off, size_t hdrlen,
2584 int start, int offset,
2585 struct gro_remcsum *grc,
2586 bool nopartial)
2587 {
2588 __wsum delta;
2589 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2590
2591 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2592
2593 if (!nopartial) {
2594 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2595 return ptr;
2596 }
2597
2598 ptr = skb_gro_header_fast(skb, off);
2599 if (skb_gro_header_hard(skb, off + plen)) {
2600 ptr = skb_gro_header_slow(skb, off + plen, off);
2601 if (!ptr)
2602 return NULL;
2603 }
2604
2605 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2606 start, offset);
2607
2608 /* Adjust skb->csum since we changed the packet */
2609 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2610
2611 grc->offset = off + hdrlen + offset;
2612 grc->delta = delta;
2613
2614 return ptr;
2615 }
2616
2617 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2618 struct gro_remcsum *grc)
2619 {
2620 void *ptr;
2621 size_t plen = grc->offset + sizeof(u16);
2622
2623 if (!grc->delta)
2624 return;
2625
2626 ptr = skb_gro_header_fast(skb, grc->offset);
2627 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2628 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2629 if (!ptr)
2630 return;
2631 }
2632
2633 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2634 }
2635
2636 struct skb_csum_offl_spec {
2637 __u16 ipv4_okay:1,
2638 ipv6_okay:1,
2639 encap_okay:1,
2640 ip_options_okay:1,
2641 ext_hdrs_okay:1,
2642 tcp_okay:1,
2643 udp_okay:1,
2644 sctp_okay:1,
2645 vlan_okay:1,
2646 no_encapped_ipv6:1,
2647 no_not_encapped:1;
2648 };
2649
2650 bool __skb_csum_offload_chk(struct sk_buff *skb,
2651 const struct skb_csum_offl_spec *spec,
2652 bool *csum_encapped,
2653 bool csum_help);
2654
2655 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2656 const struct skb_csum_offl_spec *spec,
2657 bool *csum_encapped,
2658 bool csum_help)
2659 {
2660 if (skb->ip_summed != CHECKSUM_PARTIAL)
2661 return false;
2662
2663 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2664 }
2665
2666 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2667 const struct skb_csum_offl_spec *spec)
2668 {
2669 bool csum_encapped;
2670
2671 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2672 }
2673
2674 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2675 {
2676 static const struct skb_csum_offl_spec csum_offl_spec = {
2677 .ipv4_okay = 1,
2678 .ip_options_okay = 1,
2679 .ipv6_okay = 1,
2680 .vlan_okay = 1,
2681 .tcp_okay = 1,
2682 .udp_okay = 1,
2683 };
2684
2685 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2686 }
2687
2688 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2689 {
2690 static const struct skb_csum_offl_spec csum_offl_spec = {
2691 .ipv4_okay = 1,
2692 .ip_options_okay = 1,
2693 .tcp_okay = 1,
2694 .udp_okay = 1,
2695 .vlan_okay = 1,
2696 };
2697
2698 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2699 }
2700
2701 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2702 unsigned short type,
2703 const void *daddr, const void *saddr,
2704 unsigned int len)
2705 {
2706 if (!dev->header_ops || !dev->header_ops->create)
2707 return 0;
2708
2709 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2710 }
2711
2712 static inline int dev_parse_header(const struct sk_buff *skb,
2713 unsigned char *haddr)
2714 {
2715 const struct net_device *dev = skb->dev;
2716
2717 if (!dev->header_ops || !dev->header_ops->parse)
2718 return 0;
2719 return dev->header_ops->parse(skb, haddr);
2720 }
2721
2722 /* ll_header must have at least hard_header_len allocated */
2723 static inline bool dev_validate_header(const struct net_device *dev,
2724 char *ll_header, int len)
2725 {
2726 if (likely(len >= dev->hard_header_len))
2727 return true;
2728
2729 if (capable(CAP_SYS_RAWIO)) {
2730 memset(ll_header + len, 0, dev->hard_header_len - len);
2731 return true;
2732 }
2733
2734 if (dev->header_ops && dev->header_ops->validate)
2735 return dev->header_ops->validate(ll_header, len);
2736
2737 return false;
2738 }
2739
2740 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2741 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2742 static inline int unregister_gifconf(unsigned int family)
2743 {
2744 return register_gifconf(family, NULL);
2745 }
2746
2747 #ifdef CONFIG_NET_FLOW_LIMIT
2748 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2749 struct sd_flow_limit {
2750 u64 count;
2751 unsigned int num_buckets;
2752 unsigned int history_head;
2753 u16 history[FLOW_LIMIT_HISTORY];
2754 u8 buckets[];
2755 };
2756
2757 extern int netdev_flow_limit_table_len;
2758 #endif /* CONFIG_NET_FLOW_LIMIT */
2759
2760 /*
2761 * Incoming packets are placed on per-CPU queues
2762 */
2763 struct softnet_data {
2764 struct list_head poll_list;
2765 struct sk_buff_head process_queue;
2766
2767 /* stats */
2768 unsigned int processed;
2769 unsigned int time_squeeze;
2770 unsigned int received_rps;
2771 #ifdef CONFIG_RPS
2772 struct softnet_data *rps_ipi_list;
2773 #endif
2774 #ifdef CONFIG_NET_FLOW_LIMIT
2775 struct sd_flow_limit __rcu *flow_limit;
2776 #endif
2777 struct Qdisc *output_queue;
2778 struct Qdisc **output_queue_tailp;
2779 struct sk_buff *completion_queue;
2780
2781 #ifdef CONFIG_RPS
2782 /* input_queue_head should be written by cpu owning this struct,
2783 * and only read by other cpus. Worth using a cache line.
2784 */
2785 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2786
2787 /* Elements below can be accessed between CPUs for RPS/RFS */
2788 struct call_single_data csd ____cacheline_aligned_in_smp;
2789 struct softnet_data *rps_ipi_next;
2790 unsigned int cpu;
2791 unsigned int input_queue_tail;
2792 #endif
2793 unsigned int dropped;
2794 struct sk_buff_head input_pkt_queue;
2795 struct napi_struct backlog;
2796
2797 };
2798
2799 static inline void input_queue_head_incr(struct softnet_data *sd)
2800 {
2801 #ifdef CONFIG_RPS
2802 sd->input_queue_head++;
2803 #endif
2804 }
2805
2806 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2807 unsigned int *qtail)
2808 {
2809 #ifdef CONFIG_RPS
2810 *qtail = ++sd->input_queue_tail;
2811 #endif
2812 }
2813
2814 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2815
2816 void __netif_schedule(struct Qdisc *q);
2817 void netif_schedule_queue(struct netdev_queue *txq);
2818
2819 static inline void netif_tx_schedule_all(struct net_device *dev)
2820 {
2821 unsigned int i;
2822
2823 for (i = 0; i < dev->num_tx_queues; i++)
2824 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2825 }
2826
2827 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2828 {
2829 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2830 }
2831
2832 /**
2833 * netif_start_queue - allow transmit
2834 * @dev: network device
2835 *
2836 * Allow upper layers to call the device hard_start_xmit routine.
2837 */
2838 static inline void netif_start_queue(struct net_device *dev)
2839 {
2840 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2841 }
2842
2843 static inline void netif_tx_start_all_queues(struct net_device *dev)
2844 {
2845 unsigned int i;
2846
2847 for (i = 0; i < dev->num_tx_queues; i++) {
2848 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2849 netif_tx_start_queue(txq);
2850 }
2851 }
2852
2853 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2854
2855 /**
2856 * netif_wake_queue - restart transmit
2857 * @dev: network device
2858 *
2859 * Allow upper layers to call the device hard_start_xmit routine.
2860 * Used for flow control when transmit resources are available.
2861 */
2862 static inline void netif_wake_queue(struct net_device *dev)
2863 {
2864 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2865 }
2866
2867 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2868 {
2869 unsigned int i;
2870
2871 for (i = 0; i < dev->num_tx_queues; i++) {
2872 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2873 netif_tx_wake_queue(txq);
2874 }
2875 }
2876
2877 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2878 {
2879 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2880 }
2881
2882 /**
2883 * netif_stop_queue - stop transmitted packets
2884 * @dev: network device
2885 *
2886 * Stop upper layers calling the device hard_start_xmit routine.
2887 * Used for flow control when transmit resources are unavailable.
2888 */
2889 static inline void netif_stop_queue(struct net_device *dev)
2890 {
2891 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2892 }
2893
2894 void netif_tx_stop_all_queues(struct net_device *dev);
2895
2896 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2897 {
2898 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2899 }
2900
2901 /**
2902 * netif_queue_stopped - test if transmit queue is flowblocked
2903 * @dev: network device
2904 *
2905 * Test if transmit queue on device is currently unable to send.
2906 */
2907 static inline bool netif_queue_stopped(const struct net_device *dev)
2908 {
2909 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2910 }
2911
2912 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2913 {
2914 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2915 }
2916
2917 static inline bool
2918 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2919 {
2920 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2921 }
2922
2923 static inline bool
2924 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2925 {
2926 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2927 }
2928
2929 /**
2930 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2931 * @dev_queue: pointer to transmit queue
2932 *
2933 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2934 * to give appropriate hint to the CPU.
2935 */
2936 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2937 {
2938 #ifdef CONFIG_BQL
2939 prefetchw(&dev_queue->dql.num_queued);
2940 #endif
2941 }
2942
2943 /**
2944 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2945 * @dev_queue: pointer to transmit queue
2946 *
2947 * BQL enabled drivers might use this helper in their TX completion path,
2948 * to give appropriate hint to the CPU.
2949 */
2950 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2951 {
2952 #ifdef CONFIG_BQL
2953 prefetchw(&dev_queue->dql.limit);
2954 #endif
2955 }
2956
2957 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2958 unsigned int bytes)
2959 {
2960 #ifdef CONFIG_BQL
2961 dql_queued(&dev_queue->dql, bytes);
2962
2963 if (likely(dql_avail(&dev_queue->dql) >= 0))
2964 return;
2965
2966 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2967
2968 /*
2969 * The XOFF flag must be set before checking the dql_avail below,
2970 * because in netdev_tx_completed_queue we update the dql_completed
2971 * before checking the XOFF flag.
2972 */
2973 smp_mb();
2974
2975 /* check again in case another CPU has just made room avail */
2976 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2977 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2978 #endif
2979 }
2980
2981 /**
2982 * netdev_sent_queue - report the number of bytes queued to hardware
2983 * @dev: network device
2984 * @bytes: number of bytes queued to the hardware device queue
2985 *
2986 * Report the number of bytes queued for sending/completion to the network
2987 * device hardware queue. @bytes should be a good approximation and should
2988 * exactly match netdev_completed_queue() @bytes
2989 */
2990 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2991 {
2992 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2993 }
2994
2995 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2996 unsigned int pkts, unsigned int bytes)
2997 {
2998 #ifdef CONFIG_BQL
2999 if (unlikely(!bytes))
3000 return;
3001
3002 dql_completed(&dev_queue->dql, bytes);
3003
3004 /*
3005 * Without the memory barrier there is a small possiblity that
3006 * netdev_tx_sent_queue will miss the update and cause the queue to
3007 * be stopped forever
3008 */
3009 smp_mb();
3010
3011 if (dql_avail(&dev_queue->dql) < 0)
3012 return;
3013
3014 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3015 netif_schedule_queue(dev_queue);
3016 #endif
3017 }
3018
3019 /**
3020 * netdev_completed_queue - report bytes and packets completed by device
3021 * @dev: network device
3022 * @pkts: actual number of packets sent over the medium
3023 * @bytes: actual number of bytes sent over the medium
3024 *
3025 * Report the number of bytes and packets transmitted by the network device
3026 * hardware queue over the physical medium, @bytes must exactly match the
3027 * @bytes amount passed to netdev_sent_queue()
3028 */
3029 static inline void netdev_completed_queue(struct net_device *dev,
3030 unsigned int pkts, unsigned int bytes)
3031 {
3032 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3033 }
3034
3035 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3036 {
3037 #ifdef CONFIG_BQL
3038 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3039 dql_reset(&q->dql);
3040 #endif
3041 }
3042
3043 /**
3044 * netdev_reset_queue - reset the packets and bytes count of a network device
3045 * @dev_queue: network device
3046 *
3047 * Reset the bytes and packet count of a network device and clear the
3048 * software flow control OFF bit for this network device
3049 */
3050 static inline void netdev_reset_queue(struct net_device *dev_queue)
3051 {
3052 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3053 }
3054
3055 /**
3056 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3057 * @dev: network device
3058 * @queue_index: given tx queue index
3059 *
3060 * Returns 0 if given tx queue index >= number of device tx queues,
3061 * otherwise returns the originally passed tx queue index.
3062 */
3063 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3064 {
3065 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3066 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3067 dev->name, queue_index,
3068 dev->real_num_tx_queues);
3069 return 0;
3070 }
3071
3072 return queue_index;
3073 }
3074
3075 /**
3076 * netif_running - test if up
3077 * @dev: network device
3078 *
3079 * Test if the device has been brought up.
3080 */
3081 static inline bool netif_running(const struct net_device *dev)
3082 {
3083 return test_bit(__LINK_STATE_START, &dev->state);
3084 }
3085
3086 /*
3087 * Routines to manage the subqueues on a device. We only need start,
3088 * stop, and a check if it's stopped. All other device management is
3089 * done at the overall netdevice level.
3090 * Also test the device if we're multiqueue.
3091 */
3092
3093 /**
3094 * netif_start_subqueue - allow sending packets on subqueue
3095 * @dev: network device
3096 * @queue_index: sub queue index
3097 *
3098 * Start individual transmit queue of a device with multiple transmit queues.
3099 */
3100 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3101 {
3102 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3103
3104 netif_tx_start_queue(txq);
3105 }
3106
3107 /**
3108 * netif_stop_subqueue - stop sending packets on subqueue
3109 * @dev: network device
3110 * @queue_index: sub queue index
3111 *
3112 * Stop individual transmit queue of a device with multiple transmit queues.
3113 */
3114 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3115 {
3116 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3117 netif_tx_stop_queue(txq);
3118 }
3119
3120 /**
3121 * netif_subqueue_stopped - test status of subqueue
3122 * @dev: network device
3123 * @queue_index: sub queue index
3124 *
3125 * Check individual transmit queue of a device with multiple transmit queues.
3126 */
3127 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3128 u16 queue_index)
3129 {
3130 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3131
3132 return netif_tx_queue_stopped(txq);
3133 }
3134
3135 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3136 struct sk_buff *skb)
3137 {
3138 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3139 }
3140
3141 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3142
3143 #ifdef CONFIG_XPS
3144 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3145 u16 index);
3146 #else
3147 static inline int netif_set_xps_queue(struct net_device *dev,
3148 const struct cpumask *mask,
3149 u16 index)
3150 {
3151 return 0;
3152 }
3153 #endif
3154
3155 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3156 unsigned int num_tx_queues);
3157
3158 /*
3159 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3160 * as a distribution range limit for the returned value.
3161 */
3162 static inline u16 skb_tx_hash(const struct net_device *dev,
3163 struct sk_buff *skb)
3164 {
3165 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3166 }
3167
3168 /**
3169 * netif_is_multiqueue - test if device has multiple transmit queues
3170 * @dev: network device
3171 *
3172 * Check if device has multiple transmit queues
3173 */
3174 static inline bool netif_is_multiqueue(const struct net_device *dev)
3175 {
3176 return dev->num_tx_queues > 1;
3177 }
3178
3179 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3180
3181 #ifdef CONFIG_SYSFS
3182 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3183 #else
3184 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3185 unsigned int rxq)
3186 {
3187 return 0;
3188 }
3189 #endif
3190
3191 #ifdef CONFIG_SYSFS
3192 static inline unsigned int get_netdev_rx_queue_index(
3193 struct netdev_rx_queue *queue)
3194 {
3195 struct net_device *dev = queue->dev;
3196 int index = queue - dev->_rx;
3197
3198 BUG_ON(index >= dev->num_rx_queues);
3199 return index;
3200 }
3201 #endif
3202
3203 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3204 int netif_get_num_default_rss_queues(void);
3205
3206 enum skb_free_reason {
3207 SKB_REASON_CONSUMED,
3208 SKB_REASON_DROPPED,
3209 };
3210
3211 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3212 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3213
3214 /*
3215 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3216 * interrupt context or with hardware interrupts being disabled.
3217 * (in_irq() || irqs_disabled())
3218 *
3219 * We provide four helpers that can be used in following contexts :
3220 *
3221 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3222 * replacing kfree_skb(skb)
3223 *
3224 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3225 * Typically used in place of consume_skb(skb) in TX completion path
3226 *
3227 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3228 * replacing kfree_skb(skb)
3229 *
3230 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3231 * and consumed a packet. Used in place of consume_skb(skb)
3232 */
3233 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3234 {
3235 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3236 }
3237
3238 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3239 {
3240 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3241 }
3242
3243 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3244 {
3245 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3246 }
3247
3248 static inline void dev_consume_skb_any(struct sk_buff *skb)
3249 {
3250 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3251 }
3252
3253 int netif_rx(struct sk_buff *skb);
3254 int netif_rx_ni(struct sk_buff *skb);
3255 int netif_receive_skb(struct sk_buff *skb);
3256 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3257 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3258 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3259 gro_result_t napi_gro_frags(struct napi_struct *napi);
3260 struct packet_offload *gro_find_receive_by_type(__be16 type);
3261 struct packet_offload *gro_find_complete_by_type(__be16 type);
3262
3263 static inline void napi_free_frags(struct napi_struct *napi)
3264 {
3265 kfree_skb(napi->skb);
3266 napi->skb = NULL;
3267 }
3268
3269 bool netdev_is_rx_handler_busy(struct net_device *dev);
3270 int netdev_rx_handler_register(struct net_device *dev,
3271 rx_handler_func_t *rx_handler,
3272 void *rx_handler_data);
3273 void netdev_rx_handler_unregister(struct net_device *dev);
3274
3275 bool dev_valid_name(const char *name);
3276 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3277 int dev_ethtool(struct net *net, struct ifreq *);
3278 unsigned int dev_get_flags(const struct net_device *);
3279 int __dev_change_flags(struct net_device *, unsigned int flags);
3280 int dev_change_flags(struct net_device *, unsigned int);
3281 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3282 unsigned int gchanges);
3283 int dev_change_name(struct net_device *, const char *);
3284 int dev_set_alias(struct net_device *, const char *, size_t);
3285 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3286 int dev_set_mtu(struct net_device *, int);
3287 void dev_set_group(struct net_device *, int);
3288 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3289 int dev_change_carrier(struct net_device *, bool new_carrier);
3290 int dev_get_phys_port_id(struct net_device *dev,
3291 struct netdev_phys_item_id *ppid);
3292 int dev_get_phys_port_name(struct net_device *dev,
3293 char *name, size_t len);
3294 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3295 int dev_change_xdp_fd(struct net_device *dev, int fd);
3296 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3297 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3298 struct netdev_queue *txq, int *ret);
3299 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3300 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3301 bool is_skb_forwardable(const struct net_device *dev,
3302 const struct sk_buff *skb);
3303
3304 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3305
3306 extern int netdev_budget;
3307
3308 /* Called by rtnetlink.c:rtnl_unlock() */
3309 void netdev_run_todo(void);
3310
3311 /**
3312 * dev_put - release reference to device
3313 * @dev: network device
3314 *
3315 * Release reference to device to allow it to be freed.
3316 */
3317 static inline void dev_put(struct net_device *dev)
3318 {
3319 this_cpu_dec(*dev->pcpu_refcnt);
3320 }
3321
3322 /**
3323 * dev_hold - get reference to device
3324 * @dev: network device
3325 *
3326 * Hold reference to device to keep it from being freed.
3327 */
3328 static inline void dev_hold(struct net_device *dev)
3329 {
3330 this_cpu_inc(*dev->pcpu_refcnt);
3331 }
3332
3333 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3334 * and _off may be called from IRQ context, but it is caller
3335 * who is responsible for serialization of these calls.
3336 *
3337 * The name carrier is inappropriate, these functions should really be
3338 * called netif_lowerlayer_*() because they represent the state of any
3339 * kind of lower layer not just hardware media.
3340 */
3341
3342 void linkwatch_init_dev(struct net_device *dev);
3343 void linkwatch_fire_event(struct net_device *dev);
3344 void linkwatch_forget_dev(struct net_device *dev);
3345
3346 /**
3347 * netif_carrier_ok - test if carrier present
3348 * @dev: network device
3349 *
3350 * Check if carrier is present on device
3351 */
3352 static inline bool netif_carrier_ok(const struct net_device *dev)
3353 {
3354 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3355 }
3356
3357 unsigned long dev_trans_start(struct net_device *dev);
3358
3359 void __netdev_watchdog_up(struct net_device *dev);
3360
3361 void netif_carrier_on(struct net_device *dev);
3362
3363 void netif_carrier_off(struct net_device *dev);
3364
3365 /**
3366 * netif_dormant_on - mark device as dormant.
3367 * @dev: network device
3368 *
3369 * Mark device as dormant (as per RFC2863).
3370 *
3371 * The dormant state indicates that the relevant interface is not
3372 * actually in a condition to pass packets (i.e., it is not 'up') but is
3373 * in a "pending" state, waiting for some external event. For "on-
3374 * demand" interfaces, this new state identifies the situation where the
3375 * interface is waiting for events to place it in the up state.
3376 */
3377 static inline void netif_dormant_on(struct net_device *dev)
3378 {
3379 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3380 linkwatch_fire_event(dev);
3381 }
3382
3383 /**
3384 * netif_dormant_off - set device as not dormant.
3385 * @dev: network device
3386 *
3387 * Device is not in dormant state.
3388 */
3389 static inline void netif_dormant_off(struct net_device *dev)
3390 {
3391 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3392 linkwatch_fire_event(dev);
3393 }
3394
3395 /**
3396 * netif_dormant - test if carrier present
3397 * @dev: network device
3398 *
3399 * Check if carrier is present on device
3400 */
3401 static inline bool netif_dormant(const struct net_device *dev)
3402 {
3403 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3404 }
3405
3406
3407 /**
3408 * netif_oper_up - test if device is operational
3409 * @dev: network device
3410 *
3411 * Check if carrier is operational
3412 */
3413 static inline bool netif_oper_up(const struct net_device *dev)
3414 {
3415 return (dev->operstate == IF_OPER_UP ||
3416 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3417 }
3418
3419 /**
3420 * netif_device_present - is device available or removed
3421 * @dev: network device
3422 *
3423 * Check if device has not been removed from system.
3424 */
3425 static inline bool netif_device_present(struct net_device *dev)
3426 {
3427 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3428 }
3429
3430 void netif_device_detach(struct net_device *dev);
3431
3432 void netif_device_attach(struct net_device *dev);
3433
3434 /*
3435 * Network interface message level settings
3436 */
3437
3438 enum {
3439 NETIF_MSG_DRV = 0x0001,
3440 NETIF_MSG_PROBE = 0x0002,
3441 NETIF_MSG_LINK = 0x0004,
3442 NETIF_MSG_TIMER = 0x0008,
3443 NETIF_MSG_IFDOWN = 0x0010,
3444 NETIF_MSG_IFUP = 0x0020,
3445 NETIF_MSG_RX_ERR = 0x0040,
3446 NETIF_MSG_TX_ERR = 0x0080,
3447 NETIF_MSG_TX_QUEUED = 0x0100,
3448 NETIF_MSG_INTR = 0x0200,
3449 NETIF_MSG_TX_DONE = 0x0400,
3450 NETIF_MSG_RX_STATUS = 0x0800,
3451 NETIF_MSG_PKTDATA = 0x1000,
3452 NETIF_MSG_HW = 0x2000,
3453 NETIF_MSG_WOL = 0x4000,
3454 };
3455
3456 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3457 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3458 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3459 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3460 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3461 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3462 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3463 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3464 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3465 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3466 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3467 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3468 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3469 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3470 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3471
3472 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3473 {
3474 /* use default */
3475 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3476 return default_msg_enable_bits;
3477 if (debug_value == 0) /* no output */
3478 return 0;
3479 /* set low N bits */
3480 return (1 << debug_value) - 1;
3481 }
3482
3483 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3484 {
3485 spin_lock(&txq->_xmit_lock);
3486 txq->xmit_lock_owner = cpu;
3487 }
3488
3489 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3490 {
3491 spin_lock_bh(&txq->_xmit_lock);
3492 txq->xmit_lock_owner = smp_processor_id();
3493 }
3494
3495 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3496 {
3497 bool ok = spin_trylock(&txq->_xmit_lock);
3498 if (likely(ok))
3499 txq->xmit_lock_owner = smp_processor_id();
3500 return ok;
3501 }
3502
3503 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3504 {
3505 txq->xmit_lock_owner = -1;
3506 spin_unlock(&txq->_xmit_lock);
3507 }
3508
3509 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3510 {
3511 txq->xmit_lock_owner = -1;
3512 spin_unlock_bh(&txq->_xmit_lock);
3513 }
3514
3515 static inline void txq_trans_update(struct netdev_queue *txq)
3516 {
3517 if (txq->xmit_lock_owner != -1)
3518 txq->trans_start = jiffies;
3519 }
3520
3521 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3522 static inline void netif_trans_update(struct net_device *dev)
3523 {
3524 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3525
3526 if (txq->trans_start != jiffies)
3527 txq->trans_start = jiffies;
3528 }
3529
3530 /**
3531 * netif_tx_lock - grab network device transmit lock
3532 * @dev: network device
3533 *
3534 * Get network device transmit lock
3535 */
3536 static inline void netif_tx_lock(struct net_device *dev)
3537 {
3538 unsigned int i;
3539 int cpu;
3540
3541 spin_lock(&dev->tx_global_lock);
3542 cpu = smp_processor_id();
3543 for (i = 0; i < dev->num_tx_queues; i++) {
3544 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3545
3546 /* We are the only thread of execution doing a
3547 * freeze, but we have to grab the _xmit_lock in
3548 * order to synchronize with threads which are in
3549 * the ->hard_start_xmit() handler and already
3550 * checked the frozen bit.
3551 */
3552 __netif_tx_lock(txq, cpu);
3553 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3554 __netif_tx_unlock(txq);
3555 }
3556 }
3557
3558 static inline void netif_tx_lock_bh(struct net_device *dev)
3559 {
3560 local_bh_disable();
3561 netif_tx_lock(dev);
3562 }
3563
3564 static inline void netif_tx_unlock(struct net_device *dev)
3565 {
3566 unsigned int i;
3567
3568 for (i = 0; i < dev->num_tx_queues; i++) {
3569 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3570
3571 /* No need to grab the _xmit_lock here. If the
3572 * queue is not stopped for another reason, we
3573 * force a schedule.
3574 */
3575 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3576 netif_schedule_queue(txq);
3577 }
3578 spin_unlock(&dev->tx_global_lock);
3579 }
3580
3581 static inline void netif_tx_unlock_bh(struct net_device *dev)
3582 {
3583 netif_tx_unlock(dev);
3584 local_bh_enable();
3585 }
3586
3587 #define HARD_TX_LOCK(dev, txq, cpu) { \
3588 if ((dev->features & NETIF_F_LLTX) == 0) { \
3589 __netif_tx_lock(txq, cpu); \
3590 } \
3591 }
3592
3593 #define HARD_TX_TRYLOCK(dev, txq) \
3594 (((dev->features & NETIF_F_LLTX) == 0) ? \
3595 __netif_tx_trylock(txq) : \
3596 true )
3597
3598 #define HARD_TX_UNLOCK(dev, txq) { \
3599 if ((dev->features & NETIF_F_LLTX) == 0) { \
3600 __netif_tx_unlock(txq); \
3601 } \
3602 }
3603
3604 static inline void netif_tx_disable(struct net_device *dev)
3605 {
3606 unsigned int i;
3607 int cpu;
3608
3609 local_bh_disable();
3610 cpu = smp_processor_id();
3611 for (i = 0; i < dev->num_tx_queues; i++) {
3612 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3613
3614 __netif_tx_lock(txq, cpu);
3615 netif_tx_stop_queue(txq);
3616 __netif_tx_unlock(txq);
3617 }
3618 local_bh_enable();
3619 }
3620
3621 static inline void netif_addr_lock(struct net_device *dev)
3622 {
3623 spin_lock(&dev->addr_list_lock);
3624 }
3625
3626 static inline void netif_addr_lock_nested(struct net_device *dev)
3627 {
3628 int subclass = SINGLE_DEPTH_NESTING;
3629
3630 if (dev->netdev_ops->ndo_get_lock_subclass)
3631 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3632
3633 spin_lock_nested(&dev->addr_list_lock, subclass);
3634 }
3635
3636 static inline void netif_addr_lock_bh(struct net_device *dev)
3637 {
3638 spin_lock_bh(&dev->addr_list_lock);
3639 }
3640
3641 static inline void netif_addr_unlock(struct net_device *dev)
3642 {
3643 spin_unlock(&dev->addr_list_lock);
3644 }
3645
3646 static inline void netif_addr_unlock_bh(struct net_device *dev)
3647 {
3648 spin_unlock_bh(&dev->addr_list_lock);
3649 }
3650
3651 /*
3652 * dev_addrs walker. Should be used only for read access. Call with
3653 * rcu_read_lock held.
3654 */
3655 #define for_each_dev_addr(dev, ha) \
3656 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3657
3658 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3659
3660 void ether_setup(struct net_device *dev);
3661
3662 /* Support for loadable net-drivers */
3663 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3664 unsigned char name_assign_type,
3665 void (*setup)(struct net_device *),
3666 unsigned int txqs, unsigned int rxqs);
3667 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3668 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3669
3670 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3671 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3672 count)
3673
3674 int register_netdev(struct net_device *dev);
3675 void unregister_netdev(struct net_device *dev);
3676
3677 /* General hardware address lists handling functions */
3678 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3679 struct netdev_hw_addr_list *from_list, int addr_len);
3680 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3681 struct netdev_hw_addr_list *from_list, int addr_len);
3682 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3683 struct net_device *dev,
3684 int (*sync)(struct net_device *, const unsigned char *),
3685 int (*unsync)(struct net_device *,
3686 const unsigned char *));
3687 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3688 struct net_device *dev,
3689 int (*unsync)(struct net_device *,
3690 const unsigned char *));
3691 void __hw_addr_init(struct netdev_hw_addr_list *list);
3692
3693 /* Functions used for device addresses handling */
3694 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3695 unsigned char addr_type);
3696 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3697 unsigned char addr_type);
3698 void dev_addr_flush(struct net_device *dev);
3699 int dev_addr_init(struct net_device *dev);
3700
3701 /* Functions used for unicast addresses handling */
3702 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3703 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3704 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3705 int dev_uc_sync(struct net_device *to, struct net_device *from);
3706 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3707 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3708 void dev_uc_flush(struct net_device *dev);
3709 void dev_uc_init(struct net_device *dev);
3710
3711 /**
3712 * __dev_uc_sync - Synchonize device's unicast list
3713 * @dev: device to sync
3714 * @sync: function to call if address should be added
3715 * @unsync: function to call if address should be removed
3716 *
3717 * Add newly added addresses to the interface, and release
3718 * addresses that have been deleted.
3719 */
3720 static inline int __dev_uc_sync(struct net_device *dev,
3721 int (*sync)(struct net_device *,
3722 const unsigned char *),
3723 int (*unsync)(struct net_device *,
3724 const unsigned char *))
3725 {
3726 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3727 }
3728
3729 /**
3730 * __dev_uc_unsync - Remove synchronized addresses from device
3731 * @dev: device to sync
3732 * @unsync: function to call if address should be removed
3733 *
3734 * Remove all addresses that were added to the device by dev_uc_sync().
3735 */
3736 static inline void __dev_uc_unsync(struct net_device *dev,
3737 int (*unsync)(struct net_device *,
3738 const unsigned char *))
3739 {
3740 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3741 }
3742
3743 /* Functions used for multicast addresses handling */
3744 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3745 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3746 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3747 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3748 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3749 int dev_mc_sync(struct net_device *to, struct net_device *from);
3750 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3751 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3752 void dev_mc_flush(struct net_device *dev);
3753 void dev_mc_init(struct net_device *dev);
3754
3755 /**
3756 * __dev_mc_sync - Synchonize device's multicast list
3757 * @dev: device to sync
3758 * @sync: function to call if address should be added
3759 * @unsync: function to call if address should be removed
3760 *
3761 * Add newly added addresses to the interface, and release
3762 * addresses that have been deleted.
3763 */
3764 static inline int __dev_mc_sync(struct net_device *dev,
3765 int (*sync)(struct net_device *,
3766 const unsigned char *),
3767 int (*unsync)(struct net_device *,
3768 const unsigned char *))
3769 {
3770 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3771 }
3772
3773 /**
3774 * __dev_mc_unsync - Remove synchronized addresses from device
3775 * @dev: device to sync
3776 * @unsync: function to call if address should be removed
3777 *
3778 * Remove all addresses that were added to the device by dev_mc_sync().
3779 */
3780 static inline void __dev_mc_unsync(struct net_device *dev,
3781 int (*unsync)(struct net_device *,
3782 const unsigned char *))
3783 {
3784 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3785 }
3786
3787 /* Functions used for secondary unicast and multicast support */
3788 void dev_set_rx_mode(struct net_device *dev);
3789 void __dev_set_rx_mode(struct net_device *dev);
3790 int dev_set_promiscuity(struct net_device *dev, int inc);
3791 int dev_set_allmulti(struct net_device *dev, int inc);
3792 void netdev_state_change(struct net_device *dev);
3793 void netdev_notify_peers(struct net_device *dev);
3794 void netdev_features_change(struct net_device *dev);
3795 /* Load a device via the kmod */
3796 void dev_load(struct net *net, const char *name);
3797 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3798 struct rtnl_link_stats64 *storage);
3799 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3800 const struct net_device_stats *netdev_stats);
3801
3802 extern int netdev_max_backlog;
3803 extern int netdev_tstamp_prequeue;
3804 extern int weight_p;
3805
3806 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3807 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3808 struct list_head **iter);
3809 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3810 struct list_head **iter);
3811
3812 /* iterate through upper list, must be called under RCU read lock */
3813 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3814 for (iter = &(dev)->adj_list.upper, \
3815 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3816 updev; \
3817 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3818
3819 /* iterate through upper list, must be called under RCU read lock */
3820 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3821 for (iter = &(dev)->all_adj_list.upper, \
3822 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3823 updev; \
3824 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3825
3826 void *netdev_lower_get_next_private(struct net_device *dev,
3827 struct list_head **iter);
3828 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3829 struct list_head **iter);
3830
3831 #define netdev_for_each_lower_private(dev, priv, iter) \
3832 for (iter = (dev)->adj_list.lower.next, \
3833 priv = netdev_lower_get_next_private(dev, &(iter)); \
3834 priv; \
3835 priv = netdev_lower_get_next_private(dev, &(iter)))
3836
3837 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3838 for (iter = &(dev)->adj_list.lower, \
3839 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3840 priv; \
3841 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3842
3843 void *netdev_lower_get_next(struct net_device *dev,
3844 struct list_head **iter);
3845
3846 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3847 for (iter = (dev)->adj_list.lower.next, \
3848 ldev = netdev_lower_get_next(dev, &(iter)); \
3849 ldev; \
3850 ldev = netdev_lower_get_next(dev, &(iter)))
3851
3852 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3853 struct list_head **iter);
3854 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3855 struct list_head **iter);
3856
3857 #define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3858 for (iter = (dev)->all_adj_list.lower.next, \
3859 ldev = netdev_all_lower_get_next(dev, &(iter)); \
3860 ldev; \
3861 ldev = netdev_all_lower_get_next(dev, &(iter)))
3862
3863 #define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3864 for (iter = (dev)->all_adj_list.lower.next, \
3865 ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3866 ldev; \
3867 ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3868
3869 void *netdev_adjacent_get_private(struct list_head *adj_list);
3870 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3871 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3872 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3873 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3874 int netdev_master_upper_dev_link(struct net_device *dev,
3875 struct net_device *upper_dev,
3876 void *upper_priv, void *upper_info);
3877 void netdev_upper_dev_unlink(struct net_device *dev,
3878 struct net_device *upper_dev);
3879 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3880 void *netdev_lower_dev_get_private(struct net_device *dev,
3881 struct net_device *lower_dev);
3882 void netdev_lower_state_changed(struct net_device *lower_dev,
3883 void *lower_state_info);
3884 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3885 struct neighbour *n);
3886 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3887 struct neighbour *n);
3888
3889 /* RSS keys are 40 or 52 bytes long */
3890 #define NETDEV_RSS_KEY_LEN 52
3891 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3892 void netdev_rss_key_fill(void *buffer, size_t len);
3893
3894 int dev_get_nest_level(struct net_device *dev);
3895 int skb_checksum_help(struct sk_buff *skb);
3896 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3897 netdev_features_t features, bool tx_path);
3898 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3899 netdev_features_t features);
3900
3901 struct netdev_bonding_info {
3902 ifslave slave;
3903 ifbond master;
3904 };
3905
3906 struct netdev_notifier_bonding_info {
3907 struct netdev_notifier_info info; /* must be first */
3908 struct netdev_bonding_info bonding_info;
3909 };
3910
3911 void netdev_bonding_info_change(struct net_device *dev,
3912 struct netdev_bonding_info *bonding_info);
3913
3914 static inline
3915 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3916 {
3917 return __skb_gso_segment(skb, features, true);
3918 }
3919 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3920
3921 static inline bool can_checksum_protocol(netdev_features_t features,
3922 __be16 protocol)
3923 {
3924 if (protocol == htons(ETH_P_FCOE))
3925 return !!(features & NETIF_F_FCOE_CRC);
3926
3927 /* Assume this is an IP checksum (not SCTP CRC) */
3928
3929 if (features & NETIF_F_HW_CSUM) {
3930 /* Can checksum everything */
3931 return true;
3932 }
3933
3934 switch (protocol) {
3935 case htons(ETH_P_IP):
3936 return !!(features & NETIF_F_IP_CSUM);
3937 case htons(ETH_P_IPV6):
3938 return !!(features & NETIF_F_IPV6_CSUM);
3939 default:
3940 return false;
3941 }
3942 }
3943
3944 /* Map an ethertype into IP protocol if possible */
3945 static inline int eproto_to_ipproto(int eproto)
3946 {
3947 switch (eproto) {
3948 case htons(ETH_P_IP):
3949 return IPPROTO_IP;
3950 case htons(ETH_P_IPV6):
3951 return IPPROTO_IPV6;
3952 default:
3953 return -1;
3954 }
3955 }
3956
3957 #ifdef CONFIG_BUG
3958 void netdev_rx_csum_fault(struct net_device *dev);
3959 #else
3960 static inline void netdev_rx_csum_fault(struct net_device *dev)
3961 {
3962 }
3963 #endif
3964 /* rx skb timestamps */
3965 void net_enable_timestamp(void);
3966 void net_disable_timestamp(void);
3967
3968 #ifdef CONFIG_PROC_FS
3969 int __init dev_proc_init(void);
3970 #else
3971 #define dev_proc_init() 0
3972 #endif
3973
3974 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3975 struct sk_buff *skb, struct net_device *dev,
3976 bool more)
3977 {
3978 skb->xmit_more = more ? 1 : 0;
3979 return ops->ndo_start_xmit(skb, dev);
3980 }
3981
3982 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3983 struct netdev_queue *txq, bool more)
3984 {
3985 const struct net_device_ops *ops = dev->netdev_ops;
3986 int rc;
3987
3988 rc = __netdev_start_xmit(ops, skb, dev, more);
3989 if (rc == NETDEV_TX_OK)
3990 txq_trans_update(txq);
3991
3992 return rc;
3993 }
3994
3995 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3996 const void *ns);
3997 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3998 const void *ns);
3999
4000 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4001 {
4002 return netdev_class_create_file_ns(class_attr, NULL);
4003 }
4004
4005 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4006 {
4007 netdev_class_remove_file_ns(class_attr, NULL);
4008 }
4009
4010 extern struct kobj_ns_type_operations net_ns_type_operations;
4011
4012 const char *netdev_drivername(const struct net_device *dev);
4013
4014 void linkwatch_run_queue(void);
4015
4016 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4017 netdev_features_t f2)
4018 {
4019 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4020 if (f1 & NETIF_F_HW_CSUM)
4021 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4022 else
4023 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4024 }
4025
4026 return f1 & f2;
4027 }
4028
4029 static inline netdev_features_t netdev_get_wanted_features(
4030 struct net_device *dev)
4031 {
4032 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4033 }
4034 netdev_features_t netdev_increment_features(netdev_features_t all,
4035 netdev_features_t one, netdev_features_t mask);
4036
4037 /* Allow TSO being used on stacked device :
4038 * Performing the GSO segmentation before last device
4039 * is a performance improvement.
4040 */
4041 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4042 netdev_features_t mask)
4043 {
4044 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4045 }
4046
4047 int __netdev_update_features(struct net_device *dev);
4048 void netdev_update_features(struct net_device *dev);
4049 void netdev_change_features(struct net_device *dev);
4050
4051 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4052 struct net_device *dev);
4053
4054 netdev_features_t passthru_features_check(struct sk_buff *skb,
4055 struct net_device *dev,
4056 netdev_features_t features);
4057 netdev_features_t netif_skb_features(struct sk_buff *skb);
4058
4059 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4060 {
4061 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4062
4063 /* check flags correspondence */
4064 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4065 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4066 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4067 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4068 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4069 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4070 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4071 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4072 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4073 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4074 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4075 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4076 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4077 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4078 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4079 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4080
4081 return (features & feature) == feature;
4082 }
4083
4084 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4085 {
4086 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4087 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4088 }
4089
4090 static inline bool netif_needs_gso(struct sk_buff *skb,
4091 netdev_features_t features)
4092 {
4093 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4094 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4095 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4096 }
4097
4098 static inline void netif_set_gso_max_size(struct net_device *dev,
4099 unsigned int size)
4100 {
4101 dev->gso_max_size = size;
4102 }
4103
4104 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4105 int pulled_hlen, u16 mac_offset,
4106 int mac_len)
4107 {
4108 skb->protocol = protocol;
4109 skb->encapsulation = 1;
4110 skb_push(skb, pulled_hlen);
4111 skb_reset_transport_header(skb);
4112 skb->mac_header = mac_offset;
4113 skb->network_header = skb->mac_header + mac_len;
4114 skb->mac_len = mac_len;
4115 }
4116
4117 static inline bool netif_is_macsec(const struct net_device *dev)
4118 {
4119 return dev->priv_flags & IFF_MACSEC;
4120 }
4121
4122 static inline bool netif_is_macvlan(const struct net_device *dev)
4123 {
4124 return dev->priv_flags & IFF_MACVLAN;
4125 }
4126
4127 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4128 {
4129 return dev->priv_flags & IFF_MACVLAN_PORT;
4130 }
4131
4132 static inline bool netif_is_ipvlan(const struct net_device *dev)
4133 {
4134 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4135 }
4136
4137 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4138 {
4139 return dev->priv_flags & IFF_IPVLAN_MASTER;
4140 }
4141
4142 static inline bool netif_is_bond_master(const struct net_device *dev)
4143 {
4144 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4145 }
4146
4147 static inline bool netif_is_bond_slave(const struct net_device *dev)
4148 {
4149 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4150 }
4151
4152 static inline bool netif_supports_nofcs(struct net_device *dev)
4153 {
4154 return dev->priv_flags & IFF_SUPP_NOFCS;
4155 }
4156
4157 static inline bool netif_is_l3_master(const struct net_device *dev)
4158 {
4159 return dev->priv_flags & IFF_L3MDEV_MASTER;
4160 }
4161
4162 static inline bool netif_is_l3_slave(const struct net_device *dev)
4163 {
4164 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4165 }
4166
4167 static inline bool netif_is_bridge_master(const struct net_device *dev)
4168 {
4169 return dev->priv_flags & IFF_EBRIDGE;
4170 }
4171
4172 static inline bool netif_is_bridge_port(const struct net_device *dev)
4173 {
4174 return dev->priv_flags & IFF_BRIDGE_PORT;
4175 }
4176
4177 static inline bool netif_is_ovs_master(const struct net_device *dev)
4178 {
4179 return dev->priv_flags & IFF_OPENVSWITCH;
4180 }
4181
4182 static inline bool netif_is_team_master(const struct net_device *dev)
4183 {
4184 return dev->priv_flags & IFF_TEAM;
4185 }
4186
4187 static inline bool netif_is_team_port(const struct net_device *dev)
4188 {
4189 return dev->priv_flags & IFF_TEAM_PORT;
4190 }
4191
4192 static inline bool netif_is_lag_master(const struct net_device *dev)
4193 {
4194 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4195 }
4196
4197 static inline bool netif_is_lag_port(const struct net_device *dev)
4198 {
4199 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4200 }
4201
4202 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4203 {
4204 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4205 }
4206
4207 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4208 static inline void netif_keep_dst(struct net_device *dev)
4209 {
4210 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4211 }
4212
4213 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4214 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4215 {
4216 /* TODO: reserve and use an additional IFF bit, if we get more users */
4217 return dev->priv_flags & IFF_MACSEC;
4218 }
4219
4220 extern struct pernet_operations __net_initdata loopback_net_ops;
4221
4222 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4223
4224 /* netdev_printk helpers, similar to dev_printk */
4225
4226 static inline const char *netdev_name(const struct net_device *dev)
4227 {
4228 if (!dev->name[0] || strchr(dev->name, '%'))
4229 return "(unnamed net_device)";
4230 return dev->name;
4231 }
4232
4233 static inline const char *netdev_reg_state(const struct net_device *dev)
4234 {
4235 switch (dev->reg_state) {
4236 case NETREG_UNINITIALIZED: return " (uninitialized)";
4237 case NETREG_REGISTERED: return "";
4238 case NETREG_UNREGISTERING: return " (unregistering)";
4239 case NETREG_UNREGISTERED: return " (unregistered)";
4240 case NETREG_RELEASED: return " (released)";
4241 case NETREG_DUMMY: return " (dummy)";
4242 }
4243
4244 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4245 return " (unknown)";
4246 }
4247
4248 __printf(3, 4)
4249 void netdev_printk(const char *level, const struct net_device *dev,
4250 const char *format, ...);
4251 __printf(2, 3)
4252 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4253 __printf(2, 3)
4254 void netdev_alert(const struct net_device *dev, const char *format, ...);
4255 __printf(2, 3)
4256 void netdev_crit(const struct net_device *dev, const char *format, ...);
4257 __printf(2, 3)
4258 void netdev_err(const struct net_device *dev, const char *format, ...);
4259 __printf(2, 3)
4260 void netdev_warn(const struct net_device *dev, const char *format, ...);
4261 __printf(2, 3)
4262 void netdev_notice(const struct net_device *dev, const char *format, ...);
4263 __printf(2, 3)
4264 void netdev_info(const struct net_device *dev, const char *format, ...);
4265
4266 #define MODULE_ALIAS_NETDEV(device) \
4267 MODULE_ALIAS("netdev-" device)
4268
4269 #if defined(CONFIG_DYNAMIC_DEBUG)
4270 #define netdev_dbg(__dev, format, args...) \
4271 do { \
4272 dynamic_netdev_dbg(__dev, format, ##args); \
4273 } while (0)
4274 #elif defined(DEBUG)
4275 #define netdev_dbg(__dev, format, args...) \
4276 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4277 #else
4278 #define netdev_dbg(__dev, format, args...) \
4279 ({ \
4280 if (0) \
4281 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4282 })
4283 #endif
4284
4285 #if defined(VERBOSE_DEBUG)
4286 #define netdev_vdbg netdev_dbg
4287 #else
4288
4289 #define netdev_vdbg(dev, format, args...) \
4290 ({ \
4291 if (0) \
4292 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4293 0; \
4294 })
4295 #endif
4296
4297 /*
4298 * netdev_WARN() acts like dev_printk(), but with the key difference
4299 * of using a WARN/WARN_ON to get the message out, including the
4300 * file/line information and a backtrace.
4301 */
4302 #define netdev_WARN(dev, format, args...) \
4303 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4304 netdev_reg_state(dev), ##args)
4305
4306 /* netif printk helpers, similar to netdev_printk */
4307
4308 #define netif_printk(priv, type, level, dev, fmt, args...) \
4309 do { \
4310 if (netif_msg_##type(priv)) \
4311 netdev_printk(level, (dev), fmt, ##args); \
4312 } while (0)
4313
4314 #define netif_level(level, priv, type, dev, fmt, args...) \
4315 do { \
4316 if (netif_msg_##type(priv)) \
4317 netdev_##level(dev, fmt, ##args); \
4318 } while (0)
4319
4320 #define netif_emerg(priv, type, dev, fmt, args...) \
4321 netif_level(emerg, priv, type, dev, fmt, ##args)
4322 #define netif_alert(priv, type, dev, fmt, args...) \
4323 netif_level(alert, priv, type, dev, fmt, ##args)
4324 #define netif_crit(priv, type, dev, fmt, args...) \
4325 netif_level(crit, priv, type, dev, fmt, ##args)
4326 #define netif_err(priv, type, dev, fmt, args...) \
4327 netif_level(err, priv, type, dev, fmt, ##args)
4328 #define netif_warn(priv, type, dev, fmt, args...) \
4329 netif_level(warn, priv, type, dev, fmt, ##args)
4330 #define netif_notice(priv, type, dev, fmt, args...) \
4331 netif_level(notice, priv, type, dev, fmt, ##args)
4332 #define netif_info(priv, type, dev, fmt, args...) \
4333 netif_level(info, priv, type, dev, fmt, ##args)
4334
4335 #if defined(CONFIG_DYNAMIC_DEBUG)
4336 #define netif_dbg(priv, type, netdev, format, args...) \
4337 do { \
4338 if (netif_msg_##type(priv)) \
4339 dynamic_netdev_dbg(netdev, format, ##args); \
4340 } while (0)
4341 #elif defined(DEBUG)
4342 #define netif_dbg(priv, type, dev, format, args...) \
4343 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4344 #else
4345 #define netif_dbg(priv, type, dev, format, args...) \
4346 ({ \
4347 if (0) \
4348 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4349 0; \
4350 })
4351 #endif
4352
4353 #if defined(VERBOSE_DEBUG)
4354 #define netif_vdbg netif_dbg
4355 #else
4356 #define netif_vdbg(priv, type, dev, format, args...) \
4357 ({ \
4358 if (0) \
4359 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4360 0; \
4361 })
4362 #endif
4363
4364 /*
4365 * The list of packet types we will receive (as opposed to discard)
4366 * and the routines to invoke.
4367 *
4368 * Why 16. Because with 16 the only overlap we get on a hash of the
4369 * low nibble of the protocol value is RARP/SNAP/X.25.
4370 *
4371 * NOTE: That is no longer true with the addition of VLAN tags. Not
4372 * sure which should go first, but I bet it won't make much
4373 * difference if we are running VLANs. The good news is that
4374 * this protocol won't be in the list unless compiled in, so
4375 * the average user (w/out VLANs) will not be adversely affected.
4376 * --BLG
4377 *
4378 * 0800 IP
4379 * 8100 802.1Q VLAN
4380 * 0001 802.3
4381 * 0002 AX.25
4382 * 0004 802.2
4383 * 8035 RARP
4384 * 0005 SNAP
4385 * 0805 X.25
4386 * 0806 ARP
4387 * 8137 IPX
4388 * 0009 Localtalk
4389 * 86DD IPv6
4390 */
4391 #define PTYPE_HASH_SIZE (16)
4392 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4393
4394 #endif /* _LINUX_NETDEVICE_H */
This page took 0.151262 seconds and 5 git commands to generate.