Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64
65 void netdev_set_default_ethtool_ops(struct net_device *dev,
66 const struct ethtool_ops *ops);
67
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70 #define NET_RX_DROP 1 /* packet dropped */
71
72 /*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS 0x00
91 #define NET_XMIT_DROP 0x01 /* skb dropped */
92 #define NET_XMIT_CN 0x02 /* congestion notification */
93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK 0xf0
104
105 enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112
113 /*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129 }
130
131 /*
132 * Compute the worst case header length according to the protocols
133 * used.
134 */
135
136 #if defined(CONFIG_HYPERV_NET)
137 # define LL_MAX_HEADER 128
138 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
139 # if defined(CONFIG_MAC80211_MESH)
140 # define LL_MAX_HEADER 128
141 # else
142 # define LL_MAX_HEADER 96
143 # endif
144 #else
145 # define LL_MAX_HEADER 32
146 #endif
147
148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150 #define MAX_HEADER LL_MAX_HEADER
151 #else
152 #define MAX_HEADER (LL_MAX_HEADER + 48)
153 #endif
154
155 /*
156 * Old network device statistics. Fields are native words
157 * (unsigned long) so they can be read and written atomically.
158 */
159
160 struct net_device_stats {
161 unsigned long rx_packets;
162 unsigned long tx_packets;
163 unsigned long rx_bytes;
164 unsigned long tx_bytes;
165 unsigned long rx_errors;
166 unsigned long tx_errors;
167 unsigned long rx_dropped;
168 unsigned long tx_dropped;
169 unsigned long multicast;
170 unsigned long collisions;
171 unsigned long rx_length_errors;
172 unsigned long rx_over_errors;
173 unsigned long rx_crc_errors;
174 unsigned long rx_frame_errors;
175 unsigned long rx_fifo_errors;
176 unsigned long rx_missed_errors;
177 unsigned long tx_aborted_errors;
178 unsigned long tx_carrier_errors;
179 unsigned long tx_fifo_errors;
180 unsigned long tx_heartbeat_errors;
181 unsigned long tx_window_errors;
182 unsigned long rx_compressed;
183 unsigned long tx_compressed;
184 };
185
186
187 #include <linux/cache.h>
188 #include <linux/skbuff.h>
189
190 #ifdef CONFIG_RPS
191 #include <linux/static_key.h>
192 extern struct static_key rps_needed;
193 #endif
194
195 struct neighbour;
196 struct neigh_parms;
197 struct sk_buff;
198
199 struct netdev_hw_addr {
200 struct list_head list;
201 unsigned char addr[MAX_ADDR_LEN];
202 unsigned char type;
203 #define NETDEV_HW_ADDR_T_LAN 1
204 #define NETDEV_HW_ADDR_T_SAN 2
205 #define NETDEV_HW_ADDR_T_SLAVE 3
206 #define NETDEV_HW_ADDR_T_UNICAST 4
207 #define NETDEV_HW_ADDR_T_MULTICAST 5
208 bool global_use;
209 int sync_cnt;
210 int refcount;
211 int synced;
212 struct rcu_head rcu_head;
213 };
214
215 struct netdev_hw_addr_list {
216 struct list_head list;
217 int count;
218 };
219
220 #define netdev_hw_addr_list_count(l) ((l)->count)
221 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
222 #define netdev_hw_addr_list_for_each(ha, l) \
223 list_for_each_entry(ha, &(l)->list, list)
224
225 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
226 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
227 #define netdev_for_each_uc_addr(ha, dev) \
228 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
229
230 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
231 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
232 #define netdev_for_each_mc_addr(ha, dev) \
233 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
234
235 struct hh_cache {
236 u16 hh_len;
237 u16 __pad;
238 seqlock_t hh_lock;
239
240 /* cached hardware header; allow for machine alignment needs. */
241 #define HH_DATA_MOD 16
242 #define HH_DATA_OFF(__len) \
243 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
244 #define HH_DATA_ALIGN(__len) \
245 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
246 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
247 };
248
249 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
250 * Alternative is:
251 * dev->hard_header_len ? (dev->hard_header_len +
252 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
253 *
254 * We could use other alignment values, but we must maintain the
255 * relationship HH alignment <= LL alignment.
256 */
257 #define LL_RESERVED_SPACE(dev) \
258 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
260 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261
262 struct header_ops {
263 int (*create) (struct sk_buff *skb, struct net_device *dev,
264 unsigned short type, const void *daddr,
265 const void *saddr, unsigned int len);
266 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 void (*cache_update)(struct hh_cache *hh,
269 const struct net_device *dev,
270 const unsigned char *haddr);
271 bool (*validate)(const char *ll_header, unsigned int len);
272 };
273
274 /* These flag bits are private to the generic network queueing
275 * layer, they may not be explicitly referenced by any other
276 * code.
277 */
278
279 enum netdev_state_t {
280 __LINK_STATE_START,
281 __LINK_STATE_PRESENT,
282 __LINK_STATE_NOCARRIER,
283 __LINK_STATE_LINKWATCH_PENDING,
284 __LINK_STATE_DORMANT,
285 };
286
287
288 /*
289 * This structure holds at boot time configured netdevice settings. They
290 * are then used in the device probing.
291 */
292 struct netdev_boot_setup {
293 char name[IFNAMSIZ];
294 struct ifmap map;
295 };
296 #define NETDEV_BOOT_SETUP_MAX 8
297
298 int __init netdev_boot_setup(char *str);
299
300 /*
301 * Structure for NAPI scheduling similar to tasklet but with weighting
302 */
303 struct napi_struct {
304 /* The poll_list must only be managed by the entity which
305 * changes the state of the NAPI_STATE_SCHED bit. This means
306 * whoever atomically sets that bit can add this napi_struct
307 * to the per-cpu poll_list, and whoever clears that bit
308 * can remove from the list right before clearing the bit.
309 */
310 struct list_head poll_list;
311
312 unsigned long state;
313 int weight;
314 unsigned int gro_count;
315 int (*poll)(struct napi_struct *, int);
316 #ifdef CONFIG_NETPOLL
317 spinlock_t poll_lock;
318 int poll_owner;
319 #endif
320 struct net_device *dev;
321 struct sk_buff *gro_list;
322 struct sk_buff *skb;
323 struct hrtimer timer;
324 struct list_head dev_list;
325 struct hlist_node napi_hash_node;
326 unsigned int napi_id;
327 };
328
329 enum {
330 NAPI_STATE_SCHED, /* Poll is scheduled */
331 NAPI_STATE_DISABLE, /* Disable pending */
332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
333 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
334 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
335 };
336
337 enum gro_result {
338 GRO_MERGED,
339 GRO_MERGED_FREE,
340 GRO_HELD,
341 GRO_NORMAL,
342 GRO_DROP,
343 };
344 typedef enum gro_result gro_result_t;
345
346 /*
347 * enum rx_handler_result - Possible return values for rx_handlers.
348 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
349 * further.
350 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
351 * case skb->dev was changed by rx_handler.
352 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
353 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
354 *
355 * rx_handlers are functions called from inside __netif_receive_skb(), to do
356 * special processing of the skb, prior to delivery to protocol handlers.
357 *
358 * Currently, a net_device can only have a single rx_handler registered. Trying
359 * to register a second rx_handler will return -EBUSY.
360 *
361 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
362 * To unregister a rx_handler on a net_device, use
363 * netdev_rx_handler_unregister().
364 *
365 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
366 * do with the skb.
367 *
368 * If the rx_handler consumed to skb in some way, it should return
369 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
370 * the skb to be delivered in some other ways.
371 *
372 * If the rx_handler changed skb->dev, to divert the skb to another
373 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
374 * new device will be called if it exists.
375 *
376 * If the rx_handler consider the skb should be ignored, it should return
377 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
378 * are registered on exact device (ptype->dev == skb->dev).
379 *
380 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
381 * delivered, it should return RX_HANDLER_PASS.
382 *
383 * A device without a registered rx_handler will behave as if rx_handler
384 * returned RX_HANDLER_PASS.
385 */
386
387 enum rx_handler_result {
388 RX_HANDLER_CONSUMED,
389 RX_HANDLER_ANOTHER,
390 RX_HANDLER_EXACT,
391 RX_HANDLER_PASS,
392 };
393 typedef enum rx_handler_result rx_handler_result_t;
394 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
395
396 void __napi_schedule(struct napi_struct *n);
397 void __napi_schedule_irqoff(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405 * napi_schedule_prep - check if napi can be scheduled
406 * @n: napi context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420 * napi_schedule - schedule NAPI poll
421 * @n: napi context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430 }
431
432 /**
433 * napi_schedule_irqoff - schedule NAPI poll
434 * @n: napi context
435 *
436 * Variant of napi_schedule(), assuming hard irqs are masked.
437 */
438 static inline void napi_schedule_irqoff(struct napi_struct *n)
439 {
440 if (napi_schedule_prep(n))
441 __napi_schedule_irqoff(n);
442 }
443
444 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
445 static inline bool napi_reschedule(struct napi_struct *napi)
446 {
447 if (napi_schedule_prep(napi)) {
448 __napi_schedule(napi);
449 return true;
450 }
451 return false;
452 }
453
454 void __napi_complete(struct napi_struct *n);
455 void napi_complete_done(struct napi_struct *n, int work_done);
456 /**
457 * napi_complete - NAPI processing complete
458 * @n: napi context
459 *
460 * Mark NAPI processing as complete.
461 * Consider using napi_complete_done() instead.
462 */
463 static inline void napi_complete(struct napi_struct *n)
464 {
465 return napi_complete_done(n, 0);
466 }
467
468 /**
469 * napi_hash_add - add a NAPI to global hashtable
470 * @napi: napi context
471 *
472 * generate a new napi_id and store a @napi under it in napi_hash
473 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
474 * Note: This is normally automatically done from netif_napi_add(),
475 * so might disappear in a future linux version.
476 */
477 void napi_hash_add(struct napi_struct *napi);
478
479 /**
480 * napi_hash_del - remove a NAPI from global table
481 * @napi: napi context
482 *
483 * Warning: caller must observe rcu grace period
484 * before freeing memory containing @napi, if
485 * this function returns true.
486 * Note: core networking stack automatically calls it
487 * from netif_napi_del()
488 * Drivers might want to call this helper to combine all
489 * the needed rcu grace periods into a single one.
490 */
491 bool napi_hash_del(struct napi_struct *napi);
492
493 /**
494 * napi_disable - prevent NAPI from scheduling
495 * @n: napi context
496 *
497 * Stop NAPI from being scheduled on this context.
498 * Waits till any outstanding processing completes.
499 */
500 void napi_disable(struct napi_struct *n);
501
502 /**
503 * napi_enable - enable NAPI scheduling
504 * @n: napi context
505 *
506 * Resume NAPI from being scheduled on this context.
507 * Must be paired with napi_disable.
508 */
509 static inline void napi_enable(struct napi_struct *n)
510 {
511 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
512 smp_mb__before_atomic();
513 clear_bit(NAPI_STATE_SCHED, &n->state);
514 clear_bit(NAPI_STATE_NPSVC, &n->state);
515 }
516
517 /**
518 * napi_synchronize - wait until NAPI is not running
519 * @n: napi context
520 *
521 * Wait until NAPI is done being scheduled on this context.
522 * Waits till any outstanding processing completes but
523 * does not disable future activations.
524 */
525 static inline void napi_synchronize(const struct napi_struct *n)
526 {
527 if (IS_ENABLED(CONFIG_SMP))
528 while (test_bit(NAPI_STATE_SCHED, &n->state))
529 msleep(1);
530 else
531 barrier();
532 }
533
534 enum netdev_queue_state_t {
535 __QUEUE_STATE_DRV_XOFF,
536 __QUEUE_STATE_STACK_XOFF,
537 __QUEUE_STATE_FROZEN,
538 };
539
540 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
541 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
543
544 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
545 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
546 QUEUE_STATE_FROZEN)
547 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
548 QUEUE_STATE_FROZEN)
549
550 /*
551 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
552 * netif_tx_* functions below are used to manipulate this flag. The
553 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
554 * queue independently. The netif_xmit_*stopped functions below are called
555 * to check if the queue has been stopped by the driver or stack (either
556 * of the XOFF bits are set in the state). Drivers should not need to call
557 * netif_xmit*stopped functions, they should only be using netif_tx_*.
558 */
559
560 struct netdev_queue {
561 /*
562 * read mostly part
563 */
564 struct net_device *dev;
565 struct Qdisc __rcu *qdisc;
566 struct Qdisc *qdisc_sleeping;
567 #ifdef CONFIG_SYSFS
568 struct kobject kobj;
569 #endif
570 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
571 int numa_node;
572 #endif
573 /*
574 * write mostly part
575 */
576 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
577 int xmit_lock_owner;
578 /*
579 * please use this field instead of dev->trans_start
580 */
581 unsigned long trans_start;
582
583 /*
584 * Number of TX timeouts for this queue
585 * (/sys/class/net/DEV/Q/trans_timeout)
586 */
587 unsigned long trans_timeout;
588
589 unsigned long state;
590
591 #ifdef CONFIG_BQL
592 struct dql dql;
593 #endif
594 unsigned long tx_maxrate;
595 } ____cacheline_aligned_in_smp;
596
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 return q->numa_node;
601 #else
602 return NUMA_NO_NODE;
603 #endif
604 }
605
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 q->numa_node = node;
610 #endif
611 }
612
613 #ifdef CONFIG_RPS
614 /*
615 * This structure holds an RPS map which can be of variable length. The
616 * map is an array of CPUs.
617 */
618 struct rps_map {
619 unsigned int len;
620 struct rcu_head rcu;
621 u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624
625 /*
626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627 * tail pointer for that CPU's input queue at the time of last enqueue, and
628 * a hardware filter index.
629 */
630 struct rps_dev_flow {
631 u16 cpu;
632 u16 filter;
633 unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636
637 /*
638 * The rps_dev_flow_table structure contains a table of flow mappings.
639 */
640 struct rps_dev_flow_table {
641 unsigned int mask;
642 struct rcu_head rcu;
643 struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646 ((_num) * sizeof(struct rps_dev_flow)))
647
648 /*
649 * The rps_sock_flow_table contains mappings of flows to the last CPU
650 * on which they were processed by the application (set in recvmsg).
651 * Each entry is a 32bit value. Upper part is the high order bits
652 * of flow hash, lower part is cpu number.
653 * rps_cpu_mask is used to partition the space, depending on number of
654 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
656 * meaning we use 32-6=26 bits for the hash.
657 */
658 struct rps_sock_flow_table {
659 u32 mask;
660
661 u32 ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664
665 #define RPS_NO_CPU 0xffff
666
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671 u32 hash)
672 {
673 if (table && hash) {
674 unsigned int index = hash & table->mask;
675 u32 val = hash & ~rps_cpu_mask;
676
677 /* We only give a hint, preemption can change cpu under us */
678 val |= raw_smp_processor_id();
679
680 if (table->ents[index] != val)
681 table->ents[index] = val;
682 }
683 }
684
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687 u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694 struct rps_map __rcu *rps_map;
695 struct rps_dev_flow_table __rcu *rps_flow_table;
696 #endif
697 struct kobject kobj;
698 struct net_device *dev;
699 } ____cacheline_aligned_in_smp;
700
701 /*
702 * RX queue sysfs structures and functions.
703 */
704 struct rx_queue_attribute {
705 struct attribute attr;
706 ssize_t (*show)(struct netdev_rx_queue *queue,
707 struct rx_queue_attribute *attr, char *buf);
708 ssize_t (*store)(struct netdev_rx_queue *queue,
709 struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711
712 #ifdef CONFIG_XPS
713 /*
714 * This structure holds an XPS map which can be of variable length. The
715 * map is an array of queues.
716 */
717 struct xps_map {
718 unsigned int len;
719 unsigned int alloc_len;
720 struct rcu_head rcu;
721 u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725 - sizeof(struct xps_map)) / sizeof(u16))
726
727 /*
728 * This structure holds all XPS maps for device. Maps are indexed by CPU.
729 */
730 struct xps_dev_maps {
731 struct rcu_head rcu;
732 struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
735 (nr_cpu_ids * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737
738 #define TC_MAX_QUEUE 16
739 #define TC_BITMASK 15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742 u16 count;
743 u16 offset;
744 };
745
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748 * This structure is to hold information about the device
749 * configured to run FCoE protocol stack.
750 */
751 struct netdev_fcoe_hbainfo {
752 char manufacturer[64];
753 char serial_number[64];
754 char hardware_version[64];
755 char driver_version[64];
756 char optionrom_version[64];
757 char firmware_version[64];
758 char model[256];
759 char model_description[256];
760 };
761 #endif
762
763 #define MAX_PHYS_ITEM_ID_LEN 32
764
765 /* This structure holds a unique identifier to identify some
766 * physical item (port for example) used by a netdevice.
767 */
768 struct netdev_phys_item_id {
769 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770 unsigned char id_len;
771 };
772
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774 struct netdev_phys_item_id *b)
775 {
776 return a->id_len == b->id_len &&
777 memcmp(a->id, b->id, a->id_len) == 0;
778 }
779
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781 struct sk_buff *skb);
782
783 /* These structures hold the attributes of qdisc and classifiers
784 * that are being passed to the netdevice through the setup_tc op.
785 */
786 enum {
787 TC_SETUP_MQPRIO,
788 TC_SETUP_CLSU32,
789 TC_SETUP_CLSFLOWER,
790 };
791
792 struct tc_cls_u32_offload;
793
794 struct tc_to_netdev {
795 unsigned int type;
796 union {
797 u8 tc;
798 struct tc_cls_u32_offload *cls_u32;
799 struct tc_cls_flower_offload *cls_flower;
800 };
801 };
802
803
804 /*
805 * This structure defines the management hooks for network devices.
806 * The following hooks can be defined; unless noted otherwise, they are
807 * optional and can be filled with a null pointer.
808 *
809 * int (*ndo_init)(struct net_device *dev);
810 * This function is called once when network device is registered.
811 * The network device can use this to any late stage initializaton
812 * or semantic validattion. It can fail with an error code which will
813 * be propogated back to register_netdev
814 *
815 * void (*ndo_uninit)(struct net_device *dev);
816 * This function is called when device is unregistered or when registration
817 * fails. It is not called if init fails.
818 *
819 * int (*ndo_open)(struct net_device *dev);
820 * This function is called when network device transistions to the up
821 * state.
822 *
823 * int (*ndo_stop)(struct net_device *dev);
824 * This function is called when network device transistions to the down
825 * state.
826 *
827 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
828 * struct net_device *dev);
829 * Called when a packet needs to be transmitted.
830 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
831 * the queue before that can happen; it's for obsolete devices and weird
832 * corner cases, but the stack really does a non-trivial amount
833 * of useless work if you return NETDEV_TX_BUSY.
834 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
835 * Required can not be NULL.
836 *
837 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
838 * netdev_features_t features);
839 * Adjusts the requested feature flags according to device-specific
840 * constraints, and returns the resulting flags. Must not modify
841 * the device state.
842 *
843 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
844 * void *accel_priv, select_queue_fallback_t fallback);
845 * Called to decide which queue to when device supports multiple
846 * transmit queues.
847 *
848 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
849 * This function is called to allow device receiver to make
850 * changes to configuration when multicast or promiscious is enabled.
851 *
852 * void (*ndo_set_rx_mode)(struct net_device *dev);
853 * This function is called device changes address list filtering.
854 * If driver handles unicast address filtering, it should set
855 * IFF_UNICAST_FLT to its priv_flags.
856 *
857 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
858 * This function is called when the Media Access Control address
859 * needs to be changed. If this interface is not defined, the
860 * mac address can not be changed.
861 *
862 * int (*ndo_validate_addr)(struct net_device *dev);
863 * Test if Media Access Control address is valid for the device.
864 *
865 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
866 * Called when a user request an ioctl which can't be handled by
867 * the generic interface code. If not defined ioctl's return
868 * not supported error code.
869 *
870 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
871 * Used to set network devices bus interface parameters. This interface
872 * is retained for legacy reason, new devices should use the bus
873 * interface (PCI) for low level management.
874 *
875 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
876 * Called when a user wants to change the Maximum Transfer Unit
877 * of a device. If not defined, any request to change MTU will
878 * will return an error.
879 *
880 * void (*ndo_tx_timeout)(struct net_device *dev);
881 * Callback uses when the transmitter has not made any progress
882 * for dev->watchdog ticks.
883 *
884 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
885 * struct rtnl_link_stats64 *storage);
886 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
887 * Called when a user wants to get the network device usage
888 * statistics. Drivers must do one of the following:
889 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
890 * rtnl_link_stats64 structure passed by the caller.
891 * 2. Define @ndo_get_stats to update a net_device_stats structure
892 * (which should normally be dev->stats) and return a pointer to
893 * it. The structure may be changed asynchronously only if each
894 * field is written atomically.
895 * 3. Update dev->stats asynchronously and atomically, and define
896 * neither operation.
897 *
898 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
899 * If device support VLAN filtering this function is called when a
900 * VLAN id is registered.
901 *
902 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
903 * If device support VLAN filtering this function is called when a
904 * VLAN id is unregistered.
905 *
906 * void (*ndo_poll_controller)(struct net_device *dev);
907 *
908 * SR-IOV management functions.
909 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
910 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
911 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
912 * int max_tx_rate);
913 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
914 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
915 * int (*ndo_get_vf_config)(struct net_device *dev,
916 * int vf, struct ifla_vf_info *ivf);
917 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
918 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
919 * struct nlattr *port[]);
920 *
921 * Enable or disable the VF ability to query its RSS Redirection Table and
922 * Hash Key. This is needed since on some devices VF share this information
923 * with PF and querying it may adduce a theoretical security risk.
924 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
925 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
926 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
927 * Called to setup 'tc' number of traffic classes in the net device. This
928 * is always called from the stack with the rtnl lock held and netif tx
929 * queues stopped. This allows the netdevice to perform queue management
930 * safely.
931 *
932 * Fiber Channel over Ethernet (FCoE) offload functions.
933 * int (*ndo_fcoe_enable)(struct net_device *dev);
934 * Called when the FCoE protocol stack wants to start using LLD for FCoE
935 * so the underlying device can perform whatever needed configuration or
936 * initialization to support acceleration of FCoE traffic.
937 *
938 * int (*ndo_fcoe_disable)(struct net_device *dev);
939 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
940 * so the underlying device can perform whatever needed clean-ups to
941 * stop supporting acceleration of FCoE traffic.
942 *
943 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
944 * struct scatterlist *sgl, unsigned int sgc);
945 * Called when the FCoE Initiator wants to initialize an I/O that
946 * is a possible candidate for Direct Data Placement (DDP). The LLD can
947 * perform necessary setup and returns 1 to indicate the device is set up
948 * successfully to perform DDP on this I/O, otherwise this returns 0.
949 *
950 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
951 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
952 * indicated by the FC exchange id 'xid', so the underlying device can
953 * clean up and reuse resources for later DDP requests.
954 *
955 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
956 * struct scatterlist *sgl, unsigned int sgc);
957 * Called when the FCoE Target wants to initialize an I/O that
958 * is a possible candidate for Direct Data Placement (DDP). The LLD can
959 * perform necessary setup and returns 1 to indicate the device is set up
960 * successfully to perform DDP on this I/O, otherwise this returns 0.
961 *
962 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
963 * struct netdev_fcoe_hbainfo *hbainfo);
964 * Called when the FCoE Protocol stack wants information on the underlying
965 * device. This information is utilized by the FCoE protocol stack to
966 * register attributes with Fiber Channel management service as per the
967 * FC-GS Fabric Device Management Information(FDMI) specification.
968 *
969 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
970 * Called when the underlying device wants to override default World Wide
971 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
972 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
973 * protocol stack to use.
974 *
975 * RFS acceleration.
976 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
977 * u16 rxq_index, u32 flow_id);
978 * Set hardware filter for RFS. rxq_index is the target queue index;
979 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
980 * Return the filter ID on success, or a negative error code.
981 *
982 * Slave management functions (for bridge, bonding, etc).
983 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
984 * Called to make another netdev an underling.
985 *
986 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
987 * Called to release previously enslaved netdev.
988 *
989 * Feature/offload setting functions.
990 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
991 * Called to update device configuration to new features. Passed
992 * feature set might be less than what was returned by ndo_fix_features()).
993 * Must return >0 or -errno if it changed dev->features itself.
994 *
995 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
996 * struct net_device *dev,
997 * const unsigned char *addr, u16 vid, u16 flags)
998 * Adds an FDB entry to dev for addr.
999 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1000 * struct net_device *dev,
1001 * const unsigned char *addr, u16 vid)
1002 * Deletes the FDB entry from dev coresponding to addr.
1003 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1004 * struct net_device *dev, struct net_device *filter_dev,
1005 * int idx)
1006 * Used to add FDB entries to dump requests. Implementers should add
1007 * entries to skb and update idx with the number of entries.
1008 *
1009 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1010 * u16 flags)
1011 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1012 * struct net_device *dev, u32 filter_mask,
1013 * int nlflags)
1014 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1015 * u16 flags);
1016 *
1017 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1018 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1019 * which do not represent real hardware may define this to allow their
1020 * userspace components to manage their virtual carrier state. Devices
1021 * that determine carrier state from physical hardware properties (eg
1022 * network cables) or protocol-dependent mechanisms (eg
1023 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1024 *
1025 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1026 * struct netdev_phys_item_id *ppid);
1027 * Called to get ID of physical port of this device. If driver does
1028 * not implement this, it is assumed that the hw is not able to have
1029 * multiple net devices on single physical port.
1030 *
1031 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1032 * sa_family_t sa_family, __be16 port);
1033 * Called by vxlan to notiy a driver about the UDP port and socket
1034 * address family that vxlan is listnening to. It is called only when
1035 * a new port starts listening. The operation is protected by the
1036 * vxlan_net->sock_lock.
1037 *
1038 * void (*ndo_add_geneve_port)(struct net_device *dev,
1039 * sa_family_t sa_family, __be16 port);
1040 * Called by geneve to notify a driver about the UDP port and socket
1041 * address family that geneve is listnening to. It is called only when
1042 * a new port starts listening. The operation is protected by the
1043 * geneve_net->sock_lock.
1044 *
1045 * void (*ndo_del_geneve_port)(struct net_device *dev,
1046 * sa_family_t sa_family, __be16 port);
1047 * Called by geneve to notify the driver about a UDP port and socket
1048 * address family that geneve is not listening to anymore. The operation
1049 * is protected by the geneve_net->sock_lock.
1050 *
1051 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1052 * sa_family_t sa_family, __be16 port);
1053 * Called by vxlan to notify the driver about a UDP port and socket
1054 * address family that vxlan is not listening to anymore. The operation
1055 * is protected by the vxlan_net->sock_lock.
1056 *
1057 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1058 * struct net_device *dev)
1059 * Called by upper layer devices to accelerate switching or other
1060 * station functionality into hardware. 'pdev is the lowerdev
1061 * to use for the offload and 'dev' is the net device that will
1062 * back the offload. Returns a pointer to the private structure
1063 * the upper layer will maintain.
1064 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1065 * Called by upper layer device to delete the station created
1066 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1067 * the station and priv is the structure returned by the add
1068 * operation.
1069 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1070 * struct net_device *dev,
1071 * void *priv);
1072 * Callback to use for xmit over the accelerated station. This
1073 * is used in place of ndo_start_xmit on accelerated net
1074 * devices.
1075 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1076 * struct net_device *dev
1077 * netdev_features_t features);
1078 * Called by core transmit path to determine if device is capable of
1079 * performing offload operations on a given packet. This is to give
1080 * the device an opportunity to implement any restrictions that cannot
1081 * be otherwise expressed by feature flags. The check is called with
1082 * the set of features that the stack has calculated and it returns
1083 * those the driver believes to be appropriate.
1084 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1085 * int queue_index, u32 maxrate);
1086 * Called when a user wants to set a max-rate limitation of specific
1087 * TX queue.
1088 * int (*ndo_get_iflink)(const struct net_device *dev);
1089 * Called to get the iflink value of this device.
1090 * void (*ndo_change_proto_down)(struct net_device *dev,
1091 * bool proto_down);
1092 * This function is used to pass protocol port error state information
1093 * to the switch driver. The switch driver can react to the proto_down
1094 * by doing a phys down on the associated switch port.
1095 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1096 * This function is used to get egress tunnel information for given skb.
1097 * This is useful for retrieving outer tunnel header parameters while
1098 * sampling packet.
1099 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1100 * This function is used to specify the headroom that the skb must
1101 * consider when allocation skb during packet reception. Setting
1102 * appropriate rx headroom value allows avoiding skb head copy on
1103 * forward. Setting a negative value reset the rx headroom to the
1104 * default value.
1105 *
1106 */
1107 struct net_device_ops {
1108 int (*ndo_init)(struct net_device *dev);
1109 void (*ndo_uninit)(struct net_device *dev);
1110 int (*ndo_open)(struct net_device *dev);
1111 int (*ndo_stop)(struct net_device *dev);
1112 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1113 struct net_device *dev);
1114 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1115 struct net_device *dev,
1116 netdev_features_t features);
1117 u16 (*ndo_select_queue)(struct net_device *dev,
1118 struct sk_buff *skb,
1119 void *accel_priv,
1120 select_queue_fallback_t fallback);
1121 void (*ndo_change_rx_flags)(struct net_device *dev,
1122 int flags);
1123 void (*ndo_set_rx_mode)(struct net_device *dev);
1124 int (*ndo_set_mac_address)(struct net_device *dev,
1125 void *addr);
1126 int (*ndo_validate_addr)(struct net_device *dev);
1127 int (*ndo_do_ioctl)(struct net_device *dev,
1128 struct ifreq *ifr, int cmd);
1129 int (*ndo_set_config)(struct net_device *dev,
1130 struct ifmap *map);
1131 int (*ndo_change_mtu)(struct net_device *dev,
1132 int new_mtu);
1133 int (*ndo_neigh_setup)(struct net_device *dev,
1134 struct neigh_parms *);
1135 void (*ndo_tx_timeout) (struct net_device *dev);
1136
1137 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1138 struct rtnl_link_stats64 *storage);
1139 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1140
1141 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1142 __be16 proto, u16 vid);
1143 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1144 __be16 proto, u16 vid);
1145 #ifdef CONFIG_NET_POLL_CONTROLLER
1146 void (*ndo_poll_controller)(struct net_device *dev);
1147 int (*ndo_netpoll_setup)(struct net_device *dev,
1148 struct netpoll_info *info);
1149 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1150 #endif
1151 #ifdef CONFIG_NET_RX_BUSY_POLL
1152 int (*ndo_busy_poll)(struct napi_struct *dev);
1153 #endif
1154 int (*ndo_set_vf_mac)(struct net_device *dev,
1155 int queue, u8 *mac);
1156 int (*ndo_set_vf_vlan)(struct net_device *dev,
1157 int queue, u16 vlan, u8 qos);
1158 int (*ndo_set_vf_rate)(struct net_device *dev,
1159 int vf, int min_tx_rate,
1160 int max_tx_rate);
1161 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1162 int vf, bool setting);
1163 int (*ndo_set_vf_trust)(struct net_device *dev,
1164 int vf, bool setting);
1165 int (*ndo_get_vf_config)(struct net_device *dev,
1166 int vf,
1167 struct ifla_vf_info *ivf);
1168 int (*ndo_set_vf_link_state)(struct net_device *dev,
1169 int vf, int link_state);
1170 int (*ndo_get_vf_stats)(struct net_device *dev,
1171 int vf,
1172 struct ifla_vf_stats
1173 *vf_stats);
1174 int (*ndo_set_vf_port)(struct net_device *dev,
1175 int vf,
1176 struct nlattr *port[]);
1177 int (*ndo_get_vf_port)(struct net_device *dev,
1178 int vf, struct sk_buff *skb);
1179 int (*ndo_set_vf_rss_query_en)(
1180 struct net_device *dev,
1181 int vf, bool setting);
1182 int (*ndo_setup_tc)(struct net_device *dev,
1183 u32 handle,
1184 __be16 protocol,
1185 struct tc_to_netdev *tc);
1186 #if IS_ENABLED(CONFIG_FCOE)
1187 int (*ndo_fcoe_enable)(struct net_device *dev);
1188 int (*ndo_fcoe_disable)(struct net_device *dev);
1189 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1190 u16 xid,
1191 struct scatterlist *sgl,
1192 unsigned int sgc);
1193 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1194 u16 xid);
1195 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1196 u16 xid,
1197 struct scatterlist *sgl,
1198 unsigned int sgc);
1199 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1200 struct netdev_fcoe_hbainfo *hbainfo);
1201 #endif
1202
1203 #if IS_ENABLED(CONFIG_LIBFCOE)
1204 #define NETDEV_FCOE_WWNN 0
1205 #define NETDEV_FCOE_WWPN 1
1206 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1207 u64 *wwn, int type);
1208 #endif
1209
1210 #ifdef CONFIG_RFS_ACCEL
1211 int (*ndo_rx_flow_steer)(struct net_device *dev,
1212 const struct sk_buff *skb,
1213 u16 rxq_index,
1214 u32 flow_id);
1215 #endif
1216 int (*ndo_add_slave)(struct net_device *dev,
1217 struct net_device *slave_dev);
1218 int (*ndo_del_slave)(struct net_device *dev,
1219 struct net_device *slave_dev);
1220 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1221 netdev_features_t features);
1222 int (*ndo_set_features)(struct net_device *dev,
1223 netdev_features_t features);
1224 int (*ndo_neigh_construct)(struct neighbour *n);
1225 void (*ndo_neigh_destroy)(struct neighbour *n);
1226
1227 int (*ndo_fdb_add)(struct ndmsg *ndm,
1228 struct nlattr *tb[],
1229 struct net_device *dev,
1230 const unsigned char *addr,
1231 u16 vid,
1232 u16 flags);
1233 int (*ndo_fdb_del)(struct ndmsg *ndm,
1234 struct nlattr *tb[],
1235 struct net_device *dev,
1236 const unsigned char *addr,
1237 u16 vid);
1238 int (*ndo_fdb_dump)(struct sk_buff *skb,
1239 struct netlink_callback *cb,
1240 struct net_device *dev,
1241 struct net_device *filter_dev,
1242 int idx);
1243
1244 int (*ndo_bridge_setlink)(struct net_device *dev,
1245 struct nlmsghdr *nlh,
1246 u16 flags);
1247 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1248 u32 pid, u32 seq,
1249 struct net_device *dev,
1250 u32 filter_mask,
1251 int nlflags);
1252 int (*ndo_bridge_dellink)(struct net_device *dev,
1253 struct nlmsghdr *nlh,
1254 u16 flags);
1255 int (*ndo_change_carrier)(struct net_device *dev,
1256 bool new_carrier);
1257 int (*ndo_get_phys_port_id)(struct net_device *dev,
1258 struct netdev_phys_item_id *ppid);
1259 int (*ndo_get_phys_port_name)(struct net_device *dev,
1260 char *name, size_t len);
1261 void (*ndo_add_vxlan_port)(struct net_device *dev,
1262 sa_family_t sa_family,
1263 __be16 port);
1264 void (*ndo_del_vxlan_port)(struct net_device *dev,
1265 sa_family_t sa_family,
1266 __be16 port);
1267 void (*ndo_add_geneve_port)(struct net_device *dev,
1268 sa_family_t sa_family,
1269 __be16 port);
1270 void (*ndo_del_geneve_port)(struct net_device *dev,
1271 sa_family_t sa_family,
1272 __be16 port);
1273 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1274 struct net_device *dev);
1275 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1276 void *priv);
1277
1278 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1279 struct net_device *dev,
1280 void *priv);
1281 int (*ndo_get_lock_subclass)(struct net_device *dev);
1282 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1283 int queue_index,
1284 u32 maxrate);
1285 int (*ndo_get_iflink)(const struct net_device *dev);
1286 int (*ndo_change_proto_down)(struct net_device *dev,
1287 bool proto_down);
1288 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1289 struct sk_buff *skb);
1290 void (*ndo_set_rx_headroom)(struct net_device *dev,
1291 int needed_headroom);
1292 };
1293
1294 /**
1295 * enum net_device_priv_flags - &struct net_device priv_flags
1296 *
1297 * These are the &struct net_device, they are only set internally
1298 * by drivers and used in the kernel. These flags are invisible to
1299 * userspace, this means that the order of these flags can change
1300 * during any kernel release.
1301 *
1302 * You should have a pretty good reason to be extending these flags.
1303 *
1304 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1305 * @IFF_EBRIDGE: Ethernet bridging device
1306 * @IFF_BONDING: bonding master or slave
1307 * @IFF_ISATAP: ISATAP interface (RFC4214)
1308 * @IFF_WAN_HDLC: WAN HDLC device
1309 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1310 * release skb->dst
1311 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1312 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1313 * @IFF_MACVLAN_PORT: device used as macvlan port
1314 * @IFF_BRIDGE_PORT: device used as bridge port
1315 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1316 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1317 * @IFF_UNICAST_FLT: Supports unicast filtering
1318 * @IFF_TEAM_PORT: device used as team port
1319 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1320 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1321 * change when it's running
1322 * @IFF_MACVLAN: Macvlan device
1323 * @IFF_L3MDEV_MASTER: device is an L3 master device
1324 * @IFF_NO_QUEUE: device can run without qdisc attached
1325 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1326 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1327 * @IFF_TEAM: device is a team device
1328 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1329 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1330 * entity (i.e. the master device for bridged veth)
1331 * @IFF_MACSEC: device is a MACsec device
1332 */
1333 enum netdev_priv_flags {
1334 IFF_802_1Q_VLAN = 1<<0,
1335 IFF_EBRIDGE = 1<<1,
1336 IFF_BONDING = 1<<2,
1337 IFF_ISATAP = 1<<3,
1338 IFF_WAN_HDLC = 1<<4,
1339 IFF_XMIT_DST_RELEASE = 1<<5,
1340 IFF_DONT_BRIDGE = 1<<6,
1341 IFF_DISABLE_NETPOLL = 1<<7,
1342 IFF_MACVLAN_PORT = 1<<8,
1343 IFF_BRIDGE_PORT = 1<<9,
1344 IFF_OVS_DATAPATH = 1<<10,
1345 IFF_TX_SKB_SHARING = 1<<11,
1346 IFF_UNICAST_FLT = 1<<12,
1347 IFF_TEAM_PORT = 1<<13,
1348 IFF_SUPP_NOFCS = 1<<14,
1349 IFF_LIVE_ADDR_CHANGE = 1<<15,
1350 IFF_MACVLAN = 1<<16,
1351 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1352 IFF_IPVLAN_MASTER = 1<<18,
1353 IFF_IPVLAN_SLAVE = 1<<19,
1354 IFF_L3MDEV_MASTER = 1<<20,
1355 IFF_NO_QUEUE = 1<<21,
1356 IFF_OPENVSWITCH = 1<<22,
1357 IFF_L3MDEV_SLAVE = 1<<23,
1358 IFF_TEAM = 1<<24,
1359 IFF_RXFH_CONFIGURED = 1<<25,
1360 IFF_PHONY_HEADROOM = 1<<26,
1361 IFF_MACSEC = 1<<27,
1362 };
1363
1364 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1365 #define IFF_EBRIDGE IFF_EBRIDGE
1366 #define IFF_BONDING IFF_BONDING
1367 #define IFF_ISATAP IFF_ISATAP
1368 #define IFF_WAN_HDLC IFF_WAN_HDLC
1369 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1370 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1371 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1372 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1373 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1374 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1375 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1376 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1377 #define IFF_TEAM_PORT IFF_TEAM_PORT
1378 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1379 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1380 #define IFF_MACVLAN IFF_MACVLAN
1381 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1382 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1383 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1384 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1385 #define IFF_NO_QUEUE IFF_NO_QUEUE
1386 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1387 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1388 #define IFF_TEAM IFF_TEAM
1389 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1390 #define IFF_MACSEC IFF_MACSEC
1391
1392 /**
1393 * struct net_device - The DEVICE structure.
1394 * Actually, this whole structure is a big mistake. It mixes I/O
1395 * data with strictly "high-level" data, and it has to know about
1396 * almost every data structure used in the INET module.
1397 *
1398 * @name: This is the first field of the "visible" part of this structure
1399 * (i.e. as seen by users in the "Space.c" file). It is the name
1400 * of the interface.
1401 *
1402 * @name_hlist: Device name hash chain, please keep it close to name[]
1403 * @ifalias: SNMP alias
1404 * @mem_end: Shared memory end
1405 * @mem_start: Shared memory start
1406 * @base_addr: Device I/O address
1407 * @irq: Device IRQ number
1408 *
1409 * @carrier_changes: Stats to monitor carrier on<->off transitions
1410 *
1411 * @state: Generic network queuing layer state, see netdev_state_t
1412 * @dev_list: The global list of network devices
1413 * @napi_list: List entry, that is used for polling napi devices
1414 * @unreg_list: List entry, that is used, when we are unregistering the
1415 * device, see the function unregister_netdev
1416 * @close_list: List entry, that is used, when we are closing the device
1417 *
1418 * @adj_list: Directly linked devices, like slaves for bonding
1419 * @all_adj_list: All linked devices, *including* neighbours
1420 * @features: Currently active device features
1421 * @hw_features: User-changeable features
1422 *
1423 * @wanted_features: User-requested features
1424 * @vlan_features: Mask of features inheritable by VLAN devices
1425 *
1426 * @hw_enc_features: Mask of features inherited by encapsulating devices
1427 * This field indicates what encapsulation
1428 * offloads the hardware is capable of doing,
1429 * and drivers will need to set them appropriately.
1430 *
1431 * @mpls_features: Mask of features inheritable by MPLS
1432 *
1433 * @ifindex: interface index
1434 * @group: The group, that the device belongs to
1435 *
1436 * @stats: Statistics struct, which was left as a legacy, use
1437 * rtnl_link_stats64 instead
1438 *
1439 * @rx_dropped: Dropped packets by core network,
1440 * do not use this in drivers
1441 * @tx_dropped: Dropped packets by core network,
1442 * do not use this in drivers
1443 * @rx_nohandler: nohandler dropped packets by core network on
1444 * inactive devices, do not use this in drivers
1445 *
1446 * @wireless_handlers: List of functions to handle Wireless Extensions,
1447 * instead of ioctl,
1448 * see <net/iw_handler.h> for details.
1449 * @wireless_data: Instance data managed by the core of wireless extensions
1450 *
1451 * @netdev_ops: Includes several pointers to callbacks,
1452 * if one wants to override the ndo_*() functions
1453 * @ethtool_ops: Management operations
1454 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1455 * of Layer 2 headers.
1456 *
1457 * @flags: Interface flags (a la BSD)
1458 * @priv_flags: Like 'flags' but invisible to userspace,
1459 * see if.h for the definitions
1460 * @gflags: Global flags ( kept as legacy )
1461 * @padded: How much padding added by alloc_netdev()
1462 * @operstate: RFC2863 operstate
1463 * @link_mode: Mapping policy to operstate
1464 * @if_port: Selectable AUI, TP, ...
1465 * @dma: DMA channel
1466 * @mtu: Interface MTU value
1467 * @type: Interface hardware type
1468 * @hard_header_len: Maximum hardware header length.
1469 *
1470 * @needed_headroom: Extra headroom the hardware may need, but not in all
1471 * cases can this be guaranteed
1472 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1473 * cases can this be guaranteed. Some cases also use
1474 * LL_MAX_HEADER instead to allocate the skb
1475 *
1476 * interface address info:
1477 *
1478 * @perm_addr: Permanent hw address
1479 * @addr_assign_type: Hw address assignment type
1480 * @addr_len: Hardware address length
1481 * @neigh_priv_len; Used in neigh_alloc(),
1482 * initialized only in atm/clip.c
1483 * @dev_id: Used to differentiate devices that share
1484 * the same link layer address
1485 * @dev_port: Used to differentiate devices that share
1486 * the same function
1487 * @addr_list_lock: XXX: need comments on this one
1488 * @uc_promisc: Counter, that indicates, that promiscuous mode
1489 * has been enabled due to the need to listen to
1490 * additional unicast addresses in a device that
1491 * does not implement ndo_set_rx_mode()
1492 * @uc: unicast mac addresses
1493 * @mc: multicast mac addresses
1494 * @dev_addrs: list of device hw addresses
1495 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1496 * @promiscuity: Number of times, the NIC is told to work in
1497 * Promiscuous mode, if it becomes 0 the NIC will
1498 * exit from working in Promiscuous mode
1499 * @allmulti: Counter, enables or disables allmulticast mode
1500 *
1501 * @vlan_info: VLAN info
1502 * @dsa_ptr: dsa specific data
1503 * @tipc_ptr: TIPC specific data
1504 * @atalk_ptr: AppleTalk link
1505 * @ip_ptr: IPv4 specific data
1506 * @dn_ptr: DECnet specific data
1507 * @ip6_ptr: IPv6 specific data
1508 * @ax25_ptr: AX.25 specific data
1509 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1510 *
1511 * @last_rx: Time of last Rx
1512 * @dev_addr: Hw address (before bcast,
1513 * because most packets are unicast)
1514 *
1515 * @_rx: Array of RX queues
1516 * @num_rx_queues: Number of RX queues
1517 * allocated at register_netdev() time
1518 * @real_num_rx_queues: Number of RX queues currently active in device
1519 *
1520 * @rx_handler: handler for received packets
1521 * @rx_handler_data: XXX: need comments on this one
1522 * @ingress_queue: XXX: need comments on this one
1523 * @broadcast: hw bcast address
1524 *
1525 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1526 * indexed by RX queue number. Assigned by driver.
1527 * This must only be set if the ndo_rx_flow_steer
1528 * operation is defined
1529 * @index_hlist: Device index hash chain
1530 *
1531 * @_tx: Array of TX queues
1532 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1533 * @real_num_tx_queues: Number of TX queues currently active in device
1534 * @qdisc: Root qdisc from userspace point of view
1535 * @tx_queue_len: Max frames per queue allowed
1536 * @tx_global_lock: XXX: need comments on this one
1537 *
1538 * @xps_maps: XXX: need comments on this one
1539 *
1540 * @offload_fwd_mark: Offload device fwding mark
1541 *
1542 * @trans_start: Time (in jiffies) of last Tx
1543 * @watchdog_timeo: Represents the timeout that is used by
1544 * the watchdog ( see dev_watchdog() )
1545 * @watchdog_timer: List of timers
1546 *
1547 * @pcpu_refcnt: Number of references to this device
1548 * @todo_list: Delayed register/unregister
1549 * @link_watch_list: XXX: need comments on this one
1550 *
1551 * @reg_state: Register/unregister state machine
1552 * @dismantle: Device is going to be freed
1553 * @rtnl_link_state: This enum represents the phases of creating
1554 * a new link
1555 *
1556 * @destructor: Called from unregister,
1557 * can be used to call free_netdev
1558 * @npinfo: XXX: need comments on this one
1559 * @nd_net: Network namespace this network device is inside
1560 *
1561 * @ml_priv: Mid-layer private
1562 * @lstats: Loopback statistics
1563 * @tstats: Tunnel statistics
1564 * @dstats: Dummy statistics
1565 * @vstats: Virtual ethernet statistics
1566 *
1567 * @garp_port: GARP
1568 * @mrp_port: MRP
1569 *
1570 * @dev: Class/net/name entry
1571 * @sysfs_groups: Space for optional device, statistics and wireless
1572 * sysfs groups
1573 *
1574 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1575 * @rtnl_link_ops: Rtnl_link_ops
1576 *
1577 * @gso_max_size: Maximum size of generic segmentation offload
1578 * @gso_max_segs: Maximum number of segments that can be passed to the
1579 * NIC for GSO
1580 * @gso_min_segs: Minimum number of segments that can be passed to the
1581 * NIC for GSO
1582 *
1583 * @dcbnl_ops: Data Center Bridging netlink ops
1584 * @num_tc: Number of traffic classes in the net device
1585 * @tc_to_txq: XXX: need comments on this one
1586 * @prio_tc_map XXX: need comments on this one
1587 *
1588 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1589 *
1590 * @priomap: XXX: need comments on this one
1591 * @phydev: Physical device may attach itself
1592 * for hardware timestamping
1593 *
1594 * @qdisc_tx_busylock: XXX: need comments on this one
1595 *
1596 * @proto_down: protocol port state information can be sent to the
1597 * switch driver and used to set the phys state of the
1598 * switch port.
1599 *
1600 * FIXME: cleanup struct net_device such that network protocol info
1601 * moves out.
1602 */
1603
1604 struct net_device {
1605 char name[IFNAMSIZ];
1606 struct hlist_node name_hlist;
1607 char *ifalias;
1608 /*
1609 * I/O specific fields
1610 * FIXME: Merge these and struct ifmap into one
1611 */
1612 unsigned long mem_end;
1613 unsigned long mem_start;
1614 unsigned long base_addr;
1615 int irq;
1616
1617 atomic_t carrier_changes;
1618
1619 /*
1620 * Some hardware also needs these fields (state,dev_list,
1621 * napi_list,unreg_list,close_list) but they are not
1622 * part of the usual set specified in Space.c.
1623 */
1624
1625 unsigned long state;
1626
1627 struct list_head dev_list;
1628 struct list_head napi_list;
1629 struct list_head unreg_list;
1630 struct list_head close_list;
1631 struct list_head ptype_all;
1632 struct list_head ptype_specific;
1633
1634 struct {
1635 struct list_head upper;
1636 struct list_head lower;
1637 } adj_list;
1638
1639 struct {
1640 struct list_head upper;
1641 struct list_head lower;
1642 } all_adj_list;
1643
1644 netdev_features_t features;
1645 netdev_features_t hw_features;
1646 netdev_features_t wanted_features;
1647 netdev_features_t vlan_features;
1648 netdev_features_t hw_enc_features;
1649 netdev_features_t mpls_features;
1650
1651 int ifindex;
1652 int group;
1653
1654 struct net_device_stats stats;
1655
1656 atomic_long_t rx_dropped;
1657 atomic_long_t tx_dropped;
1658 atomic_long_t rx_nohandler;
1659
1660 #ifdef CONFIG_WIRELESS_EXT
1661 const struct iw_handler_def * wireless_handlers;
1662 struct iw_public_data * wireless_data;
1663 #endif
1664 const struct net_device_ops *netdev_ops;
1665 const struct ethtool_ops *ethtool_ops;
1666 #ifdef CONFIG_NET_SWITCHDEV
1667 const struct switchdev_ops *switchdev_ops;
1668 #endif
1669 #ifdef CONFIG_NET_L3_MASTER_DEV
1670 const struct l3mdev_ops *l3mdev_ops;
1671 #endif
1672
1673 const struct header_ops *header_ops;
1674
1675 unsigned int flags;
1676 unsigned int priv_flags;
1677
1678 unsigned short gflags;
1679 unsigned short padded;
1680
1681 unsigned char operstate;
1682 unsigned char link_mode;
1683
1684 unsigned char if_port;
1685 unsigned char dma;
1686
1687 unsigned int mtu;
1688 unsigned short type;
1689 unsigned short hard_header_len;
1690
1691 unsigned short needed_headroom;
1692 unsigned short needed_tailroom;
1693
1694 /* Interface address info. */
1695 unsigned char perm_addr[MAX_ADDR_LEN];
1696 unsigned char addr_assign_type;
1697 unsigned char addr_len;
1698 unsigned short neigh_priv_len;
1699 unsigned short dev_id;
1700 unsigned short dev_port;
1701 spinlock_t addr_list_lock;
1702 unsigned char name_assign_type;
1703 bool uc_promisc;
1704 struct netdev_hw_addr_list uc;
1705 struct netdev_hw_addr_list mc;
1706 struct netdev_hw_addr_list dev_addrs;
1707
1708 #ifdef CONFIG_SYSFS
1709 struct kset *queues_kset;
1710 #endif
1711 unsigned int promiscuity;
1712 unsigned int allmulti;
1713
1714
1715 /* Protocol specific pointers */
1716
1717 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1718 struct vlan_info __rcu *vlan_info;
1719 #endif
1720 #if IS_ENABLED(CONFIG_NET_DSA)
1721 struct dsa_switch_tree *dsa_ptr;
1722 #endif
1723 #if IS_ENABLED(CONFIG_TIPC)
1724 struct tipc_bearer __rcu *tipc_ptr;
1725 #endif
1726 void *atalk_ptr;
1727 struct in_device __rcu *ip_ptr;
1728 struct dn_dev __rcu *dn_ptr;
1729 struct inet6_dev __rcu *ip6_ptr;
1730 void *ax25_ptr;
1731 struct wireless_dev *ieee80211_ptr;
1732 struct wpan_dev *ieee802154_ptr;
1733 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1734 struct mpls_dev __rcu *mpls_ptr;
1735 #endif
1736
1737 /*
1738 * Cache lines mostly used on receive path (including eth_type_trans())
1739 */
1740 unsigned long last_rx;
1741
1742 /* Interface address info used in eth_type_trans() */
1743 unsigned char *dev_addr;
1744
1745
1746 #ifdef CONFIG_SYSFS
1747 struct netdev_rx_queue *_rx;
1748
1749 unsigned int num_rx_queues;
1750 unsigned int real_num_rx_queues;
1751
1752 #endif
1753
1754 unsigned long gro_flush_timeout;
1755 rx_handler_func_t __rcu *rx_handler;
1756 void __rcu *rx_handler_data;
1757
1758 #ifdef CONFIG_NET_CLS_ACT
1759 struct tcf_proto __rcu *ingress_cl_list;
1760 #endif
1761 struct netdev_queue __rcu *ingress_queue;
1762 #ifdef CONFIG_NETFILTER_INGRESS
1763 struct list_head nf_hooks_ingress;
1764 #endif
1765
1766 unsigned char broadcast[MAX_ADDR_LEN];
1767 #ifdef CONFIG_RFS_ACCEL
1768 struct cpu_rmap *rx_cpu_rmap;
1769 #endif
1770 struct hlist_node index_hlist;
1771
1772 /*
1773 * Cache lines mostly used on transmit path
1774 */
1775 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1776 unsigned int num_tx_queues;
1777 unsigned int real_num_tx_queues;
1778 struct Qdisc *qdisc;
1779 unsigned long tx_queue_len;
1780 spinlock_t tx_global_lock;
1781 int watchdog_timeo;
1782
1783 #ifdef CONFIG_XPS
1784 struct xps_dev_maps __rcu *xps_maps;
1785 #endif
1786 #ifdef CONFIG_NET_CLS_ACT
1787 struct tcf_proto __rcu *egress_cl_list;
1788 #endif
1789 #ifdef CONFIG_NET_SWITCHDEV
1790 u32 offload_fwd_mark;
1791 #endif
1792
1793 /* These may be needed for future network-power-down code. */
1794
1795 /*
1796 * trans_start here is expensive for high speed devices on SMP,
1797 * please use netdev_queue->trans_start instead.
1798 */
1799 unsigned long trans_start;
1800
1801 struct timer_list watchdog_timer;
1802
1803 int __percpu *pcpu_refcnt;
1804 struct list_head todo_list;
1805
1806 struct list_head link_watch_list;
1807
1808 enum { NETREG_UNINITIALIZED=0,
1809 NETREG_REGISTERED, /* completed register_netdevice */
1810 NETREG_UNREGISTERING, /* called unregister_netdevice */
1811 NETREG_UNREGISTERED, /* completed unregister todo */
1812 NETREG_RELEASED, /* called free_netdev */
1813 NETREG_DUMMY, /* dummy device for NAPI poll */
1814 } reg_state:8;
1815
1816 bool dismantle;
1817
1818 enum {
1819 RTNL_LINK_INITIALIZED,
1820 RTNL_LINK_INITIALIZING,
1821 } rtnl_link_state:16;
1822
1823 void (*destructor)(struct net_device *dev);
1824
1825 #ifdef CONFIG_NETPOLL
1826 struct netpoll_info __rcu *npinfo;
1827 #endif
1828
1829 possible_net_t nd_net;
1830
1831 /* mid-layer private */
1832 union {
1833 void *ml_priv;
1834 struct pcpu_lstats __percpu *lstats;
1835 struct pcpu_sw_netstats __percpu *tstats;
1836 struct pcpu_dstats __percpu *dstats;
1837 struct pcpu_vstats __percpu *vstats;
1838 };
1839
1840 struct garp_port __rcu *garp_port;
1841 struct mrp_port __rcu *mrp_port;
1842
1843 struct device dev;
1844 const struct attribute_group *sysfs_groups[4];
1845 const struct attribute_group *sysfs_rx_queue_group;
1846
1847 const struct rtnl_link_ops *rtnl_link_ops;
1848
1849 /* for setting kernel sock attribute on TCP connection setup */
1850 #define GSO_MAX_SIZE 65536
1851 unsigned int gso_max_size;
1852 #define GSO_MAX_SEGS 65535
1853 u16 gso_max_segs;
1854 u16 gso_min_segs;
1855 #ifdef CONFIG_DCB
1856 const struct dcbnl_rtnl_ops *dcbnl_ops;
1857 #endif
1858 u8 num_tc;
1859 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1860 u8 prio_tc_map[TC_BITMASK + 1];
1861
1862 #if IS_ENABLED(CONFIG_FCOE)
1863 unsigned int fcoe_ddp_xid;
1864 #endif
1865 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1866 struct netprio_map __rcu *priomap;
1867 #endif
1868 struct phy_device *phydev;
1869 struct lock_class_key *qdisc_tx_busylock;
1870 bool proto_down;
1871 };
1872 #define to_net_dev(d) container_of(d, struct net_device, dev)
1873
1874 #define NETDEV_ALIGN 32
1875
1876 static inline
1877 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1878 {
1879 return dev->prio_tc_map[prio & TC_BITMASK];
1880 }
1881
1882 static inline
1883 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1884 {
1885 if (tc >= dev->num_tc)
1886 return -EINVAL;
1887
1888 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1889 return 0;
1890 }
1891
1892 static inline
1893 void netdev_reset_tc(struct net_device *dev)
1894 {
1895 dev->num_tc = 0;
1896 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1897 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1898 }
1899
1900 static inline
1901 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1902 {
1903 if (tc >= dev->num_tc)
1904 return -EINVAL;
1905
1906 dev->tc_to_txq[tc].count = count;
1907 dev->tc_to_txq[tc].offset = offset;
1908 return 0;
1909 }
1910
1911 static inline
1912 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1913 {
1914 if (num_tc > TC_MAX_QUEUE)
1915 return -EINVAL;
1916
1917 dev->num_tc = num_tc;
1918 return 0;
1919 }
1920
1921 static inline
1922 int netdev_get_num_tc(struct net_device *dev)
1923 {
1924 return dev->num_tc;
1925 }
1926
1927 static inline
1928 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1929 unsigned int index)
1930 {
1931 return &dev->_tx[index];
1932 }
1933
1934 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1935 const struct sk_buff *skb)
1936 {
1937 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1938 }
1939
1940 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1941 void (*f)(struct net_device *,
1942 struct netdev_queue *,
1943 void *),
1944 void *arg)
1945 {
1946 unsigned int i;
1947
1948 for (i = 0; i < dev->num_tx_queues; i++)
1949 f(dev, &dev->_tx[i], arg);
1950 }
1951
1952 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1953 struct sk_buff *skb,
1954 void *accel_priv);
1955
1956 /* returns the headroom that the master device needs to take in account
1957 * when forwarding to this dev
1958 */
1959 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1960 {
1961 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1962 }
1963
1964 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1965 {
1966 if (dev->netdev_ops->ndo_set_rx_headroom)
1967 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1968 }
1969
1970 /* set the device rx headroom to the dev's default */
1971 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1972 {
1973 netdev_set_rx_headroom(dev, -1);
1974 }
1975
1976 /*
1977 * Net namespace inlines
1978 */
1979 static inline
1980 struct net *dev_net(const struct net_device *dev)
1981 {
1982 return read_pnet(&dev->nd_net);
1983 }
1984
1985 static inline
1986 void dev_net_set(struct net_device *dev, struct net *net)
1987 {
1988 write_pnet(&dev->nd_net, net);
1989 }
1990
1991 static inline bool netdev_uses_dsa(struct net_device *dev)
1992 {
1993 #if IS_ENABLED(CONFIG_NET_DSA)
1994 if (dev->dsa_ptr != NULL)
1995 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1996 #endif
1997 return false;
1998 }
1999
2000 /**
2001 * netdev_priv - access network device private data
2002 * @dev: network device
2003 *
2004 * Get network device private data
2005 */
2006 static inline void *netdev_priv(const struct net_device *dev)
2007 {
2008 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2009 }
2010
2011 /* Set the sysfs physical device reference for the network logical device
2012 * if set prior to registration will cause a symlink during initialization.
2013 */
2014 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2015
2016 /* Set the sysfs device type for the network logical device to allow
2017 * fine-grained identification of different network device types. For
2018 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
2019 */
2020 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2021
2022 /* Default NAPI poll() weight
2023 * Device drivers are strongly advised to not use bigger value
2024 */
2025 #define NAPI_POLL_WEIGHT 64
2026
2027 /**
2028 * netif_napi_add - initialize a napi context
2029 * @dev: network device
2030 * @napi: napi context
2031 * @poll: polling function
2032 * @weight: default weight
2033 *
2034 * netif_napi_add() must be used to initialize a napi context prior to calling
2035 * *any* of the other napi related functions.
2036 */
2037 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2038 int (*poll)(struct napi_struct *, int), int weight);
2039
2040 /**
2041 * netif_tx_napi_add - initialize a napi context
2042 * @dev: network device
2043 * @napi: napi context
2044 * @poll: polling function
2045 * @weight: default weight
2046 *
2047 * This variant of netif_napi_add() should be used from drivers using NAPI
2048 * to exclusively poll a TX queue.
2049 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2050 */
2051 static inline void netif_tx_napi_add(struct net_device *dev,
2052 struct napi_struct *napi,
2053 int (*poll)(struct napi_struct *, int),
2054 int weight)
2055 {
2056 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2057 netif_napi_add(dev, napi, poll, weight);
2058 }
2059
2060 /**
2061 * netif_napi_del - remove a napi context
2062 * @napi: napi context
2063 *
2064 * netif_napi_del() removes a napi context from the network device napi list
2065 */
2066 void netif_napi_del(struct napi_struct *napi);
2067
2068 struct napi_gro_cb {
2069 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2070 void *frag0;
2071
2072 /* Length of frag0. */
2073 unsigned int frag0_len;
2074
2075 /* This indicates where we are processing relative to skb->data. */
2076 int data_offset;
2077
2078 /* This is non-zero if the packet cannot be merged with the new skb. */
2079 u16 flush;
2080
2081 /* Save the IP ID here and check when we get to the transport layer */
2082 u16 flush_id;
2083
2084 /* Number of segments aggregated. */
2085 u16 count;
2086
2087 /* Start offset for remote checksum offload */
2088 u16 gro_remcsum_start;
2089
2090 /* jiffies when first packet was created/queued */
2091 unsigned long age;
2092
2093 /* Used in ipv6_gro_receive() and foo-over-udp */
2094 u16 proto;
2095
2096 /* This is non-zero if the packet may be of the same flow. */
2097 u8 same_flow:1;
2098
2099 /* Used in udp_gro_receive */
2100 u8 udp_mark:1;
2101
2102 /* GRO checksum is valid */
2103 u8 csum_valid:1;
2104
2105 /* Number of checksums via CHECKSUM_UNNECESSARY */
2106 u8 csum_cnt:3;
2107
2108 /* Free the skb? */
2109 u8 free:2;
2110 #define NAPI_GRO_FREE 1
2111 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2112
2113 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2114 u8 is_ipv6:1;
2115
2116 /* 7 bit hole */
2117
2118 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2119 __wsum csum;
2120
2121 /* used in skb_gro_receive() slow path */
2122 struct sk_buff *last;
2123 };
2124
2125 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2126
2127 struct packet_type {
2128 __be16 type; /* This is really htons(ether_type). */
2129 struct net_device *dev; /* NULL is wildcarded here */
2130 int (*func) (struct sk_buff *,
2131 struct net_device *,
2132 struct packet_type *,
2133 struct net_device *);
2134 bool (*id_match)(struct packet_type *ptype,
2135 struct sock *sk);
2136 void *af_packet_priv;
2137 struct list_head list;
2138 };
2139
2140 struct offload_callbacks {
2141 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2142 netdev_features_t features);
2143 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2144 struct sk_buff *skb);
2145 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2146 };
2147
2148 struct packet_offload {
2149 __be16 type; /* This is really htons(ether_type). */
2150 u16 priority;
2151 struct offload_callbacks callbacks;
2152 struct list_head list;
2153 };
2154
2155 struct udp_offload;
2156
2157 struct udp_offload_callbacks {
2158 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2159 struct sk_buff *skb,
2160 struct udp_offload *uoff);
2161 int (*gro_complete)(struct sk_buff *skb,
2162 int nhoff,
2163 struct udp_offload *uoff);
2164 };
2165
2166 struct udp_offload {
2167 __be16 port;
2168 u8 ipproto;
2169 struct udp_offload_callbacks callbacks;
2170 };
2171
2172 /* often modified stats are per cpu, other are shared (netdev->stats) */
2173 struct pcpu_sw_netstats {
2174 u64 rx_packets;
2175 u64 rx_bytes;
2176 u64 tx_packets;
2177 u64 tx_bytes;
2178 struct u64_stats_sync syncp;
2179 };
2180
2181 #define __netdev_alloc_pcpu_stats(type, gfp) \
2182 ({ \
2183 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2184 if (pcpu_stats) { \
2185 int __cpu; \
2186 for_each_possible_cpu(__cpu) { \
2187 typeof(type) *stat; \
2188 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2189 u64_stats_init(&stat->syncp); \
2190 } \
2191 } \
2192 pcpu_stats; \
2193 })
2194
2195 #define netdev_alloc_pcpu_stats(type) \
2196 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2197
2198 enum netdev_lag_tx_type {
2199 NETDEV_LAG_TX_TYPE_UNKNOWN,
2200 NETDEV_LAG_TX_TYPE_RANDOM,
2201 NETDEV_LAG_TX_TYPE_BROADCAST,
2202 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2203 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2204 NETDEV_LAG_TX_TYPE_HASH,
2205 };
2206
2207 struct netdev_lag_upper_info {
2208 enum netdev_lag_tx_type tx_type;
2209 };
2210
2211 struct netdev_lag_lower_state_info {
2212 u8 link_up : 1,
2213 tx_enabled : 1;
2214 };
2215
2216 #include <linux/notifier.h>
2217
2218 /* netdevice notifier chain. Please remember to update the rtnetlink
2219 * notification exclusion list in rtnetlink_event() when adding new
2220 * types.
2221 */
2222 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2223 #define NETDEV_DOWN 0x0002
2224 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2225 detected a hardware crash and restarted
2226 - we can use this eg to kick tcp sessions
2227 once done */
2228 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2229 #define NETDEV_REGISTER 0x0005
2230 #define NETDEV_UNREGISTER 0x0006
2231 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2232 #define NETDEV_CHANGEADDR 0x0008
2233 #define NETDEV_GOING_DOWN 0x0009
2234 #define NETDEV_CHANGENAME 0x000A
2235 #define NETDEV_FEAT_CHANGE 0x000B
2236 #define NETDEV_BONDING_FAILOVER 0x000C
2237 #define NETDEV_PRE_UP 0x000D
2238 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2239 #define NETDEV_POST_TYPE_CHANGE 0x000F
2240 #define NETDEV_POST_INIT 0x0010
2241 #define NETDEV_UNREGISTER_FINAL 0x0011
2242 #define NETDEV_RELEASE 0x0012
2243 #define NETDEV_NOTIFY_PEERS 0x0013
2244 #define NETDEV_JOIN 0x0014
2245 #define NETDEV_CHANGEUPPER 0x0015
2246 #define NETDEV_RESEND_IGMP 0x0016
2247 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2248 #define NETDEV_CHANGEINFODATA 0x0018
2249 #define NETDEV_BONDING_INFO 0x0019
2250 #define NETDEV_PRECHANGEUPPER 0x001A
2251 #define NETDEV_CHANGELOWERSTATE 0x001B
2252
2253 int register_netdevice_notifier(struct notifier_block *nb);
2254 int unregister_netdevice_notifier(struct notifier_block *nb);
2255
2256 struct netdev_notifier_info {
2257 struct net_device *dev;
2258 };
2259
2260 struct netdev_notifier_change_info {
2261 struct netdev_notifier_info info; /* must be first */
2262 unsigned int flags_changed;
2263 };
2264
2265 struct netdev_notifier_changeupper_info {
2266 struct netdev_notifier_info info; /* must be first */
2267 struct net_device *upper_dev; /* new upper dev */
2268 bool master; /* is upper dev master */
2269 bool linking; /* is the nofication for link or unlink */
2270 void *upper_info; /* upper dev info */
2271 };
2272
2273 struct netdev_notifier_changelowerstate_info {
2274 struct netdev_notifier_info info; /* must be first */
2275 void *lower_state_info; /* is lower dev state */
2276 };
2277
2278 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2279 struct net_device *dev)
2280 {
2281 info->dev = dev;
2282 }
2283
2284 static inline struct net_device *
2285 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2286 {
2287 return info->dev;
2288 }
2289
2290 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2291
2292
2293 extern rwlock_t dev_base_lock; /* Device list lock */
2294
2295 #define for_each_netdev(net, d) \
2296 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2297 #define for_each_netdev_reverse(net, d) \
2298 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2299 #define for_each_netdev_rcu(net, d) \
2300 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2301 #define for_each_netdev_safe(net, d, n) \
2302 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2303 #define for_each_netdev_continue(net, d) \
2304 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2305 #define for_each_netdev_continue_rcu(net, d) \
2306 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2307 #define for_each_netdev_in_bond_rcu(bond, slave) \
2308 for_each_netdev_rcu(&init_net, slave) \
2309 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2310 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2311
2312 static inline struct net_device *next_net_device(struct net_device *dev)
2313 {
2314 struct list_head *lh;
2315 struct net *net;
2316
2317 net = dev_net(dev);
2318 lh = dev->dev_list.next;
2319 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2320 }
2321
2322 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2323 {
2324 struct list_head *lh;
2325 struct net *net;
2326
2327 net = dev_net(dev);
2328 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2329 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2330 }
2331
2332 static inline struct net_device *first_net_device(struct net *net)
2333 {
2334 return list_empty(&net->dev_base_head) ? NULL :
2335 net_device_entry(net->dev_base_head.next);
2336 }
2337
2338 static inline struct net_device *first_net_device_rcu(struct net *net)
2339 {
2340 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2341
2342 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2343 }
2344
2345 int netdev_boot_setup_check(struct net_device *dev);
2346 unsigned long netdev_boot_base(const char *prefix, int unit);
2347 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2348 const char *hwaddr);
2349 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2350 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2351 void dev_add_pack(struct packet_type *pt);
2352 void dev_remove_pack(struct packet_type *pt);
2353 void __dev_remove_pack(struct packet_type *pt);
2354 void dev_add_offload(struct packet_offload *po);
2355 void dev_remove_offload(struct packet_offload *po);
2356
2357 int dev_get_iflink(const struct net_device *dev);
2358 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2359 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2360 unsigned short mask);
2361 struct net_device *dev_get_by_name(struct net *net, const char *name);
2362 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2363 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2364 int dev_alloc_name(struct net_device *dev, const char *name);
2365 int dev_open(struct net_device *dev);
2366 int dev_close(struct net_device *dev);
2367 int dev_close_many(struct list_head *head, bool unlink);
2368 void dev_disable_lro(struct net_device *dev);
2369 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2370 int dev_queue_xmit(struct sk_buff *skb);
2371 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2372 int register_netdevice(struct net_device *dev);
2373 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2374 void unregister_netdevice_many(struct list_head *head);
2375 static inline void unregister_netdevice(struct net_device *dev)
2376 {
2377 unregister_netdevice_queue(dev, NULL);
2378 }
2379
2380 int netdev_refcnt_read(const struct net_device *dev);
2381 void free_netdev(struct net_device *dev);
2382 void netdev_freemem(struct net_device *dev);
2383 void synchronize_net(void);
2384 int init_dummy_netdev(struct net_device *dev);
2385
2386 DECLARE_PER_CPU(int, xmit_recursion);
2387 static inline int dev_recursion_level(void)
2388 {
2389 return this_cpu_read(xmit_recursion);
2390 }
2391
2392 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2393 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2394 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2395 int netdev_get_name(struct net *net, char *name, int ifindex);
2396 int dev_restart(struct net_device *dev);
2397 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2398
2399 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2400 {
2401 return NAPI_GRO_CB(skb)->data_offset;
2402 }
2403
2404 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2405 {
2406 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2407 }
2408
2409 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2410 {
2411 NAPI_GRO_CB(skb)->data_offset += len;
2412 }
2413
2414 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2415 unsigned int offset)
2416 {
2417 return NAPI_GRO_CB(skb)->frag0 + offset;
2418 }
2419
2420 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2421 {
2422 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2423 }
2424
2425 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2426 unsigned int offset)
2427 {
2428 if (!pskb_may_pull(skb, hlen))
2429 return NULL;
2430
2431 NAPI_GRO_CB(skb)->frag0 = NULL;
2432 NAPI_GRO_CB(skb)->frag0_len = 0;
2433 return skb->data + offset;
2434 }
2435
2436 static inline void *skb_gro_network_header(struct sk_buff *skb)
2437 {
2438 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2439 skb_network_offset(skb);
2440 }
2441
2442 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2443 const void *start, unsigned int len)
2444 {
2445 if (NAPI_GRO_CB(skb)->csum_valid)
2446 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2447 csum_partial(start, len, 0));
2448 }
2449
2450 /* GRO checksum functions. These are logical equivalents of the normal
2451 * checksum functions (in skbuff.h) except that they operate on the GRO
2452 * offsets and fields in sk_buff.
2453 */
2454
2455 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2456
2457 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2458 {
2459 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2460 }
2461
2462 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2463 bool zero_okay,
2464 __sum16 check)
2465 {
2466 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2467 skb_checksum_start_offset(skb) <
2468 skb_gro_offset(skb)) &&
2469 !skb_at_gro_remcsum_start(skb) &&
2470 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2471 (!zero_okay || check));
2472 }
2473
2474 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2475 __wsum psum)
2476 {
2477 if (NAPI_GRO_CB(skb)->csum_valid &&
2478 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2479 return 0;
2480
2481 NAPI_GRO_CB(skb)->csum = psum;
2482
2483 return __skb_gro_checksum_complete(skb);
2484 }
2485
2486 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2487 {
2488 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2489 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2490 NAPI_GRO_CB(skb)->csum_cnt--;
2491 } else {
2492 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2493 * verified a new top level checksum or an encapsulated one
2494 * during GRO. This saves work if we fallback to normal path.
2495 */
2496 __skb_incr_checksum_unnecessary(skb);
2497 }
2498 }
2499
2500 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2501 compute_pseudo) \
2502 ({ \
2503 __sum16 __ret = 0; \
2504 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2505 __ret = __skb_gro_checksum_validate_complete(skb, \
2506 compute_pseudo(skb, proto)); \
2507 if (__ret) \
2508 __skb_mark_checksum_bad(skb); \
2509 else \
2510 skb_gro_incr_csum_unnecessary(skb); \
2511 __ret; \
2512 })
2513
2514 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2515 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2516
2517 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2518 compute_pseudo) \
2519 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2520
2521 #define skb_gro_checksum_simple_validate(skb) \
2522 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2523
2524 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2525 {
2526 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2527 !NAPI_GRO_CB(skb)->csum_valid);
2528 }
2529
2530 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2531 __sum16 check, __wsum pseudo)
2532 {
2533 NAPI_GRO_CB(skb)->csum = ~pseudo;
2534 NAPI_GRO_CB(skb)->csum_valid = 1;
2535 }
2536
2537 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2538 do { \
2539 if (__skb_gro_checksum_convert_check(skb)) \
2540 __skb_gro_checksum_convert(skb, check, \
2541 compute_pseudo(skb, proto)); \
2542 } while (0)
2543
2544 struct gro_remcsum {
2545 int offset;
2546 __wsum delta;
2547 };
2548
2549 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2550 {
2551 grc->offset = 0;
2552 grc->delta = 0;
2553 }
2554
2555 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2556 unsigned int off, size_t hdrlen,
2557 int start, int offset,
2558 struct gro_remcsum *grc,
2559 bool nopartial)
2560 {
2561 __wsum delta;
2562 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2563
2564 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2565
2566 if (!nopartial) {
2567 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2568 return ptr;
2569 }
2570
2571 ptr = skb_gro_header_fast(skb, off);
2572 if (skb_gro_header_hard(skb, off + plen)) {
2573 ptr = skb_gro_header_slow(skb, off + plen, off);
2574 if (!ptr)
2575 return NULL;
2576 }
2577
2578 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2579 start, offset);
2580
2581 /* Adjust skb->csum since we changed the packet */
2582 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2583
2584 grc->offset = off + hdrlen + offset;
2585 grc->delta = delta;
2586
2587 return ptr;
2588 }
2589
2590 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2591 struct gro_remcsum *grc)
2592 {
2593 void *ptr;
2594 size_t plen = grc->offset + sizeof(u16);
2595
2596 if (!grc->delta)
2597 return;
2598
2599 ptr = skb_gro_header_fast(skb, grc->offset);
2600 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2601 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2602 if (!ptr)
2603 return;
2604 }
2605
2606 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2607 }
2608
2609 struct skb_csum_offl_spec {
2610 __u16 ipv4_okay:1,
2611 ipv6_okay:1,
2612 encap_okay:1,
2613 ip_options_okay:1,
2614 ext_hdrs_okay:1,
2615 tcp_okay:1,
2616 udp_okay:1,
2617 sctp_okay:1,
2618 vlan_okay:1,
2619 no_encapped_ipv6:1,
2620 no_not_encapped:1;
2621 };
2622
2623 bool __skb_csum_offload_chk(struct sk_buff *skb,
2624 const struct skb_csum_offl_spec *spec,
2625 bool *csum_encapped,
2626 bool csum_help);
2627
2628 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2629 const struct skb_csum_offl_spec *spec,
2630 bool *csum_encapped,
2631 bool csum_help)
2632 {
2633 if (skb->ip_summed != CHECKSUM_PARTIAL)
2634 return false;
2635
2636 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2637 }
2638
2639 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2640 const struct skb_csum_offl_spec *spec)
2641 {
2642 bool csum_encapped;
2643
2644 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2645 }
2646
2647 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2648 {
2649 static const struct skb_csum_offl_spec csum_offl_spec = {
2650 .ipv4_okay = 1,
2651 .ip_options_okay = 1,
2652 .ipv6_okay = 1,
2653 .vlan_okay = 1,
2654 .tcp_okay = 1,
2655 .udp_okay = 1,
2656 };
2657
2658 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2659 }
2660
2661 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2662 {
2663 static const struct skb_csum_offl_spec csum_offl_spec = {
2664 .ipv4_okay = 1,
2665 .ip_options_okay = 1,
2666 .tcp_okay = 1,
2667 .udp_okay = 1,
2668 .vlan_okay = 1,
2669 };
2670
2671 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2672 }
2673
2674 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2675 unsigned short type,
2676 const void *daddr, const void *saddr,
2677 unsigned int len)
2678 {
2679 if (!dev->header_ops || !dev->header_ops->create)
2680 return 0;
2681
2682 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2683 }
2684
2685 static inline int dev_parse_header(const struct sk_buff *skb,
2686 unsigned char *haddr)
2687 {
2688 const struct net_device *dev = skb->dev;
2689
2690 if (!dev->header_ops || !dev->header_ops->parse)
2691 return 0;
2692 return dev->header_ops->parse(skb, haddr);
2693 }
2694
2695 /* ll_header must have at least hard_header_len allocated */
2696 static inline bool dev_validate_header(const struct net_device *dev,
2697 char *ll_header, int len)
2698 {
2699 if (likely(len >= dev->hard_header_len))
2700 return true;
2701
2702 if (capable(CAP_SYS_RAWIO)) {
2703 memset(ll_header + len, 0, dev->hard_header_len - len);
2704 return true;
2705 }
2706
2707 if (dev->header_ops && dev->header_ops->validate)
2708 return dev->header_ops->validate(ll_header, len);
2709
2710 return false;
2711 }
2712
2713 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2714 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2715 static inline int unregister_gifconf(unsigned int family)
2716 {
2717 return register_gifconf(family, NULL);
2718 }
2719
2720 #ifdef CONFIG_NET_FLOW_LIMIT
2721 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2722 struct sd_flow_limit {
2723 u64 count;
2724 unsigned int num_buckets;
2725 unsigned int history_head;
2726 u16 history[FLOW_LIMIT_HISTORY];
2727 u8 buckets[];
2728 };
2729
2730 extern int netdev_flow_limit_table_len;
2731 #endif /* CONFIG_NET_FLOW_LIMIT */
2732
2733 /*
2734 * Incoming packets are placed on per-cpu queues
2735 */
2736 struct softnet_data {
2737 struct list_head poll_list;
2738 struct sk_buff_head process_queue;
2739
2740 /* stats */
2741 unsigned int processed;
2742 unsigned int time_squeeze;
2743 unsigned int cpu_collision;
2744 unsigned int received_rps;
2745 #ifdef CONFIG_RPS
2746 struct softnet_data *rps_ipi_list;
2747 #endif
2748 #ifdef CONFIG_NET_FLOW_LIMIT
2749 struct sd_flow_limit __rcu *flow_limit;
2750 #endif
2751 struct Qdisc *output_queue;
2752 struct Qdisc **output_queue_tailp;
2753 struct sk_buff *completion_queue;
2754
2755 #ifdef CONFIG_RPS
2756 /* Elements below can be accessed between CPUs for RPS */
2757 struct call_single_data csd ____cacheline_aligned_in_smp;
2758 struct softnet_data *rps_ipi_next;
2759 unsigned int cpu;
2760 unsigned int input_queue_head;
2761 unsigned int input_queue_tail;
2762 #endif
2763 unsigned int dropped;
2764 struct sk_buff_head input_pkt_queue;
2765 struct napi_struct backlog;
2766
2767 };
2768
2769 static inline void input_queue_head_incr(struct softnet_data *sd)
2770 {
2771 #ifdef CONFIG_RPS
2772 sd->input_queue_head++;
2773 #endif
2774 }
2775
2776 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2777 unsigned int *qtail)
2778 {
2779 #ifdef CONFIG_RPS
2780 *qtail = ++sd->input_queue_tail;
2781 #endif
2782 }
2783
2784 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2785
2786 void __netif_schedule(struct Qdisc *q);
2787 void netif_schedule_queue(struct netdev_queue *txq);
2788
2789 static inline void netif_tx_schedule_all(struct net_device *dev)
2790 {
2791 unsigned int i;
2792
2793 for (i = 0; i < dev->num_tx_queues; i++)
2794 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2795 }
2796
2797 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2798 {
2799 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2800 }
2801
2802 /**
2803 * netif_start_queue - allow transmit
2804 * @dev: network device
2805 *
2806 * Allow upper layers to call the device hard_start_xmit routine.
2807 */
2808 static inline void netif_start_queue(struct net_device *dev)
2809 {
2810 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2811 }
2812
2813 static inline void netif_tx_start_all_queues(struct net_device *dev)
2814 {
2815 unsigned int i;
2816
2817 for (i = 0; i < dev->num_tx_queues; i++) {
2818 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2819 netif_tx_start_queue(txq);
2820 }
2821 }
2822
2823 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2824
2825 /**
2826 * netif_wake_queue - restart transmit
2827 * @dev: network device
2828 *
2829 * Allow upper layers to call the device hard_start_xmit routine.
2830 * Used for flow control when transmit resources are available.
2831 */
2832 static inline void netif_wake_queue(struct net_device *dev)
2833 {
2834 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2835 }
2836
2837 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2838 {
2839 unsigned int i;
2840
2841 for (i = 0; i < dev->num_tx_queues; i++) {
2842 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2843 netif_tx_wake_queue(txq);
2844 }
2845 }
2846
2847 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2848 {
2849 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2850 }
2851
2852 /**
2853 * netif_stop_queue - stop transmitted packets
2854 * @dev: network device
2855 *
2856 * Stop upper layers calling the device hard_start_xmit routine.
2857 * Used for flow control when transmit resources are unavailable.
2858 */
2859 static inline void netif_stop_queue(struct net_device *dev)
2860 {
2861 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2862 }
2863
2864 void netif_tx_stop_all_queues(struct net_device *dev);
2865
2866 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2867 {
2868 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2869 }
2870
2871 /**
2872 * netif_queue_stopped - test if transmit queue is flowblocked
2873 * @dev: network device
2874 *
2875 * Test if transmit queue on device is currently unable to send.
2876 */
2877 static inline bool netif_queue_stopped(const struct net_device *dev)
2878 {
2879 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2880 }
2881
2882 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2883 {
2884 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2885 }
2886
2887 static inline bool
2888 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2889 {
2890 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2891 }
2892
2893 static inline bool
2894 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2895 {
2896 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2897 }
2898
2899 /**
2900 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2901 * @dev_queue: pointer to transmit queue
2902 *
2903 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2904 * to give appropriate hint to the cpu.
2905 */
2906 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2907 {
2908 #ifdef CONFIG_BQL
2909 prefetchw(&dev_queue->dql.num_queued);
2910 #endif
2911 }
2912
2913 /**
2914 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2915 * @dev_queue: pointer to transmit queue
2916 *
2917 * BQL enabled drivers might use this helper in their TX completion path,
2918 * to give appropriate hint to the cpu.
2919 */
2920 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2921 {
2922 #ifdef CONFIG_BQL
2923 prefetchw(&dev_queue->dql.limit);
2924 #endif
2925 }
2926
2927 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2928 unsigned int bytes)
2929 {
2930 #ifdef CONFIG_BQL
2931 dql_queued(&dev_queue->dql, bytes);
2932
2933 if (likely(dql_avail(&dev_queue->dql) >= 0))
2934 return;
2935
2936 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2937
2938 /*
2939 * The XOFF flag must be set before checking the dql_avail below,
2940 * because in netdev_tx_completed_queue we update the dql_completed
2941 * before checking the XOFF flag.
2942 */
2943 smp_mb();
2944
2945 /* check again in case another CPU has just made room avail */
2946 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2947 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2948 #endif
2949 }
2950
2951 /**
2952 * netdev_sent_queue - report the number of bytes queued to hardware
2953 * @dev: network device
2954 * @bytes: number of bytes queued to the hardware device queue
2955 *
2956 * Report the number of bytes queued for sending/completion to the network
2957 * device hardware queue. @bytes should be a good approximation and should
2958 * exactly match netdev_completed_queue() @bytes
2959 */
2960 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2961 {
2962 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2963 }
2964
2965 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2966 unsigned int pkts, unsigned int bytes)
2967 {
2968 #ifdef CONFIG_BQL
2969 if (unlikely(!bytes))
2970 return;
2971
2972 dql_completed(&dev_queue->dql, bytes);
2973
2974 /*
2975 * Without the memory barrier there is a small possiblity that
2976 * netdev_tx_sent_queue will miss the update and cause the queue to
2977 * be stopped forever
2978 */
2979 smp_mb();
2980
2981 if (dql_avail(&dev_queue->dql) < 0)
2982 return;
2983
2984 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2985 netif_schedule_queue(dev_queue);
2986 #endif
2987 }
2988
2989 /**
2990 * netdev_completed_queue - report bytes and packets completed by device
2991 * @dev: network device
2992 * @pkts: actual number of packets sent over the medium
2993 * @bytes: actual number of bytes sent over the medium
2994 *
2995 * Report the number of bytes and packets transmitted by the network device
2996 * hardware queue over the physical medium, @bytes must exactly match the
2997 * @bytes amount passed to netdev_sent_queue()
2998 */
2999 static inline void netdev_completed_queue(struct net_device *dev,
3000 unsigned int pkts, unsigned int bytes)
3001 {
3002 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3003 }
3004
3005 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3006 {
3007 #ifdef CONFIG_BQL
3008 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3009 dql_reset(&q->dql);
3010 #endif
3011 }
3012
3013 /**
3014 * netdev_reset_queue - reset the packets and bytes count of a network device
3015 * @dev_queue: network device
3016 *
3017 * Reset the bytes and packet count of a network device and clear the
3018 * software flow control OFF bit for this network device
3019 */
3020 static inline void netdev_reset_queue(struct net_device *dev_queue)
3021 {
3022 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3023 }
3024
3025 /**
3026 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3027 * @dev: network device
3028 * @queue_index: given tx queue index
3029 *
3030 * Returns 0 if given tx queue index >= number of device tx queues,
3031 * otherwise returns the originally passed tx queue index.
3032 */
3033 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3034 {
3035 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3036 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3037 dev->name, queue_index,
3038 dev->real_num_tx_queues);
3039 return 0;
3040 }
3041
3042 return queue_index;
3043 }
3044
3045 /**
3046 * netif_running - test if up
3047 * @dev: network device
3048 *
3049 * Test if the device has been brought up.
3050 */
3051 static inline bool netif_running(const struct net_device *dev)
3052 {
3053 return test_bit(__LINK_STATE_START, &dev->state);
3054 }
3055
3056 /*
3057 * Routines to manage the subqueues on a device. We only need start
3058 * stop, and a check if it's stopped. All other device management is
3059 * done at the overall netdevice level.
3060 * Also test the device if we're multiqueue.
3061 */
3062
3063 /**
3064 * netif_start_subqueue - allow sending packets on subqueue
3065 * @dev: network device
3066 * @queue_index: sub queue index
3067 *
3068 * Start individual transmit queue of a device with multiple transmit queues.
3069 */
3070 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3071 {
3072 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3073
3074 netif_tx_start_queue(txq);
3075 }
3076
3077 /**
3078 * netif_stop_subqueue - stop sending packets on subqueue
3079 * @dev: network device
3080 * @queue_index: sub queue index
3081 *
3082 * Stop individual transmit queue of a device with multiple transmit queues.
3083 */
3084 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3085 {
3086 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3087 netif_tx_stop_queue(txq);
3088 }
3089
3090 /**
3091 * netif_subqueue_stopped - test status of subqueue
3092 * @dev: network device
3093 * @queue_index: sub queue index
3094 *
3095 * Check individual transmit queue of a device with multiple transmit queues.
3096 */
3097 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3098 u16 queue_index)
3099 {
3100 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3101
3102 return netif_tx_queue_stopped(txq);
3103 }
3104
3105 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3106 struct sk_buff *skb)
3107 {
3108 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3109 }
3110
3111 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3112
3113 #ifdef CONFIG_XPS
3114 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3115 u16 index);
3116 #else
3117 static inline int netif_set_xps_queue(struct net_device *dev,
3118 const struct cpumask *mask,
3119 u16 index)
3120 {
3121 return 0;
3122 }
3123 #endif
3124
3125 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3126 unsigned int num_tx_queues);
3127
3128 /*
3129 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3130 * as a distribution range limit for the returned value.
3131 */
3132 static inline u16 skb_tx_hash(const struct net_device *dev,
3133 struct sk_buff *skb)
3134 {
3135 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3136 }
3137
3138 /**
3139 * netif_is_multiqueue - test if device has multiple transmit queues
3140 * @dev: network device
3141 *
3142 * Check if device has multiple transmit queues
3143 */
3144 static inline bool netif_is_multiqueue(const struct net_device *dev)
3145 {
3146 return dev->num_tx_queues > 1;
3147 }
3148
3149 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3150
3151 #ifdef CONFIG_SYSFS
3152 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3153 #else
3154 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3155 unsigned int rxq)
3156 {
3157 return 0;
3158 }
3159 #endif
3160
3161 #ifdef CONFIG_SYSFS
3162 static inline unsigned int get_netdev_rx_queue_index(
3163 struct netdev_rx_queue *queue)
3164 {
3165 struct net_device *dev = queue->dev;
3166 int index = queue - dev->_rx;
3167
3168 BUG_ON(index >= dev->num_rx_queues);
3169 return index;
3170 }
3171 #endif
3172
3173 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3174 int netif_get_num_default_rss_queues(void);
3175
3176 enum skb_free_reason {
3177 SKB_REASON_CONSUMED,
3178 SKB_REASON_DROPPED,
3179 };
3180
3181 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3182 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3183
3184 /*
3185 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3186 * interrupt context or with hardware interrupts being disabled.
3187 * (in_irq() || irqs_disabled())
3188 *
3189 * We provide four helpers that can be used in following contexts :
3190 *
3191 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3192 * replacing kfree_skb(skb)
3193 *
3194 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3195 * Typically used in place of consume_skb(skb) in TX completion path
3196 *
3197 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3198 * replacing kfree_skb(skb)
3199 *
3200 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3201 * and consumed a packet. Used in place of consume_skb(skb)
3202 */
3203 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3204 {
3205 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3206 }
3207
3208 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3209 {
3210 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3211 }
3212
3213 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3214 {
3215 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3216 }
3217
3218 static inline void dev_consume_skb_any(struct sk_buff *skb)
3219 {
3220 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3221 }
3222
3223 int netif_rx(struct sk_buff *skb);
3224 int netif_rx_ni(struct sk_buff *skb);
3225 int netif_receive_skb(struct sk_buff *skb);
3226 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3227 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3228 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3229 gro_result_t napi_gro_frags(struct napi_struct *napi);
3230 struct packet_offload *gro_find_receive_by_type(__be16 type);
3231 struct packet_offload *gro_find_complete_by_type(__be16 type);
3232
3233 static inline void napi_free_frags(struct napi_struct *napi)
3234 {
3235 kfree_skb(napi->skb);
3236 napi->skb = NULL;
3237 }
3238
3239 int netdev_rx_handler_register(struct net_device *dev,
3240 rx_handler_func_t *rx_handler,
3241 void *rx_handler_data);
3242 void netdev_rx_handler_unregister(struct net_device *dev);
3243
3244 bool dev_valid_name(const char *name);
3245 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3246 int dev_ethtool(struct net *net, struct ifreq *);
3247 unsigned int dev_get_flags(const struct net_device *);
3248 int __dev_change_flags(struct net_device *, unsigned int flags);
3249 int dev_change_flags(struct net_device *, unsigned int);
3250 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3251 unsigned int gchanges);
3252 int dev_change_name(struct net_device *, const char *);
3253 int dev_set_alias(struct net_device *, const char *, size_t);
3254 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3255 int dev_set_mtu(struct net_device *, int);
3256 void dev_set_group(struct net_device *, int);
3257 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3258 int dev_change_carrier(struct net_device *, bool new_carrier);
3259 int dev_get_phys_port_id(struct net_device *dev,
3260 struct netdev_phys_item_id *ppid);
3261 int dev_get_phys_port_name(struct net_device *dev,
3262 char *name, size_t len);
3263 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3264 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3265 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3266 struct netdev_queue *txq, int *ret);
3267 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3268 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3269 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3270
3271 extern int netdev_budget;
3272
3273 /* Called by rtnetlink.c:rtnl_unlock() */
3274 void netdev_run_todo(void);
3275
3276 /**
3277 * dev_put - release reference to device
3278 * @dev: network device
3279 *
3280 * Release reference to device to allow it to be freed.
3281 */
3282 static inline void dev_put(struct net_device *dev)
3283 {
3284 this_cpu_dec(*dev->pcpu_refcnt);
3285 }
3286
3287 /**
3288 * dev_hold - get reference to device
3289 * @dev: network device
3290 *
3291 * Hold reference to device to keep it from being freed.
3292 */
3293 static inline void dev_hold(struct net_device *dev)
3294 {
3295 this_cpu_inc(*dev->pcpu_refcnt);
3296 }
3297
3298 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3299 * and _off may be called from IRQ context, but it is caller
3300 * who is responsible for serialization of these calls.
3301 *
3302 * The name carrier is inappropriate, these functions should really be
3303 * called netif_lowerlayer_*() because they represent the state of any
3304 * kind of lower layer not just hardware media.
3305 */
3306
3307 void linkwatch_init_dev(struct net_device *dev);
3308 void linkwatch_fire_event(struct net_device *dev);
3309 void linkwatch_forget_dev(struct net_device *dev);
3310
3311 /**
3312 * netif_carrier_ok - test if carrier present
3313 * @dev: network device
3314 *
3315 * Check if carrier is present on device
3316 */
3317 static inline bool netif_carrier_ok(const struct net_device *dev)
3318 {
3319 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3320 }
3321
3322 unsigned long dev_trans_start(struct net_device *dev);
3323
3324 void __netdev_watchdog_up(struct net_device *dev);
3325
3326 void netif_carrier_on(struct net_device *dev);
3327
3328 void netif_carrier_off(struct net_device *dev);
3329
3330 /**
3331 * netif_dormant_on - mark device as dormant.
3332 * @dev: network device
3333 *
3334 * Mark device as dormant (as per RFC2863).
3335 *
3336 * The dormant state indicates that the relevant interface is not
3337 * actually in a condition to pass packets (i.e., it is not 'up') but is
3338 * in a "pending" state, waiting for some external event. For "on-
3339 * demand" interfaces, this new state identifies the situation where the
3340 * interface is waiting for events to place it in the up state.
3341 *
3342 */
3343 static inline void netif_dormant_on(struct net_device *dev)
3344 {
3345 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3346 linkwatch_fire_event(dev);
3347 }
3348
3349 /**
3350 * netif_dormant_off - set device as not dormant.
3351 * @dev: network device
3352 *
3353 * Device is not in dormant state.
3354 */
3355 static inline void netif_dormant_off(struct net_device *dev)
3356 {
3357 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3358 linkwatch_fire_event(dev);
3359 }
3360
3361 /**
3362 * netif_dormant - test if carrier present
3363 * @dev: network device
3364 *
3365 * Check if carrier is present on device
3366 */
3367 static inline bool netif_dormant(const struct net_device *dev)
3368 {
3369 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3370 }
3371
3372
3373 /**
3374 * netif_oper_up - test if device is operational
3375 * @dev: network device
3376 *
3377 * Check if carrier is operational
3378 */
3379 static inline bool netif_oper_up(const struct net_device *dev)
3380 {
3381 return (dev->operstate == IF_OPER_UP ||
3382 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3383 }
3384
3385 /**
3386 * netif_device_present - is device available or removed
3387 * @dev: network device
3388 *
3389 * Check if device has not been removed from system.
3390 */
3391 static inline bool netif_device_present(struct net_device *dev)
3392 {
3393 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3394 }
3395
3396 void netif_device_detach(struct net_device *dev);
3397
3398 void netif_device_attach(struct net_device *dev);
3399
3400 /*
3401 * Network interface message level settings
3402 */
3403
3404 enum {
3405 NETIF_MSG_DRV = 0x0001,
3406 NETIF_MSG_PROBE = 0x0002,
3407 NETIF_MSG_LINK = 0x0004,
3408 NETIF_MSG_TIMER = 0x0008,
3409 NETIF_MSG_IFDOWN = 0x0010,
3410 NETIF_MSG_IFUP = 0x0020,
3411 NETIF_MSG_RX_ERR = 0x0040,
3412 NETIF_MSG_TX_ERR = 0x0080,
3413 NETIF_MSG_TX_QUEUED = 0x0100,
3414 NETIF_MSG_INTR = 0x0200,
3415 NETIF_MSG_TX_DONE = 0x0400,
3416 NETIF_MSG_RX_STATUS = 0x0800,
3417 NETIF_MSG_PKTDATA = 0x1000,
3418 NETIF_MSG_HW = 0x2000,
3419 NETIF_MSG_WOL = 0x4000,
3420 };
3421
3422 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3423 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3424 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3425 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3426 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3427 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3428 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3429 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3430 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3431 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3432 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3433 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3434 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3435 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3436 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3437
3438 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3439 {
3440 /* use default */
3441 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3442 return default_msg_enable_bits;
3443 if (debug_value == 0) /* no output */
3444 return 0;
3445 /* set low N bits */
3446 return (1 << debug_value) - 1;
3447 }
3448
3449 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3450 {
3451 spin_lock(&txq->_xmit_lock);
3452 txq->xmit_lock_owner = cpu;
3453 }
3454
3455 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3456 {
3457 spin_lock_bh(&txq->_xmit_lock);
3458 txq->xmit_lock_owner = smp_processor_id();
3459 }
3460
3461 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3462 {
3463 bool ok = spin_trylock(&txq->_xmit_lock);
3464 if (likely(ok))
3465 txq->xmit_lock_owner = smp_processor_id();
3466 return ok;
3467 }
3468
3469 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3470 {
3471 txq->xmit_lock_owner = -1;
3472 spin_unlock(&txq->_xmit_lock);
3473 }
3474
3475 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3476 {
3477 txq->xmit_lock_owner = -1;
3478 spin_unlock_bh(&txq->_xmit_lock);
3479 }
3480
3481 static inline void txq_trans_update(struct netdev_queue *txq)
3482 {
3483 if (txq->xmit_lock_owner != -1)
3484 txq->trans_start = jiffies;
3485 }
3486
3487 /**
3488 * netif_tx_lock - grab network device transmit lock
3489 * @dev: network device
3490 *
3491 * Get network device transmit lock
3492 */
3493 static inline void netif_tx_lock(struct net_device *dev)
3494 {
3495 unsigned int i;
3496 int cpu;
3497
3498 spin_lock(&dev->tx_global_lock);
3499 cpu = smp_processor_id();
3500 for (i = 0; i < dev->num_tx_queues; i++) {
3501 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3502
3503 /* We are the only thread of execution doing a
3504 * freeze, but we have to grab the _xmit_lock in
3505 * order to synchronize with threads which are in
3506 * the ->hard_start_xmit() handler and already
3507 * checked the frozen bit.
3508 */
3509 __netif_tx_lock(txq, cpu);
3510 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3511 __netif_tx_unlock(txq);
3512 }
3513 }
3514
3515 static inline void netif_tx_lock_bh(struct net_device *dev)
3516 {
3517 local_bh_disable();
3518 netif_tx_lock(dev);
3519 }
3520
3521 static inline void netif_tx_unlock(struct net_device *dev)
3522 {
3523 unsigned int i;
3524
3525 for (i = 0; i < dev->num_tx_queues; i++) {
3526 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3527
3528 /* No need to grab the _xmit_lock here. If the
3529 * queue is not stopped for another reason, we
3530 * force a schedule.
3531 */
3532 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3533 netif_schedule_queue(txq);
3534 }
3535 spin_unlock(&dev->tx_global_lock);
3536 }
3537
3538 static inline void netif_tx_unlock_bh(struct net_device *dev)
3539 {
3540 netif_tx_unlock(dev);
3541 local_bh_enable();
3542 }
3543
3544 #define HARD_TX_LOCK(dev, txq, cpu) { \
3545 if ((dev->features & NETIF_F_LLTX) == 0) { \
3546 __netif_tx_lock(txq, cpu); \
3547 } \
3548 }
3549
3550 #define HARD_TX_TRYLOCK(dev, txq) \
3551 (((dev->features & NETIF_F_LLTX) == 0) ? \
3552 __netif_tx_trylock(txq) : \
3553 true )
3554
3555 #define HARD_TX_UNLOCK(dev, txq) { \
3556 if ((dev->features & NETIF_F_LLTX) == 0) { \
3557 __netif_tx_unlock(txq); \
3558 } \
3559 }
3560
3561 static inline void netif_tx_disable(struct net_device *dev)
3562 {
3563 unsigned int i;
3564 int cpu;
3565
3566 local_bh_disable();
3567 cpu = smp_processor_id();
3568 for (i = 0; i < dev->num_tx_queues; i++) {
3569 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3570
3571 __netif_tx_lock(txq, cpu);
3572 netif_tx_stop_queue(txq);
3573 __netif_tx_unlock(txq);
3574 }
3575 local_bh_enable();
3576 }
3577
3578 static inline void netif_addr_lock(struct net_device *dev)
3579 {
3580 spin_lock(&dev->addr_list_lock);
3581 }
3582
3583 static inline void netif_addr_lock_nested(struct net_device *dev)
3584 {
3585 int subclass = SINGLE_DEPTH_NESTING;
3586
3587 if (dev->netdev_ops->ndo_get_lock_subclass)
3588 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3589
3590 spin_lock_nested(&dev->addr_list_lock, subclass);
3591 }
3592
3593 static inline void netif_addr_lock_bh(struct net_device *dev)
3594 {
3595 spin_lock_bh(&dev->addr_list_lock);
3596 }
3597
3598 static inline void netif_addr_unlock(struct net_device *dev)
3599 {
3600 spin_unlock(&dev->addr_list_lock);
3601 }
3602
3603 static inline void netif_addr_unlock_bh(struct net_device *dev)
3604 {
3605 spin_unlock_bh(&dev->addr_list_lock);
3606 }
3607
3608 /*
3609 * dev_addrs walker. Should be used only for read access. Call with
3610 * rcu_read_lock held.
3611 */
3612 #define for_each_dev_addr(dev, ha) \
3613 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3614
3615 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3616
3617 void ether_setup(struct net_device *dev);
3618
3619 /* Support for loadable net-drivers */
3620 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3621 unsigned char name_assign_type,
3622 void (*setup)(struct net_device *),
3623 unsigned int txqs, unsigned int rxqs);
3624 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3625 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3626
3627 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3628 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3629 count)
3630
3631 int register_netdev(struct net_device *dev);
3632 void unregister_netdev(struct net_device *dev);
3633
3634 /* General hardware address lists handling functions */
3635 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3636 struct netdev_hw_addr_list *from_list, int addr_len);
3637 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3638 struct netdev_hw_addr_list *from_list, int addr_len);
3639 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3640 struct net_device *dev,
3641 int (*sync)(struct net_device *, const unsigned char *),
3642 int (*unsync)(struct net_device *,
3643 const unsigned char *));
3644 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3645 struct net_device *dev,
3646 int (*unsync)(struct net_device *,
3647 const unsigned char *));
3648 void __hw_addr_init(struct netdev_hw_addr_list *list);
3649
3650 /* Functions used for device addresses handling */
3651 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3652 unsigned char addr_type);
3653 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3654 unsigned char addr_type);
3655 void dev_addr_flush(struct net_device *dev);
3656 int dev_addr_init(struct net_device *dev);
3657
3658 /* Functions used for unicast addresses handling */
3659 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3660 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3661 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3662 int dev_uc_sync(struct net_device *to, struct net_device *from);
3663 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3664 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3665 void dev_uc_flush(struct net_device *dev);
3666 void dev_uc_init(struct net_device *dev);
3667
3668 /**
3669 * __dev_uc_sync - Synchonize device's unicast list
3670 * @dev: device to sync
3671 * @sync: function to call if address should be added
3672 * @unsync: function to call if address should be removed
3673 *
3674 * Add newly added addresses to the interface, and release
3675 * addresses that have been deleted.
3676 **/
3677 static inline int __dev_uc_sync(struct net_device *dev,
3678 int (*sync)(struct net_device *,
3679 const unsigned char *),
3680 int (*unsync)(struct net_device *,
3681 const unsigned char *))
3682 {
3683 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3684 }
3685
3686 /**
3687 * __dev_uc_unsync - Remove synchronized addresses from device
3688 * @dev: device to sync
3689 * @unsync: function to call if address should be removed
3690 *
3691 * Remove all addresses that were added to the device by dev_uc_sync().
3692 **/
3693 static inline void __dev_uc_unsync(struct net_device *dev,
3694 int (*unsync)(struct net_device *,
3695 const unsigned char *))
3696 {
3697 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3698 }
3699
3700 /* Functions used for multicast addresses handling */
3701 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3702 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3703 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3704 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3705 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3706 int dev_mc_sync(struct net_device *to, struct net_device *from);
3707 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3708 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3709 void dev_mc_flush(struct net_device *dev);
3710 void dev_mc_init(struct net_device *dev);
3711
3712 /**
3713 * __dev_mc_sync - Synchonize device's multicast list
3714 * @dev: device to sync
3715 * @sync: function to call if address should be added
3716 * @unsync: function to call if address should be removed
3717 *
3718 * Add newly added addresses to the interface, and release
3719 * addresses that have been deleted.
3720 **/
3721 static inline int __dev_mc_sync(struct net_device *dev,
3722 int (*sync)(struct net_device *,
3723 const unsigned char *),
3724 int (*unsync)(struct net_device *,
3725 const unsigned char *))
3726 {
3727 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3728 }
3729
3730 /**
3731 * __dev_mc_unsync - Remove synchronized addresses from device
3732 * @dev: device to sync
3733 * @unsync: function to call if address should be removed
3734 *
3735 * Remove all addresses that were added to the device by dev_mc_sync().
3736 **/
3737 static inline void __dev_mc_unsync(struct net_device *dev,
3738 int (*unsync)(struct net_device *,
3739 const unsigned char *))
3740 {
3741 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3742 }
3743
3744 /* Functions used for secondary unicast and multicast support */
3745 void dev_set_rx_mode(struct net_device *dev);
3746 void __dev_set_rx_mode(struct net_device *dev);
3747 int dev_set_promiscuity(struct net_device *dev, int inc);
3748 int dev_set_allmulti(struct net_device *dev, int inc);
3749 void netdev_state_change(struct net_device *dev);
3750 void netdev_notify_peers(struct net_device *dev);
3751 void netdev_features_change(struct net_device *dev);
3752 /* Load a device via the kmod */
3753 void dev_load(struct net *net, const char *name);
3754 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3755 struct rtnl_link_stats64 *storage);
3756 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3757 const struct net_device_stats *netdev_stats);
3758
3759 extern int netdev_max_backlog;
3760 extern int netdev_tstamp_prequeue;
3761 extern int weight_p;
3762 extern int bpf_jit_enable;
3763
3764 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3765 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3766 struct list_head **iter);
3767 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3768 struct list_head **iter);
3769
3770 /* iterate through upper list, must be called under RCU read lock */
3771 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3772 for (iter = &(dev)->adj_list.upper, \
3773 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3774 updev; \
3775 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3776
3777 /* iterate through upper list, must be called under RCU read lock */
3778 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3779 for (iter = &(dev)->all_adj_list.upper, \
3780 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3781 updev; \
3782 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3783
3784 void *netdev_lower_get_next_private(struct net_device *dev,
3785 struct list_head **iter);
3786 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3787 struct list_head **iter);
3788
3789 #define netdev_for_each_lower_private(dev, priv, iter) \
3790 for (iter = (dev)->adj_list.lower.next, \
3791 priv = netdev_lower_get_next_private(dev, &(iter)); \
3792 priv; \
3793 priv = netdev_lower_get_next_private(dev, &(iter)))
3794
3795 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3796 for (iter = &(dev)->adj_list.lower, \
3797 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3798 priv; \
3799 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3800
3801 void *netdev_lower_get_next(struct net_device *dev,
3802 struct list_head **iter);
3803 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3804 for (iter = (dev)->adj_list.lower.next, \
3805 ldev = netdev_lower_get_next(dev, &(iter)); \
3806 ldev; \
3807 ldev = netdev_lower_get_next(dev, &(iter)))
3808
3809 void *netdev_adjacent_get_private(struct list_head *adj_list);
3810 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3811 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3812 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3813 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3814 int netdev_master_upper_dev_link(struct net_device *dev,
3815 struct net_device *upper_dev,
3816 void *upper_priv, void *upper_info);
3817 void netdev_upper_dev_unlink(struct net_device *dev,
3818 struct net_device *upper_dev);
3819 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3820 void *netdev_lower_dev_get_private(struct net_device *dev,
3821 struct net_device *lower_dev);
3822 void netdev_lower_state_changed(struct net_device *lower_dev,
3823 void *lower_state_info);
3824
3825 /* RSS keys are 40 or 52 bytes long */
3826 #define NETDEV_RSS_KEY_LEN 52
3827 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3828 void netdev_rss_key_fill(void *buffer, size_t len);
3829
3830 int dev_get_nest_level(struct net_device *dev,
3831 bool (*type_check)(const struct net_device *dev));
3832 int skb_checksum_help(struct sk_buff *skb);
3833 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3834 netdev_features_t features, bool tx_path);
3835 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3836 netdev_features_t features);
3837
3838 struct netdev_bonding_info {
3839 ifslave slave;
3840 ifbond master;
3841 };
3842
3843 struct netdev_notifier_bonding_info {
3844 struct netdev_notifier_info info; /* must be first */
3845 struct netdev_bonding_info bonding_info;
3846 };
3847
3848 void netdev_bonding_info_change(struct net_device *dev,
3849 struct netdev_bonding_info *bonding_info);
3850
3851 static inline
3852 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3853 {
3854 return __skb_gso_segment(skb, features, true);
3855 }
3856 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3857
3858 static inline bool can_checksum_protocol(netdev_features_t features,
3859 __be16 protocol)
3860 {
3861 if (protocol == htons(ETH_P_FCOE))
3862 return !!(features & NETIF_F_FCOE_CRC);
3863
3864 /* Assume this is an IP checksum (not SCTP CRC) */
3865
3866 if (features & NETIF_F_HW_CSUM) {
3867 /* Can checksum everything */
3868 return true;
3869 }
3870
3871 switch (protocol) {
3872 case htons(ETH_P_IP):
3873 return !!(features & NETIF_F_IP_CSUM);
3874 case htons(ETH_P_IPV6):
3875 return !!(features & NETIF_F_IPV6_CSUM);
3876 default:
3877 return false;
3878 }
3879 }
3880
3881 /* Map an ethertype into IP protocol if possible */
3882 static inline int eproto_to_ipproto(int eproto)
3883 {
3884 switch (eproto) {
3885 case htons(ETH_P_IP):
3886 return IPPROTO_IP;
3887 case htons(ETH_P_IPV6):
3888 return IPPROTO_IPV6;
3889 default:
3890 return -1;
3891 }
3892 }
3893
3894 #ifdef CONFIG_BUG
3895 void netdev_rx_csum_fault(struct net_device *dev);
3896 #else
3897 static inline void netdev_rx_csum_fault(struct net_device *dev)
3898 {
3899 }
3900 #endif
3901 /* rx skb timestamps */
3902 void net_enable_timestamp(void);
3903 void net_disable_timestamp(void);
3904
3905 #ifdef CONFIG_PROC_FS
3906 int __init dev_proc_init(void);
3907 #else
3908 #define dev_proc_init() 0
3909 #endif
3910
3911 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3912 struct sk_buff *skb, struct net_device *dev,
3913 bool more)
3914 {
3915 skb->xmit_more = more ? 1 : 0;
3916 return ops->ndo_start_xmit(skb, dev);
3917 }
3918
3919 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3920 struct netdev_queue *txq, bool more)
3921 {
3922 const struct net_device_ops *ops = dev->netdev_ops;
3923 int rc;
3924
3925 rc = __netdev_start_xmit(ops, skb, dev, more);
3926 if (rc == NETDEV_TX_OK)
3927 txq_trans_update(txq);
3928
3929 return rc;
3930 }
3931
3932 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3933 const void *ns);
3934 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3935 const void *ns);
3936
3937 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3938 {
3939 return netdev_class_create_file_ns(class_attr, NULL);
3940 }
3941
3942 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3943 {
3944 netdev_class_remove_file_ns(class_attr, NULL);
3945 }
3946
3947 extern struct kobj_ns_type_operations net_ns_type_operations;
3948
3949 const char *netdev_drivername(const struct net_device *dev);
3950
3951 void linkwatch_run_queue(void);
3952
3953 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3954 netdev_features_t f2)
3955 {
3956 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3957 if (f1 & NETIF_F_HW_CSUM)
3958 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3959 else
3960 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3961 }
3962
3963 return f1 & f2;
3964 }
3965
3966 static inline netdev_features_t netdev_get_wanted_features(
3967 struct net_device *dev)
3968 {
3969 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3970 }
3971 netdev_features_t netdev_increment_features(netdev_features_t all,
3972 netdev_features_t one, netdev_features_t mask);
3973
3974 /* Allow TSO being used on stacked device :
3975 * Performing the GSO segmentation before last device
3976 * is a performance improvement.
3977 */
3978 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3979 netdev_features_t mask)
3980 {
3981 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3982 }
3983
3984 int __netdev_update_features(struct net_device *dev);
3985 void netdev_update_features(struct net_device *dev);
3986 void netdev_change_features(struct net_device *dev);
3987
3988 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3989 struct net_device *dev);
3990
3991 netdev_features_t passthru_features_check(struct sk_buff *skb,
3992 struct net_device *dev,
3993 netdev_features_t features);
3994 netdev_features_t netif_skb_features(struct sk_buff *skb);
3995
3996 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3997 {
3998 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3999
4000 /* check flags correspondence */
4001 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4002 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4003 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4004 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4005 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4006 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4007 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4008 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4009 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
4010 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
4011 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4012 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4013 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4014
4015 return (features & feature) == feature;
4016 }
4017
4018 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4019 {
4020 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4021 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4022 }
4023
4024 static inline bool netif_needs_gso(struct sk_buff *skb,
4025 netdev_features_t features)
4026 {
4027 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4028 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4029 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4030 }
4031
4032 static inline void netif_set_gso_max_size(struct net_device *dev,
4033 unsigned int size)
4034 {
4035 dev->gso_max_size = size;
4036 }
4037
4038 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4039 int pulled_hlen, u16 mac_offset,
4040 int mac_len)
4041 {
4042 skb->protocol = protocol;
4043 skb->encapsulation = 1;
4044 skb_push(skb, pulled_hlen);
4045 skb_reset_transport_header(skb);
4046 skb->mac_header = mac_offset;
4047 skb->network_header = skb->mac_header + mac_len;
4048 skb->mac_len = mac_len;
4049 }
4050
4051 static inline bool netif_is_macsec(const struct net_device *dev)
4052 {
4053 return dev->priv_flags & IFF_MACSEC;
4054 }
4055
4056 static inline bool netif_is_macvlan(const struct net_device *dev)
4057 {
4058 return dev->priv_flags & IFF_MACVLAN;
4059 }
4060
4061 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4062 {
4063 return dev->priv_flags & IFF_MACVLAN_PORT;
4064 }
4065
4066 static inline bool netif_is_ipvlan(const struct net_device *dev)
4067 {
4068 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4069 }
4070
4071 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4072 {
4073 return dev->priv_flags & IFF_IPVLAN_MASTER;
4074 }
4075
4076 static inline bool netif_is_bond_master(const struct net_device *dev)
4077 {
4078 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4079 }
4080
4081 static inline bool netif_is_bond_slave(const struct net_device *dev)
4082 {
4083 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4084 }
4085
4086 static inline bool netif_supports_nofcs(struct net_device *dev)
4087 {
4088 return dev->priv_flags & IFF_SUPP_NOFCS;
4089 }
4090
4091 static inline bool netif_is_l3_master(const struct net_device *dev)
4092 {
4093 return dev->priv_flags & IFF_L3MDEV_MASTER;
4094 }
4095
4096 static inline bool netif_is_l3_slave(const struct net_device *dev)
4097 {
4098 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4099 }
4100
4101 static inline bool netif_is_bridge_master(const struct net_device *dev)
4102 {
4103 return dev->priv_flags & IFF_EBRIDGE;
4104 }
4105
4106 static inline bool netif_is_bridge_port(const struct net_device *dev)
4107 {
4108 return dev->priv_flags & IFF_BRIDGE_PORT;
4109 }
4110
4111 static inline bool netif_is_ovs_master(const struct net_device *dev)
4112 {
4113 return dev->priv_flags & IFF_OPENVSWITCH;
4114 }
4115
4116 static inline bool netif_is_team_master(const struct net_device *dev)
4117 {
4118 return dev->priv_flags & IFF_TEAM;
4119 }
4120
4121 static inline bool netif_is_team_port(const struct net_device *dev)
4122 {
4123 return dev->priv_flags & IFF_TEAM_PORT;
4124 }
4125
4126 static inline bool netif_is_lag_master(const struct net_device *dev)
4127 {
4128 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4129 }
4130
4131 static inline bool netif_is_lag_port(const struct net_device *dev)
4132 {
4133 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4134 }
4135
4136 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4137 {
4138 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4139 }
4140
4141 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4142 static inline void netif_keep_dst(struct net_device *dev)
4143 {
4144 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4145 }
4146
4147 extern struct pernet_operations __net_initdata loopback_net_ops;
4148
4149 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4150
4151 /* netdev_printk helpers, similar to dev_printk */
4152
4153 static inline const char *netdev_name(const struct net_device *dev)
4154 {
4155 if (!dev->name[0] || strchr(dev->name, '%'))
4156 return "(unnamed net_device)";
4157 return dev->name;
4158 }
4159
4160 static inline const char *netdev_reg_state(const struct net_device *dev)
4161 {
4162 switch (dev->reg_state) {
4163 case NETREG_UNINITIALIZED: return " (uninitialized)";
4164 case NETREG_REGISTERED: return "";
4165 case NETREG_UNREGISTERING: return " (unregistering)";
4166 case NETREG_UNREGISTERED: return " (unregistered)";
4167 case NETREG_RELEASED: return " (released)";
4168 case NETREG_DUMMY: return " (dummy)";
4169 }
4170
4171 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4172 return " (unknown)";
4173 }
4174
4175 __printf(3, 4)
4176 void netdev_printk(const char *level, const struct net_device *dev,
4177 const char *format, ...);
4178 __printf(2, 3)
4179 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4180 __printf(2, 3)
4181 void netdev_alert(const struct net_device *dev, const char *format, ...);
4182 __printf(2, 3)
4183 void netdev_crit(const struct net_device *dev, const char *format, ...);
4184 __printf(2, 3)
4185 void netdev_err(const struct net_device *dev, const char *format, ...);
4186 __printf(2, 3)
4187 void netdev_warn(const struct net_device *dev, const char *format, ...);
4188 __printf(2, 3)
4189 void netdev_notice(const struct net_device *dev, const char *format, ...);
4190 __printf(2, 3)
4191 void netdev_info(const struct net_device *dev, const char *format, ...);
4192
4193 #define MODULE_ALIAS_NETDEV(device) \
4194 MODULE_ALIAS("netdev-" device)
4195
4196 #if defined(CONFIG_DYNAMIC_DEBUG)
4197 #define netdev_dbg(__dev, format, args...) \
4198 do { \
4199 dynamic_netdev_dbg(__dev, format, ##args); \
4200 } while (0)
4201 #elif defined(DEBUG)
4202 #define netdev_dbg(__dev, format, args...) \
4203 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4204 #else
4205 #define netdev_dbg(__dev, format, args...) \
4206 ({ \
4207 if (0) \
4208 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4209 })
4210 #endif
4211
4212 #if defined(VERBOSE_DEBUG)
4213 #define netdev_vdbg netdev_dbg
4214 #else
4215
4216 #define netdev_vdbg(dev, format, args...) \
4217 ({ \
4218 if (0) \
4219 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4220 0; \
4221 })
4222 #endif
4223
4224 /*
4225 * netdev_WARN() acts like dev_printk(), but with the key difference
4226 * of using a WARN/WARN_ON to get the message out, including the
4227 * file/line information and a backtrace.
4228 */
4229 #define netdev_WARN(dev, format, args...) \
4230 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4231 netdev_reg_state(dev), ##args)
4232
4233 /* netif printk helpers, similar to netdev_printk */
4234
4235 #define netif_printk(priv, type, level, dev, fmt, args...) \
4236 do { \
4237 if (netif_msg_##type(priv)) \
4238 netdev_printk(level, (dev), fmt, ##args); \
4239 } while (0)
4240
4241 #define netif_level(level, priv, type, dev, fmt, args...) \
4242 do { \
4243 if (netif_msg_##type(priv)) \
4244 netdev_##level(dev, fmt, ##args); \
4245 } while (0)
4246
4247 #define netif_emerg(priv, type, dev, fmt, args...) \
4248 netif_level(emerg, priv, type, dev, fmt, ##args)
4249 #define netif_alert(priv, type, dev, fmt, args...) \
4250 netif_level(alert, priv, type, dev, fmt, ##args)
4251 #define netif_crit(priv, type, dev, fmt, args...) \
4252 netif_level(crit, priv, type, dev, fmt, ##args)
4253 #define netif_err(priv, type, dev, fmt, args...) \
4254 netif_level(err, priv, type, dev, fmt, ##args)
4255 #define netif_warn(priv, type, dev, fmt, args...) \
4256 netif_level(warn, priv, type, dev, fmt, ##args)
4257 #define netif_notice(priv, type, dev, fmt, args...) \
4258 netif_level(notice, priv, type, dev, fmt, ##args)
4259 #define netif_info(priv, type, dev, fmt, args...) \
4260 netif_level(info, priv, type, dev, fmt, ##args)
4261
4262 #if defined(CONFIG_DYNAMIC_DEBUG)
4263 #define netif_dbg(priv, type, netdev, format, args...) \
4264 do { \
4265 if (netif_msg_##type(priv)) \
4266 dynamic_netdev_dbg(netdev, format, ##args); \
4267 } while (0)
4268 #elif defined(DEBUG)
4269 #define netif_dbg(priv, type, dev, format, args...) \
4270 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4271 #else
4272 #define netif_dbg(priv, type, dev, format, args...) \
4273 ({ \
4274 if (0) \
4275 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4276 0; \
4277 })
4278 #endif
4279
4280 #if defined(VERBOSE_DEBUG)
4281 #define netif_vdbg netif_dbg
4282 #else
4283 #define netif_vdbg(priv, type, dev, format, args...) \
4284 ({ \
4285 if (0) \
4286 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4287 0; \
4288 })
4289 #endif
4290
4291 /*
4292 * The list of packet types we will receive (as opposed to discard)
4293 * and the routines to invoke.
4294 *
4295 * Why 16. Because with 16 the only overlap we get on a hash of the
4296 * low nibble of the protocol value is RARP/SNAP/X.25.
4297 *
4298 * NOTE: That is no longer true with the addition of VLAN tags. Not
4299 * sure which should go first, but I bet it won't make much
4300 * difference if we are running VLANs. The good news is that
4301 * this protocol won't be in the list unless compiled in, so
4302 * the average user (w/out VLANs) will not be adversely affected.
4303 * --BLG
4304 *
4305 * 0800 IP
4306 * 8100 802.1Q VLAN
4307 * 0001 802.3
4308 * 0002 AX.25
4309 * 0004 802.2
4310 * 8035 RARP
4311 * 0005 SNAP
4312 * 0805 X.25
4313 * 0806 ARP
4314 * 8137 IPX
4315 * 0009 Localtalk
4316 * 86DD IPv6
4317 */
4318 #define PTYPE_HASH_SIZE (16)
4319 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4320
4321 #endif /* _LINUX_NETDEVICE_H */
This page took 0.112193 seconds and 6 git commands to generate.