Merge branch 'parisc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64
65 void netdev_set_default_ethtool_ops(struct net_device *dev,
66 const struct ethtool_ops *ops);
67
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70 #define NET_RX_DROP 1 /* packet dropped */
71
72 /*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously; in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
86 * others are propagated to higher layers.
87 */
88
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS 0x00
91 #define NET_XMIT_DROP 0x01 /* skb dropped */
92 #define NET_XMIT_CN 0x02 /* congestion notification */
93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK 0xf0
104
105 enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112
113 /*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129 }
130
131 /*
132 * Compute the worst-case header length according to the protocols
133 * used.
134 */
135
136 #if defined(CONFIG_HYPERV_NET)
137 # define LL_MAX_HEADER 128
138 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
139 # if defined(CONFIG_MAC80211_MESH)
140 # define LL_MAX_HEADER 128
141 # else
142 # define LL_MAX_HEADER 96
143 # endif
144 #else
145 # define LL_MAX_HEADER 32
146 #endif
147
148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150 #define MAX_HEADER LL_MAX_HEADER
151 #else
152 #define MAX_HEADER (LL_MAX_HEADER + 48)
153 #endif
154
155 /*
156 * Old network device statistics. Fields are native words
157 * (unsigned long) so they can be read and written atomically.
158 */
159
160 struct net_device_stats {
161 unsigned long rx_packets;
162 unsigned long tx_packets;
163 unsigned long rx_bytes;
164 unsigned long tx_bytes;
165 unsigned long rx_errors;
166 unsigned long tx_errors;
167 unsigned long rx_dropped;
168 unsigned long tx_dropped;
169 unsigned long multicast;
170 unsigned long collisions;
171 unsigned long rx_length_errors;
172 unsigned long rx_over_errors;
173 unsigned long rx_crc_errors;
174 unsigned long rx_frame_errors;
175 unsigned long rx_fifo_errors;
176 unsigned long rx_missed_errors;
177 unsigned long tx_aborted_errors;
178 unsigned long tx_carrier_errors;
179 unsigned long tx_fifo_errors;
180 unsigned long tx_heartbeat_errors;
181 unsigned long tx_window_errors;
182 unsigned long rx_compressed;
183 unsigned long tx_compressed;
184 };
185
186
187 #include <linux/cache.h>
188 #include <linux/skbuff.h>
189
190 #ifdef CONFIG_RPS
191 #include <linux/static_key.h>
192 extern struct static_key rps_needed;
193 #endif
194
195 struct neighbour;
196 struct neigh_parms;
197 struct sk_buff;
198
199 struct netdev_hw_addr {
200 struct list_head list;
201 unsigned char addr[MAX_ADDR_LEN];
202 unsigned char type;
203 #define NETDEV_HW_ADDR_T_LAN 1
204 #define NETDEV_HW_ADDR_T_SAN 2
205 #define NETDEV_HW_ADDR_T_SLAVE 3
206 #define NETDEV_HW_ADDR_T_UNICAST 4
207 #define NETDEV_HW_ADDR_T_MULTICAST 5
208 bool global_use;
209 int sync_cnt;
210 int refcount;
211 int synced;
212 struct rcu_head rcu_head;
213 };
214
215 struct netdev_hw_addr_list {
216 struct list_head list;
217 int count;
218 };
219
220 #define netdev_hw_addr_list_count(l) ((l)->count)
221 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
222 #define netdev_hw_addr_list_for_each(ha, l) \
223 list_for_each_entry(ha, &(l)->list, list)
224
225 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
226 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
227 #define netdev_for_each_uc_addr(ha, dev) \
228 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
229
230 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
231 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
232 #define netdev_for_each_mc_addr(ha, dev) \
233 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
234
235 struct hh_cache {
236 u16 hh_len;
237 u16 __pad;
238 seqlock_t hh_lock;
239
240 /* cached hardware header; allow for machine alignment needs. */
241 #define HH_DATA_MOD 16
242 #define HH_DATA_OFF(__len) \
243 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
244 #define HH_DATA_ALIGN(__len) \
245 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
246 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
247 };
248
249 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
250 * Alternative is:
251 * dev->hard_header_len ? (dev->hard_header_len +
252 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
253 *
254 * We could use other alignment values, but we must maintain the
255 * relationship HH alignment <= LL alignment.
256 */
257 #define LL_RESERVED_SPACE(dev) \
258 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
260 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261
262 struct header_ops {
263 int (*create) (struct sk_buff *skb, struct net_device *dev,
264 unsigned short type, const void *daddr,
265 const void *saddr, unsigned int len);
266 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 void (*cache_update)(struct hh_cache *hh,
269 const struct net_device *dev,
270 const unsigned char *haddr);
271 bool (*validate)(const char *ll_header, unsigned int len);
272 };
273
274 /* These flag bits are private to the generic network queueing
275 * layer; they may not be explicitly referenced by any other
276 * code.
277 */
278
279 enum netdev_state_t {
280 __LINK_STATE_START,
281 __LINK_STATE_PRESENT,
282 __LINK_STATE_NOCARRIER,
283 __LINK_STATE_LINKWATCH_PENDING,
284 __LINK_STATE_DORMANT,
285 };
286
287
288 /*
289 * This structure holds boot-time configured netdevice settings. They
290 * are then used in the device probing.
291 */
292 struct netdev_boot_setup {
293 char name[IFNAMSIZ];
294 struct ifmap map;
295 };
296 #define NETDEV_BOOT_SETUP_MAX 8
297
298 int __init netdev_boot_setup(char *str);
299
300 /*
301 * Structure for NAPI scheduling similar to tasklet but with weighting
302 */
303 struct napi_struct {
304 /* The poll_list must only be managed by the entity which
305 * changes the state of the NAPI_STATE_SCHED bit. This means
306 * whoever atomically sets that bit can add this napi_struct
307 * to the per-CPU poll_list, and whoever clears that bit
308 * can remove from the list right before clearing the bit.
309 */
310 struct list_head poll_list;
311
312 unsigned long state;
313 int weight;
314 unsigned int gro_count;
315 int (*poll)(struct napi_struct *, int);
316 #ifdef CONFIG_NETPOLL
317 spinlock_t poll_lock;
318 int poll_owner;
319 #endif
320 struct net_device *dev;
321 struct sk_buff *gro_list;
322 struct sk_buff *skb;
323 struct hrtimer timer;
324 struct list_head dev_list;
325 struct hlist_node napi_hash_node;
326 unsigned int napi_id;
327 };
328
329 enum {
330 NAPI_STATE_SCHED, /* Poll is scheduled */
331 NAPI_STATE_DISABLE, /* Disable pending */
332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
333 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
334 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
335 };
336
337 enum gro_result {
338 GRO_MERGED,
339 GRO_MERGED_FREE,
340 GRO_HELD,
341 GRO_NORMAL,
342 GRO_DROP,
343 };
344 typedef enum gro_result gro_result_t;
345
346 /*
347 * enum rx_handler_result - Possible return values for rx_handlers.
348 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
349 * further.
350 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
351 * case skb->dev was changed by rx_handler.
352 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
353 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
354 *
355 * rx_handlers are functions called from inside __netif_receive_skb(), to do
356 * special processing of the skb, prior to delivery to protocol handlers.
357 *
358 * Currently, a net_device can only have a single rx_handler registered. Trying
359 * to register a second rx_handler will return -EBUSY.
360 *
361 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
362 * To unregister a rx_handler on a net_device, use
363 * netdev_rx_handler_unregister().
364 *
365 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
366 * do with the skb.
367 *
368 * If the rx_handler consumed the skb in some way, it should return
369 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
370 * the skb to be delivered in some other way.
371 *
372 * If the rx_handler changed skb->dev, to divert the skb to another
373 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
374 * new device will be called if it exists.
375 *
376 * If the rx_handler decides the skb should be ignored, it should return
377 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
378 * are registered on exact device (ptype->dev == skb->dev).
379 *
380 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
381 * delivered, it should return RX_HANDLER_PASS.
382 *
383 * A device without a registered rx_handler will behave as if rx_handler
384 * returned RX_HANDLER_PASS.
385 */
386
387 enum rx_handler_result {
388 RX_HANDLER_CONSUMED,
389 RX_HANDLER_ANOTHER,
390 RX_HANDLER_EXACT,
391 RX_HANDLER_PASS,
392 };
393 typedef enum rx_handler_result rx_handler_result_t;
394 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
395
396 void __napi_schedule(struct napi_struct *n);
397 void __napi_schedule_irqoff(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405 * napi_schedule_prep - check if NAPI can be scheduled
406 * @n: NAPI context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable to
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420 * napi_schedule - schedule NAPI poll
421 * @n: NAPI context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430 }
431
432 /**
433 * napi_schedule_irqoff - schedule NAPI poll
434 * @n: NAPI context
435 *
436 * Variant of napi_schedule(), assuming hard irqs are masked.
437 */
438 static inline void napi_schedule_irqoff(struct napi_struct *n)
439 {
440 if (napi_schedule_prep(n))
441 __napi_schedule_irqoff(n);
442 }
443
444 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
445 static inline bool napi_reschedule(struct napi_struct *napi)
446 {
447 if (napi_schedule_prep(napi)) {
448 __napi_schedule(napi);
449 return true;
450 }
451 return false;
452 }
453
454 void __napi_complete(struct napi_struct *n);
455 void napi_complete_done(struct napi_struct *n, int work_done);
456 /**
457 * napi_complete - NAPI processing complete
458 * @n: NAPI context
459 *
460 * Mark NAPI processing as complete.
461 * Consider using napi_complete_done() instead.
462 */
463 static inline void napi_complete(struct napi_struct *n)
464 {
465 return napi_complete_done(n, 0);
466 }
467
468 /**
469 * napi_hash_add - add a NAPI to global hashtable
470 * @napi: NAPI context
471 *
472 * Generate a new napi_id and store a @napi under it in napi_hash.
473 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
474 * Note: This is normally automatically done from netif_napi_add(),
475 * so might disappear in a future Linux version.
476 */
477 void napi_hash_add(struct napi_struct *napi);
478
479 /**
480 * napi_hash_del - remove a NAPI from global table
481 * @napi: NAPI context
482 *
483 * Warning: caller must observe RCU grace period
484 * before freeing memory containing @napi, if
485 * this function returns true.
486 * Note: core networking stack automatically calls it
487 * from netif_napi_del().
488 * Drivers might want to call this helper to combine all
489 * the needed RCU grace periods into a single one.
490 */
491 bool napi_hash_del(struct napi_struct *napi);
492
493 /**
494 * napi_disable - prevent NAPI from scheduling
495 * @n: NAPI context
496 *
497 * Stop NAPI from being scheduled on this context.
498 * Waits till any outstanding processing completes.
499 */
500 void napi_disable(struct napi_struct *n);
501
502 /**
503 * napi_enable - enable NAPI scheduling
504 * @n: NAPI context
505 *
506 * Resume NAPI from being scheduled on this context.
507 * Must be paired with napi_disable.
508 */
509 static inline void napi_enable(struct napi_struct *n)
510 {
511 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
512 smp_mb__before_atomic();
513 clear_bit(NAPI_STATE_SCHED, &n->state);
514 clear_bit(NAPI_STATE_NPSVC, &n->state);
515 }
516
517 /**
518 * napi_synchronize - wait until NAPI is not running
519 * @n: NAPI context
520 *
521 * Wait until NAPI is done being scheduled on this context.
522 * Waits till any outstanding processing completes but
523 * does not disable future activations.
524 */
525 static inline void napi_synchronize(const struct napi_struct *n)
526 {
527 if (IS_ENABLED(CONFIG_SMP))
528 while (test_bit(NAPI_STATE_SCHED, &n->state))
529 msleep(1);
530 else
531 barrier();
532 }
533
534 enum netdev_queue_state_t {
535 __QUEUE_STATE_DRV_XOFF,
536 __QUEUE_STATE_STACK_XOFF,
537 __QUEUE_STATE_FROZEN,
538 };
539
540 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
541 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
543
544 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
545 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
546 QUEUE_STATE_FROZEN)
547 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
548 QUEUE_STATE_FROZEN)
549
550 /*
551 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
552 * netif_tx_* functions below are used to manipulate this flag. The
553 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
554 * queue independently. The netif_xmit_*stopped functions below are called
555 * to check if the queue has been stopped by the driver or stack (either
556 * of the XOFF bits are set in the state). Drivers should not need to call
557 * netif_xmit*stopped functions, they should only be using netif_tx_*.
558 */
559
560 struct netdev_queue {
561 /*
562 * read-mostly part
563 */
564 struct net_device *dev;
565 struct Qdisc __rcu *qdisc;
566 struct Qdisc *qdisc_sleeping;
567 #ifdef CONFIG_SYSFS
568 struct kobject kobj;
569 #endif
570 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
571 int numa_node;
572 #endif
573 /*
574 * write-mostly part
575 */
576 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
577 int xmit_lock_owner;
578 /*
579 * please use this field instead of dev->trans_start
580 */
581 unsigned long trans_start;
582
583 /*
584 * Number of TX timeouts for this queue
585 * (/sys/class/net/DEV/Q/trans_timeout)
586 */
587 unsigned long trans_timeout;
588
589 unsigned long state;
590
591 #ifdef CONFIG_BQL
592 struct dql dql;
593 #endif
594 unsigned long tx_maxrate;
595 } ____cacheline_aligned_in_smp;
596
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 return q->numa_node;
601 #else
602 return NUMA_NO_NODE;
603 #endif
604 }
605
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 q->numa_node = node;
610 #endif
611 }
612
613 #ifdef CONFIG_RPS
614 /*
615 * This structure holds an RPS map which can be of variable length. The
616 * map is an array of CPUs.
617 */
618 struct rps_map {
619 unsigned int len;
620 struct rcu_head rcu;
621 u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624
625 /*
626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627 * tail pointer for that CPU's input queue at the time of last enqueue, and
628 * a hardware filter index.
629 */
630 struct rps_dev_flow {
631 u16 cpu;
632 u16 filter;
633 unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636
637 /*
638 * The rps_dev_flow_table structure contains a table of flow mappings.
639 */
640 struct rps_dev_flow_table {
641 unsigned int mask;
642 struct rcu_head rcu;
643 struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646 ((_num) * sizeof(struct rps_dev_flow)))
647
648 /*
649 * The rps_sock_flow_table contains mappings of flows to the last CPU
650 * on which they were processed by the application (set in recvmsg).
651 * Each entry is a 32bit value. Upper part is the high-order bits
652 * of flow hash, lower part is CPU number.
653 * rps_cpu_mask is used to partition the space, depending on number of
654 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
656 * meaning we use 32-6=26 bits for the hash.
657 */
658 struct rps_sock_flow_table {
659 u32 mask;
660
661 u32 ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664
665 #define RPS_NO_CPU 0xffff
666
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671 u32 hash)
672 {
673 if (table && hash) {
674 unsigned int index = hash & table->mask;
675 u32 val = hash & ~rps_cpu_mask;
676
677 /* We only give a hint, preemption can change CPU under us */
678 val |= raw_smp_processor_id();
679
680 if (table->ents[index] != val)
681 table->ents[index] = val;
682 }
683 }
684
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687 u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694 struct rps_map __rcu *rps_map;
695 struct rps_dev_flow_table __rcu *rps_flow_table;
696 #endif
697 struct kobject kobj;
698 struct net_device *dev;
699 } ____cacheline_aligned_in_smp;
700
701 /*
702 * RX queue sysfs structures and functions.
703 */
704 struct rx_queue_attribute {
705 struct attribute attr;
706 ssize_t (*show)(struct netdev_rx_queue *queue,
707 struct rx_queue_attribute *attr, char *buf);
708 ssize_t (*store)(struct netdev_rx_queue *queue,
709 struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711
712 #ifdef CONFIG_XPS
713 /*
714 * This structure holds an XPS map which can be of variable length. The
715 * map is an array of queues.
716 */
717 struct xps_map {
718 unsigned int len;
719 unsigned int alloc_len;
720 struct rcu_head rcu;
721 u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725 - sizeof(struct xps_map)) / sizeof(u16))
726
727 /*
728 * This structure holds all XPS maps for device. Maps are indexed by CPU.
729 */
730 struct xps_dev_maps {
731 struct rcu_head rcu;
732 struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
735 (nr_cpu_ids * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737
738 #define TC_MAX_QUEUE 16
739 #define TC_BITMASK 15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742 u16 count;
743 u16 offset;
744 };
745
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748 * This structure is to hold information about the device
749 * configured to run FCoE protocol stack.
750 */
751 struct netdev_fcoe_hbainfo {
752 char manufacturer[64];
753 char serial_number[64];
754 char hardware_version[64];
755 char driver_version[64];
756 char optionrom_version[64];
757 char firmware_version[64];
758 char model[256];
759 char model_description[256];
760 };
761 #endif
762
763 #define MAX_PHYS_ITEM_ID_LEN 32
764
765 /* This structure holds a unique identifier to identify some
766 * physical item (port for example) used by a netdevice.
767 */
768 struct netdev_phys_item_id {
769 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770 unsigned char id_len;
771 };
772
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774 struct netdev_phys_item_id *b)
775 {
776 return a->id_len == b->id_len &&
777 memcmp(a->id, b->id, a->id_len) == 0;
778 }
779
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781 struct sk_buff *skb);
782
783 /* These structures hold the attributes of qdisc and classifiers
784 * that are being passed to the netdevice through the setup_tc op.
785 */
786 enum {
787 TC_SETUP_MQPRIO,
788 TC_SETUP_CLSU32,
789 TC_SETUP_CLSFLOWER,
790 };
791
792 struct tc_cls_u32_offload;
793
794 struct tc_to_netdev {
795 unsigned int type;
796 union {
797 u8 tc;
798 struct tc_cls_u32_offload *cls_u32;
799 struct tc_cls_flower_offload *cls_flower;
800 };
801 };
802
803
804 /*
805 * This structure defines the management hooks for network devices.
806 * The following hooks can be defined; unless noted otherwise, they are
807 * optional and can be filled with a null pointer.
808 *
809 * int (*ndo_init)(struct net_device *dev);
810 * This function is called once when a network device is registered.
811 * The network device can use this for any late stage initialization
812 * or semantic validation. It can fail with an error code which will
813 * be propagated back to register_netdev.
814 *
815 * void (*ndo_uninit)(struct net_device *dev);
816 * This function is called when device is unregistered or when registration
817 * fails. It is not called if init fails.
818 *
819 * int (*ndo_open)(struct net_device *dev);
820 * This function is called when a network device transitions to the up
821 * state.
822 *
823 * int (*ndo_stop)(struct net_device *dev);
824 * This function is called when a network device transitions to the down
825 * state.
826 *
827 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
828 * struct net_device *dev);
829 * Called when a packet needs to be transmitted.
830 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
831 * the queue before that can happen; it's for obsolete devices and weird
832 * corner cases, but the stack really does a non-trivial amount
833 * of useless work if you return NETDEV_TX_BUSY.
834 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
835 * Required; cannot be NULL.
836 *
837 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
838 * netdev_features_t features);
839 * Adjusts the requested feature flags according to device-specific
840 * constraints, and returns the resulting flags. Must not modify
841 * the device state.
842 *
843 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
844 * void *accel_priv, select_queue_fallback_t fallback);
845 * Called to decide which queue to use when device supports multiple
846 * transmit queues.
847 *
848 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
849 * This function is called to allow device receiver to make
850 * changes to configuration when multicast or promiscuous is enabled.
851 *
852 * void (*ndo_set_rx_mode)(struct net_device *dev);
853 * This function is called device changes address list filtering.
854 * If driver handles unicast address filtering, it should set
855 * IFF_UNICAST_FLT in its priv_flags.
856 *
857 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
858 * This function is called when the Media Access Control address
859 * needs to be changed. If this interface is not defined, the
860 * MAC address can not be changed.
861 *
862 * int (*ndo_validate_addr)(struct net_device *dev);
863 * Test if Media Access Control address is valid for the device.
864 *
865 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
866 * Called when a user requests an ioctl which can't be handled by
867 * the generic interface code. If not defined ioctls return
868 * not supported error code.
869 *
870 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
871 * Used to set network devices bus interface parameters. This interface
872 * is retained for legacy reasons; new devices should use the bus
873 * interface (PCI) for low level management.
874 *
875 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
876 * Called when a user wants to change the Maximum Transfer Unit
877 * of a device. If not defined, any request to change MTU will
878 * will return an error.
879 *
880 * void (*ndo_tx_timeout)(struct net_device *dev);
881 * Callback used when the transmitter has not made any progress
882 * for dev->watchdog ticks.
883 *
884 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
885 * struct rtnl_link_stats64 *storage);
886 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
887 * Called when a user wants to get the network device usage
888 * statistics. Drivers must do one of the following:
889 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
890 * rtnl_link_stats64 structure passed by the caller.
891 * 2. Define @ndo_get_stats to update a net_device_stats structure
892 * (which should normally be dev->stats) and return a pointer to
893 * it. The structure may be changed asynchronously only if each
894 * field is written atomically.
895 * 3. Update dev->stats asynchronously and atomically, and define
896 * neither operation.
897 *
898 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
899 * If device supports VLAN filtering this function is called when a
900 * VLAN id is registered.
901 *
902 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
903 * If device supports VLAN filtering this function is called when a
904 * VLAN id is unregistered.
905 *
906 * void (*ndo_poll_controller)(struct net_device *dev);
907 *
908 * SR-IOV management functions.
909 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
910 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
911 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
912 * int max_tx_rate);
913 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
914 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
915 * int (*ndo_get_vf_config)(struct net_device *dev,
916 * int vf, struct ifla_vf_info *ivf);
917 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
918 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
919 * struct nlattr *port[]);
920 *
921 * Enable or disable the VF ability to query its RSS Redirection Table and
922 * Hash Key. This is needed since on some devices VF share this information
923 * with PF and querying it may introduce a theoretical security risk.
924 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
925 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
926 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
927 * Called to setup 'tc' number of traffic classes in the net device. This
928 * is always called from the stack with the rtnl lock held and netif tx
929 * queues stopped. This allows the netdevice to perform queue management
930 * safely.
931 *
932 * Fiber Channel over Ethernet (FCoE) offload functions.
933 * int (*ndo_fcoe_enable)(struct net_device *dev);
934 * Called when the FCoE protocol stack wants to start using LLD for FCoE
935 * so the underlying device can perform whatever needed configuration or
936 * initialization to support acceleration of FCoE traffic.
937 *
938 * int (*ndo_fcoe_disable)(struct net_device *dev);
939 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
940 * so the underlying device can perform whatever needed clean-ups to
941 * stop supporting acceleration of FCoE traffic.
942 *
943 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
944 * struct scatterlist *sgl, unsigned int sgc);
945 * Called when the FCoE Initiator wants to initialize an I/O that
946 * is a possible candidate for Direct Data Placement (DDP). The LLD can
947 * perform necessary setup and returns 1 to indicate the device is set up
948 * successfully to perform DDP on this I/O, otherwise this returns 0.
949 *
950 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
951 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
952 * indicated by the FC exchange id 'xid', so the underlying device can
953 * clean up and reuse resources for later DDP requests.
954 *
955 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
956 * struct scatterlist *sgl, unsigned int sgc);
957 * Called when the FCoE Target wants to initialize an I/O that
958 * is a possible candidate for Direct Data Placement (DDP). The LLD can
959 * perform necessary setup and returns 1 to indicate the device is set up
960 * successfully to perform DDP on this I/O, otherwise this returns 0.
961 *
962 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
963 * struct netdev_fcoe_hbainfo *hbainfo);
964 * Called when the FCoE Protocol stack wants information on the underlying
965 * device. This information is utilized by the FCoE protocol stack to
966 * register attributes with Fiber Channel management service as per the
967 * FC-GS Fabric Device Management Information(FDMI) specification.
968 *
969 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
970 * Called when the underlying device wants to override default World Wide
971 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
972 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
973 * protocol stack to use.
974 *
975 * RFS acceleration.
976 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
977 * u16 rxq_index, u32 flow_id);
978 * Set hardware filter for RFS. rxq_index is the target queue index;
979 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
980 * Return the filter ID on success, or a negative error code.
981 *
982 * Slave management functions (for bridge, bonding, etc).
983 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
984 * Called to make another netdev an underling.
985 *
986 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
987 * Called to release previously enslaved netdev.
988 *
989 * Feature/offload setting functions.
990 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
991 * Called to update device configuration to new features. Passed
992 * feature set might be less than what was returned by ndo_fix_features()).
993 * Must return >0 or -errno if it changed dev->features itself.
994 *
995 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
996 * struct net_device *dev,
997 * const unsigned char *addr, u16 vid, u16 flags)
998 * Adds an FDB entry to dev for addr.
999 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1000 * struct net_device *dev,
1001 * const unsigned char *addr, u16 vid)
1002 * Deletes the FDB entry from dev coresponding to addr.
1003 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1004 * struct net_device *dev, struct net_device *filter_dev,
1005 * int idx)
1006 * Used to add FDB entries to dump requests. Implementers should add
1007 * entries to skb and update idx with the number of entries.
1008 *
1009 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1010 * u16 flags)
1011 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1012 * struct net_device *dev, u32 filter_mask,
1013 * int nlflags)
1014 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1015 * u16 flags);
1016 *
1017 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1018 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1019 * which do not represent real hardware may define this to allow their
1020 * userspace components to manage their virtual carrier state. Devices
1021 * that determine carrier state from physical hardware properties (eg
1022 * network cables) or protocol-dependent mechanisms (eg
1023 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1024 *
1025 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1026 * struct netdev_phys_item_id *ppid);
1027 * Called to get ID of physical port of this device. If driver does
1028 * not implement this, it is assumed that the hw is not able to have
1029 * multiple net devices on single physical port.
1030 *
1031 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1032 * sa_family_t sa_family, __be16 port);
1033 * Called by vxlan to notify a driver about the UDP port and socket
1034 * address family that vxlan is listening to. It is called only when
1035 * a new port starts listening. The operation is protected by the
1036 * vxlan_net->sock_lock.
1037 *
1038 * void (*ndo_add_geneve_port)(struct net_device *dev,
1039 * sa_family_t sa_family, __be16 port);
1040 * Called by geneve to notify a driver about the UDP port and socket
1041 * address family that geneve is listnening to. It is called only when
1042 * a new port starts listening. The operation is protected by the
1043 * geneve_net->sock_lock.
1044 *
1045 * void (*ndo_del_geneve_port)(struct net_device *dev,
1046 * sa_family_t sa_family, __be16 port);
1047 * Called by geneve to notify the driver about a UDP port and socket
1048 * address family that geneve is not listening to anymore. The operation
1049 * is protected by the geneve_net->sock_lock.
1050 *
1051 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1052 * sa_family_t sa_family, __be16 port);
1053 * Called by vxlan to notify the driver about a UDP port and socket
1054 * address family that vxlan is not listening to anymore. The operation
1055 * is protected by the vxlan_net->sock_lock.
1056 *
1057 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1058 * struct net_device *dev)
1059 * Called by upper layer devices to accelerate switching or other
1060 * station functionality into hardware. 'pdev is the lowerdev
1061 * to use for the offload and 'dev' is the net device that will
1062 * back the offload. Returns a pointer to the private structure
1063 * the upper layer will maintain.
1064 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1065 * Called by upper layer device to delete the station created
1066 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1067 * the station and priv is the structure returned by the add
1068 * operation.
1069 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1070 * struct net_device *dev,
1071 * void *priv);
1072 * Callback to use for xmit over the accelerated station. This
1073 * is used in place of ndo_start_xmit on accelerated net
1074 * devices.
1075 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1076 * struct net_device *dev
1077 * netdev_features_t features);
1078 * Called by core transmit path to determine if device is capable of
1079 * performing offload operations on a given packet. This is to give
1080 * the device an opportunity to implement any restrictions that cannot
1081 * be otherwise expressed by feature flags. The check is called with
1082 * the set of features that the stack has calculated and it returns
1083 * those the driver believes to be appropriate.
1084 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1085 * int queue_index, u32 maxrate);
1086 * Called when a user wants to set a max-rate limitation of specific
1087 * TX queue.
1088 * int (*ndo_get_iflink)(const struct net_device *dev);
1089 * Called to get the iflink value of this device.
1090 * void (*ndo_change_proto_down)(struct net_device *dev,
1091 * bool proto_down);
1092 * This function is used to pass protocol port error state information
1093 * to the switch driver. The switch driver can react to the proto_down
1094 * by doing a phys down on the associated switch port.
1095 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1096 * This function is used to get egress tunnel information for given skb.
1097 * This is useful for retrieving outer tunnel header parameters while
1098 * sampling packet.
1099 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1100 * This function is used to specify the headroom that the skb must
1101 * consider when allocation skb during packet reception. Setting
1102 * appropriate rx headroom value allows avoiding skb head copy on
1103 * forward. Setting a negative value resets the rx headroom to the
1104 * default value.
1105 *
1106 */
1107 struct net_device_ops {
1108 int (*ndo_init)(struct net_device *dev);
1109 void (*ndo_uninit)(struct net_device *dev);
1110 int (*ndo_open)(struct net_device *dev);
1111 int (*ndo_stop)(struct net_device *dev);
1112 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1113 struct net_device *dev);
1114 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1115 struct net_device *dev,
1116 netdev_features_t features);
1117 u16 (*ndo_select_queue)(struct net_device *dev,
1118 struct sk_buff *skb,
1119 void *accel_priv,
1120 select_queue_fallback_t fallback);
1121 void (*ndo_change_rx_flags)(struct net_device *dev,
1122 int flags);
1123 void (*ndo_set_rx_mode)(struct net_device *dev);
1124 int (*ndo_set_mac_address)(struct net_device *dev,
1125 void *addr);
1126 int (*ndo_validate_addr)(struct net_device *dev);
1127 int (*ndo_do_ioctl)(struct net_device *dev,
1128 struct ifreq *ifr, int cmd);
1129 int (*ndo_set_config)(struct net_device *dev,
1130 struct ifmap *map);
1131 int (*ndo_change_mtu)(struct net_device *dev,
1132 int new_mtu);
1133 int (*ndo_neigh_setup)(struct net_device *dev,
1134 struct neigh_parms *);
1135 void (*ndo_tx_timeout) (struct net_device *dev);
1136
1137 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1138 struct rtnl_link_stats64 *storage);
1139 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1140
1141 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1142 __be16 proto, u16 vid);
1143 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1144 __be16 proto, u16 vid);
1145 #ifdef CONFIG_NET_POLL_CONTROLLER
1146 void (*ndo_poll_controller)(struct net_device *dev);
1147 int (*ndo_netpoll_setup)(struct net_device *dev,
1148 struct netpoll_info *info);
1149 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1150 #endif
1151 #ifdef CONFIG_NET_RX_BUSY_POLL
1152 int (*ndo_busy_poll)(struct napi_struct *dev);
1153 #endif
1154 int (*ndo_set_vf_mac)(struct net_device *dev,
1155 int queue, u8 *mac);
1156 int (*ndo_set_vf_vlan)(struct net_device *dev,
1157 int queue, u16 vlan, u8 qos);
1158 int (*ndo_set_vf_rate)(struct net_device *dev,
1159 int vf, int min_tx_rate,
1160 int max_tx_rate);
1161 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1162 int vf, bool setting);
1163 int (*ndo_set_vf_trust)(struct net_device *dev,
1164 int vf, bool setting);
1165 int (*ndo_get_vf_config)(struct net_device *dev,
1166 int vf,
1167 struct ifla_vf_info *ivf);
1168 int (*ndo_set_vf_link_state)(struct net_device *dev,
1169 int vf, int link_state);
1170 int (*ndo_get_vf_stats)(struct net_device *dev,
1171 int vf,
1172 struct ifla_vf_stats
1173 *vf_stats);
1174 int (*ndo_set_vf_port)(struct net_device *dev,
1175 int vf,
1176 struct nlattr *port[]);
1177 int (*ndo_get_vf_port)(struct net_device *dev,
1178 int vf, struct sk_buff *skb);
1179 int (*ndo_set_vf_guid)(struct net_device *dev,
1180 int vf, u64 guid,
1181 int guid_type);
1182 int (*ndo_set_vf_rss_query_en)(
1183 struct net_device *dev,
1184 int vf, bool setting);
1185 int (*ndo_setup_tc)(struct net_device *dev,
1186 u32 handle,
1187 __be16 protocol,
1188 struct tc_to_netdev *tc);
1189 #if IS_ENABLED(CONFIG_FCOE)
1190 int (*ndo_fcoe_enable)(struct net_device *dev);
1191 int (*ndo_fcoe_disable)(struct net_device *dev);
1192 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1193 u16 xid,
1194 struct scatterlist *sgl,
1195 unsigned int sgc);
1196 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1197 u16 xid);
1198 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1199 u16 xid,
1200 struct scatterlist *sgl,
1201 unsigned int sgc);
1202 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1203 struct netdev_fcoe_hbainfo *hbainfo);
1204 #endif
1205
1206 #if IS_ENABLED(CONFIG_LIBFCOE)
1207 #define NETDEV_FCOE_WWNN 0
1208 #define NETDEV_FCOE_WWPN 1
1209 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1210 u64 *wwn, int type);
1211 #endif
1212
1213 #ifdef CONFIG_RFS_ACCEL
1214 int (*ndo_rx_flow_steer)(struct net_device *dev,
1215 const struct sk_buff *skb,
1216 u16 rxq_index,
1217 u32 flow_id);
1218 #endif
1219 int (*ndo_add_slave)(struct net_device *dev,
1220 struct net_device *slave_dev);
1221 int (*ndo_del_slave)(struct net_device *dev,
1222 struct net_device *slave_dev);
1223 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1224 netdev_features_t features);
1225 int (*ndo_set_features)(struct net_device *dev,
1226 netdev_features_t features);
1227 int (*ndo_neigh_construct)(struct neighbour *n);
1228 void (*ndo_neigh_destroy)(struct neighbour *n);
1229
1230 int (*ndo_fdb_add)(struct ndmsg *ndm,
1231 struct nlattr *tb[],
1232 struct net_device *dev,
1233 const unsigned char *addr,
1234 u16 vid,
1235 u16 flags);
1236 int (*ndo_fdb_del)(struct ndmsg *ndm,
1237 struct nlattr *tb[],
1238 struct net_device *dev,
1239 const unsigned char *addr,
1240 u16 vid);
1241 int (*ndo_fdb_dump)(struct sk_buff *skb,
1242 struct netlink_callback *cb,
1243 struct net_device *dev,
1244 struct net_device *filter_dev,
1245 int idx);
1246
1247 int (*ndo_bridge_setlink)(struct net_device *dev,
1248 struct nlmsghdr *nlh,
1249 u16 flags);
1250 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1251 u32 pid, u32 seq,
1252 struct net_device *dev,
1253 u32 filter_mask,
1254 int nlflags);
1255 int (*ndo_bridge_dellink)(struct net_device *dev,
1256 struct nlmsghdr *nlh,
1257 u16 flags);
1258 int (*ndo_change_carrier)(struct net_device *dev,
1259 bool new_carrier);
1260 int (*ndo_get_phys_port_id)(struct net_device *dev,
1261 struct netdev_phys_item_id *ppid);
1262 int (*ndo_get_phys_port_name)(struct net_device *dev,
1263 char *name, size_t len);
1264 void (*ndo_add_vxlan_port)(struct net_device *dev,
1265 sa_family_t sa_family,
1266 __be16 port);
1267 void (*ndo_del_vxlan_port)(struct net_device *dev,
1268 sa_family_t sa_family,
1269 __be16 port);
1270 void (*ndo_add_geneve_port)(struct net_device *dev,
1271 sa_family_t sa_family,
1272 __be16 port);
1273 void (*ndo_del_geneve_port)(struct net_device *dev,
1274 sa_family_t sa_family,
1275 __be16 port);
1276 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1277 struct net_device *dev);
1278 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1279 void *priv);
1280
1281 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1282 struct net_device *dev,
1283 void *priv);
1284 int (*ndo_get_lock_subclass)(struct net_device *dev);
1285 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1286 int queue_index,
1287 u32 maxrate);
1288 int (*ndo_get_iflink)(const struct net_device *dev);
1289 int (*ndo_change_proto_down)(struct net_device *dev,
1290 bool proto_down);
1291 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1292 struct sk_buff *skb);
1293 void (*ndo_set_rx_headroom)(struct net_device *dev,
1294 int needed_headroom);
1295 };
1296
1297 /**
1298 * enum net_device_priv_flags - &struct net_device priv_flags
1299 *
1300 * These are the &struct net_device, they are only set internally
1301 * by drivers and used in the kernel. These flags are invisible to
1302 * userspace; this means that the order of these flags can change
1303 * during any kernel release.
1304 *
1305 * You should have a pretty good reason to be extending these flags.
1306 *
1307 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1308 * @IFF_EBRIDGE: Ethernet bridging device
1309 * @IFF_BONDING: bonding master or slave
1310 * @IFF_ISATAP: ISATAP interface (RFC4214)
1311 * @IFF_WAN_HDLC: WAN HDLC device
1312 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1313 * release skb->dst
1314 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1315 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1316 * @IFF_MACVLAN_PORT: device used as macvlan port
1317 * @IFF_BRIDGE_PORT: device used as bridge port
1318 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1319 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1320 * @IFF_UNICAST_FLT: Supports unicast filtering
1321 * @IFF_TEAM_PORT: device used as team port
1322 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1323 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1324 * change when it's running
1325 * @IFF_MACVLAN: Macvlan device
1326 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1327 * underlying stacked devices
1328 * @IFF_IPVLAN_MASTER: IPvlan master device
1329 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1330 * @IFF_L3MDEV_MASTER: device is an L3 master device
1331 * @IFF_NO_QUEUE: device can run without qdisc attached
1332 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1333 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1334 * @IFF_TEAM: device is a team device
1335 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1336 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1337 * entity (i.e. the master device for bridged veth)
1338 * @IFF_MACSEC: device is a MACsec device
1339 */
1340 enum netdev_priv_flags {
1341 IFF_802_1Q_VLAN = 1<<0,
1342 IFF_EBRIDGE = 1<<1,
1343 IFF_BONDING = 1<<2,
1344 IFF_ISATAP = 1<<3,
1345 IFF_WAN_HDLC = 1<<4,
1346 IFF_XMIT_DST_RELEASE = 1<<5,
1347 IFF_DONT_BRIDGE = 1<<6,
1348 IFF_DISABLE_NETPOLL = 1<<7,
1349 IFF_MACVLAN_PORT = 1<<8,
1350 IFF_BRIDGE_PORT = 1<<9,
1351 IFF_OVS_DATAPATH = 1<<10,
1352 IFF_TX_SKB_SHARING = 1<<11,
1353 IFF_UNICAST_FLT = 1<<12,
1354 IFF_TEAM_PORT = 1<<13,
1355 IFF_SUPP_NOFCS = 1<<14,
1356 IFF_LIVE_ADDR_CHANGE = 1<<15,
1357 IFF_MACVLAN = 1<<16,
1358 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1359 IFF_IPVLAN_MASTER = 1<<18,
1360 IFF_IPVLAN_SLAVE = 1<<19,
1361 IFF_L3MDEV_MASTER = 1<<20,
1362 IFF_NO_QUEUE = 1<<21,
1363 IFF_OPENVSWITCH = 1<<22,
1364 IFF_L3MDEV_SLAVE = 1<<23,
1365 IFF_TEAM = 1<<24,
1366 IFF_RXFH_CONFIGURED = 1<<25,
1367 IFF_PHONY_HEADROOM = 1<<26,
1368 IFF_MACSEC = 1<<27,
1369 };
1370
1371 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1372 #define IFF_EBRIDGE IFF_EBRIDGE
1373 #define IFF_BONDING IFF_BONDING
1374 #define IFF_ISATAP IFF_ISATAP
1375 #define IFF_WAN_HDLC IFF_WAN_HDLC
1376 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1377 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1378 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1379 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1380 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1381 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1382 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1383 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1384 #define IFF_TEAM_PORT IFF_TEAM_PORT
1385 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1386 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1387 #define IFF_MACVLAN IFF_MACVLAN
1388 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1389 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1390 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1391 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1392 #define IFF_NO_QUEUE IFF_NO_QUEUE
1393 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1394 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1395 #define IFF_TEAM IFF_TEAM
1396 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1397 #define IFF_MACSEC IFF_MACSEC
1398
1399 /**
1400 * struct net_device - The DEVICE structure.
1401 * Actually, this whole structure is a big mistake. It mixes I/O
1402 * data with strictly "high-level" data, and it has to know about
1403 * almost every data structure used in the INET module.
1404 *
1405 * @name: This is the first field of the "visible" part of this structure
1406 * (i.e. as seen by users in the "Space.c" file). It is the name
1407 * of the interface.
1408 *
1409 * @name_hlist: Device name hash chain, please keep it close to name[]
1410 * @ifalias: SNMP alias
1411 * @mem_end: Shared memory end
1412 * @mem_start: Shared memory start
1413 * @base_addr: Device I/O address
1414 * @irq: Device IRQ number
1415 *
1416 * @carrier_changes: Stats to monitor carrier on<->off transitions
1417 *
1418 * @state: Generic network queuing layer state, see netdev_state_t
1419 * @dev_list: The global list of network devices
1420 * @napi_list: List entry used for polling NAPI devices
1421 * @unreg_list: List entry when we are unregistering the
1422 * device; see the function unregister_netdev
1423 * @close_list: List entry used when we are closing the device
1424 * @ptype_all: Device-specific packet handlers for all protocols
1425 * @ptype_specific: Device-specific, protocol-specific packet handlers
1426 *
1427 * @adj_list: Directly linked devices, like slaves for bonding
1428 * @all_adj_list: All linked devices, *including* neighbours
1429 * @features: Currently active device features
1430 * @hw_features: User-changeable features
1431 *
1432 * @wanted_features: User-requested features
1433 * @vlan_features: Mask of features inheritable by VLAN devices
1434 *
1435 * @hw_enc_features: Mask of features inherited by encapsulating devices
1436 * This field indicates what encapsulation
1437 * offloads the hardware is capable of doing,
1438 * and drivers will need to set them appropriately.
1439 *
1440 * @mpls_features: Mask of features inheritable by MPLS
1441 *
1442 * @ifindex: interface index
1443 * @group: The group the device belongs to
1444 *
1445 * @stats: Statistics struct, which was left as a legacy, use
1446 * rtnl_link_stats64 instead
1447 *
1448 * @rx_dropped: Dropped packets by core network,
1449 * do not use this in drivers
1450 * @tx_dropped: Dropped packets by core network,
1451 * do not use this in drivers
1452 * @rx_nohandler: nohandler dropped packets by core network on
1453 * inactive devices, do not use this in drivers
1454 *
1455 * @wireless_handlers: List of functions to handle Wireless Extensions,
1456 * instead of ioctl,
1457 * see <net/iw_handler.h> for details.
1458 * @wireless_data: Instance data managed by the core of wireless extensions
1459 *
1460 * @netdev_ops: Includes several pointers to callbacks,
1461 * if one wants to override the ndo_*() functions
1462 * @ethtool_ops: Management operations
1463 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1464 * of Layer 2 headers.
1465 *
1466 * @flags: Interface flags (a la BSD)
1467 * @priv_flags: Like 'flags' but invisible to userspace,
1468 * see if.h for the definitions
1469 * @gflags: Global flags ( kept as legacy )
1470 * @padded: How much padding added by alloc_netdev()
1471 * @operstate: RFC2863 operstate
1472 * @link_mode: Mapping policy to operstate
1473 * @if_port: Selectable AUI, TP, ...
1474 * @dma: DMA channel
1475 * @mtu: Interface MTU value
1476 * @type: Interface hardware type
1477 * @hard_header_len: Maximum hardware header length.
1478 *
1479 * @needed_headroom: Extra headroom the hardware may need, but not in all
1480 * cases can this be guaranteed
1481 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1482 * cases can this be guaranteed. Some cases also use
1483 * LL_MAX_HEADER instead to allocate the skb
1484 *
1485 * interface address info:
1486 *
1487 * @perm_addr: Permanent hw address
1488 * @addr_assign_type: Hw address assignment type
1489 * @addr_len: Hardware address length
1490 * @neigh_priv_len; Used in neigh_alloc(),
1491 * initialized only in atm/clip.c
1492 * @dev_id: Used to differentiate devices that share
1493 * the same link layer address
1494 * @dev_port: Used to differentiate devices that share
1495 * the same function
1496 * @addr_list_lock: XXX: need comments on this one
1497 * @uc_promisc: Counter that indicates promiscuous mode
1498 * has been enabled due to the need to listen to
1499 * additional unicast addresses in a device that
1500 * does not implement ndo_set_rx_mode()
1501 * @uc: unicast mac addresses
1502 * @mc: multicast mac addresses
1503 * @dev_addrs: list of device hw addresses
1504 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1505 * @promiscuity: Number of times the NIC is told to work in
1506 * promiscuous mode; if it becomes 0 the NIC will
1507 * exit promiscuous mode
1508 * @allmulti: Counter, enables or disables allmulticast mode
1509 *
1510 * @vlan_info: VLAN info
1511 * @dsa_ptr: dsa specific data
1512 * @tipc_ptr: TIPC specific data
1513 * @atalk_ptr: AppleTalk link
1514 * @ip_ptr: IPv4 specific data
1515 * @dn_ptr: DECnet specific data
1516 * @ip6_ptr: IPv6 specific data
1517 * @ax25_ptr: AX.25 specific data
1518 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1519 *
1520 * @last_rx: Time of last Rx
1521 * @dev_addr: Hw address (before bcast,
1522 * because most packets are unicast)
1523 *
1524 * @_rx: Array of RX queues
1525 * @num_rx_queues: Number of RX queues
1526 * allocated at register_netdev() time
1527 * @real_num_rx_queues: Number of RX queues currently active in device
1528 *
1529 * @rx_handler: handler for received packets
1530 * @rx_handler_data: XXX: need comments on this one
1531 * @ingress_queue: XXX: need comments on this one
1532 * @broadcast: hw bcast address
1533 *
1534 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1535 * indexed by RX queue number. Assigned by driver.
1536 * This must only be set if the ndo_rx_flow_steer
1537 * operation is defined
1538 * @index_hlist: Device index hash chain
1539 *
1540 * @_tx: Array of TX queues
1541 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1542 * @real_num_tx_queues: Number of TX queues currently active in device
1543 * @qdisc: Root qdisc from userspace point of view
1544 * @tx_queue_len: Max frames per queue allowed
1545 * @tx_global_lock: XXX: need comments on this one
1546 *
1547 * @xps_maps: XXX: need comments on this one
1548 *
1549 * @offload_fwd_mark: Offload device fwding mark
1550 *
1551 * @trans_start: Time (in jiffies) of last Tx
1552 * @watchdog_timeo: Represents the timeout that is used by
1553 * the watchdog (see dev_watchdog())
1554 * @watchdog_timer: List of timers
1555 *
1556 * @pcpu_refcnt: Number of references to this device
1557 * @todo_list: Delayed register/unregister
1558 * @link_watch_list: XXX: need comments on this one
1559 *
1560 * @reg_state: Register/unregister state machine
1561 * @dismantle: Device is going to be freed
1562 * @rtnl_link_state: This enum represents the phases of creating
1563 * a new link
1564 *
1565 * @destructor: Called from unregister,
1566 * can be used to call free_netdev
1567 * @npinfo: XXX: need comments on this one
1568 * @nd_net: Network namespace this network device is inside
1569 *
1570 * @ml_priv: Mid-layer private
1571 * @lstats: Loopback statistics
1572 * @tstats: Tunnel statistics
1573 * @dstats: Dummy statistics
1574 * @vstats: Virtual ethernet statistics
1575 *
1576 * @garp_port: GARP
1577 * @mrp_port: MRP
1578 *
1579 * @dev: Class/net/name entry
1580 * @sysfs_groups: Space for optional device, statistics and wireless
1581 * sysfs groups
1582 *
1583 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1584 * @rtnl_link_ops: Rtnl_link_ops
1585 *
1586 * @gso_max_size: Maximum size of generic segmentation offload
1587 * @gso_max_segs: Maximum number of segments that can be passed to the
1588 * NIC for GSO
1589 * @gso_min_segs: Minimum number of segments that can be passed to the
1590 * NIC for GSO
1591 *
1592 * @dcbnl_ops: Data Center Bridging netlink ops
1593 * @num_tc: Number of traffic classes in the net device
1594 * @tc_to_txq: XXX: need comments on this one
1595 * @prio_tc_map XXX: need comments on this one
1596 *
1597 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1598 *
1599 * @priomap: XXX: need comments on this one
1600 * @phydev: Physical device may attach itself
1601 * for hardware timestamping
1602 *
1603 * @qdisc_tx_busylock: XXX: need comments on this one
1604 *
1605 * @proto_down: protocol port state information can be sent to the
1606 * switch driver and used to set the phys state of the
1607 * switch port.
1608 *
1609 * FIXME: cleanup struct net_device such that network protocol info
1610 * moves out.
1611 */
1612
1613 struct net_device {
1614 char name[IFNAMSIZ];
1615 struct hlist_node name_hlist;
1616 char *ifalias;
1617 /*
1618 * I/O specific fields
1619 * FIXME: Merge these and struct ifmap into one
1620 */
1621 unsigned long mem_end;
1622 unsigned long mem_start;
1623 unsigned long base_addr;
1624 int irq;
1625
1626 atomic_t carrier_changes;
1627
1628 /*
1629 * Some hardware also needs these fields (state,dev_list,
1630 * napi_list,unreg_list,close_list) but they are not
1631 * part of the usual set specified in Space.c.
1632 */
1633
1634 unsigned long state;
1635
1636 struct list_head dev_list;
1637 struct list_head napi_list;
1638 struct list_head unreg_list;
1639 struct list_head close_list;
1640 struct list_head ptype_all;
1641 struct list_head ptype_specific;
1642
1643 struct {
1644 struct list_head upper;
1645 struct list_head lower;
1646 } adj_list;
1647
1648 struct {
1649 struct list_head upper;
1650 struct list_head lower;
1651 } all_adj_list;
1652
1653 netdev_features_t features;
1654 netdev_features_t hw_features;
1655 netdev_features_t wanted_features;
1656 netdev_features_t vlan_features;
1657 netdev_features_t hw_enc_features;
1658 netdev_features_t mpls_features;
1659
1660 int ifindex;
1661 int group;
1662
1663 struct net_device_stats stats;
1664
1665 atomic_long_t rx_dropped;
1666 atomic_long_t tx_dropped;
1667 atomic_long_t rx_nohandler;
1668
1669 #ifdef CONFIG_WIRELESS_EXT
1670 const struct iw_handler_def *wireless_handlers;
1671 struct iw_public_data *wireless_data;
1672 #endif
1673 const struct net_device_ops *netdev_ops;
1674 const struct ethtool_ops *ethtool_ops;
1675 #ifdef CONFIG_NET_SWITCHDEV
1676 const struct switchdev_ops *switchdev_ops;
1677 #endif
1678 #ifdef CONFIG_NET_L3_MASTER_DEV
1679 const struct l3mdev_ops *l3mdev_ops;
1680 #endif
1681
1682 const struct header_ops *header_ops;
1683
1684 unsigned int flags;
1685 unsigned int priv_flags;
1686
1687 unsigned short gflags;
1688 unsigned short padded;
1689
1690 unsigned char operstate;
1691 unsigned char link_mode;
1692
1693 unsigned char if_port;
1694 unsigned char dma;
1695
1696 unsigned int mtu;
1697 unsigned short type;
1698 unsigned short hard_header_len;
1699
1700 unsigned short needed_headroom;
1701 unsigned short needed_tailroom;
1702
1703 /* Interface address info. */
1704 unsigned char perm_addr[MAX_ADDR_LEN];
1705 unsigned char addr_assign_type;
1706 unsigned char addr_len;
1707 unsigned short neigh_priv_len;
1708 unsigned short dev_id;
1709 unsigned short dev_port;
1710 spinlock_t addr_list_lock;
1711 unsigned char name_assign_type;
1712 bool uc_promisc;
1713 struct netdev_hw_addr_list uc;
1714 struct netdev_hw_addr_list mc;
1715 struct netdev_hw_addr_list dev_addrs;
1716
1717 #ifdef CONFIG_SYSFS
1718 struct kset *queues_kset;
1719 #endif
1720 unsigned int promiscuity;
1721 unsigned int allmulti;
1722
1723
1724 /* Protocol-specific pointers */
1725
1726 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1727 struct vlan_info __rcu *vlan_info;
1728 #endif
1729 #if IS_ENABLED(CONFIG_NET_DSA)
1730 struct dsa_switch_tree *dsa_ptr;
1731 #endif
1732 #if IS_ENABLED(CONFIG_TIPC)
1733 struct tipc_bearer __rcu *tipc_ptr;
1734 #endif
1735 void *atalk_ptr;
1736 struct in_device __rcu *ip_ptr;
1737 struct dn_dev __rcu *dn_ptr;
1738 struct inet6_dev __rcu *ip6_ptr;
1739 void *ax25_ptr;
1740 struct wireless_dev *ieee80211_ptr;
1741 struct wpan_dev *ieee802154_ptr;
1742 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1743 struct mpls_dev __rcu *mpls_ptr;
1744 #endif
1745
1746 /*
1747 * Cache lines mostly used on receive path (including eth_type_trans())
1748 */
1749 unsigned long last_rx;
1750
1751 /* Interface address info used in eth_type_trans() */
1752 unsigned char *dev_addr;
1753
1754 #ifdef CONFIG_SYSFS
1755 struct netdev_rx_queue *_rx;
1756
1757 unsigned int num_rx_queues;
1758 unsigned int real_num_rx_queues;
1759 #endif
1760
1761 unsigned long gro_flush_timeout;
1762 rx_handler_func_t __rcu *rx_handler;
1763 void __rcu *rx_handler_data;
1764
1765 #ifdef CONFIG_NET_CLS_ACT
1766 struct tcf_proto __rcu *ingress_cl_list;
1767 #endif
1768 struct netdev_queue __rcu *ingress_queue;
1769 #ifdef CONFIG_NETFILTER_INGRESS
1770 struct list_head nf_hooks_ingress;
1771 #endif
1772
1773 unsigned char broadcast[MAX_ADDR_LEN];
1774 #ifdef CONFIG_RFS_ACCEL
1775 struct cpu_rmap *rx_cpu_rmap;
1776 #endif
1777 struct hlist_node index_hlist;
1778
1779 /*
1780 * Cache lines mostly used on transmit path
1781 */
1782 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1783 unsigned int num_tx_queues;
1784 unsigned int real_num_tx_queues;
1785 struct Qdisc *qdisc;
1786 unsigned long tx_queue_len;
1787 spinlock_t tx_global_lock;
1788 int watchdog_timeo;
1789
1790 #ifdef CONFIG_XPS
1791 struct xps_dev_maps __rcu *xps_maps;
1792 #endif
1793 #ifdef CONFIG_NET_CLS_ACT
1794 struct tcf_proto __rcu *egress_cl_list;
1795 #endif
1796 #ifdef CONFIG_NET_SWITCHDEV
1797 u32 offload_fwd_mark;
1798 #endif
1799
1800 /* These may be needed for future network-power-down code. */
1801
1802 /*
1803 * trans_start here is expensive for high speed devices on SMP,
1804 * please use netdev_queue->trans_start instead.
1805 */
1806 unsigned long trans_start;
1807
1808 struct timer_list watchdog_timer;
1809
1810 int __percpu *pcpu_refcnt;
1811 struct list_head todo_list;
1812
1813 struct list_head link_watch_list;
1814
1815 enum { NETREG_UNINITIALIZED=0,
1816 NETREG_REGISTERED, /* completed register_netdevice */
1817 NETREG_UNREGISTERING, /* called unregister_netdevice */
1818 NETREG_UNREGISTERED, /* completed unregister todo */
1819 NETREG_RELEASED, /* called free_netdev */
1820 NETREG_DUMMY, /* dummy device for NAPI poll */
1821 } reg_state:8;
1822
1823 bool dismantle;
1824
1825 enum {
1826 RTNL_LINK_INITIALIZED,
1827 RTNL_LINK_INITIALIZING,
1828 } rtnl_link_state:16;
1829
1830 void (*destructor)(struct net_device *dev);
1831
1832 #ifdef CONFIG_NETPOLL
1833 struct netpoll_info __rcu *npinfo;
1834 #endif
1835
1836 possible_net_t nd_net;
1837
1838 /* mid-layer private */
1839 union {
1840 void *ml_priv;
1841 struct pcpu_lstats __percpu *lstats;
1842 struct pcpu_sw_netstats __percpu *tstats;
1843 struct pcpu_dstats __percpu *dstats;
1844 struct pcpu_vstats __percpu *vstats;
1845 };
1846
1847 struct garp_port __rcu *garp_port;
1848 struct mrp_port __rcu *mrp_port;
1849
1850 struct device dev;
1851 const struct attribute_group *sysfs_groups[4];
1852 const struct attribute_group *sysfs_rx_queue_group;
1853
1854 const struct rtnl_link_ops *rtnl_link_ops;
1855
1856 /* for setting kernel sock attribute on TCP connection setup */
1857 #define GSO_MAX_SIZE 65536
1858 unsigned int gso_max_size;
1859 #define GSO_MAX_SEGS 65535
1860 u16 gso_max_segs;
1861 u16 gso_min_segs;
1862 #ifdef CONFIG_DCB
1863 const struct dcbnl_rtnl_ops *dcbnl_ops;
1864 #endif
1865 u8 num_tc;
1866 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1867 u8 prio_tc_map[TC_BITMASK + 1];
1868
1869 #if IS_ENABLED(CONFIG_FCOE)
1870 unsigned int fcoe_ddp_xid;
1871 #endif
1872 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1873 struct netprio_map __rcu *priomap;
1874 #endif
1875 struct phy_device *phydev;
1876 struct lock_class_key *qdisc_tx_busylock;
1877 bool proto_down;
1878 };
1879 #define to_net_dev(d) container_of(d, struct net_device, dev)
1880
1881 #define NETDEV_ALIGN 32
1882
1883 static inline
1884 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1885 {
1886 return dev->prio_tc_map[prio & TC_BITMASK];
1887 }
1888
1889 static inline
1890 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1891 {
1892 if (tc >= dev->num_tc)
1893 return -EINVAL;
1894
1895 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1896 return 0;
1897 }
1898
1899 static inline
1900 void netdev_reset_tc(struct net_device *dev)
1901 {
1902 dev->num_tc = 0;
1903 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1904 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1905 }
1906
1907 static inline
1908 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1909 {
1910 if (tc >= dev->num_tc)
1911 return -EINVAL;
1912
1913 dev->tc_to_txq[tc].count = count;
1914 dev->tc_to_txq[tc].offset = offset;
1915 return 0;
1916 }
1917
1918 static inline
1919 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1920 {
1921 if (num_tc > TC_MAX_QUEUE)
1922 return -EINVAL;
1923
1924 dev->num_tc = num_tc;
1925 return 0;
1926 }
1927
1928 static inline
1929 int netdev_get_num_tc(struct net_device *dev)
1930 {
1931 return dev->num_tc;
1932 }
1933
1934 static inline
1935 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1936 unsigned int index)
1937 {
1938 return &dev->_tx[index];
1939 }
1940
1941 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1942 const struct sk_buff *skb)
1943 {
1944 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1945 }
1946
1947 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1948 void (*f)(struct net_device *,
1949 struct netdev_queue *,
1950 void *),
1951 void *arg)
1952 {
1953 unsigned int i;
1954
1955 for (i = 0; i < dev->num_tx_queues; i++)
1956 f(dev, &dev->_tx[i], arg);
1957 }
1958
1959 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1960 struct sk_buff *skb,
1961 void *accel_priv);
1962
1963 /* returns the headroom that the master device needs to take in account
1964 * when forwarding to this dev
1965 */
1966 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1967 {
1968 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1969 }
1970
1971 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1972 {
1973 if (dev->netdev_ops->ndo_set_rx_headroom)
1974 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1975 }
1976
1977 /* set the device rx headroom to the dev's default */
1978 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1979 {
1980 netdev_set_rx_headroom(dev, -1);
1981 }
1982
1983 /*
1984 * Net namespace inlines
1985 */
1986 static inline
1987 struct net *dev_net(const struct net_device *dev)
1988 {
1989 return read_pnet(&dev->nd_net);
1990 }
1991
1992 static inline
1993 void dev_net_set(struct net_device *dev, struct net *net)
1994 {
1995 write_pnet(&dev->nd_net, net);
1996 }
1997
1998 static inline bool netdev_uses_dsa(struct net_device *dev)
1999 {
2000 #if IS_ENABLED(CONFIG_NET_DSA)
2001 if (dev->dsa_ptr != NULL)
2002 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2003 #endif
2004 return false;
2005 }
2006
2007 /**
2008 * netdev_priv - access network device private data
2009 * @dev: network device
2010 *
2011 * Get network device private data
2012 */
2013 static inline void *netdev_priv(const struct net_device *dev)
2014 {
2015 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2016 }
2017
2018 /* Set the sysfs physical device reference for the network logical device
2019 * if set prior to registration will cause a symlink during initialization.
2020 */
2021 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2022
2023 /* Set the sysfs device type for the network logical device to allow
2024 * fine-grained identification of different network device types. For
2025 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2026 */
2027 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2028
2029 /* Default NAPI poll() weight
2030 * Device drivers are strongly advised to not use bigger value
2031 */
2032 #define NAPI_POLL_WEIGHT 64
2033
2034 /**
2035 * netif_napi_add - initialize a NAPI context
2036 * @dev: network device
2037 * @napi: NAPI context
2038 * @poll: polling function
2039 * @weight: default weight
2040 *
2041 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2042 * *any* of the other NAPI-related functions.
2043 */
2044 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2045 int (*poll)(struct napi_struct *, int), int weight);
2046
2047 /**
2048 * netif_tx_napi_add - initialize a NAPI context
2049 * @dev: network device
2050 * @napi: NAPI context
2051 * @poll: polling function
2052 * @weight: default weight
2053 *
2054 * This variant of netif_napi_add() should be used from drivers using NAPI
2055 * to exclusively poll a TX queue.
2056 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2057 */
2058 static inline void netif_tx_napi_add(struct net_device *dev,
2059 struct napi_struct *napi,
2060 int (*poll)(struct napi_struct *, int),
2061 int weight)
2062 {
2063 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2064 netif_napi_add(dev, napi, poll, weight);
2065 }
2066
2067 /**
2068 * netif_napi_del - remove a NAPI context
2069 * @napi: NAPI context
2070 *
2071 * netif_napi_del() removes a NAPI context from the network device NAPI list
2072 */
2073 void netif_napi_del(struct napi_struct *napi);
2074
2075 struct napi_gro_cb {
2076 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2077 void *frag0;
2078
2079 /* Length of frag0. */
2080 unsigned int frag0_len;
2081
2082 /* This indicates where we are processing relative to skb->data. */
2083 int data_offset;
2084
2085 /* This is non-zero if the packet cannot be merged with the new skb. */
2086 u16 flush;
2087
2088 /* Save the IP ID here and check when we get to the transport layer */
2089 u16 flush_id;
2090
2091 /* Number of segments aggregated. */
2092 u16 count;
2093
2094 /* Start offset for remote checksum offload */
2095 u16 gro_remcsum_start;
2096
2097 /* jiffies when first packet was created/queued */
2098 unsigned long age;
2099
2100 /* Used in ipv6_gro_receive() and foo-over-udp */
2101 u16 proto;
2102
2103 /* This is non-zero if the packet may be of the same flow. */
2104 u8 same_flow:1;
2105
2106 /* Used in tunnel GRO receive */
2107 u8 encap_mark:1;
2108
2109 /* GRO checksum is valid */
2110 u8 csum_valid:1;
2111
2112 /* Number of checksums via CHECKSUM_UNNECESSARY */
2113 u8 csum_cnt:3;
2114
2115 /* Free the skb? */
2116 u8 free:2;
2117 #define NAPI_GRO_FREE 1
2118 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2119
2120 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2121 u8 is_ipv6:1;
2122
2123 /* 7 bit hole */
2124
2125 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2126 __wsum csum;
2127
2128 /* used in skb_gro_receive() slow path */
2129 struct sk_buff *last;
2130 };
2131
2132 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2133
2134 struct packet_type {
2135 __be16 type; /* This is really htons(ether_type). */
2136 struct net_device *dev; /* NULL is wildcarded here */
2137 int (*func) (struct sk_buff *,
2138 struct net_device *,
2139 struct packet_type *,
2140 struct net_device *);
2141 bool (*id_match)(struct packet_type *ptype,
2142 struct sock *sk);
2143 void *af_packet_priv;
2144 struct list_head list;
2145 };
2146
2147 struct offload_callbacks {
2148 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2149 netdev_features_t features);
2150 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2151 struct sk_buff *skb);
2152 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2153 };
2154
2155 struct packet_offload {
2156 __be16 type; /* This is really htons(ether_type). */
2157 u16 priority;
2158 struct offload_callbacks callbacks;
2159 struct list_head list;
2160 };
2161
2162 struct udp_offload;
2163
2164 struct udp_offload_callbacks {
2165 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2166 struct sk_buff *skb,
2167 struct udp_offload *uoff);
2168 int (*gro_complete)(struct sk_buff *skb,
2169 int nhoff,
2170 struct udp_offload *uoff);
2171 };
2172
2173 struct udp_offload {
2174 __be16 port;
2175 u8 ipproto;
2176 struct udp_offload_callbacks callbacks;
2177 };
2178
2179 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2180 struct pcpu_sw_netstats {
2181 u64 rx_packets;
2182 u64 rx_bytes;
2183 u64 tx_packets;
2184 u64 tx_bytes;
2185 struct u64_stats_sync syncp;
2186 };
2187
2188 #define __netdev_alloc_pcpu_stats(type, gfp) \
2189 ({ \
2190 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2191 if (pcpu_stats) { \
2192 int __cpu; \
2193 for_each_possible_cpu(__cpu) { \
2194 typeof(type) *stat; \
2195 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2196 u64_stats_init(&stat->syncp); \
2197 } \
2198 } \
2199 pcpu_stats; \
2200 })
2201
2202 #define netdev_alloc_pcpu_stats(type) \
2203 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2204
2205 enum netdev_lag_tx_type {
2206 NETDEV_LAG_TX_TYPE_UNKNOWN,
2207 NETDEV_LAG_TX_TYPE_RANDOM,
2208 NETDEV_LAG_TX_TYPE_BROADCAST,
2209 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2210 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2211 NETDEV_LAG_TX_TYPE_HASH,
2212 };
2213
2214 struct netdev_lag_upper_info {
2215 enum netdev_lag_tx_type tx_type;
2216 };
2217
2218 struct netdev_lag_lower_state_info {
2219 u8 link_up : 1,
2220 tx_enabled : 1;
2221 };
2222
2223 #include <linux/notifier.h>
2224
2225 /* netdevice notifier chain. Please remember to update the rtnetlink
2226 * notification exclusion list in rtnetlink_event() when adding new
2227 * types.
2228 */
2229 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2230 #define NETDEV_DOWN 0x0002
2231 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2232 detected a hardware crash and restarted
2233 - we can use this eg to kick tcp sessions
2234 once done */
2235 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2236 #define NETDEV_REGISTER 0x0005
2237 #define NETDEV_UNREGISTER 0x0006
2238 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2239 #define NETDEV_CHANGEADDR 0x0008
2240 #define NETDEV_GOING_DOWN 0x0009
2241 #define NETDEV_CHANGENAME 0x000A
2242 #define NETDEV_FEAT_CHANGE 0x000B
2243 #define NETDEV_BONDING_FAILOVER 0x000C
2244 #define NETDEV_PRE_UP 0x000D
2245 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2246 #define NETDEV_POST_TYPE_CHANGE 0x000F
2247 #define NETDEV_POST_INIT 0x0010
2248 #define NETDEV_UNREGISTER_FINAL 0x0011
2249 #define NETDEV_RELEASE 0x0012
2250 #define NETDEV_NOTIFY_PEERS 0x0013
2251 #define NETDEV_JOIN 0x0014
2252 #define NETDEV_CHANGEUPPER 0x0015
2253 #define NETDEV_RESEND_IGMP 0x0016
2254 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2255 #define NETDEV_CHANGEINFODATA 0x0018
2256 #define NETDEV_BONDING_INFO 0x0019
2257 #define NETDEV_PRECHANGEUPPER 0x001A
2258 #define NETDEV_CHANGELOWERSTATE 0x001B
2259
2260 int register_netdevice_notifier(struct notifier_block *nb);
2261 int unregister_netdevice_notifier(struct notifier_block *nb);
2262
2263 struct netdev_notifier_info {
2264 struct net_device *dev;
2265 };
2266
2267 struct netdev_notifier_change_info {
2268 struct netdev_notifier_info info; /* must be first */
2269 unsigned int flags_changed;
2270 };
2271
2272 struct netdev_notifier_changeupper_info {
2273 struct netdev_notifier_info info; /* must be first */
2274 struct net_device *upper_dev; /* new upper dev */
2275 bool master; /* is upper dev master */
2276 bool linking; /* is the notification for link or unlink */
2277 void *upper_info; /* upper dev info */
2278 };
2279
2280 struct netdev_notifier_changelowerstate_info {
2281 struct netdev_notifier_info info; /* must be first */
2282 void *lower_state_info; /* is lower dev state */
2283 };
2284
2285 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2286 struct net_device *dev)
2287 {
2288 info->dev = dev;
2289 }
2290
2291 static inline struct net_device *
2292 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2293 {
2294 return info->dev;
2295 }
2296
2297 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2298
2299
2300 extern rwlock_t dev_base_lock; /* Device list lock */
2301
2302 #define for_each_netdev(net, d) \
2303 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2304 #define for_each_netdev_reverse(net, d) \
2305 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2306 #define for_each_netdev_rcu(net, d) \
2307 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2308 #define for_each_netdev_safe(net, d, n) \
2309 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2310 #define for_each_netdev_continue(net, d) \
2311 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2312 #define for_each_netdev_continue_rcu(net, d) \
2313 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2314 #define for_each_netdev_in_bond_rcu(bond, slave) \
2315 for_each_netdev_rcu(&init_net, slave) \
2316 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2317 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2318
2319 static inline struct net_device *next_net_device(struct net_device *dev)
2320 {
2321 struct list_head *lh;
2322 struct net *net;
2323
2324 net = dev_net(dev);
2325 lh = dev->dev_list.next;
2326 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2327 }
2328
2329 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2330 {
2331 struct list_head *lh;
2332 struct net *net;
2333
2334 net = dev_net(dev);
2335 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2336 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2337 }
2338
2339 static inline struct net_device *first_net_device(struct net *net)
2340 {
2341 return list_empty(&net->dev_base_head) ? NULL :
2342 net_device_entry(net->dev_base_head.next);
2343 }
2344
2345 static inline struct net_device *first_net_device_rcu(struct net *net)
2346 {
2347 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2348
2349 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2350 }
2351
2352 int netdev_boot_setup_check(struct net_device *dev);
2353 unsigned long netdev_boot_base(const char *prefix, int unit);
2354 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2355 const char *hwaddr);
2356 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2357 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2358 void dev_add_pack(struct packet_type *pt);
2359 void dev_remove_pack(struct packet_type *pt);
2360 void __dev_remove_pack(struct packet_type *pt);
2361 void dev_add_offload(struct packet_offload *po);
2362 void dev_remove_offload(struct packet_offload *po);
2363
2364 int dev_get_iflink(const struct net_device *dev);
2365 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2366 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2367 unsigned short mask);
2368 struct net_device *dev_get_by_name(struct net *net, const char *name);
2369 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2370 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2371 int dev_alloc_name(struct net_device *dev, const char *name);
2372 int dev_open(struct net_device *dev);
2373 int dev_close(struct net_device *dev);
2374 int dev_close_many(struct list_head *head, bool unlink);
2375 void dev_disable_lro(struct net_device *dev);
2376 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2377 int dev_queue_xmit(struct sk_buff *skb);
2378 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2379 int register_netdevice(struct net_device *dev);
2380 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2381 void unregister_netdevice_many(struct list_head *head);
2382 static inline void unregister_netdevice(struct net_device *dev)
2383 {
2384 unregister_netdevice_queue(dev, NULL);
2385 }
2386
2387 int netdev_refcnt_read(const struct net_device *dev);
2388 void free_netdev(struct net_device *dev);
2389 void netdev_freemem(struct net_device *dev);
2390 void synchronize_net(void);
2391 int init_dummy_netdev(struct net_device *dev);
2392
2393 DECLARE_PER_CPU(int, xmit_recursion);
2394 static inline int dev_recursion_level(void)
2395 {
2396 return this_cpu_read(xmit_recursion);
2397 }
2398
2399 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2400 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2401 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2402 int netdev_get_name(struct net *net, char *name, int ifindex);
2403 int dev_restart(struct net_device *dev);
2404 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2405
2406 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2407 {
2408 return NAPI_GRO_CB(skb)->data_offset;
2409 }
2410
2411 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2412 {
2413 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2414 }
2415
2416 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2417 {
2418 NAPI_GRO_CB(skb)->data_offset += len;
2419 }
2420
2421 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2422 unsigned int offset)
2423 {
2424 return NAPI_GRO_CB(skb)->frag0 + offset;
2425 }
2426
2427 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2428 {
2429 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2430 }
2431
2432 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2433 unsigned int offset)
2434 {
2435 if (!pskb_may_pull(skb, hlen))
2436 return NULL;
2437
2438 NAPI_GRO_CB(skb)->frag0 = NULL;
2439 NAPI_GRO_CB(skb)->frag0_len = 0;
2440 return skb->data + offset;
2441 }
2442
2443 static inline void *skb_gro_network_header(struct sk_buff *skb)
2444 {
2445 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2446 skb_network_offset(skb);
2447 }
2448
2449 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2450 const void *start, unsigned int len)
2451 {
2452 if (NAPI_GRO_CB(skb)->csum_valid)
2453 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2454 csum_partial(start, len, 0));
2455 }
2456
2457 /* GRO checksum functions. These are logical equivalents of the normal
2458 * checksum functions (in skbuff.h) except that they operate on the GRO
2459 * offsets and fields in sk_buff.
2460 */
2461
2462 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2463
2464 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2465 {
2466 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2467 }
2468
2469 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2470 bool zero_okay,
2471 __sum16 check)
2472 {
2473 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2474 skb_checksum_start_offset(skb) <
2475 skb_gro_offset(skb)) &&
2476 !skb_at_gro_remcsum_start(skb) &&
2477 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2478 (!zero_okay || check));
2479 }
2480
2481 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2482 __wsum psum)
2483 {
2484 if (NAPI_GRO_CB(skb)->csum_valid &&
2485 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2486 return 0;
2487
2488 NAPI_GRO_CB(skb)->csum = psum;
2489
2490 return __skb_gro_checksum_complete(skb);
2491 }
2492
2493 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2494 {
2495 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2496 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2497 NAPI_GRO_CB(skb)->csum_cnt--;
2498 } else {
2499 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2500 * verified a new top level checksum or an encapsulated one
2501 * during GRO. This saves work if we fallback to normal path.
2502 */
2503 __skb_incr_checksum_unnecessary(skb);
2504 }
2505 }
2506
2507 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2508 compute_pseudo) \
2509 ({ \
2510 __sum16 __ret = 0; \
2511 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2512 __ret = __skb_gro_checksum_validate_complete(skb, \
2513 compute_pseudo(skb, proto)); \
2514 if (__ret) \
2515 __skb_mark_checksum_bad(skb); \
2516 else \
2517 skb_gro_incr_csum_unnecessary(skb); \
2518 __ret; \
2519 })
2520
2521 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2522 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2523
2524 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2525 compute_pseudo) \
2526 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2527
2528 #define skb_gro_checksum_simple_validate(skb) \
2529 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2530
2531 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2532 {
2533 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2534 !NAPI_GRO_CB(skb)->csum_valid);
2535 }
2536
2537 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2538 __sum16 check, __wsum pseudo)
2539 {
2540 NAPI_GRO_CB(skb)->csum = ~pseudo;
2541 NAPI_GRO_CB(skb)->csum_valid = 1;
2542 }
2543
2544 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2545 do { \
2546 if (__skb_gro_checksum_convert_check(skb)) \
2547 __skb_gro_checksum_convert(skb, check, \
2548 compute_pseudo(skb, proto)); \
2549 } while (0)
2550
2551 struct gro_remcsum {
2552 int offset;
2553 __wsum delta;
2554 };
2555
2556 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2557 {
2558 grc->offset = 0;
2559 grc->delta = 0;
2560 }
2561
2562 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2563 unsigned int off, size_t hdrlen,
2564 int start, int offset,
2565 struct gro_remcsum *grc,
2566 bool nopartial)
2567 {
2568 __wsum delta;
2569 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2570
2571 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2572
2573 if (!nopartial) {
2574 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2575 return ptr;
2576 }
2577
2578 ptr = skb_gro_header_fast(skb, off);
2579 if (skb_gro_header_hard(skb, off + plen)) {
2580 ptr = skb_gro_header_slow(skb, off + plen, off);
2581 if (!ptr)
2582 return NULL;
2583 }
2584
2585 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2586 start, offset);
2587
2588 /* Adjust skb->csum since we changed the packet */
2589 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2590
2591 grc->offset = off + hdrlen + offset;
2592 grc->delta = delta;
2593
2594 return ptr;
2595 }
2596
2597 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2598 struct gro_remcsum *grc)
2599 {
2600 void *ptr;
2601 size_t plen = grc->offset + sizeof(u16);
2602
2603 if (!grc->delta)
2604 return;
2605
2606 ptr = skb_gro_header_fast(skb, grc->offset);
2607 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2608 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2609 if (!ptr)
2610 return;
2611 }
2612
2613 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2614 }
2615
2616 struct skb_csum_offl_spec {
2617 __u16 ipv4_okay:1,
2618 ipv6_okay:1,
2619 encap_okay:1,
2620 ip_options_okay:1,
2621 ext_hdrs_okay:1,
2622 tcp_okay:1,
2623 udp_okay:1,
2624 sctp_okay:1,
2625 vlan_okay:1,
2626 no_encapped_ipv6:1,
2627 no_not_encapped:1;
2628 };
2629
2630 bool __skb_csum_offload_chk(struct sk_buff *skb,
2631 const struct skb_csum_offl_spec *spec,
2632 bool *csum_encapped,
2633 bool csum_help);
2634
2635 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2636 const struct skb_csum_offl_spec *spec,
2637 bool *csum_encapped,
2638 bool csum_help)
2639 {
2640 if (skb->ip_summed != CHECKSUM_PARTIAL)
2641 return false;
2642
2643 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2644 }
2645
2646 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2647 const struct skb_csum_offl_spec *spec)
2648 {
2649 bool csum_encapped;
2650
2651 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2652 }
2653
2654 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2655 {
2656 static const struct skb_csum_offl_spec csum_offl_spec = {
2657 .ipv4_okay = 1,
2658 .ip_options_okay = 1,
2659 .ipv6_okay = 1,
2660 .vlan_okay = 1,
2661 .tcp_okay = 1,
2662 .udp_okay = 1,
2663 };
2664
2665 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2666 }
2667
2668 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2669 {
2670 static const struct skb_csum_offl_spec csum_offl_spec = {
2671 .ipv4_okay = 1,
2672 .ip_options_okay = 1,
2673 .tcp_okay = 1,
2674 .udp_okay = 1,
2675 .vlan_okay = 1,
2676 };
2677
2678 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2679 }
2680
2681 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2682 unsigned short type,
2683 const void *daddr, const void *saddr,
2684 unsigned int len)
2685 {
2686 if (!dev->header_ops || !dev->header_ops->create)
2687 return 0;
2688
2689 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2690 }
2691
2692 static inline int dev_parse_header(const struct sk_buff *skb,
2693 unsigned char *haddr)
2694 {
2695 const struct net_device *dev = skb->dev;
2696
2697 if (!dev->header_ops || !dev->header_ops->parse)
2698 return 0;
2699 return dev->header_ops->parse(skb, haddr);
2700 }
2701
2702 /* ll_header must have at least hard_header_len allocated */
2703 static inline bool dev_validate_header(const struct net_device *dev,
2704 char *ll_header, int len)
2705 {
2706 if (likely(len >= dev->hard_header_len))
2707 return true;
2708
2709 if (capable(CAP_SYS_RAWIO)) {
2710 memset(ll_header + len, 0, dev->hard_header_len - len);
2711 return true;
2712 }
2713
2714 if (dev->header_ops && dev->header_ops->validate)
2715 return dev->header_ops->validate(ll_header, len);
2716
2717 return false;
2718 }
2719
2720 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2721 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2722 static inline int unregister_gifconf(unsigned int family)
2723 {
2724 return register_gifconf(family, NULL);
2725 }
2726
2727 #ifdef CONFIG_NET_FLOW_LIMIT
2728 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2729 struct sd_flow_limit {
2730 u64 count;
2731 unsigned int num_buckets;
2732 unsigned int history_head;
2733 u16 history[FLOW_LIMIT_HISTORY];
2734 u8 buckets[];
2735 };
2736
2737 extern int netdev_flow_limit_table_len;
2738 #endif /* CONFIG_NET_FLOW_LIMIT */
2739
2740 /*
2741 * Incoming packets are placed on per-CPU queues
2742 */
2743 struct softnet_data {
2744 struct list_head poll_list;
2745 struct sk_buff_head process_queue;
2746
2747 /* stats */
2748 unsigned int processed;
2749 unsigned int time_squeeze;
2750 unsigned int cpu_collision;
2751 unsigned int received_rps;
2752 #ifdef CONFIG_RPS
2753 struct softnet_data *rps_ipi_list;
2754 #endif
2755 #ifdef CONFIG_NET_FLOW_LIMIT
2756 struct sd_flow_limit __rcu *flow_limit;
2757 #endif
2758 struct Qdisc *output_queue;
2759 struct Qdisc **output_queue_tailp;
2760 struct sk_buff *completion_queue;
2761
2762 #ifdef CONFIG_RPS
2763 /* Elements below can be accessed between CPUs for RPS */
2764 struct call_single_data csd ____cacheline_aligned_in_smp;
2765 struct softnet_data *rps_ipi_next;
2766 unsigned int cpu;
2767 unsigned int input_queue_head;
2768 unsigned int input_queue_tail;
2769 #endif
2770 unsigned int dropped;
2771 struct sk_buff_head input_pkt_queue;
2772 struct napi_struct backlog;
2773
2774 };
2775
2776 static inline void input_queue_head_incr(struct softnet_data *sd)
2777 {
2778 #ifdef CONFIG_RPS
2779 sd->input_queue_head++;
2780 #endif
2781 }
2782
2783 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2784 unsigned int *qtail)
2785 {
2786 #ifdef CONFIG_RPS
2787 *qtail = ++sd->input_queue_tail;
2788 #endif
2789 }
2790
2791 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2792
2793 void __netif_schedule(struct Qdisc *q);
2794 void netif_schedule_queue(struct netdev_queue *txq);
2795
2796 static inline void netif_tx_schedule_all(struct net_device *dev)
2797 {
2798 unsigned int i;
2799
2800 for (i = 0; i < dev->num_tx_queues; i++)
2801 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2802 }
2803
2804 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2805 {
2806 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2807 }
2808
2809 /**
2810 * netif_start_queue - allow transmit
2811 * @dev: network device
2812 *
2813 * Allow upper layers to call the device hard_start_xmit routine.
2814 */
2815 static inline void netif_start_queue(struct net_device *dev)
2816 {
2817 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2818 }
2819
2820 static inline void netif_tx_start_all_queues(struct net_device *dev)
2821 {
2822 unsigned int i;
2823
2824 for (i = 0; i < dev->num_tx_queues; i++) {
2825 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2826 netif_tx_start_queue(txq);
2827 }
2828 }
2829
2830 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2831
2832 /**
2833 * netif_wake_queue - restart transmit
2834 * @dev: network device
2835 *
2836 * Allow upper layers to call the device hard_start_xmit routine.
2837 * Used for flow control when transmit resources are available.
2838 */
2839 static inline void netif_wake_queue(struct net_device *dev)
2840 {
2841 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2842 }
2843
2844 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2845 {
2846 unsigned int i;
2847
2848 for (i = 0; i < dev->num_tx_queues; i++) {
2849 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2850 netif_tx_wake_queue(txq);
2851 }
2852 }
2853
2854 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2855 {
2856 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2857 }
2858
2859 /**
2860 * netif_stop_queue - stop transmitted packets
2861 * @dev: network device
2862 *
2863 * Stop upper layers calling the device hard_start_xmit routine.
2864 * Used for flow control when transmit resources are unavailable.
2865 */
2866 static inline void netif_stop_queue(struct net_device *dev)
2867 {
2868 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2869 }
2870
2871 void netif_tx_stop_all_queues(struct net_device *dev);
2872
2873 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2874 {
2875 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2876 }
2877
2878 /**
2879 * netif_queue_stopped - test if transmit queue is flowblocked
2880 * @dev: network device
2881 *
2882 * Test if transmit queue on device is currently unable to send.
2883 */
2884 static inline bool netif_queue_stopped(const struct net_device *dev)
2885 {
2886 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2887 }
2888
2889 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2890 {
2891 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2892 }
2893
2894 static inline bool
2895 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2896 {
2897 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2898 }
2899
2900 static inline bool
2901 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2902 {
2903 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2904 }
2905
2906 /**
2907 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2908 * @dev_queue: pointer to transmit queue
2909 *
2910 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2911 * to give appropriate hint to the CPU.
2912 */
2913 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2914 {
2915 #ifdef CONFIG_BQL
2916 prefetchw(&dev_queue->dql.num_queued);
2917 #endif
2918 }
2919
2920 /**
2921 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2922 * @dev_queue: pointer to transmit queue
2923 *
2924 * BQL enabled drivers might use this helper in their TX completion path,
2925 * to give appropriate hint to the CPU.
2926 */
2927 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2928 {
2929 #ifdef CONFIG_BQL
2930 prefetchw(&dev_queue->dql.limit);
2931 #endif
2932 }
2933
2934 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2935 unsigned int bytes)
2936 {
2937 #ifdef CONFIG_BQL
2938 dql_queued(&dev_queue->dql, bytes);
2939
2940 if (likely(dql_avail(&dev_queue->dql) >= 0))
2941 return;
2942
2943 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2944
2945 /*
2946 * The XOFF flag must be set before checking the dql_avail below,
2947 * because in netdev_tx_completed_queue we update the dql_completed
2948 * before checking the XOFF flag.
2949 */
2950 smp_mb();
2951
2952 /* check again in case another CPU has just made room avail */
2953 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2954 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2955 #endif
2956 }
2957
2958 /**
2959 * netdev_sent_queue - report the number of bytes queued to hardware
2960 * @dev: network device
2961 * @bytes: number of bytes queued to the hardware device queue
2962 *
2963 * Report the number of bytes queued for sending/completion to the network
2964 * device hardware queue. @bytes should be a good approximation and should
2965 * exactly match netdev_completed_queue() @bytes
2966 */
2967 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2968 {
2969 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2970 }
2971
2972 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2973 unsigned int pkts, unsigned int bytes)
2974 {
2975 #ifdef CONFIG_BQL
2976 if (unlikely(!bytes))
2977 return;
2978
2979 dql_completed(&dev_queue->dql, bytes);
2980
2981 /*
2982 * Without the memory barrier there is a small possiblity that
2983 * netdev_tx_sent_queue will miss the update and cause the queue to
2984 * be stopped forever
2985 */
2986 smp_mb();
2987
2988 if (dql_avail(&dev_queue->dql) < 0)
2989 return;
2990
2991 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2992 netif_schedule_queue(dev_queue);
2993 #endif
2994 }
2995
2996 /**
2997 * netdev_completed_queue - report bytes and packets completed by device
2998 * @dev: network device
2999 * @pkts: actual number of packets sent over the medium
3000 * @bytes: actual number of bytes sent over the medium
3001 *
3002 * Report the number of bytes and packets transmitted by the network device
3003 * hardware queue over the physical medium, @bytes must exactly match the
3004 * @bytes amount passed to netdev_sent_queue()
3005 */
3006 static inline void netdev_completed_queue(struct net_device *dev,
3007 unsigned int pkts, unsigned int bytes)
3008 {
3009 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3010 }
3011
3012 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3013 {
3014 #ifdef CONFIG_BQL
3015 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3016 dql_reset(&q->dql);
3017 #endif
3018 }
3019
3020 /**
3021 * netdev_reset_queue - reset the packets and bytes count of a network device
3022 * @dev_queue: network device
3023 *
3024 * Reset the bytes and packet count of a network device and clear the
3025 * software flow control OFF bit for this network device
3026 */
3027 static inline void netdev_reset_queue(struct net_device *dev_queue)
3028 {
3029 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3030 }
3031
3032 /**
3033 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3034 * @dev: network device
3035 * @queue_index: given tx queue index
3036 *
3037 * Returns 0 if given tx queue index >= number of device tx queues,
3038 * otherwise returns the originally passed tx queue index.
3039 */
3040 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3041 {
3042 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3043 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3044 dev->name, queue_index,
3045 dev->real_num_tx_queues);
3046 return 0;
3047 }
3048
3049 return queue_index;
3050 }
3051
3052 /**
3053 * netif_running - test if up
3054 * @dev: network device
3055 *
3056 * Test if the device has been brought up.
3057 */
3058 static inline bool netif_running(const struct net_device *dev)
3059 {
3060 return test_bit(__LINK_STATE_START, &dev->state);
3061 }
3062
3063 /*
3064 * Routines to manage the subqueues on a device. We only need start,
3065 * stop, and a check if it's stopped. All other device management is
3066 * done at the overall netdevice level.
3067 * Also test the device if we're multiqueue.
3068 */
3069
3070 /**
3071 * netif_start_subqueue - allow sending packets on subqueue
3072 * @dev: network device
3073 * @queue_index: sub queue index
3074 *
3075 * Start individual transmit queue of a device with multiple transmit queues.
3076 */
3077 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3078 {
3079 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3080
3081 netif_tx_start_queue(txq);
3082 }
3083
3084 /**
3085 * netif_stop_subqueue - stop sending packets on subqueue
3086 * @dev: network device
3087 * @queue_index: sub queue index
3088 *
3089 * Stop individual transmit queue of a device with multiple transmit queues.
3090 */
3091 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3092 {
3093 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3094 netif_tx_stop_queue(txq);
3095 }
3096
3097 /**
3098 * netif_subqueue_stopped - test status of subqueue
3099 * @dev: network device
3100 * @queue_index: sub queue index
3101 *
3102 * Check individual transmit queue of a device with multiple transmit queues.
3103 */
3104 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3105 u16 queue_index)
3106 {
3107 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3108
3109 return netif_tx_queue_stopped(txq);
3110 }
3111
3112 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3113 struct sk_buff *skb)
3114 {
3115 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3116 }
3117
3118 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3119
3120 #ifdef CONFIG_XPS
3121 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3122 u16 index);
3123 #else
3124 static inline int netif_set_xps_queue(struct net_device *dev,
3125 const struct cpumask *mask,
3126 u16 index)
3127 {
3128 return 0;
3129 }
3130 #endif
3131
3132 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3133 unsigned int num_tx_queues);
3134
3135 /*
3136 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3137 * as a distribution range limit for the returned value.
3138 */
3139 static inline u16 skb_tx_hash(const struct net_device *dev,
3140 struct sk_buff *skb)
3141 {
3142 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3143 }
3144
3145 /**
3146 * netif_is_multiqueue - test if device has multiple transmit queues
3147 * @dev: network device
3148 *
3149 * Check if device has multiple transmit queues
3150 */
3151 static inline bool netif_is_multiqueue(const struct net_device *dev)
3152 {
3153 return dev->num_tx_queues > 1;
3154 }
3155
3156 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3157
3158 #ifdef CONFIG_SYSFS
3159 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3160 #else
3161 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3162 unsigned int rxq)
3163 {
3164 return 0;
3165 }
3166 #endif
3167
3168 #ifdef CONFIG_SYSFS
3169 static inline unsigned int get_netdev_rx_queue_index(
3170 struct netdev_rx_queue *queue)
3171 {
3172 struct net_device *dev = queue->dev;
3173 int index = queue - dev->_rx;
3174
3175 BUG_ON(index >= dev->num_rx_queues);
3176 return index;
3177 }
3178 #endif
3179
3180 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3181 int netif_get_num_default_rss_queues(void);
3182
3183 enum skb_free_reason {
3184 SKB_REASON_CONSUMED,
3185 SKB_REASON_DROPPED,
3186 };
3187
3188 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3190
3191 /*
3192 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3193 * interrupt context or with hardware interrupts being disabled.
3194 * (in_irq() || irqs_disabled())
3195 *
3196 * We provide four helpers that can be used in following contexts :
3197 *
3198 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3199 * replacing kfree_skb(skb)
3200 *
3201 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3202 * Typically used in place of consume_skb(skb) in TX completion path
3203 *
3204 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3205 * replacing kfree_skb(skb)
3206 *
3207 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3208 * and consumed a packet. Used in place of consume_skb(skb)
3209 */
3210 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3211 {
3212 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3213 }
3214
3215 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3216 {
3217 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3218 }
3219
3220 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3221 {
3222 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3223 }
3224
3225 static inline void dev_consume_skb_any(struct sk_buff *skb)
3226 {
3227 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3228 }
3229
3230 int netif_rx(struct sk_buff *skb);
3231 int netif_rx_ni(struct sk_buff *skb);
3232 int netif_receive_skb(struct sk_buff *skb);
3233 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3234 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3235 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3236 gro_result_t napi_gro_frags(struct napi_struct *napi);
3237 struct packet_offload *gro_find_receive_by_type(__be16 type);
3238 struct packet_offload *gro_find_complete_by_type(__be16 type);
3239
3240 static inline void napi_free_frags(struct napi_struct *napi)
3241 {
3242 kfree_skb(napi->skb);
3243 napi->skb = NULL;
3244 }
3245
3246 int netdev_rx_handler_register(struct net_device *dev,
3247 rx_handler_func_t *rx_handler,
3248 void *rx_handler_data);
3249 void netdev_rx_handler_unregister(struct net_device *dev);
3250
3251 bool dev_valid_name(const char *name);
3252 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3253 int dev_ethtool(struct net *net, struct ifreq *);
3254 unsigned int dev_get_flags(const struct net_device *);
3255 int __dev_change_flags(struct net_device *, unsigned int flags);
3256 int dev_change_flags(struct net_device *, unsigned int);
3257 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3258 unsigned int gchanges);
3259 int dev_change_name(struct net_device *, const char *);
3260 int dev_set_alias(struct net_device *, const char *, size_t);
3261 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3262 int dev_set_mtu(struct net_device *, int);
3263 void dev_set_group(struct net_device *, int);
3264 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3265 int dev_change_carrier(struct net_device *, bool new_carrier);
3266 int dev_get_phys_port_id(struct net_device *dev,
3267 struct netdev_phys_item_id *ppid);
3268 int dev_get_phys_port_name(struct net_device *dev,
3269 char *name, size_t len);
3270 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3271 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3272 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3273 struct netdev_queue *txq, int *ret);
3274 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3275 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3276 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3277
3278 extern int netdev_budget;
3279
3280 /* Called by rtnetlink.c:rtnl_unlock() */
3281 void netdev_run_todo(void);
3282
3283 /**
3284 * dev_put - release reference to device
3285 * @dev: network device
3286 *
3287 * Release reference to device to allow it to be freed.
3288 */
3289 static inline void dev_put(struct net_device *dev)
3290 {
3291 this_cpu_dec(*dev->pcpu_refcnt);
3292 }
3293
3294 /**
3295 * dev_hold - get reference to device
3296 * @dev: network device
3297 *
3298 * Hold reference to device to keep it from being freed.
3299 */
3300 static inline void dev_hold(struct net_device *dev)
3301 {
3302 this_cpu_inc(*dev->pcpu_refcnt);
3303 }
3304
3305 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3306 * and _off may be called from IRQ context, but it is caller
3307 * who is responsible for serialization of these calls.
3308 *
3309 * The name carrier is inappropriate, these functions should really be
3310 * called netif_lowerlayer_*() because they represent the state of any
3311 * kind of lower layer not just hardware media.
3312 */
3313
3314 void linkwatch_init_dev(struct net_device *dev);
3315 void linkwatch_fire_event(struct net_device *dev);
3316 void linkwatch_forget_dev(struct net_device *dev);
3317
3318 /**
3319 * netif_carrier_ok - test if carrier present
3320 * @dev: network device
3321 *
3322 * Check if carrier is present on device
3323 */
3324 static inline bool netif_carrier_ok(const struct net_device *dev)
3325 {
3326 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3327 }
3328
3329 unsigned long dev_trans_start(struct net_device *dev);
3330
3331 void __netdev_watchdog_up(struct net_device *dev);
3332
3333 void netif_carrier_on(struct net_device *dev);
3334
3335 void netif_carrier_off(struct net_device *dev);
3336
3337 /**
3338 * netif_dormant_on - mark device as dormant.
3339 * @dev: network device
3340 *
3341 * Mark device as dormant (as per RFC2863).
3342 *
3343 * The dormant state indicates that the relevant interface is not
3344 * actually in a condition to pass packets (i.e., it is not 'up') but is
3345 * in a "pending" state, waiting for some external event. For "on-
3346 * demand" interfaces, this new state identifies the situation where the
3347 * interface is waiting for events to place it in the up state.
3348 */
3349 static inline void netif_dormant_on(struct net_device *dev)
3350 {
3351 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3352 linkwatch_fire_event(dev);
3353 }
3354
3355 /**
3356 * netif_dormant_off - set device as not dormant.
3357 * @dev: network device
3358 *
3359 * Device is not in dormant state.
3360 */
3361 static inline void netif_dormant_off(struct net_device *dev)
3362 {
3363 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3364 linkwatch_fire_event(dev);
3365 }
3366
3367 /**
3368 * netif_dormant - test if carrier present
3369 * @dev: network device
3370 *
3371 * Check if carrier is present on device
3372 */
3373 static inline bool netif_dormant(const struct net_device *dev)
3374 {
3375 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3376 }
3377
3378
3379 /**
3380 * netif_oper_up - test if device is operational
3381 * @dev: network device
3382 *
3383 * Check if carrier is operational
3384 */
3385 static inline bool netif_oper_up(const struct net_device *dev)
3386 {
3387 return (dev->operstate == IF_OPER_UP ||
3388 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3389 }
3390
3391 /**
3392 * netif_device_present - is device available or removed
3393 * @dev: network device
3394 *
3395 * Check if device has not been removed from system.
3396 */
3397 static inline bool netif_device_present(struct net_device *dev)
3398 {
3399 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3400 }
3401
3402 void netif_device_detach(struct net_device *dev);
3403
3404 void netif_device_attach(struct net_device *dev);
3405
3406 /*
3407 * Network interface message level settings
3408 */
3409
3410 enum {
3411 NETIF_MSG_DRV = 0x0001,
3412 NETIF_MSG_PROBE = 0x0002,
3413 NETIF_MSG_LINK = 0x0004,
3414 NETIF_MSG_TIMER = 0x0008,
3415 NETIF_MSG_IFDOWN = 0x0010,
3416 NETIF_MSG_IFUP = 0x0020,
3417 NETIF_MSG_RX_ERR = 0x0040,
3418 NETIF_MSG_TX_ERR = 0x0080,
3419 NETIF_MSG_TX_QUEUED = 0x0100,
3420 NETIF_MSG_INTR = 0x0200,
3421 NETIF_MSG_TX_DONE = 0x0400,
3422 NETIF_MSG_RX_STATUS = 0x0800,
3423 NETIF_MSG_PKTDATA = 0x1000,
3424 NETIF_MSG_HW = 0x2000,
3425 NETIF_MSG_WOL = 0x4000,
3426 };
3427
3428 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3429 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3430 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3431 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3432 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3433 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3434 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3435 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3436 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3437 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3438 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3439 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3440 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3441 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3442 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3443
3444 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3445 {
3446 /* use default */
3447 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3448 return default_msg_enable_bits;
3449 if (debug_value == 0) /* no output */
3450 return 0;
3451 /* set low N bits */
3452 return (1 << debug_value) - 1;
3453 }
3454
3455 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3456 {
3457 spin_lock(&txq->_xmit_lock);
3458 txq->xmit_lock_owner = cpu;
3459 }
3460
3461 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3462 {
3463 spin_lock_bh(&txq->_xmit_lock);
3464 txq->xmit_lock_owner = smp_processor_id();
3465 }
3466
3467 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3468 {
3469 bool ok = spin_trylock(&txq->_xmit_lock);
3470 if (likely(ok))
3471 txq->xmit_lock_owner = smp_processor_id();
3472 return ok;
3473 }
3474
3475 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3476 {
3477 txq->xmit_lock_owner = -1;
3478 spin_unlock(&txq->_xmit_lock);
3479 }
3480
3481 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3482 {
3483 txq->xmit_lock_owner = -1;
3484 spin_unlock_bh(&txq->_xmit_lock);
3485 }
3486
3487 static inline void txq_trans_update(struct netdev_queue *txq)
3488 {
3489 if (txq->xmit_lock_owner != -1)
3490 txq->trans_start = jiffies;
3491 }
3492
3493 /**
3494 * netif_tx_lock - grab network device transmit lock
3495 * @dev: network device
3496 *
3497 * Get network device transmit lock
3498 */
3499 static inline void netif_tx_lock(struct net_device *dev)
3500 {
3501 unsigned int i;
3502 int cpu;
3503
3504 spin_lock(&dev->tx_global_lock);
3505 cpu = smp_processor_id();
3506 for (i = 0; i < dev->num_tx_queues; i++) {
3507 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3508
3509 /* We are the only thread of execution doing a
3510 * freeze, but we have to grab the _xmit_lock in
3511 * order to synchronize with threads which are in
3512 * the ->hard_start_xmit() handler and already
3513 * checked the frozen bit.
3514 */
3515 __netif_tx_lock(txq, cpu);
3516 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3517 __netif_tx_unlock(txq);
3518 }
3519 }
3520
3521 static inline void netif_tx_lock_bh(struct net_device *dev)
3522 {
3523 local_bh_disable();
3524 netif_tx_lock(dev);
3525 }
3526
3527 static inline void netif_tx_unlock(struct net_device *dev)
3528 {
3529 unsigned int i;
3530
3531 for (i = 0; i < dev->num_tx_queues; i++) {
3532 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3533
3534 /* No need to grab the _xmit_lock here. If the
3535 * queue is not stopped for another reason, we
3536 * force a schedule.
3537 */
3538 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3539 netif_schedule_queue(txq);
3540 }
3541 spin_unlock(&dev->tx_global_lock);
3542 }
3543
3544 static inline void netif_tx_unlock_bh(struct net_device *dev)
3545 {
3546 netif_tx_unlock(dev);
3547 local_bh_enable();
3548 }
3549
3550 #define HARD_TX_LOCK(dev, txq, cpu) { \
3551 if ((dev->features & NETIF_F_LLTX) == 0) { \
3552 __netif_tx_lock(txq, cpu); \
3553 } \
3554 }
3555
3556 #define HARD_TX_TRYLOCK(dev, txq) \
3557 (((dev->features & NETIF_F_LLTX) == 0) ? \
3558 __netif_tx_trylock(txq) : \
3559 true )
3560
3561 #define HARD_TX_UNLOCK(dev, txq) { \
3562 if ((dev->features & NETIF_F_LLTX) == 0) { \
3563 __netif_tx_unlock(txq); \
3564 } \
3565 }
3566
3567 static inline void netif_tx_disable(struct net_device *dev)
3568 {
3569 unsigned int i;
3570 int cpu;
3571
3572 local_bh_disable();
3573 cpu = smp_processor_id();
3574 for (i = 0; i < dev->num_tx_queues; i++) {
3575 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3576
3577 __netif_tx_lock(txq, cpu);
3578 netif_tx_stop_queue(txq);
3579 __netif_tx_unlock(txq);
3580 }
3581 local_bh_enable();
3582 }
3583
3584 static inline void netif_addr_lock(struct net_device *dev)
3585 {
3586 spin_lock(&dev->addr_list_lock);
3587 }
3588
3589 static inline void netif_addr_lock_nested(struct net_device *dev)
3590 {
3591 int subclass = SINGLE_DEPTH_NESTING;
3592
3593 if (dev->netdev_ops->ndo_get_lock_subclass)
3594 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3595
3596 spin_lock_nested(&dev->addr_list_lock, subclass);
3597 }
3598
3599 static inline void netif_addr_lock_bh(struct net_device *dev)
3600 {
3601 spin_lock_bh(&dev->addr_list_lock);
3602 }
3603
3604 static inline void netif_addr_unlock(struct net_device *dev)
3605 {
3606 spin_unlock(&dev->addr_list_lock);
3607 }
3608
3609 static inline void netif_addr_unlock_bh(struct net_device *dev)
3610 {
3611 spin_unlock_bh(&dev->addr_list_lock);
3612 }
3613
3614 /*
3615 * dev_addrs walker. Should be used only for read access. Call with
3616 * rcu_read_lock held.
3617 */
3618 #define for_each_dev_addr(dev, ha) \
3619 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3620
3621 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3622
3623 void ether_setup(struct net_device *dev);
3624
3625 /* Support for loadable net-drivers */
3626 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3627 unsigned char name_assign_type,
3628 void (*setup)(struct net_device *),
3629 unsigned int txqs, unsigned int rxqs);
3630 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3631 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3632
3633 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3634 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3635 count)
3636
3637 int register_netdev(struct net_device *dev);
3638 void unregister_netdev(struct net_device *dev);
3639
3640 /* General hardware address lists handling functions */
3641 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3642 struct netdev_hw_addr_list *from_list, int addr_len);
3643 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3644 struct netdev_hw_addr_list *from_list, int addr_len);
3645 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3646 struct net_device *dev,
3647 int (*sync)(struct net_device *, const unsigned char *),
3648 int (*unsync)(struct net_device *,
3649 const unsigned char *));
3650 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3651 struct net_device *dev,
3652 int (*unsync)(struct net_device *,
3653 const unsigned char *));
3654 void __hw_addr_init(struct netdev_hw_addr_list *list);
3655
3656 /* Functions used for device addresses handling */
3657 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3658 unsigned char addr_type);
3659 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3660 unsigned char addr_type);
3661 void dev_addr_flush(struct net_device *dev);
3662 int dev_addr_init(struct net_device *dev);
3663
3664 /* Functions used for unicast addresses handling */
3665 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3666 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3667 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3668 int dev_uc_sync(struct net_device *to, struct net_device *from);
3669 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3670 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3671 void dev_uc_flush(struct net_device *dev);
3672 void dev_uc_init(struct net_device *dev);
3673
3674 /**
3675 * __dev_uc_sync - Synchonize device's unicast list
3676 * @dev: device to sync
3677 * @sync: function to call if address should be added
3678 * @unsync: function to call if address should be removed
3679 *
3680 * Add newly added addresses to the interface, and release
3681 * addresses that have been deleted.
3682 */
3683 static inline int __dev_uc_sync(struct net_device *dev,
3684 int (*sync)(struct net_device *,
3685 const unsigned char *),
3686 int (*unsync)(struct net_device *,
3687 const unsigned char *))
3688 {
3689 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3690 }
3691
3692 /**
3693 * __dev_uc_unsync - Remove synchronized addresses from device
3694 * @dev: device to sync
3695 * @unsync: function to call if address should be removed
3696 *
3697 * Remove all addresses that were added to the device by dev_uc_sync().
3698 */
3699 static inline void __dev_uc_unsync(struct net_device *dev,
3700 int (*unsync)(struct net_device *,
3701 const unsigned char *))
3702 {
3703 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3704 }
3705
3706 /* Functions used for multicast addresses handling */
3707 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3708 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3709 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3710 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3711 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3712 int dev_mc_sync(struct net_device *to, struct net_device *from);
3713 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3714 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3715 void dev_mc_flush(struct net_device *dev);
3716 void dev_mc_init(struct net_device *dev);
3717
3718 /**
3719 * __dev_mc_sync - Synchonize device's multicast list
3720 * @dev: device to sync
3721 * @sync: function to call if address should be added
3722 * @unsync: function to call if address should be removed
3723 *
3724 * Add newly added addresses to the interface, and release
3725 * addresses that have been deleted.
3726 */
3727 static inline int __dev_mc_sync(struct net_device *dev,
3728 int (*sync)(struct net_device *,
3729 const unsigned char *),
3730 int (*unsync)(struct net_device *,
3731 const unsigned char *))
3732 {
3733 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3734 }
3735
3736 /**
3737 * __dev_mc_unsync - Remove synchronized addresses from device
3738 * @dev: device to sync
3739 * @unsync: function to call if address should be removed
3740 *
3741 * Remove all addresses that were added to the device by dev_mc_sync().
3742 */
3743 static inline void __dev_mc_unsync(struct net_device *dev,
3744 int (*unsync)(struct net_device *,
3745 const unsigned char *))
3746 {
3747 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3748 }
3749
3750 /* Functions used for secondary unicast and multicast support */
3751 void dev_set_rx_mode(struct net_device *dev);
3752 void __dev_set_rx_mode(struct net_device *dev);
3753 int dev_set_promiscuity(struct net_device *dev, int inc);
3754 int dev_set_allmulti(struct net_device *dev, int inc);
3755 void netdev_state_change(struct net_device *dev);
3756 void netdev_notify_peers(struct net_device *dev);
3757 void netdev_features_change(struct net_device *dev);
3758 /* Load a device via the kmod */
3759 void dev_load(struct net *net, const char *name);
3760 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3761 struct rtnl_link_stats64 *storage);
3762 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3763 const struct net_device_stats *netdev_stats);
3764
3765 extern int netdev_max_backlog;
3766 extern int netdev_tstamp_prequeue;
3767 extern int weight_p;
3768 extern int bpf_jit_enable;
3769
3770 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3771 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3772 struct list_head **iter);
3773 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3774 struct list_head **iter);
3775
3776 /* iterate through upper list, must be called under RCU read lock */
3777 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3778 for (iter = &(dev)->adj_list.upper, \
3779 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3780 updev; \
3781 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3782
3783 /* iterate through upper list, must be called under RCU read lock */
3784 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3785 for (iter = &(dev)->all_adj_list.upper, \
3786 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3787 updev; \
3788 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3789
3790 void *netdev_lower_get_next_private(struct net_device *dev,
3791 struct list_head **iter);
3792 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3793 struct list_head **iter);
3794
3795 #define netdev_for_each_lower_private(dev, priv, iter) \
3796 for (iter = (dev)->adj_list.lower.next, \
3797 priv = netdev_lower_get_next_private(dev, &(iter)); \
3798 priv; \
3799 priv = netdev_lower_get_next_private(dev, &(iter)))
3800
3801 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3802 for (iter = &(dev)->adj_list.lower, \
3803 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3804 priv; \
3805 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3806
3807 void *netdev_lower_get_next(struct net_device *dev,
3808 struct list_head **iter);
3809 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3810 for (iter = (dev)->adj_list.lower.next, \
3811 ldev = netdev_lower_get_next(dev, &(iter)); \
3812 ldev; \
3813 ldev = netdev_lower_get_next(dev, &(iter)))
3814
3815 void *netdev_adjacent_get_private(struct list_head *adj_list);
3816 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3817 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3818 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3819 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3820 int netdev_master_upper_dev_link(struct net_device *dev,
3821 struct net_device *upper_dev,
3822 void *upper_priv, void *upper_info);
3823 void netdev_upper_dev_unlink(struct net_device *dev,
3824 struct net_device *upper_dev);
3825 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3826 void *netdev_lower_dev_get_private(struct net_device *dev,
3827 struct net_device *lower_dev);
3828 void netdev_lower_state_changed(struct net_device *lower_dev,
3829 void *lower_state_info);
3830
3831 /* RSS keys are 40 or 52 bytes long */
3832 #define NETDEV_RSS_KEY_LEN 52
3833 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3834 void netdev_rss_key_fill(void *buffer, size_t len);
3835
3836 int dev_get_nest_level(struct net_device *dev,
3837 bool (*type_check)(const struct net_device *dev));
3838 int skb_checksum_help(struct sk_buff *skb);
3839 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3840 netdev_features_t features, bool tx_path);
3841 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3842 netdev_features_t features);
3843
3844 struct netdev_bonding_info {
3845 ifslave slave;
3846 ifbond master;
3847 };
3848
3849 struct netdev_notifier_bonding_info {
3850 struct netdev_notifier_info info; /* must be first */
3851 struct netdev_bonding_info bonding_info;
3852 };
3853
3854 void netdev_bonding_info_change(struct net_device *dev,
3855 struct netdev_bonding_info *bonding_info);
3856
3857 static inline
3858 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3859 {
3860 return __skb_gso_segment(skb, features, true);
3861 }
3862 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3863
3864 static inline bool can_checksum_protocol(netdev_features_t features,
3865 __be16 protocol)
3866 {
3867 if (protocol == htons(ETH_P_FCOE))
3868 return !!(features & NETIF_F_FCOE_CRC);
3869
3870 /* Assume this is an IP checksum (not SCTP CRC) */
3871
3872 if (features & NETIF_F_HW_CSUM) {
3873 /* Can checksum everything */
3874 return true;
3875 }
3876
3877 switch (protocol) {
3878 case htons(ETH_P_IP):
3879 return !!(features & NETIF_F_IP_CSUM);
3880 case htons(ETH_P_IPV6):
3881 return !!(features & NETIF_F_IPV6_CSUM);
3882 default:
3883 return false;
3884 }
3885 }
3886
3887 /* Map an ethertype into IP protocol if possible */
3888 static inline int eproto_to_ipproto(int eproto)
3889 {
3890 switch (eproto) {
3891 case htons(ETH_P_IP):
3892 return IPPROTO_IP;
3893 case htons(ETH_P_IPV6):
3894 return IPPROTO_IPV6;
3895 default:
3896 return -1;
3897 }
3898 }
3899
3900 #ifdef CONFIG_BUG
3901 void netdev_rx_csum_fault(struct net_device *dev);
3902 #else
3903 static inline void netdev_rx_csum_fault(struct net_device *dev)
3904 {
3905 }
3906 #endif
3907 /* rx skb timestamps */
3908 void net_enable_timestamp(void);
3909 void net_disable_timestamp(void);
3910
3911 #ifdef CONFIG_PROC_FS
3912 int __init dev_proc_init(void);
3913 #else
3914 #define dev_proc_init() 0
3915 #endif
3916
3917 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3918 struct sk_buff *skb, struct net_device *dev,
3919 bool more)
3920 {
3921 skb->xmit_more = more ? 1 : 0;
3922 return ops->ndo_start_xmit(skb, dev);
3923 }
3924
3925 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3926 struct netdev_queue *txq, bool more)
3927 {
3928 const struct net_device_ops *ops = dev->netdev_ops;
3929 int rc;
3930
3931 rc = __netdev_start_xmit(ops, skb, dev, more);
3932 if (rc == NETDEV_TX_OK)
3933 txq_trans_update(txq);
3934
3935 return rc;
3936 }
3937
3938 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3939 const void *ns);
3940 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3941 const void *ns);
3942
3943 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3944 {
3945 return netdev_class_create_file_ns(class_attr, NULL);
3946 }
3947
3948 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3949 {
3950 netdev_class_remove_file_ns(class_attr, NULL);
3951 }
3952
3953 extern struct kobj_ns_type_operations net_ns_type_operations;
3954
3955 const char *netdev_drivername(const struct net_device *dev);
3956
3957 void linkwatch_run_queue(void);
3958
3959 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3960 netdev_features_t f2)
3961 {
3962 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3963 if (f1 & NETIF_F_HW_CSUM)
3964 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3965 else
3966 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3967 }
3968
3969 return f1 & f2;
3970 }
3971
3972 static inline netdev_features_t netdev_get_wanted_features(
3973 struct net_device *dev)
3974 {
3975 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3976 }
3977 netdev_features_t netdev_increment_features(netdev_features_t all,
3978 netdev_features_t one, netdev_features_t mask);
3979
3980 /* Allow TSO being used on stacked device :
3981 * Performing the GSO segmentation before last device
3982 * is a performance improvement.
3983 */
3984 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3985 netdev_features_t mask)
3986 {
3987 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3988 }
3989
3990 int __netdev_update_features(struct net_device *dev);
3991 void netdev_update_features(struct net_device *dev);
3992 void netdev_change_features(struct net_device *dev);
3993
3994 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3995 struct net_device *dev);
3996
3997 netdev_features_t passthru_features_check(struct sk_buff *skb,
3998 struct net_device *dev,
3999 netdev_features_t features);
4000 netdev_features_t netif_skb_features(struct sk_buff *skb);
4001
4002 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4003 {
4004 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
4005
4006 /* check flags correspondence */
4007 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4008 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4009 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4010 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4011 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4012 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4013 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4014 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4015 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
4016 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
4017 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4018 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4019 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4020
4021 return (features & feature) == feature;
4022 }
4023
4024 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4025 {
4026 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4027 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4028 }
4029
4030 static inline bool netif_needs_gso(struct sk_buff *skb,
4031 netdev_features_t features)
4032 {
4033 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4034 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4035 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4036 }
4037
4038 static inline void netif_set_gso_max_size(struct net_device *dev,
4039 unsigned int size)
4040 {
4041 dev->gso_max_size = size;
4042 }
4043
4044 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4045 int pulled_hlen, u16 mac_offset,
4046 int mac_len)
4047 {
4048 skb->protocol = protocol;
4049 skb->encapsulation = 1;
4050 skb_push(skb, pulled_hlen);
4051 skb_reset_transport_header(skb);
4052 skb->mac_header = mac_offset;
4053 skb->network_header = skb->mac_header + mac_len;
4054 skb->mac_len = mac_len;
4055 }
4056
4057 static inline bool netif_is_macsec(const struct net_device *dev)
4058 {
4059 return dev->priv_flags & IFF_MACSEC;
4060 }
4061
4062 static inline bool netif_is_macvlan(const struct net_device *dev)
4063 {
4064 return dev->priv_flags & IFF_MACVLAN;
4065 }
4066
4067 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4068 {
4069 return dev->priv_flags & IFF_MACVLAN_PORT;
4070 }
4071
4072 static inline bool netif_is_ipvlan(const struct net_device *dev)
4073 {
4074 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4075 }
4076
4077 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4078 {
4079 return dev->priv_flags & IFF_IPVLAN_MASTER;
4080 }
4081
4082 static inline bool netif_is_bond_master(const struct net_device *dev)
4083 {
4084 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4085 }
4086
4087 static inline bool netif_is_bond_slave(const struct net_device *dev)
4088 {
4089 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4090 }
4091
4092 static inline bool netif_supports_nofcs(struct net_device *dev)
4093 {
4094 return dev->priv_flags & IFF_SUPP_NOFCS;
4095 }
4096
4097 static inline bool netif_is_l3_master(const struct net_device *dev)
4098 {
4099 return dev->priv_flags & IFF_L3MDEV_MASTER;
4100 }
4101
4102 static inline bool netif_is_l3_slave(const struct net_device *dev)
4103 {
4104 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4105 }
4106
4107 static inline bool netif_is_bridge_master(const struct net_device *dev)
4108 {
4109 return dev->priv_flags & IFF_EBRIDGE;
4110 }
4111
4112 static inline bool netif_is_bridge_port(const struct net_device *dev)
4113 {
4114 return dev->priv_flags & IFF_BRIDGE_PORT;
4115 }
4116
4117 static inline bool netif_is_ovs_master(const struct net_device *dev)
4118 {
4119 return dev->priv_flags & IFF_OPENVSWITCH;
4120 }
4121
4122 static inline bool netif_is_team_master(const struct net_device *dev)
4123 {
4124 return dev->priv_flags & IFF_TEAM;
4125 }
4126
4127 static inline bool netif_is_team_port(const struct net_device *dev)
4128 {
4129 return dev->priv_flags & IFF_TEAM_PORT;
4130 }
4131
4132 static inline bool netif_is_lag_master(const struct net_device *dev)
4133 {
4134 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4135 }
4136
4137 static inline bool netif_is_lag_port(const struct net_device *dev)
4138 {
4139 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4140 }
4141
4142 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4143 {
4144 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4145 }
4146
4147 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4148 static inline void netif_keep_dst(struct net_device *dev)
4149 {
4150 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4151 }
4152
4153 extern struct pernet_operations __net_initdata loopback_net_ops;
4154
4155 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4156
4157 /* netdev_printk helpers, similar to dev_printk */
4158
4159 static inline const char *netdev_name(const struct net_device *dev)
4160 {
4161 if (!dev->name[0] || strchr(dev->name, '%'))
4162 return "(unnamed net_device)";
4163 return dev->name;
4164 }
4165
4166 static inline const char *netdev_reg_state(const struct net_device *dev)
4167 {
4168 switch (dev->reg_state) {
4169 case NETREG_UNINITIALIZED: return " (uninitialized)";
4170 case NETREG_REGISTERED: return "";
4171 case NETREG_UNREGISTERING: return " (unregistering)";
4172 case NETREG_UNREGISTERED: return " (unregistered)";
4173 case NETREG_RELEASED: return " (released)";
4174 case NETREG_DUMMY: return " (dummy)";
4175 }
4176
4177 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4178 return " (unknown)";
4179 }
4180
4181 __printf(3, 4)
4182 void netdev_printk(const char *level, const struct net_device *dev,
4183 const char *format, ...);
4184 __printf(2, 3)
4185 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4186 __printf(2, 3)
4187 void netdev_alert(const struct net_device *dev, const char *format, ...);
4188 __printf(2, 3)
4189 void netdev_crit(const struct net_device *dev, const char *format, ...);
4190 __printf(2, 3)
4191 void netdev_err(const struct net_device *dev, const char *format, ...);
4192 __printf(2, 3)
4193 void netdev_warn(const struct net_device *dev, const char *format, ...);
4194 __printf(2, 3)
4195 void netdev_notice(const struct net_device *dev, const char *format, ...);
4196 __printf(2, 3)
4197 void netdev_info(const struct net_device *dev, const char *format, ...);
4198
4199 #define MODULE_ALIAS_NETDEV(device) \
4200 MODULE_ALIAS("netdev-" device)
4201
4202 #if defined(CONFIG_DYNAMIC_DEBUG)
4203 #define netdev_dbg(__dev, format, args...) \
4204 do { \
4205 dynamic_netdev_dbg(__dev, format, ##args); \
4206 } while (0)
4207 #elif defined(DEBUG)
4208 #define netdev_dbg(__dev, format, args...) \
4209 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4210 #else
4211 #define netdev_dbg(__dev, format, args...) \
4212 ({ \
4213 if (0) \
4214 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4215 })
4216 #endif
4217
4218 #if defined(VERBOSE_DEBUG)
4219 #define netdev_vdbg netdev_dbg
4220 #else
4221
4222 #define netdev_vdbg(dev, format, args...) \
4223 ({ \
4224 if (0) \
4225 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4226 0; \
4227 })
4228 #endif
4229
4230 /*
4231 * netdev_WARN() acts like dev_printk(), but with the key difference
4232 * of using a WARN/WARN_ON to get the message out, including the
4233 * file/line information and a backtrace.
4234 */
4235 #define netdev_WARN(dev, format, args...) \
4236 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4237 netdev_reg_state(dev), ##args)
4238
4239 /* netif printk helpers, similar to netdev_printk */
4240
4241 #define netif_printk(priv, type, level, dev, fmt, args...) \
4242 do { \
4243 if (netif_msg_##type(priv)) \
4244 netdev_printk(level, (dev), fmt, ##args); \
4245 } while (0)
4246
4247 #define netif_level(level, priv, type, dev, fmt, args...) \
4248 do { \
4249 if (netif_msg_##type(priv)) \
4250 netdev_##level(dev, fmt, ##args); \
4251 } while (0)
4252
4253 #define netif_emerg(priv, type, dev, fmt, args...) \
4254 netif_level(emerg, priv, type, dev, fmt, ##args)
4255 #define netif_alert(priv, type, dev, fmt, args...) \
4256 netif_level(alert, priv, type, dev, fmt, ##args)
4257 #define netif_crit(priv, type, dev, fmt, args...) \
4258 netif_level(crit, priv, type, dev, fmt, ##args)
4259 #define netif_err(priv, type, dev, fmt, args...) \
4260 netif_level(err, priv, type, dev, fmt, ##args)
4261 #define netif_warn(priv, type, dev, fmt, args...) \
4262 netif_level(warn, priv, type, dev, fmt, ##args)
4263 #define netif_notice(priv, type, dev, fmt, args...) \
4264 netif_level(notice, priv, type, dev, fmt, ##args)
4265 #define netif_info(priv, type, dev, fmt, args...) \
4266 netif_level(info, priv, type, dev, fmt, ##args)
4267
4268 #if defined(CONFIG_DYNAMIC_DEBUG)
4269 #define netif_dbg(priv, type, netdev, format, args...) \
4270 do { \
4271 if (netif_msg_##type(priv)) \
4272 dynamic_netdev_dbg(netdev, format, ##args); \
4273 } while (0)
4274 #elif defined(DEBUG)
4275 #define netif_dbg(priv, type, dev, format, args...) \
4276 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4277 #else
4278 #define netif_dbg(priv, type, dev, format, args...) \
4279 ({ \
4280 if (0) \
4281 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4282 0; \
4283 })
4284 #endif
4285
4286 #if defined(VERBOSE_DEBUG)
4287 #define netif_vdbg netif_dbg
4288 #else
4289 #define netif_vdbg(priv, type, dev, format, args...) \
4290 ({ \
4291 if (0) \
4292 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4293 0; \
4294 })
4295 #endif
4296
4297 /*
4298 * The list of packet types we will receive (as opposed to discard)
4299 * and the routines to invoke.
4300 *
4301 * Why 16. Because with 16 the only overlap we get on a hash of the
4302 * low nibble of the protocol value is RARP/SNAP/X.25.
4303 *
4304 * NOTE: That is no longer true with the addition of VLAN tags. Not
4305 * sure which should go first, but I bet it won't make much
4306 * difference if we are running VLANs. The good news is that
4307 * this protocol won't be in the list unless compiled in, so
4308 * the average user (w/out VLANs) will not be adversely affected.
4309 * --BLG
4310 *
4311 * 0800 IP
4312 * 8100 802.1Q VLAN
4313 * 0001 802.3
4314 * 0002 AX.25
4315 * 0004 802.2
4316 * 8035 RARP
4317 * 0005 SNAP
4318 * 0805 X.25
4319 * 0806 ARP
4320 * 8137 IPX
4321 * 0009 Localtalk
4322 * 86DD IPv6
4323 */
4324 #define PTYPE_HASH_SIZE (16)
4325 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4326
4327 #endif /* _LINUX_NETDEVICE_H */
This page took 0.114807 seconds and 6 git commands to generate.