Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64
65 void netdev_set_default_ethtool_ops(struct net_device *dev,
66 const struct ethtool_ops *ops);
67
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70 #define NET_RX_DROP 1 /* packet dropped */
71
72 /*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS 0x00
91 #define NET_XMIT_DROP 0x01 /* skb dropped */
92 #define NET_XMIT_CN 0x02 /* congestion notification */
93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK 0xf0
104
105 enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112
113 /*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129 }
130
131 /*
132 * Compute the worst case header length according to the protocols
133 * used.
134 */
135
136 #if defined(CONFIG_HYPERV_NET)
137 # define LL_MAX_HEADER 128
138 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
139 # if defined(CONFIG_MAC80211_MESH)
140 # define LL_MAX_HEADER 128
141 # else
142 # define LL_MAX_HEADER 96
143 # endif
144 #else
145 # define LL_MAX_HEADER 32
146 #endif
147
148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150 #define MAX_HEADER LL_MAX_HEADER
151 #else
152 #define MAX_HEADER (LL_MAX_HEADER + 48)
153 #endif
154
155 /*
156 * Old network device statistics. Fields are native words
157 * (unsigned long) so they can be read and written atomically.
158 */
159
160 struct net_device_stats {
161 unsigned long rx_packets;
162 unsigned long tx_packets;
163 unsigned long rx_bytes;
164 unsigned long tx_bytes;
165 unsigned long rx_errors;
166 unsigned long tx_errors;
167 unsigned long rx_dropped;
168 unsigned long tx_dropped;
169 unsigned long multicast;
170 unsigned long collisions;
171 unsigned long rx_length_errors;
172 unsigned long rx_over_errors;
173 unsigned long rx_crc_errors;
174 unsigned long rx_frame_errors;
175 unsigned long rx_fifo_errors;
176 unsigned long rx_missed_errors;
177 unsigned long tx_aborted_errors;
178 unsigned long tx_carrier_errors;
179 unsigned long tx_fifo_errors;
180 unsigned long tx_heartbeat_errors;
181 unsigned long tx_window_errors;
182 unsigned long rx_compressed;
183 unsigned long tx_compressed;
184 };
185
186
187 #include <linux/cache.h>
188 #include <linux/skbuff.h>
189
190 #ifdef CONFIG_RPS
191 #include <linux/static_key.h>
192 extern struct static_key rps_needed;
193 #endif
194
195 struct neighbour;
196 struct neigh_parms;
197 struct sk_buff;
198
199 struct netdev_hw_addr {
200 struct list_head list;
201 unsigned char addr[MAX_ADDR_LEN];
202 unsigned char type;
203 #define NETDEV_HW_ADDR_T_LAN 1
204 #define NETDEV_HW_ADDR_T_SAN 2
205 #define NETDEV_HW_ADDR_T_SLAVE 3
206 #define NETDEV_HW_ADDR_T_UNICAST 4
207 #define NETDEV_HW_ADDR_T_MULTICAST 5
208 bool global_use;
209 int sync_cnt;
210 int refcount;
211 int synced;
212 struct rcu_head rcu_head;
213 };
214
215 struct netdev_hw_addr_list {
216 struct list_head list;
217 int count;
218 };
219
220 #define netdev_hw_addr_list_count(l) ((l)->count)
221 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
222 #define netdev_hw_addr_list_for_each(ha, l) \
223 list_for_each_entry(ha, &(l)->list, list)
224
225 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
226 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
227 #define netdev_for_each_uc_addr(ha, dev) \
228 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
229
230 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
231 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
232 #define netdev_for_each_mc_addr(ha, dev) \
233 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
234
235 struct hh_cache {
236 u16 hh_len;
237 u16 __pad;
238 seqlock_t hh_lock;
239
240 /* cached hardware header; allow for machine alignment needs. */
241 #define HH_DATA_MOD 16
242 #define HH_DATA_OFF(__len) \
243 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
244 #define HH_DATA_ALIGN(__len) \
245 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
246 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
247 };
248
249 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
250 * Alternative is:
251 * dev->hard_header_len ? (dev->hard_header_len +
252 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
253 *
254 * We could use other alignment values, but we must maintain the
255 * relationship HH alignment <= LL alignment.
256 */
257 #define LL_RESERVED_SPACE(dev) \
258 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
260 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261
262 struct header_ops {
263 int (*create) (struct sk_buff *skb, struct net_device *dev,
264 unsigned short type, const void *daddr,
265 const void *saddr, unsigned int len);
266 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 void (*cache_update)(struct hh_cache *hh,
269 const struct net_device *dev,
270 const unsigned char *haddr);
271 bool (*validate)(const char *ll_header, unsigned int len);
272 };
273
274 /* These flag bits are private to the generic network queueing
275 * layer, they may not be explicitly referenced by any other
276 * code.
277 */
278
279 enum netdev_state_t {
280 __LINK_STATE_START,
281 __LINK_STATE_PRESENT,
282 __LINK_STATE_NOCARRIER,
283 __LINK_STATE_LINKWATCH_PENDING,
284 __LINK_STATE_DORMANT,
285 };
286
287
288 /*
289 * This structure holds at boot time configured netdevice settings. They
290 * are then used in the device probing.
291 */
292 struct netdev_boot_setup {
293 char name[IFNAMSIZ];
294 struct ifmap map;
295 };
296 #define NETDEV_BOOT_SETUP_MAX 8
297
298 int __init netdev_boot_setup(char *str);
299
300 /*
301 * Structure for NAPI scheduling similar to tasklet but with weighting
302 */
303 struct napi_struct {
304 /* The poll_list must only be managed by the entity which
305 * changes the state of the NAPI_STATE_SCHED bit. This means
306 * whoever atomically sets that bit can add this napi_struct
307 * to the per-cpu poll_list, and whoever clears that bit
308 * can remove from the list right before clearing the bit.
309 */
310 struct list_head poll_list;
311
312 unsigned long state;
313 int weight;
314 unsigned int gro_count;
315 int (*poll)(struct napi_struct *, int);
316 #ifdef CONFIG_NETPOLL
317 spinlock_t poll_lock;
318 int poll_owner;
319 #endif
320 struct net_device *dev;
321 struct sk_buff *gro_list;
322 struct sk_buff *skb;
323 struct hrtimer timer;
324 struct list_head dev_list;
325 struct hlist_node napi_hash_node;
326 unsigned int napi_id;
327 };
328
329 enum {
330 NAPI_STATE_SCHED, /* Poll is scheduled */
331 NAPI_STATE_DISABLE, /* Disable pending */
332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
333 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
334 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
335 };
336
337 enum gro_result {
338 GRO_MERGED,
339 GRO_MERGED_FREE,
340 GRO_HELD,
341 GRO_NORMAL,
342 GRO_DROP,
343 };
344 typedef enum gro_result gro_result_t;
345
346 /*
347 * enum rx_handler_result - Possible return values for rx_handlers.
348 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
349 * further.
350 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
351 * case skb->dev was changed by rx_handler.
352 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
353 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
354 *
355 * rx_handlers are functions called from inside __netif_receive_skb(), to do
356 * special processing of the skb, prior to delivery to protocol handlers.
357 *
358 * Currently, a net_device can only have a single rx_handler registered. Trying
359 * to register a second rx_handler will return -EBUSY.
360 *
361 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
362 * To unregister a rx_handler on a net_device, use
363 * netdev_rx_handler_unregister().
364 *
365 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
366 * do with the skb.
367 *
368 * If the rx_handler consumed to skb in some way, it should return
369 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
370 * the skb to be delivered in some other ways.
371 *
372 * If the rx_handler changed skb->dev, to divert the skb to another
373 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
374 * new device will be called if it exists.
375 *
376 * If the rx_handler consider the skb should be ignored, it should return
377 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
378 * are registered on exact device (ptype->dev == skb->dev).
379 *
380 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
381 * delivered, it should return RX_HANDLER_PASS.
382 *
383 * A device without a registered rx_handler will behave as if rx_handler
384 * returned RX_HANDLER_PASS.
385 */
386
387 enum rx_handler_result {
388 RX_HANDLER_CONSUMED,
389 RX_HANDLER_ANOTHER,
390 RX_HANDLER_EXACT,
391 RX_HANDLER_PASS,
392 };
393 typedef enum rx_handler_result rx_handler_result_t;
394 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
395
396 void __napi_schedule(struct napi_struct *n);
397 void __napi_schedule_irqoff(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405 * napi_schedule_prep - check if napi can be scheduled
406 * @n: napi context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420 * napi_schedule - schedule NAPI poll
421 * @n: napi context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430 }
431
432 /**
433 * napi_schedule_irqoff - schedule NAPI poll
434 * @n: napi context
435 *
436 * Variant of napi_schedule(), assuming hard irqs are masked.
437 */
438 static inline void napi_schedule_irqoff(struct napi_struct *n)
439 {
440 if (napi_schedule_prep(n))
441 __napi_schedule_irqoff(n);
442 }
443
444 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
445 static inline bool napi_reschedule(struct napi_struct *napi)
446 {
447 if (napi_schedule_prep(napi)) {
448 __napi_schedule(napi);
449 return true;
450 }
451 return false;
452 }
453
454 void __napi_complete(struct napi_struct *n);
455 void napi_complete_done(struct napi_struct *n, int work_done);
456 /**
457 * napi_complete - NAPI processing complete
458 * @n: napi context
459 *
460 * Mark NAPI processing as complete.
461 * Consider using napi_complete_done() instead.
462 */
463 static inline void napi_complete(struct napi_struct *n)
464 {
465 return napi_complete_done(n, 0);
466 }
467
468 /**
469 * napi_hash_add - add a NAPI to global hashtable
470 * @napi: napi context
471 *
472 * generate a new napi_id and store a @napi under it in napi_hash
473 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
474 * Note: This is normally automatically done from netif_napi_add(),
475 * so might disappear in a future linux version.
476 */
477 void napi_hash_add(struct napi_struct *napi);
478
479 /**
480 * napi_hash_del - remove a NAPI from global table
481 * @napi: napi context
482 *
483 * Warning: caller must observe rcu grace period
484 * before freeing memory containing @napi, if
485 * this function returns true.
486 * Note: core networking stack automatically calls it
487 * from netif_napi_del()
488 * Drivers might want to call this helper to combine all
489 * the needed rcu grace periods into a single one.
490 */
491 bool napi_hash_del(struct napi_struct *napi);
492
493 /**
494 * napi_disable - prevent NAPI from scheduling
495 * @n: napi context
496 *
497 * Stop NAPI from being scheduled on this context.
498 * Waits till any outstanding processing completes.
499 */
500 void napi_disable(struct napi_struct *n);
501
502 /**
503 * napi_enable - enable NAPI scheduling
504 * @n: napi context
505 *
506 * Resume NAPI from being scheduled on this context.
507 * Must be paired with napi_disable.
508 */
509 static inline void napi_enable(struct napi_struct *n)
510 {
511 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
512 smp_mb__before_atomic();
513 clear_bit(NAPI_STATE_SCHED, &n->state);
514 clear_bit(NAPI_STATE_NPSVC, &n->state);
515 }
516
517 /**
518 * napi_synchronize - wait until NAPI is not running
519 * @n: napi context
520 *
521 * Wait until NAPI is done being scheduled on this context.
522 * Waits till any outstanding processing completes but
523 * does not disable future activations.
524 */
525 static inline void napi_synchronize(const struct napi_struct *n)
526 {
527 if (IS_ENABLED(CONFIG_SMP))
528 while (test_bit(NAPI_STATE_SCHED, &n->state))
529 msleep(1);
530 else
531 barrier();
532 }
533
534 enum netdev_queue_state_t {
535 __QUEUE_STATE_DRV_XOFF,
536 __QUEUE_STATE_STACK_XOFF,
537 __QUEUE_STATE_FROZEN,
538 };
539
540 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
541 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
543
544 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
545 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
546 QUEUE_STATE_FROZEN)
547 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
548 QUEUE_STATE_FROZEN)
549
550 /*
551 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
552 * netif_tx_* functions below are used to manipulate this flag. The
553 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
554 * queue independently. The netif_xmit_*stopped functions below are called
555 * to check if the queue has been stopped by the driver or stack (either
556 * of the XOFF bits are set in the state). Drivers should not need to call
557 * netif_xmit*stopped functions, they should only be using netif_tx_*.
558 */
559
560 struct netdev_queue {
561 /*
562 * read mostly part
563 */
564 struct net_device *dev;
565 struct Qdisc __rcu *qdisc;
566 struct Qdisc *qdisc_sleeping;
567 #ifdef CONFIG_SYSFS
568 struct kobject kobj;
569 #endif
570 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
571 int numa_node;
572 #endif
573 /*
574 * write mostly part
575 */
576 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
577 int xmit_lock_owner;
578 /*
579 * please use this field instead of dev->trans_start
580 */
581 unsigned long trans_start;
582
583 /*
584 * Number of TX timeouts for this queue
585 * (/sys/class/net/DEV/Q/trans_timeout)
586 */
587 unsigned long trans_timeout;
588
589 unsigned long state;
590
591 #ifdef CONFIG_BQL
592 struct dql dql;
593 #endif
594 unsigned long tx_maxrate;
595 } ____cacheline_aligned_in_smp;
596
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 return q->numa_node;
601 #else
602 return NUMA_NO_NODE;
603 #endif
604 }
605
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 q->numa_node = node;
610 #endif
611 }
612
613 #ifdef CONFIG_RPS
614 /*
615 * This structure holds an RPS map which can be of variable length. The
616 * map is an array of CPUs.
617 */
618 struct rps_map {
619 unsigned int len;
620 struct rcu_head rcu;
621 u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624
625 /*
626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627 * tail pointer for that CPU's input queue at the time of last enqueue, and
628 * a hardware filter index.
629 */
630 struct rps_dev_flow {
631 u16 cpu;
632 u16 filter;
633 unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636
637 /*
638 * The rps_dev_flow_table structure contains a table of flow mappings.
639 */
640 struct rps_dev_flow_table {
641 unsigned int mask;
642 struct rcu_head rcu;
643 struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646 ((_num) * sizeof(struct rps_dev_flow)))
647
648 /*
649 * The rps_sock_flow_table contains mappings of flows to the last CPU
650 * on which they were processed by the application (set in recvmsg).
651 * Each entry is a 32bit value. Upper part is the high order bits
652 * of flow hash, lower part is cpu number.
653 * rps_cpu_mask is used to partition the space, depending on number of
654 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
656 * meaning we use 32-6=26 bits for the hash.
657 */
658 struct rps_sock_flow_table {
659 u32 mask;
660
661 u32 ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664
665 #define RPS_NO_CPU 0xffff
666
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671 u32 hash)
672 {
673 if (table && hash) {
674 unsigned int index = hash & table->mask;
675 u32 val = hash & ~rps_cpu_mask;
676
677 /* We only give a hint, preemption can change cpu under us */
678 val |= raw_smp_processor_id();
679
680 if (table->ents[index] != val)
681 table->ents[index] = val;
682 }
683 }
684
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687 u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694 struct rps_map __rcu *rps_map;
695 struct rps_dev_flow_table __rcu *rps_flow_table;
696 #endif
697 struct kobject kobj;
698 struct net_device *dev;
699 } ____cacheline_aligned_in_smp;
700
701 /*
702 * RX queue sysfs structures and functions.
703 */
704 struct rx_queue_attribute {
705 struct attribute attr;
706 ssize_t (*show)(struct netdev_rx_queue *queue,
707 struct rx_queue_attribute *attr, char *buf);
708 ssize_t (*store)(struct netdev_rx_queue *queue,
709 struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711
712 #ifdef CONFIG_XPS
713 /*
714 * This structure holds an XPS map which can be of variable length. The
715 * map is an array of queues.
716 */
717 struct xps_map {
718 unsigned int len;
719 unsigned int alloc_len;
720 struct rcu_head rcu;
721 u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725 - sizeof(struct xps_map)) / sizeof(u16))
726
727 /*
728 * This structure holds all XPS maps for device. Maps are indexed by CPU.
729 */
730 struct xps_dev_maps {
731 struct rcu_head rcu;
732 struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
735 (nr_cpu_ids * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737
738 #define TC_MAX_QUEUE 16
739 #define TC_BITMASK 15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742 u16 count;
743 u16 offset;
744 };
745
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748 * This structure is to hold information about the device
749 * configured to run FCoE protocol stack.
750 */
751 struct netdev_fcoe_hbainfo {
752 char manufacturer[64];
753 char serial_number[64];
754 char hardware_version[64];
755 char driver_version[64];
756 char optionrom_version[64];
757 char firmware_version[64];
758 char model[256];
759 char model_description[256];
760 };
761 #endif
762
763 #define MAX_PHYS_ITEM_ID_LEN 32
764
765 /* This structure holds a unique identifier to identify some
766 * physical item (port for example) used by a netdevice.
767 */
768 struct netdev_phys_item_id {
769 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770 unsigned char id_len;
771 };
772
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774 struct netdev_phys_item_id *b)
775 {
776 return a->id_len == b->id_len &&
777 memcmp(a->id, b->id, a->id_len) == 0;
778 }
779
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781 struct sk_buff *skb);
782
783 /* These structures hold the attributes of qdisc and classifiers
784 * that are being passed to the netdevice through the setup_tc op.
785 */
786 enum {
787 TC_SETUP_MQPRIO,
788 TC_SETUP_CLSU32,
789 TC_SETUP_CLSFLOWER,
790 };
791
792 struct tc_cls_u32_offload;
793
794 struct tc_to_netdev {
795 unsigned int type;
796 union {
797 u8 tc;
798 struct tc_cls_u32_offload *cls_u32;
799 struct tc_cls_flower_offload *cls_flower;
800 };
801 };
802
803
804 /*
805 * This structure defines the management hooks for network devices.
806 * The following hooks can be defined; unless noted otherwise, they are
807 * optional and can be filled with a null pointer.
808 *
809 * int (*ndo_init)(struct net_device *dev);
810 * This function is called once when network device is registered.
811 * The network device can use this to any late stage initializaton
812 * or semantic validattion. It can fail with an error code which will
813 * be propogated back to register_netdev
814 *
815 * void (*ndo_uninit)(struct net_device *dev);
816 * This function is called when device is unregistered or when registration
817 * fails. It is not called if init fails.
818 *
819 * int (*ndo_open)(struct net_device *dev);
820 * This function is called when network device transistions to the up
821 * state.
822 *
823 * int (*ndo_stop)(struct net_device *dev);
824 * This function is called when network device transistions to the down
825 * state.
826 *
827 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
828 * struct net_device *dev);
829 * Called when a packet needs to be transmitted.
830 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
831 * the queue before that can happen; it's for obsolete devices and weird
832 * corner cases, but the stack really does a non-trivial amount
833 * of useless work if you return NETDEV_TX_BUSY.
834 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
835 * Required can not be NULL.
836 *
837 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
838 * netdev_features_t features);
839 * Adjusts the requested feature flags according to device-specific
840 * constraints, and returns the resulting flags. Must not modify
841 * the device state.
842 *
843 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
844 * void *accel_priv, select_queue_fallback_t fallback);
845 * Called to decide which queue to when device supports multiple
846 * transmit queues.
847 *
848 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
849 * This function is called to allow device receiver to make
850 * changes to configuration when multicast or promiscious is enabled.
851 *
852 * void (*ndo_set_rx_mode)(struct net_device *dev);
853 * This function is called device changes address list filtering.
854 * If driver handles unicast address filtering, it should set
855 * IFF_UNICAST_FLT to its priv_flags.
856 *
857 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
858 * This function is called when the Media Access Control address
859 * needs to be changed. If this interface is not defined, the
860 * mac address can not be changed.
861 *
862 * int (*ndo_validate_addr)(struct net_device *dev);
863 * Test if Media Access Control address is valid for the device.
864 *
865 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
866 * Called when a user request an ioctl which can't be handled by
867 * the generic interface code. If not defined ioctl's return
868 * not supported error code.
869 *
870 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
871 * Used to set network devices bus interface parameters. This interface
872 * is retained for legacy reason, new devices should use the bus
873 * interface (PCI) for low level management.
874 *
875 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
876 * Called when a user wants to change the Maximum Transfer Unit
877 * of a device. If not defined, any request to change MTU will
878 * will return an error.
879 *
880 * void (*ndo_tx_timeout)(struct net_device *dev);
881 * Callback uses when the transmitter has not made any progress
882 * for dev->watchdog ticks.
883 *
884 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
885 * struct rtnl_link_stats64 *storage);
886 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
887 * Called when a user wants to get the network device usage
888 * statistics. Drivers must do one of the following:
889 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
890 * rtnl_link_stats64 structure passed by the caller.
891 * 2. Define @ndo_get_stats to update a net_device_stats structure
892 * (which should normally be dev->stats) and return a pointer to
893 * it. The structure may be changed asynchronously only if each
894 * field is written atomically.
895 * 3. Update dev->stats asynchronously and atomically, and define
896 * neither operation.
897 *
898 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
899 * If device support VLAN filtering this function is called when a
900 * VLAN id is registered.
901 *
902 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
903 * If device support VLAN filtering this function is called when a
904 * VLAN id is unregistered.
905 *
906 * void (*ndo_poll_controller)(struct net_device *dev);
907 *
908 * SR-IOV management functions.
909 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
910 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
911 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
912 * int max_tx_rate);
913 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
914 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
915 * int (*ndo_get_vf_config)(struct net_device *dev,
916 * int vf, struct ifla_vf_info *ivf);
917 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
918 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
919 * struct nlattr *port[]);
920 *
921 * Enable or disable the VF ability to query its RSS Redirection Table and
922 * Hash Key. This is needed since on some devices VF share this information
923 * with PF and querying it may adduce a theoretical security risk.
924 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
925 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
926 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
927 * Called to setup 'tc' number of traffic classes in the net device. This
928 * is always called from the stack with the rtnl lock held and netif tx
929 * queues stopped. This allows the netdevice to perform queue management
930 * safely.
931 *
932 * Fiber Channel over Ethernet (FCoE) offload functions.
933 * int (*ndo_fcoe_enable)(struct net_device *dev);
934 * Called when the FCoE protocol stack wants to start using LLD for FCoE
935 * so the underlying device can perform whatever needed configuration or
936 * initialization to support acceleration of FCoE traffic.
937 *
938 * int (*ndo_fcoe_disable)(struct net_device *dev);
939 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
940 * so the underlying device can perform whatever needed clean-ups to
941 * stop supporting acceleration of FCoE traffic.
942 *
943 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
944 * struct scatterlist *sgl, unsigned int sgc);
945 * Called when the FCoE Initiator wants to initialize an I/O that
946 * is a possible candidate for Direct Data Placement (DDP). The LLD can
947 * perform necessary setup and returns 1 to indicate the device is set up
948 * successfully to perform DDP on this I/O, otherwise this returns 0.
949 *
950 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
951 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
952 * indicated by the FC exchange id 'xid', so the underlying device can
953 * clean up and reuse resources for later DDP requests.
954 *
955 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
956 * struct scatterlist *sgl, unsigned int sgc);
957 * Called when the FCoE Target wants to initialize an I/O that
958 * is a possible candidate for Direct Data Placement (DDP). The LLD can
959 * perform necessary setup and returns 1 to indicate the device is set up
960 * successfully to perform DDP on this I/O, otherwise this returns 0.
961 *
962 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
963 * struct netdev_fcoe_hbainfo *hbainfo);
964 * Called when the FCoE Protocol stack wants information on the underlying
965 * device. This information is utilized by the FCoE protocol stack to
966 * register attributes with Fiber Channel management service as per the
967 * FC-GS Fabric Device Management Information(FDMI) specification.
968 *
969 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
970 * Called when the underlying device wants to override default World Wide
971 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
972 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
973 * protocol stack to use.
974 *
975 * RFS acceleration.
976 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
977 * u16 rxq_index, u32 flow_id);
978 * Set hardware filter for RFS. rxq_index is the target queue index;
979 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
980 * Return the filter ID on success, or a negative error code.
981 *
982 * Slave management functions (for bridge, bonding, etc).
983 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
984 * Called to make another netdev an underling.
985 *
986 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
987 * Called to release previously enslaved netdev.
988 *
989 * Feature/offload setting functions.
990 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
991 * Called to update device configuration to new features. Passed
992 * feature set might be less than what was returned by ndo_fix_features()).
993 * Must return >0 or -errno if it changed dev->features itself.
994 *
995 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
996 * struct net_device *dev,
997 * const unsigned char *addr, u16 vid, u16 flags)
998 * Adds an FDB entry to dev for addr.
999 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1000 * struct net_device *dev,
1001 * const unsigned char *addr, u16 vid)
1002 * Deletes the FDB entry from dev coresponding to addr.
1003 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1004 * struct net_device *dev, struct net_device *filter_dev,
1005 * int idx)
1006 * Used to add FDB entries to dump requests. Implementers should add
1007 * entries to skb and update idx with the number of entries.
1008 *
1009 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1010 * u16 flags)
1011 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1012 * struct net_device *dev, u32 filter_mask,
1013 * int nlflags)
1014 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1015 * u16 flags);
1016 *
1017 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1018 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1019 * which do not represent real hardware may define this to allow their
1020 * userspace components to manage their virtual carrier state. Devices
1021 * that determine carrier state from physical hardware properties (eg
1022 * network cables) or protocol-dependent mechanisms (eg
1023 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1024 *
1025 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1026 * struct netdev_phys_item_id *ppid);
1027 * Called to get ID of physical port of this device. If driver does
1028 * not implement this, it is assumed that the hw is not able to have
1029 * multiple net devices on single physical port.
1030 *
1031 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1032 * sa_family_t sa_family, __be16 port);
1033 * Called by vxlan to notiy a driver about the UDP port and socket
1034 * address family that vxlan is listnening to. It is called only when
1035 * a new port starts listening. The operation is protected by the
1036 * vxlan_net->sock_lock.
1037 *
1038 * void (*ndo_add_geneve_port)(struct net_device *dev,
1039 * sa_family_t sa_family, __be16 port);
1040 * Called by geneve to notify a driver about the UDP port and socket
1041 * address family that geneve is listnening to. It is called only when
1042 * a new port starts listening. The operation is protected by the
1043 * geneve_net->sock_lock.
1044 *
1045 * void (*ndo_del_geneve_port)(struct net_device *dev,
1046 * sa_family_t sa_family, __be16 port);
1047 * Called by geneve to notify the driver about a UDP port and socket
1048 * address family that geneve is not listening to anymore. The operation
1049 * is protected by the geneve_net->sock_lock.
1050 *
1051 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1052 * sa_family_t sa_family, __be16 port);
1053 * Called by vxlan to notify the driver about a UDP port and socket
1054 * address family that vxlan is not listening to anymore. The operation
1055 * is protected by the vxlan_net->sock_lock.
1056 *
1057 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1058 * struct net_device *dev)
1059 * Called by upper layer devices to accelerate switching or other
1060 * station functionality into hardware. 'pdev is the lowerdev
1061 * to use for the offload and 'dev' is the net device that will
1062 * back the offload. Returns a pointer to the private structure
1063 * the upper layer will maintain.
1064 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1065 * Called by upper layer device to delete the station created
1066 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1067 * the station and priv is the structure returned by the add
1068 * operation.
1069 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1070 * struct net_device *dev,
1071 * void *priv);
1072 * Callback to use for xmit over the accelerated station. This
1073 * is used in place of ndo_start_xmit on accelerated net
1074 * devices.
1075 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1076 * struct net_device *dev
1077 * netdev_features_t features);
1078 * Called by core transmit path to determine if device is capable of
1079 * performing offload operations on a given packet. This is to give
1080 * the device an opportunity to implement any restrictions that cannot
1081 * be otherwise expressed by feature flags. The check is called with
1082 * the set of features that the stack has calculated and it returns
1083 * those the driver believes to be appropriate.
1084 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1085 * int queue_index, u32 maxrate);
1086 * Called when a user wants to set a max-rate limitation of specific
1087 * TX queue.
1088 * int (*ndo_get_iflink)(const struct net_device *dev);
1089 * Called to get the iflink value of this device.
1090 * void (*ndo_change_proto_down)(struct net_device *dev,
1091 * bool proto_down);
1092 * This function is used to pass protocol port error state information
1093 * to the switch driver. The switch driver can react to the proto_down
1094 * by doing a phys down on the associated switch port.
1095 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1096 * This function is used to get egress tunnel information for given skb.
1097 * This is useful for retrieving outer tunnel header parameters while
1098 * sampling packet.
1099 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1100 * This function is used to specify the headroom that the skb must
1101 * consider when allocation skb during packet reception. Setting
1102 * appropriate rx headroom value allows avoiding skb head copy on
1103 * forward. Setting a negative value reset the rx headroom to the
1104 * default value.
1105 *
1106 */
1107 struct net_device_ops {
1108 int (*ndo_init)(struct net_device *dev);
1109 void (*ndo_uninit)(struct net_device *dev);
1110 int (*ndo_open)(struct net_device *dev);
1111 int (*ndo_stop)(struct net_device *dev);
1112 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1113 struct net_device *dev);
1114 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1115 struct net_device *dev,
1116 netdev_features_t features);
1117 u16 (*ndo_select_queue)(struct net_device *dev,
1118 struct sk_buff *skb,
1119 void *accel_priv,
1120 select_queue_fallback_t fallback);
1121 void (*ndo_change_rx_flags)(struct net_device *dev,
1122 int flags);
1123 void (*ndo_set_rx_mode)(struct net_device *dev);
1124 int (*ndo_set_mac_address)(struct net_device *dev,
1125 void *addr);
1126 int (*ndo_validate_addr)(struct net_device *dev);
1127 int (*ndo_do_ioctl)(struct net_device *dev,
1128 struct ifreq *ifr, int cmd);
1129 int (*ndo_set_config)(struct net_device *dev,
1130 struct ifmap *map);
1131 int (*ndo_change_mtu)(struct net_device *dev,
1132 int new_mtu);
1133 int (*ndo_neigh_setup)(struct net_device *dev,
1134 struct neigh_parms *);
1135 void (*ndo_tx_timeout) (struct net_device *dev);
1136
1137 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1138 struct rtnl_link_stats64 *storage);
1139 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1140
1141 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1142 __be16 proto, u16 vid);
1143 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1144 __be16 proto, u16 vid);
1145 #ifdef CONFIG_NET_POLL_CONTROLLER
1146 void (*ndo_poll_controller)(struct net_device *dev);
1147 int (*ndo_netpoll_setup)(struct net_device *dev,
1148 struct netpoll_info *info);
1149 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1150 #endif
1151 #ifdef CONFIG_NET_RX_BUSY_POLL
1152 int (*ndo_busy_poll)(struct napi_struct *dev);
1153 #endif
1154 int (*ndo_set_vf_mac)(struct net_device *dev,
1155 int queue, u8 *mac);
1156 int (*ndo_set_vf_vlan)(struct net_device *dev,
1157 int queue, u16 vlan, u8 qos);
1158 int (*ndo_set_vf_rate)(struct net_device *dev,
1159 int vf, int min_tx_rate,
1160 int max_tx_rate);
1161 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1162 int vf, bool setting);
1163 int (*ndo_set_vf_trust)(struct net_device *dev,
1164 int vf, bool setting);
1165 int (*ndo_get_vf_config)(struct net_device *dev,
1166 int vf,
1167 struct ifla_vf_info *ivf);
1168 int (*ndo_set_vf_link_state)(struct net_device *dev,
1169 int vf, int link_state);
1170 int (*ndo_get_vf_stats)(struct net_device *dev,
1171 int vf,
1172 struct ifla_vf_stats
1173 *vf_stats);
1174 int (*ndo_set_vf_port)(struct net_device *dev,
1175 int vf,
1176 struct nlattr *port[]);
1177 int (*ndo_get_vf_port)(struct net_device *dev,
1178 int vf, struct sk_buff *skb);
1179 int (*ndo_set_vf_guid)(struct net_device *dev,
1180 int vf, u64 guid,
1181 int guid_type);
1182 int (*ndo_set_vf_rss_query_en)(
1183 struct net_device *dev,
1184 int vf, bool setting);
1185 int (*ndo_setup_tc)(struct net_device *dev,
1186 u32 handle,
1187 __be16 protocol,
1188 struct tc_to_netdev *tc);
1189 #if IS_ENABLED(CONFIG_FCOE)
1190 int (*ndo_fcoe_enable)(struct net_device *dev);
1191 int (*ndo_fcoe_disable)(struct net_device *dev);
1192 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1193 u16 xid,
1194 struct scatterlist *sgl,
1195 unsigned int sgc);
1196 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1197 u16 xid);
1198 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1199 u16 xid,
1200 struct scatterlist *sgl,
1201 unsigned int sgc);
1202 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1203 struct netdev_fcoe_hbainfo *hbainfo);
1204 #endif
1205
1206 #if IS_ENABLED(CONFIG_LIBFCOE)
1207 #define NETDEV_FCOE_WWNN 0
1208 #define NETDEV_FCOE_WWPN 1
1209 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1210 u64 *wwn, int type);
1211 #endif
1212
1213 #ifdef CONFIG_RFS_ACCEL
1214 int (*ndo_rx_flow_steer)(struct net_device *dev,
1215 const struct sk_buff *skb,
1216 u16 rxq_index,
1217 u32 flow_id);
1218 #endif
1219 int (*ndo_add_slave)(struct net_device *dev,
1220 struct net_device *slave_dev);
1221 int (*ndo_del_slave)(struct net_device *dev,
1222 struct net_device *slave_dev);
1223 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1224 netdev_features_t features);
1225 int (*ndo_set_features)(struct net_device *dev,
1226 netdev_features_t features);
1227 int (*ndo_neigh_construct)(struct neighbour *n);
1228 void (*ndo_neigh_destroy)(struct neighbour *n);
1229
1230 int (*ndo_fdb_add)(struct ndmsg *ndm,
1231 struct nlattr *tb[],
1232 struct net_device *dev,
1233 const unsigned char *addr,
1234 u16 vid,
1235 u16 flags);
1236 int (*ndo_fdb_del)(struct ndmsg *ndm,
1237 struct nlattr *tb[],
1238 struct net_device *dev,
1239 const unsigned char *addr,
1240 u16 vid);
1241 int (*ndo_fdb_dump)(struct sk_buff *skb,
1242 struct netlink_callback *cb,
1243 struct net_device *dev,
1244 struct net_device *filter_dev,
1245 int idx);
1246
1247 int (*ndo_bridge_setlink)(struct net_device *dev,
1248 struct nlmsghdr *nlh,
1249 u16 flags);
1250 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1251 u32 pid, u32 seq,
1252 struct net_device *dev,
1253 u32 filter_mask,
1254 int nlflags);
1255 int (*ndo_bridge_dellink)(struct net_device *dev,
1256 struct nlmsghdr *nlh,
1257 u16 flags);
1258 int (*ndo_change_carrier)(struct net_device *dev,
1259 bool new_carrier);
1260 int (*ndo_get_phys_port_id)(struct net_device *dev,
1261 struct netdev_phys_item_id *ppid);
1262 int (*ndo_get_phys_port_name)(struct net_device *dev,
1263 char *name, size_t len);
1264 void (*ndo_add_vxlan_port)(struct net_device *dev,
1265 sa_family_t sa_family,
1266 __be16 port);
1267 void (*ndo_del_vxlan_port)(struct net_device *dev,
1268 sa_family_t sa_family,
1269 __be16 port);
1270 void (*ndo_add_geneve_port)(struct net_device *dev,
1271 sa_family_t sa_family,
1272 __be16 port);
1273 void (*ndo_del_geneve_port)(struct net_device *dev,
1274 sa_family_t sa_family,
1275 __be16 port);
1276 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1277 struct net_device *dev);
1278 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1279 void *priv);
1280
1281 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1282 struct net_device *dev,
1283 void *priv);
1284 int (*ndo_get_lock_subclass)(struct net_device *dev);
1285 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1286 int queue_index,
1287 u32 maxrate);
1288 int (*ndo_get_iflink)(const struct net_device *dev);
1289 int (*ndo_change_proto_down)(struct net_device *dev,
1290 bool proto_down);
1291 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1292 struct sk_buff *skb);
1293 void (*ndo_set_rx_headroom)(struct net_device *dev,
1294 int needed_headroom);
1295 };
1296
1297 /**
1298 * enum net_device_priv_flags - &struct net_device priv_flags
1299 *
1300 * These are the &struct net_device, they are only set internally
1301 * by drivers and used in the kernel. These flags are invisible to
1302 * userspace, this means that the order of these flags can change
1303 * during any kernel release.
1304 *
1305 * You should have a pretty good reason to be extending these flags.
1306 *
1307 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1308 * @IFF_EBRIDGE: Ethernet bridging device
1309 * @IFF_BONDING: bonding master or slave
1310 * @IFF_ISATAP: ISATAP interface (RFC4214)
1311 * @IFF_WAN_HDLC: WAN HDLC device
1312 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1313 * release skb->dst
1314 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1315 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1316 * @IFF_MACVLAN_PORT: device used as macvlan port
1317 * @IFF_BRIDGE_PORT: device used as bridge port
1318 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1319 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1320 * @IFF_UNICAST_FLT: Supports unicast filtering
1321 * @IFF_TEAM_PORT: device used as team port
1322 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1323 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1324 * change when it's running
1325 * @IFF_MACVLAN: Macvlan device
1326 * @IFF_L3MDEV_MASTER: device is an L3 master device
1327 * @IFF_NO_QUEUE: device can run without qdisc attached
1328 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1329 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1330 * @IFF_TEAM: device is a team device
1331 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1332 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1333 * entity (i.e. the master device for bridged veth)
1334 * @IFF_MACSEC: device is a MACsec device
1335 */
1336 enum netdev_priv_flags {
1337 IFF_802_1Q_VLAN = 1<<0,
1338 IFF_EBRIDGE = 1<<1,
1339 IFF_BONDING = 1<<2,
1340 IFF_ISATAP = 1<<3,
1341 IFF_WAN_HDLC = 1<<4,
1342 IFF_XMIT_DST_RELEASE = 1<<5,
1343 IFF_DONT_BRIDGE = 1<<6,
1344 IFF_DISABLE_NETPOLL = 1<<7,
1345 IFF_MACVLAN_PORT = 1<<8,
1346 IFF_BRIDGE_PORT = 1<<9,
1347 IFF_OVS_DATAPATH = 1<<10,
1348 IFF_TX_SKB_SHARING = 1<<11,
1349 IFF_UNICAST_FLT = 1<<12,
1350 IFF_TEAM_PORT = 1<<13,
1351 IFF_SUPP_NOFCS = 1<<14,
1352 IFF_LIVE_ADDR_CHANGE = 1<<15,
1353 IFF_MACVLAN = 1<<16,
1354 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1355 IFF_IPVLAN_MASTER = 1<<18,
1356 IFF_IPVLAN_SLAVE = 1<<19,
1357 IFF_L3MDEV_MASTER = 1<<20,
1358 IFF_NO_QUEUE = 1<<21,
1359 IFF_OPENVSWITCH = 1<<22,
1360 IFF_L3MDEV_SLAVE = 1<<23,
1361 IFF_TEAM = 1<<24,
1362 IFF_RXFH_CONFIGURED = 1<<25,
1363 IFF_PHONY_HEADROOM = 1<<26,
1364 IFF_MACSEC = 1<<27,
1365 };
1366
1367 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1368 #define IFF_EBRIDGE IFF_EBRIDGE
1369 #define IFF_BONDING IFF_BONDING
1370 #define IFF_ISATAP IFF_ISATAP
1371 #define IFF_WAN_HDLC IFF_WAN_HDLC
1372 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1373 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1374 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1375 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1376 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1377 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1378 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1379 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1380 #define IFF_TEAM_PORT IFF_TEAM_PORT
1381 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1382 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1383 #define IFF_MACVLAN IFF_MACVLAN
1384 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1385 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1386 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1387 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1388 #define IFF_NO_QUEUE IFF_NO_QUEUE
1389 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1390 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1391 #define IFF_TEAM IFF_TEAM
1392 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1393 #define IFF_MACSEC IFF_MACSEC
1394
1395 /**
1396 * struct net_device - The DEVICE structure.
1397 * Actually, this whole structure is a big mistake. It mixes I/O
1398 * data with strictly "high-level" data, and it has to know about
1399 * almost every data structure used in the INET module.
1400 *
1401 * @name: This is the first field of the "visible" part of this structure
1402 * (i.e. as seen by users in the "Space.c" file). It is the name
1403 * of the interface.
1404 *
1405 * @name_hlist: Device name hash chain, please keep it close to name[]
1406 * @ifalias: SNMP alias
1407 * @mem_end: Shared memory end
1408 * @mem_start: Shared memory start
1409 * @base_addr: Device I/O address
1410 * @irq: Device IRQ number
1411 *
1412 * @carrier_changes: Stats to monitor carrier on<->off transitions
1413 *
1414 * @state: Generic network queuing layer state, see netdev_state_t
1415 * @dev_list: The global list of network devices
1416 * @napi_list: List entry, that is used for polling napi devices
1417 * @unreg_list: List entry, that is used, when we are unregistering the
1418 * device, see the function unregister_netdev
1419 * @close_list: List entry, that is used, when we are closing the device
1420 *
1421 * @adj_list: Directly linked devices, like slaves for bonding
1422 * @all_adj_list: All linked devices, *including* neighbours
1423 * @features: Currently active device features
1424 * @hw_features: User-changeable features
1425 *
1426 * @wanted_features: User-requested features
1427 * @vlan_features: Mask of features inheritable by VLAN devices
1428 *
1429 * @hw_enc_features: Mask of features inherited by encapsulating devices
1430 * This field indicates what encapsulation
1431 * offloads the hardware is capable of doing,
1432 * and drivers will need to set them appropriately.
1433 *
1434 * @mpls_features: Mask of features inheritable by MPLS
1435 *
1436 * @ifindex: interface index
1437 * @group: The group, that the device belongs to
1438 *
1439 * @stats: Statistics struct, which was left as a legacy, use
1440 * rtnl_link_stats64 instead
1441 *
1442 * @rx_dropped: Dropped packets by core network,
1443 * do not use this in drivers
1444 * @tx_dropped: Dropped packets by core network,
1445 * do not use this in drivers
1446 * @rx_nohandler: nohandler dropped packets by core network on
1447 * inactive devices, do not use this in drivers
1448 *
1449 * @wireless_handlers: List of functions to handle Wireless Extensions,
1450 * instead of ioctl,
1451 * see <net/iw_handler.h> for details.
1452 * @wireless_data: Instance data managed by the core of wireless extensions
1453 *
1454 * @netdev_ops: Includes several pointers to callbacks,
1455 * if one wants to override the ndo_*() functions
1456 * @ethtool_ops: Management operations
1457 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1458 * of Layer 2 headers.
1459 *
1460 * @flags: Interface flags (a la BSD)
1461 * @priv_flags: Like 'flags' but invisible to userspace,
1462 * see if.h for the definitions
1463 * @gflags: Global flags ( kept as legacy )
1464 * @padded: How much padding added by alloc_netdev()
1465 * @operstate: RFC2863 operstate
1466 * @link_mode: Mapping policy to operstate
1467 * @if_port: Selectable AUI, TP, ...
1468 * @dma: DMA channel
1469 * @mtu: Interface MTU value
1470 * @type: Interface hardware type
1471 * @hard_header_len: Maximum hardware header length.
1472 *
1473 * @needed_headroom: Extra headroom the hardware may need, but not in all
1474 * cases can this be guaranteed
1475 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1476 * cases can this be guaranteed. Some cases also use
1477 * LL_MAX_HEADER instead to allocate the skb
1478 *
1479 * interface address info:
1480 *
1481 * @perm_addr: Permanent hw address
1482 * @addr_assign_type: Hw address assignment type
1483 * @addr_len: Hardware address length
1484 * @neigh_priv_len; Used in neigh_alloc(),
1485 * initialized only in atm/clip.c
1486 * @dev_id: Used to differentiate devices that share
1487 * the same link layer address
1488 * @dev_port: Used to differentiate devices that share
1489 * the same function
1490 * @addr_list_lock: XXX: need comments on this one
1491 * @uc_promisc: Counter, that indicates, that promiscuous mode
1492 * has been enabled due to the need to listen to
1493 * additional unicast addresses in a device that
1494 * does not implement ndo_set_rx_mode()
1495 * @uc: unicast mac addresses
1496 * @mc: multicast mac addresses
1497 * @dev_addrs: list of device hw addresses
1498 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1499 * @promiscuity: Number of times, the NIC is told to work in
1500 * Promiscuous mode, if it becomes 0 the NIC will
1501 * exit from working in Promiscuous mode
1502 * @allmulti: Counter, enables or disables allmulticast mode
1503 *
1504 * @vlan_info: VLAN info
1505 * @dsa_ptr: dsa specific data
1506 * @tipc_ptr: TIPC specific data
1507 * @atalk_ptr: AppleTalk link
1508 * @ip_ptr: IPv4 specific data
1509 * @dn_ptr: DECnet specific data
1510 * @ip6_ptr: IPv6 specific data
1511 * @ax25_ptr: AX.25 specific data
1512 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1513 *
1514 * @last_rx: Time of last Rx
1515 * @dev_addr: Hw address (before bcast,
1516 * because most packets are unicast)
1517 *
1518 * @_rx: Array of RX queues
1519 * @num_rx_queues: Number of RX queues
1520 * allocated at register_netdev() time
1521 * @real_num_rx_queues: Number of RX queues currently active in device
1522 *
1523 * @rx_handler: handler for received packets
1524 * @rx_handler_data: XXX: need comments on this one
1525 * @ingress_queue: XXX: need comments on this one
1526 * @broadcast: hw bcast address
1527 *
1528 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1529 * indexed by RX queue number. Assigned by driver.
1530 * This must only be set if the ndo_rx_flow_steer
1531 * operation is defined
1532 * @index_hlist: Device index hash chain
1533 *
1534 * @_tx: Array of TX queues
1535 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1536 * @real_num_tx_queues: Number of TX queues currently active in device
1537 * @qdisc: Root qdisc from userspace point of view
1538 * @tx_queue_len: Max frames per queue allowed
1539 * @tx_global_lock: XXX: need comments on this one
1540 *
1541 * @xps_maps: XXX: need comments on this one
1542 *
1543 * @offload_fwd_mark: Offload device fwding mark
1544 *
1545 * @trans_start: Time (in jiffies) of last Tx
1546 * @watchdog_timeo: Represents the timeout that is used by
1547 * the watchdog ( see dev_watchdog() )
1548 * @watchdog_timer: List of timers
1549 *
1550 * @pcpu_refcnt: Number of references to this device
1551 * @todo_list: Delayed register/unregister
1552 * @link_watch_list: XXX: need comments on this one
1553 *
1554 * @reg_state: Register/unregister state machine
1555 * @dismantle: Device is going to be freed
1556 * @rtnl_link_state: This enum represents the phases of creating
1557 * a new link
1558 *
1559 * @destructor: Called from unregister,
1560 * can be used to call free_netdev
1561 * @npinfo: XXX: need comments on this one
1562 * @nd_net: Network namespace this network device is inside
1563 *
1564 * @ml_priv: Mid-layer private
1565 * @lstats: Loopback statistics
1566 * @tstats: Tunnel statistics
1567 * @dstats: Dummy statistics
1568 * @vstats: Virtual ethernet statistics
1569 *
1570 * @garp_port: GARP
1571 * @mrp_port: MRP
1572 *
1573 * @dev: Class/net/name entry
1574 * @sysfs_groups: Space for optional device, statistics and wireless
1575 * sysfs groups
1576 *
1577 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1578 * @rtnl_link_ops: Rtnl_link_ops
1579 *
1580 * @gso_max_size: Maximum size of generic segmentation offload
1581 * @gso_max_segs: Maximum number of segments that can be passed to the
1582 * NIC for GSO
1583 * @gso_min_segs: Minimum number of segments that can be passed to the
1584 * NIC for GSO
1585 *
1586 * @dcbnl_ops: Data Center Bridging netlink ops
1587 * @num_tc: Number of traffic classes in the net device
1588 * @tc_to_txq: XXX: need comments on this one
1589 * @prio_tc_map XXX: need comments on this one
1590 *
1591 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1592 *
1593 * @priomap: XXX: need comments on this one
1594 * @phydev: Physical device may attach itself
1595 * for hardware timestamping
1596 *
1597 * @qdisc_tx_busylock: XXX: need comments on this one
1598 *
1599 * @proto_down: protocol port state information can be sent to the
1600 * switch driver and used to set the phys state of the
1601 * switch port.
1602 *
1603 * FIXME: cleanup struct net_device such that network protocol info
1604 * moves out.
1605 */
1606
1607 struct net_device {
1608 char name[IFNAMSIZ];
1609 struct hlist_node name_hlist;
1610 char *ifalias;
1611 /*
1612 * I/O specific fields
1613 * FIXME: Merge these and struct ifmap into one
1614 */
1615 unsigned long mem_end;
1616 unsigned long mem_start;
1617 unsigned long base_addr;
1618 int irq;
1619
1620 atomic_t carrier_changes;
1621
1622 /*
1623 * Some hardware also needs these fields (state,dev_list,
1624 * napi_list,unreg_list,close_list) but they are not
1625 * part of the usual set specified in Space.c.
1626 */
1627
1628 unsigned long state;
1629
1630 struct list_head dev_list;
1631 struct list_head napi_list;
1632 struct list_head unreg_list;
1633 struct list_head close_list;
1634 struct list_head ptype_all;
1635 struct list_head ptype_specific;
1636
1637 struct {
1638 struct list_head upper;
1639 struct list_head lower;
1640 } adj_list;
1641
1642 struct {
1643 struct list_head upper;
1644 struct list_head lower;
1645 } all_adj_list;
1646
1647 netdev_features_t features;
1648 netdev_features_t hw_features;
1649 netdev_features_t wanted_features;
1650 netdev_features_t vlan_features;
1651 netdev_features_t hw_enc_features;
1652 netdev_features_t mpls_features;
1653
1654 int ifindex;
1655 int group;
1656
1657 struct net_device_stats stats;
1658
1659 atomic_long_t rx_dropped;
1660 atomic_long_t tx_dropped;
1661 atomic_long_t rx_nohandler;
1662
1663 #ifdef CONFIG_WIRELESS_EXT
1664 const struct iw_handler_def * wireless_handlers;
1665 struct iw_public_data * wireless_data;
1666 #endif
1667 const struct net_device_ops *netdev_ops;
1668 const struct ethtool_ops *ethtool_ops;
1669 #ifdef CONFIG_NET_SWITCHDEV
1670 const struct switchdev_ops *switchdev_ops;
1671 #endif
1672 #ifdef CONFIG_NET_L3_MASTER_DEV
1673 const struct l3mdev_ops *l3mdev_ops;
1674 #endif
1675
1676 const struct header_ops *header_ops;
1677
1678 unsigned int flags;
1679 unsigned int priv_flags;
1680
1681 unsigned short gflags;
1682 unsigned short padded;
1683
1684 unsigned char operstate;
1685 unsigned char link_mode;
1686
1687 unsigned char if_port;
1688 unsigned char dma;
1689
1690 unsigned int mtu;
1691 unsigned short type;
1692 unsigned short hard_header_len;
1693
1694 unsigned short needed_headroom;
1695 unsigned short needed_tailroom;
1696
1697 /* Interface address info. */
1698 unsigned char perm_addr[MAX_ADDR_LEN];
1699 unsigned char addr_assign_type;
1700 unsigned char addr_len;
1701 unsigned short neigh_priv_len;
1702 unsigned short dev_id;
1703 unsigned short dev_port;
1704 spinlock_t addr_list_lock;
1705 unsigned char name_assign_type;
1706 bool uc_promisc;
1707 struct netdev_hw_addr_list uc;
1708 struct netdev_hw_addr_list mc;
1709 struct netdev_hw_addr_list dev_addrs;
1710
1711 #ifdef CONFIG_SYSFS
1712 struct kset *queues_kset;
1713 #endif
1714 unsigned int promiscuity;
1715 unsigned int allmulti;
1716
1717
1718 /* Protocol specific pointers */
1719
1720 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1721 struct vlan_info __rcu *vlan_info;
1722 #endif
1723 #if IS_ENABLED(CONFIG_NET_DSA)
1724 struct dsa_switch_tree *dsa_ptr;
1725 #endif
1726 #if IS_ENABLED(CONFIG_TIPC)
1727 struct tipc_bearer __rcu *tipc_ptr;
1728 #endif
1729 void *atalk_ptr;
1730 struct in_device __rcu *ip_ptr;
1731 struct dn_dev __rcu *dn_ptr;
1732 struct inet6_dev __rcu *ip6_ptr;
1733 void *ax25_ptr;
1734 struct wireless_dev *ieee80211_ptr;
1735 struct wpan_dev *ieee802154_ptr;
1736 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1737 struct mpls_dev __rcu *mpls_ptr;
1738 #endif
1739
1740 /*
1741 * Cache lines mostly used on receive path (including eth_type_trans())
1742 */
1743 unsigned long last_rx;
1744
1745 /* Interface address info used in eth_type_trans() */
1746 unsigned char *dev_addr;
1747
1748
1749 #ifdef CONFIG_SYSFS
1750 struct netdev_rx_queue *_rx;
1751
1752 unsigned int num_rx_queues;
1753 unsigned int real_num_rx_queues;
1754
1755 #endif
1756
1757 unsigned long gro_flush_timeout;
1758 rx_handler_func_t __rcu *rx_handler;
1759 void __rcu *rx_handler_data;
1760
1761 #ifdef CONFIG_NET_CLS_ACT
1762 struct tcf_proto __rcu *ingress_cl_list;
1763 #endif
1764 struct netdev_queue __rcu *ingress_queue;
1765 #ifdef CONFIG_NETFILTER_INGRESS
1766 struct list_head nf_hooks_ingress;
1767 #endif
1768
1769 unsigned char broadcast[MAX_ADDR_LEN];
1770 #ifdef CONFIG_RFS_ACCEL
1771 struct cpu_rmap *rx_cpu_rmap;
1772 #endif
1773 struct hlist_node index_hlist;
1774
1775 /*
1776 * Cache lines mostly used on transmit path
1777 */
1778 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1779 unsigned int num_tx_queues;
1780 unsigned int real_num_tx_queues;
1781 struct Qdisc *qdisc;
1782 unsigned long tx_queue_len;
1783 spinlock_t tx_global_lock;
1784 int watchdog_timeo;
1785
1786 #ifdef CONFIG_XPS
1787 struct xps_dev_maps __rcu *xps_maps;
1788 #endif
1789 #ifdef CONFIG_NET_CLS_ACT
1790 struct tcf_proto __rcu *egress_cl_list;
1791 #endif
1792 #ifdef CONFIG_NET_SWITCHDEV
1793 u32 offload_fwd_mark;
1794 #endif
1795
1796 /* These may be needed for future network-power-down code. */
1797
1798 /*
1799 * trans_start here is expensive for high speed devices on SMP,
1800 * please use netdev_queue->trans_start instead.
1801 */
1802 unsigned long trans_start;
1803
1804 struct timer_list watchdog_timer;
1805
1806 int __percpu *pcpu_refcnt;
1807 struct list_head todo_list;
1808
1809 struct list_head link_watch_list;
1810
1811 enum { NETREG_UNINITIALIZED=0,
1812 NETREG_REGISTERED, /* completed register_netdevice */
1813 NETREG_UNREGISTERING, /* called unregister_netdevice */
1814 NETREG_UNREGISTERED, /* completed unregister todo */
1815 NETREG_RELEASED, /* called free_netdev */
1816 NETREG_DUMMY, /* dummy device for NAPI poll */
1817 } reg_state:8;
1818
1819 bool dismantle;
1820
1821 enum {
1822 RTNL_LINK_INITIALIZED,
1823 RTNL_LINK_INITIALIZING,
1824 } rtnl_link_state:16;
1825
1826 void (*destructor)(struct net_device *dev);
1827
1828 #ifdef CONFIG_NETPOLL
1829 struct netpoll_info __rcu *npinfo;
1830 #endif
1831
1832 possible_net_t nd_net;
1833
1834 /* mid-layer private */
1835 union {
1836 void *ml_priv;
1837 struct pcpu_lstats __percpu *lstats;
1838 struct pcpu_sw_netstats __percpu *tstats;
1839 struct pcpu_dstats __percpu *dstats;
1840 struct pcpu_vstats __percpu *vstats;
1841 };
1842
1843 struct garp_port __rcu *garp_port;
1844 struct mrp_port __rcu *mrp_port;
1845
1846 struct device dev;
1847 const struct attribute_group *sysfs_groups[4];
1848 const struct attribute_group *sysfs_rx_queue_group;
1849
1850 const struct rtnl_link_ops *rtnl_link_ops;
1851
1852 /* for setting kernel sock attribute on TCP connection setup */
1853 #define GSO_MAX_SIZE 65536
1854 unsigned int gso_max_size;
1855 #define GSO_MAX_SEGS 65535
1856 u16 gso_max_segs;
1857 u16 gso_min_segs;
1858 #ifdef CONFIG_DCB
1859 const struct dcbnl_rtnl_ops *dcbnl_ops;
1860 #endif
1861 u8 num_tc;
1862 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1863 u8 prio_tc_map[TC_BITMASK + 1];
1864
1865 #if IS_ENABLED(CONFIG_FCOE)
1866 unsigned int fcoe_ddp_xid;
1867 #endif
1868 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1869 struct netprio_map __rcu *priomap;
1870 #endif
1871 struct phy_device *phydev;
1872 struct lock_class_key *qdisc_tx_busylock;
1873 bool proto_down;
1874 };
1875 #define to_net_dev(d) container_of(d, struct net_device, dev)
1876
1877 #define NETDEV_ALIGN 32
1878
1879 static inline
1880 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1881 {
1882 return dev->prio_tc_map[prio & TC_BITMASK];
1883 }
1884
1885 static inline
1886 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1887 {
1888 if (tc >= dev->num_tc)
1889 return -EINVAL;
1890
1891 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1892 return 0;
1893 }
1894
1895 static inline
1896 void netdev_reset_tc(struct net_device *dev)
1897 {
1898 dev->num_tc = 0;
1899 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1900 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1901 }
1902
1903 static inline
1904 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1905 {
1906 if (tc >= dev->num_tc)
1907 return -EINVAL;
1908
1909 dev->tc_to_txq[tc].count = count;
1910 dev->tc_to_txq[tc].offset = offset;
1911 return 0;
1912 }
1913
1914 static inline
1915 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1916 {
1917 if (num_tc > TC_MAX_QUEUE)
1918 return -EINVAL;
1919
1920 dev->num_tc = num_tc;
1921 return 0;
1922 }
1923
1924 static inline
1925 int netdev_get_num_tc(struct net_device *dev)
1926 {
1927 return dev->num_tc;
1928 }
1929
1930 static inline
1931 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1932 unsigned int index)
1933 {
1934 return &dev->_tx[index];
1935 }
1936
1937 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1938 const struct sk_buff *skb)
1939 {
1940 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1941 }
1942
1943 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1944 void (*f)(struct net_device *,
1945 struct netdev_queue *,
1946 void *),
1947 void *arg)
1948 {
1949 unsigned int i;
1950
1951 for (i = 0; i < dev->num_tx_queues; i++)
1952 f(dev, &dev->_tx[i], arg);
1953 }
1954
1955 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1956 struct sk_buff *skb,
1957 void *accel_priv);
1958
1959 /* returns the headroom that the master device needs to take in account
1960 * when forwarding to this dev
1961 */
1962 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1963 {
1964 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1965 }
1966
1967 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1968 {
1969 if (dev->netdev_ops->ndo_set_rx_headroom)
1970 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1971 }
1972
1973 /* set the device rx headroom to the dev's default */
1974 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1975 {
1976 netdev_set_rx_headroom(dev, -1);
1977 }
1978
1979 /*
1980 * Net namespace inlines
1981 */
1982 static inline
1983 struct net *dev_net(const struct net_device *dev)
1984 {
1985 return read_pnet(&dev->nd_net);
1986 }
1987
1988 static inline
1989 void dev_net_set(struct net_device *dev, struct net *net)
1990 {
1991 write_pnet(&dev->nd_net, net);
1992 }
1993
1994 static inline bool netdev_uses_dsa(struct net_device *dev)
1995 {
1996 #if IS_ENABLED(CONFIG_NET_DSA)
1997 if (dev->dsa_ptr != NULL)
1998 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1999 #endif
2000 return false;
2001 }
2002
2003 /**
2004 * netdev_priv - access network device private data
2005 * @dev: network device
2006 *
2007 * Get network device private data
2008 */
2009 static inline void *netdev_priv(const struct net_device *dev)
2010 {
2011 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2012 }
2013
2014 /* Set the sysfs physical device reference for the network logical device
2015 * if set prior to registration will cause a symlink during initialization.
2016 */
2017 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2018
2019 /* Set the sysfs device type for the network logical device to allow
2020 * fine-grained identification of different network device types. For
2021 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
2022 */
2023 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2024
2025 /* Default NAPI poll() weight
2026 * Device drivers are strongly advised to not use bigger value
2027 */
2028 #define NAPI_POLL_WEIGHT 64
2029
2030 /**
2031 * netif_napi_add - initialize a napi context
2032 * @dev: network device
2033 * @napi: napi context
2034 * @poll: polling function
2035 * @weight: default weight
2036 *
2037 * netif_napi_add() must be used to initialize a napi context prior to calling
2038 * *any* of the other napi related functions.
2039 */
2040 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2041 int (*poll)(struct napi_struct *, int), int weight);
2042
2043 /**
2044 * netif_tx_napi_add - initialize a napi context
2045 * @dev: network device
2046 * @napi: napi context
2047 * @poll: polling function
2048 * @weight: default weight
2049 *
2050 * This variant of netif_napi_add() should be used from drivers using NAPI
2051 * to exclusively poll a TX queue.
2052 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2053 */
2054 static inline void netif_tx_napi_add(struct net_device *dev,
2055 struct napi_struct *napi,
2056 int (*poll)(struct napi_struct *, int),
2057 int weight)
2058 {
2059 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2060 netif_napi_add(dev, napi, poll, weight);
2061 }
2062
2063 /**
2064 * netif_napi_del - remove a napi context
2065 * @napi: napi context
2066 *
2067 * netif_napi_del() removes a napi context from the network device napi list
2068 */
2069 void netif_napi_del(struct napi_struct *napi);
2070
2071 struct napi_gro_cb {
2072 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2073 void *frag0;
2074
2075 /* Length of frag0. */
2076 unsigned int frag0_len;
2077
2078 /* This indicates where we are processing relative to skb->data. */
2079 int data_offset;
2080
2081 /* This is non-zero if the packet cannot be merged with the new skb. */
2082 u16 flush;
2083
2084 /* Save the IP ID here and check when we get to the transport layer */
2085 u16 flush_id;
2086
2087 /* Number of segments aggregated. */
2088 u16 count;
2089
2090 /* Start offset for remote checksum offload */
2091 u16 gro_remcsum_start;
2092
2093 /* jiffies when first packet was created/queued */
2094 unsigned long age;
2095
2096 /* Used in ipv6_gro_receive() and foo-over-udp */
2097 u16 proto;
2098
2099 /* This is non-zero if the packet may be of the same flow. */
2100 u8 same_flow:1;
2101
2102 /* Used in udp_gro_receive */
2103 u8 udp_mark:1;
2104
2105 /* GRO checksum is valid */
2106 u8 csum_valid:1;
2107
2108 /* Number of checksums via CHECKSUM_UNNECESSARY */
2109 u8 csum_cnt:3;
2110
2111 /* Free the skb? */
2112 u8 free:2;
2113 #define NAPI_GRO_FREE 1
2114 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2115
2116 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2117 u8 is_ipv6:1;
2118
2119 /* 7 bit hole */
2120
2121 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2122 __wsum csum;
2123
2124 /* used in skb_gro_receive() slow path */
2125 struct sk_buff *last;
2126 };
2127
2128 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2129
2130 struct packet_type {
2131 __be16 type; /* This is really htons(ether_type). */
2132 struct net_device *dev; /* NULL is wildcarded here */
2133 int (*func) (struct sk_buff *,
2134 struct net_device *,
2135 struct packet_type *,
2136 struct net_device *);
2137 bool (*id_match)(struct packet_type *ptype,
2138 struct sock *sk);
2139 void *af_packet_priv;
2140 struct list_head list;
2141 };
2142
2143 struct offload_callbacks {
2144 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2145 netdev_features_t features);
2146 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2147 struct sk_buff *skb);
2148 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2149 };
2150
2151 struct packet_offload {
2152 __be16 type; /* This is really htons(ether_type). */
2153 u16 priority;
2154 struct offload_callbacks callbacks;
2155 struct list_head list;
2156 };
2157
2158 struct udp_offload;
2159
2160 struct udp_offload_callbacks {
2161 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2162 struct sk_buff *skb,
2163 struct udp_offload *uoff);
2164 int (*gro_complete)(struct sk_buff *skb,
2165 int nhoff,
2166 struct udp_offload *uoff);
2167 };
2168
2169 struct udp_offload {
2170 __be16 port;
2171 u8 ipproto;
2172 struct udp_offload_callbacks callbacks;
2173 };
2174
2175 /* often modified stats are per cpu, other are shared (netdev->stats) */
2176 struct pcpu_sw_netstats {
2177 u64 rx_packets;
2178 u64 rx_bytes;
2179 u64 tx_packets;
2180 u64 tx_bytes;
2181 struct u64_stats_sync syncp;
2182 };
2183
2184 #define __netdev_alloc_pcpu_stats(type, gfp) \
2185 ({ \
2186 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2187 if (pcpu_stats) { \
2188 int __cpu; \
2189 for_each_possible_cpu(__cpu) { \
2190 typeof(type) *stat; \
2191 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2192 u64_stats_init(&stat->syncp); \
2193 } \
2194 } \
2195 pcpu_stats; \
2196 })
2197
2198 #define netdev_alloc_pcpu_stats(type) \
2199 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2200
2201 enum netdev_lag_tx_type {
2202 NETDEV_LAG_TX_TYPE_UNKNOWN,
2203 NETDEV_LAG_TX_TYPE_RANDOM,
2204 NETDEV_LAG_TX_TYPE_BROADCAST,
2205 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2206 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2207 NETDEV_LAG_TX_TYPE_HASH,
2208 };
2209
2210 struct netdev_lag_upper_info {
2211 enum netdev_lag_tx_type tx_type;
2212 };
2213
2214 struct netdev_lag_lower_state_info {
2215 u8 link_up : 1,
2216 tx_enabled : 1;
2217 };
2218
2219 #include <linux/notifier.h>
2220
2221 /* netdevice notifier chain. Please remember to update the rtnetlink
2222 * notification exclusion list in rtnetlink_event() when adding new
2223 * types.
2224 */
2225 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2226 #define NETDEV_DOWN 0x0002
2227 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2228 detected a hardware crash and restarted
2229 - we can use this eg to kick tcp sessions
2230 once done */
2231 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2232 #define NETDEV_REGISTER 0x0005
2233 #define NETDEV_UNREGISTER 0x0006
2234 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2235 #define NETDEV_CHANGEADDR 0x0008
2236 #define NETDEV_GOING_DOWN 0x0009
2237 #define NETDEV_CHANGENAME 0x000A
2238 #define NETDEV_FEAT_CHANGE 0x000B
2239 #define NETDEV_BONDING_FAILOVER 0x000C
2240 #define NETDEV_PRE_UP 0x000D
2241 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2242 #define NETDEV_POST_TYPE_CHANGE 0x000F
2243 #define NETDEV_POST_INIT 0x0010
2244 #define NETDEV_UNREGISTER_FINAL 0x0011
2245 #define NETDEV_RELEASE 0x0012
2246 #define NETDEV_NOTIFY_PEERS 0x0013
2247 #define NETDEV_JOIN 0x0014
2248 #define NETDEV_CHANGEUPPER 0x0015
2249 #define NETDEV_RESEND_IGMP 0x0016
2250 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2251 #define NETDEV_CHANGEINFODATA 0x0018
2252 #define NETDEV_BONDING_INFO 0x0019
2253 #define NETDEV_PRECHANGEUPPER 0x001A
2254 #define NETDEV_CHANGELOWERSTATE 0x001B
2255
2256 int register_netdevice_notifier(struct notifier_block *nb);
2257 int unregister_netdevice_notifier(struct notifier_block *nb);
2258
2259 struct netdev_notifier_info {
2260 struct net_device *dev;
2261 };
2262
2263 struct netdev_notifier_change_info {
2264 struct netdev_notifier_info info; /* must be first */
2265 unsigned int flags_changed;
2266 };
2267
2268 struct netdev_notifier_changeupper_info {
2269 struct netdev_notifier_info info; /* must be first */
2270 struct net_device *upper_dev; /* new upper dev */
2271 bool master; /* is upper dev master */
2272 bool linking; /* is the nofication for link or unlink */
2273 void *upper_info; /* upper dev info */
2274 };
2275
2276 struct netdev_notifier_changelowerstate_info {
2277 struct netdev_notifier_info info; /* must be first */
2278 void *lower_state_info; /* is lower dev state */
2279 };
2280
2281 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2282 struct net_device *dev)
2283 {
2284 info->dev = dev;
2285 }
2286
2287 static inline struct net_device *
2288 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2289 {
2290 return info->dev;
2291 }
2292
2293 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2294
2295
2296 extern rwlock_t dev_base_lock; /* Device list lock */
2297
2298 #define for_each_netdev(net, d) \
2299 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2300 #define for_each_netdev_reverse(net, d) \
2301 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2302 #define for_each_netdev_rcu(net, d) \
2303 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2304 #define for_each_netdev_safe(net, d, n) \
2305 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2306 #define for_each_netdev_continue(net, d) \
2307 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2308 #define for_each_netdev_continue_rcu(net, d) \
2309 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2310 #define for_each_netdev_in_bond_rcu(bond, slave) \
2311 for_each_netdev_rcu(&init_net, slave) \
2312 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2313 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2314
2315 static inline struct net_device *next_net_device(struct net_device *dev)
2316 {
2317 struct list_head *lh;
2318 struct net *net;
2319
2320 net = dev_net(dev);
2321 lh = dev->dev_list.next;
2322 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2323 }
2324
2325 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2326 {
2327 struct list_head *lh;
2328 struct net *net;
2329
2330 net = dev_net(dev);
2331 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2332 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2333 }
2334
2335 static inline struct net_device *first_net_device(struct net *net)
2336 {
2337 return list_empty(&net->dev_base_head) ? NULL :
2338 net_device_entry(net->dev_base_head.next);
2339 }
2340
2341 static inline struct net_device *first_net_device_rcu(struct net *net)
2342 {
2343 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2344
2345 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2346 }
2347
2348 int netdev_boot_setup_check(struct net_device *dev);
2349 unsigned long netdev_boot_base(const char *prefix, int unit);
2350 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2351 const char *hwaddr);
2352 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2353 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2354 void dev_add_pack(struct packet_type *pt);
2355 void dev_remove_pack(struct packet_type *pt);
2356 void __dev_remove_pack(struct packet_type *pt);
2357 void dev_add_offload(struct packet_offload *po);
2358 void dev_remove_offload(struct packet_offload *po);
2359
2360 int dev_get_iflink(const struct net_device *dev);
2361 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2362 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2363 unsigned short mask);
2364 struct net_device *dev_get_by_name(struct net *net, const char *name);
2365 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2366 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2367 int dev_alloc_name(struct net_device *dev, const char *name);
2368 int dev_open(struct net_device *dev);
2369 int dev_close(struct net_device *dev);
2370 int dev_close_many(struct list_head *head, bool unlink);
2371 void dev_disable_lro(struct net_device *dev);
2372 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2373 int dev_queue_xmit(struct sk_buff *skb);
2374 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2375 int register_netdevice(struct net_device *dev);
2376 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2377 void unregister_netdevice_many(struct list_head *head);
2378 static inline void unregister_netdevice(struct net_device *dev)
2379 {
2380 unregister_netdevice_queue(dev, NULL);
2381 }
2382
2383 int netdev_refcnt_read(const struct net_device *dev);
2384 void free_netdev(struct net_device *dev);
2385 void netdev_freemem(struct net_device *dev);
2386 void synchronize_net(void);
2387 int init_dummy_netdev(struct net_device *dev);
2388
2389 DECLARE_PER_CPU(int, xmit_recursion);
2390 static inline int dev_recursion_level(void)
2391 {
2392 return this_cpu_read(xmit_recursion);
2393 }
2394
2395 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2396 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2397 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2398 int netdev_get_name(struct net *net, char *name, int ifindex);
2399 int dev_restart(struct net_device *dev);
2400 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2401
2402 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2403 {
2404 return NAPI_GRO_CB(skb)->data_offset;
2405 }
2406
2407 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2408 {
2409 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2410 }
2411
2412 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2413 {
2414 NAPI_GRO_CB(skb)->data_offset += len;
2415 }
2416
2417 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2418 unsigned int offset)
2419 {
2420 return NAPI_GRO_CB(skb)->frag0 + offset;
2421 }
2422
2423 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2424 {
2425 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2426 }
2427
2428 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2429 unsigned int offset)
2430 {
2431 if (!pskb_may_pull(skb, hlen))
2432 return NULL;
2433
2434 NAPI_GRO_CB(skb)->frag0 = NULL;
2435 NAPI_GRO_CB(skb)->frag0_len = 0;
2436 return skb->data + offset;
2437 }
2438
2439 static inline void *skb_gro_network_header(struct sk_buff *skb)
2440 {
2441 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2442 skb_network_offset(skb);
2443 }
2444
2445 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2446 const void *start, unsigned int len)
2447 {
2448 if (NAPI_GRO_CB(skb)->csum_valid)
2449 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2450 csum_partial(start, len, 0));
2451 }
2452
2453 /* GRO checksum functions. These are logical equivalents of the normal
2454 * checksum functions (in skbuff.h) except that they operate on the GRO
2455 * offsets and fields in sk_buff.
2456 */
2457
2458 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2459
2460 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2461 {
2462 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2463 }
2464
2465 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2466 bool zero_okay,
2467 __sum16 check)
2468 {
2469 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2470 skb_checksum_start_offset(skb) <
2471 skb_gro_offset(skb)) &&
2472 !skb_at_gro_remcsum_start(skb) &&
2473 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2474 (!zero_okay || check));
2475 }
2476
2477 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2478 __wsum psum)
2479 {
2480 if (NAPI_GRO_CB(skb)->csum_valid &&
2481 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2482 return 0;
2483
2484 NAPI_GRO_CB(skb)->csum = psum;
2485
2486 return __skb_gro_checksum_complete(skb);
2487 }
2488
2489 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2490 {
2491 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2492 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2493 NAPI_GRO_CB(skb)->csum_cnt--;
2494 } else {
2495 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2496 * verified a new top level checksum or an encapsulated one
2497 * during GRO. This saves work if we fallback to normal path.
2498 */
2499 __skb_incr_checksum_unnecessary(skb);
2500 }
2501 }
2502
2503 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2504 compute_pseudo) \
2505 ({ \
2506 __sum16 __ret = 0; \
2507 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2508 __ret = __skb_gro_checksum_validate_complete(skb, \
2509 compute_pseudo(skb, proto)); \
2510 if (__ret) \
2511 __skb_mark_checksum_bad(skb); \
2512 else \
2513 skb_gro_incr_csum_unnecessary(skb); \
2514 __ret; \
2515 })
2516
2517 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2518 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2519
2520 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2521 compute_pseudo) \
2522 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2523
2524 #define skb_gro_checksum_simple_validate(skb) \
2525 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2526
2527 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2528 {
2529 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2530 !NAPI_GRO_CB(skb)->csum_valid);
2531 }
2532
2533 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2534 __sum16 check, __wsum pseudo)
2535 {
2536 NAPI_GRO_CB(skb)->csum = ~pseudo;
2537 NAPI_GRO_CB(skb)->csum_valid = 1;
2538 }
2539
2540 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2541 do { \
2542 if (__skb_gro_checksum_convert_check(skb)) \
2543 __skb_gro_checksum_convert(skb, check, \
2544 compute_pseudo(skb, proto)); \
2545 } while (0)
2546
2547 struct gro_remcsum {
2548 int offset;
2549 __wsum delta;
2550 };
2551
2552 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2553 {
2554 grc->offset = 0;
2555 grc->delta = 0;
2556 }
2557
2558 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2559 unsigned int off, size_t hdrlen,
2560 int start, int offset,
2561 struct gro_remcsum *grc,
2562 bool nopartial)
2563 {
2564 __wsum delta;
2565 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2566
2567 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2568
2569 if (!nopartial) {
2570 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2571 return ptr;
2572 }
2573
2574 ptr = skb_gro_header_fast(skb, off);
2575 if (skb_gro_header_hard(skb, off + plen)) {
2576 ptr = skb_gro_header_slow(skb, off + plen, off);
2577 if (!ptr)
2578 return NULL;
2579 }
2580
2581 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2582 start, offset);
2583
2584 /* Adjust skb->csum since we changed the packet */
2585 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2586
2587 grc->offset = off + hdrlen + offset;
2588 grc->delta = delta;
2589
2590 return ptr;
2591 }
2592
2593 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2594 struct gro_remcsum *grc)
2595 {
2596 void *ptr;
2597 size_t plen = grc->offset + sizeof(u16);
2598
2599 if (!grc->delta)
2600 return;
2601
2602 ptr = skb_gro_header_fast(skb, grc->offset);
2603 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2604 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2605 if (!ptr)
2606 return;
2607 }
2608
2609 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2610 }
2611
2612 struct skb_csum_offl_spec {
2613 __u16 ipv4_okay:1,
2614 ipv6_okay:1,
2615 encap_okay:1,
2616 ip_options_okay:1,
2617 ext_hdrs_okay:1,
2618 tcp_okay:1,
2619 udp_okay:1,
2620 sctp_okay:1,
2621 vlan_okay:1,
2622 no_encapped_ipv6:1,
2623 no_not_encapped:1;
2624 };
2625
2626 bool __skb_csum_offload_chk(struct sk_buff *skb,
2627 const struct skb_csum_offl_spec *spec,
2628 bool *csum_encapped,
2629 bool csum_help);
2630
2631 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2632 const struct skb_csum_offl_spec *spec,
2633 bool *csum_encapped,
2634 bool csum_help)
2635 {
2636 if (skb->ip_summed != CHECKSUM_PARTIAL)
2637 return false;
2638
2639 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2640 }
2641
2642 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2643 const struct skb_csum_offl_spec *spec)
2644 {
2645 bool csum_encapped;
2646
2647 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2648 }
2649
2650 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2651 {
2652 static const struct skb_csum_offl_spec csum_offl_spec = {
2653 .ipv4_okay = 1,
2654 .ip_options_okay = 1,
2655 .ipv6_okay = 1,
2656 .vlan_okay = 1,
2657 .tcp_okay = 1,
2658 .udp_okay = 1,
2659 };
2660
2661 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2662 }
2663
2664 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2665 {
2666 static const struct skb_csum_offl_spec csum_offl_spec = {
2667 .ipv4_okay = 1,
2668 .ip_options_okay = 1,
2669 .tcp_okay = 1,
2670 .udp_okay = 1,
2671 .vlan_okay = 1,
2672 };
2673
2674 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2675 }
2676
2677 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2678 unsigned short type,
2679 const void *daddr, const void *saddr,
2680 unsigned int len)
2681 {
2682 if (!dev->header_ops || !dev->header_ops->create)
2683 return 0;
2684
2685 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2686 }
2687
2688 static inline int dev_parse_header(const struct sk_buff *skb,
2689 unsigned char *haddr)
2690 {
2691 const struct net_device *dev = skb->dev;
2692
2693 if (!dev->header_ops || !dev->header_ops->parse)
2694 return 0;
2695 return dev->header_ops->parse(skb, haddr);
2696 }
2697
2698 /* ll_header must have at least hard_header_len allocated */
2699 static inline bool dev_validate_header(const struct net_device *dev,
2700 char *ll_header, int len)
2701 {
2702 if (likely(len >= dev->hard_header_len))
2703 return true;
2704
2705 if (capable(CAP_SYS_RAWIO)) {
2706 memset(ll_header + len, 0, dev->hard_header_len - len);
2707 return true;
2708 }
2709
2710 if (dev->header_ops && dev->header_ops->validate)
2711 return dev->header_ops->validate(ll_header, len);
2712
2713 return false;
2714 }
2715
2716 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2717 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2718 static inline int unregister_gifconf(unsigned int family)
2719 {
2720 return register_gifconf(family, NULL);
2721 }
2722
2723 #ifdef CONFIG_NET_FLOW_LIMIT
2724 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2725 struct sd_flow_limit {
2726 u64 count;
2727 unsigned int num_buckets;
2728 unsigned int history_head;
2729 u16 history[FLOW_LIMIT_HISTORY];
2730 u8 buckets[];
2731 };
2732
2733 extern int netdev_flow_limit_table_len;
2734 #endif /* CONFIG_NET_FLOW_LIMIT */
2735
2736 /*
2737 * Incoming packets are placed on per-cpu queues
2738 */
2739 struct softnet_data {
2740 struct list_head poll_list;
2741 struct sk_buff_head process_queue;
2742
2743 /* stats */
2744 unsigned int processed;
2745 unsigned int time_squeeze;
2746 unsigned int cpu_collision;
2747 unsigned int received_rps;
2748 #ifdef CONFIG_RPS
2749 struct softnet_data *rps_ipi_list;
2750 #endif
2751 #ifdef CONFIG_NET_FLOW_LIMIT
2752 struct sd_flow_limit __rcu *flow_limit;
2753 #endif
2754 struct Qdisc *output_queue;
2755 struct Qdisc **output_queue_tailp;
2756 struct sk_buff *completion_queue;
2757
2758 #ifdef CONFIG_RPS
2759 /* Elements below can be accessed between CPUs for RPS */
2760 struct call_single_data csd ____cacheline_aligned_in_smp;
2761 struct softnet_data *rps_ipi_next;
2762 unsigned int cpu;
2763 unsigned int input_queue_head;
2764 unsigned int input_queue_tail;
2765 #endif
2766 unsigned int dropped;
2767 struct sk_buff_head input_pkt_queue;
2768 struct napi_struct backlog;
2769
2770 };
2771
2772 static inline void input_queue_head_incr(struct softnet_data *sd)
2773 {
2774 #ifdef CONFIG_RPS
2775 sd->input_queue_head++;
2776 #endif
2777 }
2778
2779 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2780 unsigned int *qtail)
2781 {
2782 #ifdef CONFIG_RPS
2783 *qtail = ++sd->input_queue_tail;
2784 #endif
2785 }
2786
2787 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2788
2789 void __netif_schedule(struct Qdisc *q);
2790 void netif_schedule_queue(struct netdev_queue *txq);
2791
2792 static inline void netif_tx_schedule_all(struct net_device *dev)
2793 {
2794 unsigned int i;
2795
2796 for (i = 0; i < dev->num_tx_queues; i++)
2797 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2798 }
2799
2800 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2801 {
2802 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2803 }
2804
2805 /**
2806 * netif_start_queue - allow transmit
2807 * @dev: network device
2808 *
2809 * Allow upper layers to call the device hard_start_xmit routine.
2810 */
2811 static inline void netif_start_queue(struct net_device *dev)
2812 {
2813 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2814 }
2815
2816 static inline void netif_tx_start_all_queues(struct net_device *dev)
2817 {
2818 unsigned int i;
2819
2820 for (i = 0; i < dev->num_tx_queues; i++) {
2821 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2822 netif_tx_start_queue(txq);
2823 }
2824 }
2825
2826 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2827
2828 /**
2829 * netif_wake_queue - restart transmit
2830 * @dev: network device
2831 *
2832 * Allow upper layers to call the device hard_start_xmit routine.
2833 * Used for flow control when transmit resources are available.
2834 */
2835 static inline void netif_wake_queue(struct net_device *dev)
2836 {
2837 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2838 }
2839
2840 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2841 {
2842 unsigned int i;
2843
2844 for (i = 0; i < dev->num_tx_queues; i++) {
2845 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2846 netif_tx_wake_queue(txq);
2847 }
2848 }
2849
2850 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2851 {
2852 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2853 }
2854
2855 /**
2856 * netif_stop_queue - stop transmitted packets
2857 * @dev: network device
2858 *
2859 * Stop upper layers calling the device hard_start_xmit routine.
2860 * Used for flow control when transmit resources are unavailable.
2861 */
2862 static inline void netif_stop_queue(struct net_device *dev)
2863 {
2864 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2865 }
2866
2867 void netif_tx_stop_all_queues(struct net_device *dev);
2868
2869 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2870 {
2871 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2872 }
2873
2874 /**
2875 * netif_queue_stopped - test if transmit queue is flowblocked
2876 * @dev: network device
2877 *
2878 * Test if transmit queue on device is currently unable to send.
2879 */
2880 static inline bool netif_queue_stopped(const struct net_device *dev)
2881 {
2882 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2883 }
2884
2885 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2886 {
2887 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2888 }
2889
2890 static inline bool
2891 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2892 {
2893 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2894 }
2895
2896 static inline bool
2897 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2898 {
2899 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2900 }
2901
2902 /**
2903 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2904 * @dev_queue: pointer to transmit queue
2905 *
2906 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2907 * to give appropriate hint to the cpu.
2908 */
2909 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2910 {
2911 #ifdef CONFIG_BQL
2912 prefetchw(&dev_queue->dql.num_queued);
2913 #endif
2914 }
2915
2916 /**
2917 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2918 * @dev_queue: pointer to transmit queue
2919 *
2920 * BQL enabled drivers might use this helper in their TX completion path,
2921 * to give appropriate hint to the cpu.
2922 */
2923 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2924 {
2925 #ifdef CONFIG_BQL
2926 prefetchw(&dev_queue->dql.limit);
2927 #endif
2928 }
2929
2930 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2931 unsigned int bytes)
2932 {
2933 #ifdef CONFIG_BQL
2934 dql_queued(&dev_queue->dql, bytes);
2935
2936 if (likely(dql_avail(&dev_queue->dql) >= 0))
2937 return;
2938
2939 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2940
2941 /*
2942 * The XOFF flag must be set before checking the dql_avail below,
2943 * because in netdev_tx_completed_queue we update the dql_completed
2944 * before checking the XOFF flag.
2945 */
2946 smp_mb();
2947
2948 /* check again in case another CPU has just made room avail */
2949 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2950 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2951 #endif
2952 }
2953
2954 /**
2955 * netdev_sent_queue - report the number of bytes queued to hardware
2956 * @dev: network device
2957 * @bytes: number of bytes queued to the hardware device queue
2958 *
2959 * Report the number of bytes queued for sending/completion to the network
2960 * device hardware queue. @bytes should be a good approximation and should
2961 * exactly match netdev_completed_queue() @bytes
2962 */
2963 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2964 {
2965 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2966 }
2967
2968 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2969 unsigned int pkts, unsigned int bytes)
2970 {
2971 #ifdef CONFIG_BQL
2972 if (unlikely(!bytes))
2973 return;
2974
2975 dql_completed(&dev_queue->dql, bytes);
2976
2977 /*
2978 * Without the memory barrier there is a small possiblity that
2979 * netdev_tx_sent_queue will miss the update and cause the queue to
2980 * be stopped forever
2981 */
2982 smp_mb();
2983
2984 if (dql_avail(&dev_queue->dql) < 0)
2985 return;
2986
2987 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2988 netif_schedule_queue(dev_queue);
2989 #endif
2990 }
2991
2992 /**
2993 * netdev_completed_queue - report bytes and packets completed by device
2994 * @dev: network device
2995 * @pkts: actual number of packets sent over the medium
2996 * @bytes: actual number of bytes sent over the medium
2997 *
2998 * Report the number of bytes and packets transmitted by the network device
2999 * hardware queue over the physical medium, @bytes must exactly match the
3000 * @bytes amount passed to netdev_sent_queue()
3001 */
3002 static inline void netdev_completed_queue(struct net_device *dev,
3003 unsigned int pkts, unsigned int bytes)
3004 {
3005 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3006 }
3007
3008 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3009 {
3010 #ifdef CONFIG_BQL
3011 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3012 dql_reset(&q->dql);
3013 #endif
3014 }
3015
3016 /**
3017 * netdev_reset_queue - reset the packets and bytes count of a network device
3018 * @dev_queue: network device
3019 *
3020 * Reset the bytes and packet count of a network device and clear the
3021 * software flow control OFF bit for this network device
3022 */
3023 static inline void netdev_reset_queue(struct net_device *dev_queue)
3024 {
3025 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3026 }
3027
3028 /**
3029 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3030 * @dev: network device
3031 * @queue_index: given tx queue index
3032 *
3033 * Returns 0 if given tx queue index >= number of device tx queues,
3034 * otherwise returns the originally passed tx queue index.
3035 */
3036 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3037 {
3038 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3039 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3040 dev->name, queue_index,
3041 dev->real_num_tx_queues);
3042 return 0;
3043 }
3044
3045 return queue_index;
3046 }
3047
3048 /**
3049 * netif_running - test if up
3050 * @dev: network device
3051 *
3052 * Test if the device has been brought up.
3053 */
3054 static inline bool netif_running(const struct net_device *dev)
3055 {
3056 return test_bit(__LINK_STATE_START, &dev->state);
3057 }
3058
3059 /*
3060 * Routines to manage the subqueues on a device. We only need start
3061 * stop, and a check if it's stopped. All other device management is
3062 * done at the overall netdevice level.
3063 * Also test the device if we're multiqueue.
3064 */
3065
3066 /**
3067 * netif_start_subqueue - allow sending packets on subqueue
3068 * @dev: network device
3069 * @queue_index: sub queue index
3070 *
3071 * Start individual transmit queue of a device with multiple transmit queues.
3072 */
3073 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3074 {
3075 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3076
3077 netif_tx_start_queue(txq);
3078 }
3079
3080 /**
3081 * netif_stop_subqueue - stop sending packets on subqueue
3082 * @dev: network device
3083 * @queue_index: sub queue index
3084 *
3085 * Stop individual transmit queue of a device with multiple transmit queues.
3086 */
3087 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3088 {
3089 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3090 netif_tx_stop_queue(txq);
3091 }
3092
3093 /**
3094 * netif_subqueue_stopped - test status of subqueue
3095 * @dev: network device
3096 * @queue_index: sub queue index
3097 *
3098 * Check individual transmit queue of a device with multiple transmit queues.
3099 */
3100 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3101 u16 queue_index)
3102 {
3103 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3104
3105 return netif_tx_queue_stopped(txq);
3106 }
3107
3108 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3109 struct sk_buff *skb)
3110 {
3111 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3112 }
3113
3114 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3115
3116 #ifdef CONFIG_XPS
3117 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3118 u16 index);
3119 #else
3120 static inline int netif_set_xps_queue(struct net_device *dev,
3121 const struct cpumask *mask,
3122 u16 index)
3123 {
3124 return 0;
3125 }
3126 #endif
3127
3128 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3129 unsigned int num_tx_queues);
3130
3131 /*
3132 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3133 * as a distribution range limit for the returned value.
3134 */
3135 static inline u16 skb_tx_hash(const struct net_device *dev,
3136 struct sk_buff *skb)
3137 {
3138 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3139 }
3140
3141 /**
3142 * netif_is_multiqueue - test if device has multiple transmit queues
3143 * @dev: network device
3144 *
3145 * Check if device has multiple transmit queues
3146 */
3147 static inline bool netif_is_multiqueue(const struct net_device *dev)
3148 {
3149 return dev->num_tx_queues > 1;
3150 }
3151
3152 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3153
3154 #ifdef CONFIG_SYSFS
3155 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3156 #else
3157 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3158 unsigned int rxq)
3159 {
3160 return 0;
3161 }
3162 #endif
3163
3164 #ifdef CONFIG_SYSFS
3165 static inline unsigned int get_netdev_rx_queue_index(
3166 struct netdev_rx_queue *queue)
3167 {
3168 struct net_device *dev = queue->dev;
3169 int index = queue - dev->_rx;
3170
3171 BUG_ON(index >= dev->num_rx_queues);
3172 return index;
3173 }
3174 #endif
3175
3176 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3177 int netif_get_num_default_rss_queues(void);
3178
3179 enum skb_free_reason {
3180 SKB_REASON_CONSUMED,
3181 SKB_REASON_DROPPED,
3182 };
3183
3184 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3185 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3186
3187 /*
3188 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3189 * interrupt context or with hardware interrupts being disabled.
3190 * (in_irq() || irqs_disabled())
3191 *
3192 * We provide four helpers that can be used in following contexts :
3193 *
3194 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3195 * replacing kfree_skb(skb)
3196 *
3197 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3198 * Typically used in place of consume_skb(skb) in TX completion path
3199 *
3200 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3201 * replacing kfree_skb(skb)
3202 *
3203 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3204 * and consumed a packet. Used in place of consume_skb(skb)
3205 */
3206 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3207 {
3208 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3209 }
3210
3211 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3212 {
3213 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3214 }
3215
3216 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3217 {
3218 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3219 }
3220
3221 static inline void dev_consume_skb_any(struct sk_buff *skb)
3222 {
3223 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3224 }
3225
3226 int netif_rx(struct sk_buff *skb);
3227 int netif_rx_ni(struct sk_buff *skb);
3228 int netif_receive_skb(struct sk_buff *skb);
3229 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3230 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3231 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3232 gro_result_t napi_gro_frags(struct napi_struct *napi);
3233 struct packet_offload *gro_find_receive_by_type(__be16 type);
3234 struct packet_offload *gro_find_complete_by_type(__be16 type);
3235
3236 static inline void napi_free_frags(struct napi_struct *napi)
3237 {
3238 kfree_skb(napi->skb);
3239 napi->skb = NULL;
3240 }
3241
3242 int netdev_rx_handler_register(struct net_device *dev,
3243 rx_handler_func_t *rx_handler,
3244 void *rx_handler_data);
3245 void netdev_rx_handler_unregister(struct net_device *dev);
3246
3247 bool dev_valid_name(const char *name);
3248 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3249 int dev_ethtool(struct net *net, struct ifreq *);
3250 unsigned int dev_get_flags(const struct net_device *);
3251 int __dev_change_flags(struct net_device *, unsigned int flags);
3252 int dev_change_flags(struct net_device *, unsigned int);
3253 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3254 unsigned int gchanges);
3255 int dev_change_name(struct net_device *, const char *);
3256 int dev_set_alias(struct net_device *, const char *, size_t);
3257 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3258 int dev_set_mtu(struct net_device *, int);
3259 void dev_set_group(struct net_device *, int);
3260 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3261 int dev_change_carrier(struct net_device *, bool new_carrier);
3262 int dev_get_phys_port_id(struct net_device *dev,
3263 struct netdev_phys_item_id *ppid);
3264 int dev_get_phys_port_name(struct net_device *dev,
3265 char *name, size_t len);
3266 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3267 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3268 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3269 struct netdev_queue *txq, int *ret);
3270 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3271 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3272 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3273
3274 extern int netdev_budget;
3275
3276 /* Called by rtnetlink.c:rtnl_unlock() */
3277 void netdev_run_todo(void);
3278
3279 /**
3280 * dev_put - release reference to device
3281 * @dev: network device
3282 *
3283 * Release reference to device to allow it to be freed.
3284 */
3285 static inline void dev_put(struct net_device *dev)
3286 {
3287 this_cpu_dec(*dev->pcpu_refcnt);
3288 }
3289
3290 /**
3291 * dev_hold - get reference to device
3292 * @dev: network device
3293 *
3294 * Hold reference to device to keep it from being freed.
3295 */
3296 static inline void dev_hold(struct net_device *dev)
3297 {
3298 this_cpu_inc(*dev->pcpu_refcnt);
3299 }
3300
3301 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3302 * and _off may be called from IRQ context, but it is caller
3303 * who is responsible for serialization of these calls.
3304 *
3305 * The name carrier is inappropriate, these functions should really be
3306 * called netif_lowerlayer_*() because they represent the state of any
3307 * kind of lower layer not just hardware media.
3308 */
3309
3310 void linkwatch_init_dev(struct net_device *dev);
3311 void linkwatch_fire_event(struct net_device *dev);
3312 void linkwatch_forget_dev(struct net_device *dev);
3313
3314 /**
3315 * netif_carrier_ok - test if carrier present
3316 * @dev: network device
3317 *
3318 * Check if carrier is present on device
3319 */
3320 static inline bool netif_carrier_ok(const struct net_device *dev)
3321 {
3322 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3323 }
3324
3325 unsigned long dev_trans_start(struct net_device *dev);
3326
3327 void __netdev_watchdog_up(struct net_device *dev);
3328
3329 void netif_carrier_on(struct net_device *dev);
3330
3331 void netif_carrier_off(struct net_device *dev);
3332
3333 /**
3334 * netif_dormant_on - mark device as dormant.
3335 * @dev: network device
3336 *
3337 * Mark device as dormant (as per RFC2863).
3338 *
3339 * The dormant state indicates that the relevant interface is not
3340 * actually in a condition to pass packets (i.e., it is not 'up') but is
3341 * in a "pending" state, waiting for some external event. For "on-
3342 * demand" interfaces, this new state identifies the situation where the
3343 * interface is waiting for events to place it in the up state.
3344 *
3345 */
3346 static inline void netif_dormant_on(struct net_device *dev)
3347 {
3348 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3349 linkwatch_fire_event(dev);
3350 }
3351
3352 /**
3353 * netif_dormant_off - set device as not dormant.
3354 * @dev: network device
3355 *
3356 * Device is not in dormant state.
3357 */
3358 static inline void netif_dormant_off(struct net_device *dev)
3359 {
3360 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3361 linkwatch_fire_event(dev);
3362 }
3363
3364 /**
3365 * netif_dormant - test if carrier present
3366 * @dev: network device
3367 *
3368 * Check if carrier is present on device
3369 */
3370 static inline bool netif_dormant(const struct net_device *dev)
3371 {
3372 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3373 }
3374
3375
3376 /**
3377 * netif_oper_up - test if device is operational
3378 * @dev: network device
3379 *
3380 * Check if carrier is operational
3381 */
3382 static inline bool netif_oper_up(const struct net_device *dev)
3383 {
3384 return (dev->operstate == IF_OPER_UP ||
3385 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3386 }
3387
3388 /**
3389 * netif_device_present - is device available or removed
3390 * @dev: network device
3391 *
3392 * Check if device has not been removed from system.
3393 */
3394 static inline bool netif_device_present(struct net_device *dev)
3395 {
3396 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3397 }
3398
3399 void netif_device_detach(struct net_device *dev);
3400
3401 void netif_device_attach(struct net_device *dev);
3402
3403 /*
3404 * Network interface message level settings
3405 */
3406
3407 enum {
3408 NETIF_MSG_DRV = 0x0001,
3409 NETIF_MSG_PROBE = 0x0002,
3410 NETIF_MSG_LINK = 0x0004,
3411 NETIF_MSG_TIMER = 0x0008,
3412 NETIF_MSG_IFDOWN = 0x0010,
3413 NETIF_MSG_IFUP = 0x0020,
3414 NETIF_MSG_RX_ERR = 0x0040,
3415 NETIF_MSG_TX_ERR = 0x0080,
3416 NETIF_MSG_TX_QUEUED = 0x0100,
3417 NETIF_MSG_INTR = 0x0200,
3418 NETIF_MSG_TX_DONE = 0x0400,
3419 NETIF_MSG_RX_STATUS = 0x0800,
3420 NETIF_MSG_PKTDATA = 0x1000,
3421 NETIF_MSG_HW = 0x2000,
3422 NETIF_MSG_WOL = 0x4000,
3423 };
3424
3425 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3426 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3427 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3428 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3429 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3430 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3431 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3432 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3433 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3434 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3435 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3436 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3437 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3438 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3439 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3440
3441 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3442 {
3443 /* use default */
3444 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3445 return default_msg_enable_bits;
3446 if (debug_value == 0) /* no output */
3447 return 0;
3448 /* set low N bits */
3449 return (1 << debug_value) - 1;
3450 }
3451
3452 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3453 {
3454 spin_lock(&txq->_xmit_lock);
3455 txq->xmit_lock_owner = cpu;
3456 }
3457
3458 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3459 {
3460 spin_lock_bh(&txq->_xmit_lock);
3461 txq->xmit_lock_owner = smp_processor_id();
3462 }
3463
3464 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3465 {
3466 bool ok = spin_trylock(&txq->_xmit_lock);
3467 if (likely(ok))
3468 txq->xmit_lock_owner = smp_processor_id();
3469 return ok;
3470 }
3471
3472 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3473 {
3474 txq->xmit_lock_owner = -1;
3475 spin_unlock(&txq->_xmit_lock);
3476 }
3477
3478 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3479 {
3480 txq->xmit_lock_owner = -1;
3481 spin_unlock_bh(&txq->_xmit_lock);
3482 }
3483
3484 static inline void txq_trans_update(struct netdev_queue *txq)
3485 {
3486 if (txq->xmit_lock_owner != -1)
3487 txq->trans_start = jiffies;
3488 }
3489
3490 /**
3491 * netif_tx_lock - grab network device transmit lock
3492 * @dev: network device
3493 *
3494 * Get network device transmit lock
3495 */
3496 static inline void netif_tx_lock(struct net_device *dev)
3497 {
3498 unsigned int i;
3499 int cpu;
3500
3501 spin_lock(&dev->tx_global_lock);
3502 cpu = smp_processor_id();
3503 for (i = 0; i < dev->num_tx_queues; i++) {
3504 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3505
3506 /* We are the only thread of execution doing a
3507 * freeze, but we have to grab the _xmit_lock in
3508 * order to synchronize with threads which are in
3509 * the ->hard_start_xmit() handler and already
3510 * checked the frozen bit.
3511 */
3512 __netif_tx_lock(txq, cpu);
3513 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3514 __netif_tx_unlock(txq);
3515 }
3516 }
3517
3518 static inline void netif_tx_lock_bh(struct net_device *dev)
3519 {
3520 local_bh_disable();
3521 netif_tx_lock(dev);
3522 }
3523
3524 static inline void netif_tx_unlock(struct net_device *dev)
3525 {
3526 unsigned int i;
3527
3528 for (i = 0; i < dev->num_tx_queues; i++) {
3529 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3530
3531 /* No need to grab the _xmit_lock here. If the
3532 * queue is not stopped for another reason, we
3533 * force a schedule.
3534 */
3535 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3536 netif_schedule_queue(txq);
3537 }
3538 spin_unlock(&dev->tx_global_lock);
3539 }
3540
3541 static inline void netif_tx_unlock_bh(struct net_device *dev)
3542 {
3543 netif_tx_unlock(dev);
3544 local_bh_enable();
3545 }
3546
3547 #define HARD_TX_LOCK(dev, txq, cpu) { \
3548 if ((dev->features & NETIF_F_LLTX) == 0) { \
3549 __netif_tx_lock(txq, cpu); \
3550 } \
3551 }
3552
3553 #define HARD_TX_TRYLOCK(dev, txq) \
3554 (((dev->features & NETIF_F_LLTX) == 0) ? \
3555 __netif_tx_trylock(txq) : \
3556 true )
3557
3558 #define HARD_TX_UNLOCK(dev, txq) { \
3559 if ((dev->features & NETIF_F_LLTX) == 0) { \
3560 __netif_tx_unlock(txq); \
3561 } \
3562 }
3563
3564 static inline void netif_tx_disable(struct net_device *dev)
3565 {
3566 unsigned int i;
3567 int cpu;
3568
3569 local_bh_disable();
3570 cpu = smp_processor_id();
3571 for (i = 0; i < dev->num_tx_queues; i++) {
3572 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3573
3574 __netif_tx_lock(txq, cpu);
3575 netif_tx_stop_queue(txq);
3576 __netif_tx_unlock(txq);
3577 }
3578 local_bh_enable();
3579 }
3580
3581 static inline void netif_addr_lock(struct net_device *dev)
3582 {
3583 spin_lock(&dev->addr_list_lock);
3584 }
3585
3586 static inline void netif_addr_lock_nested(struct net_device *dev)
3587 {
3588 int subclass = SINGLE_DEPTH_NESTING;
3589
3590 if (dev->netdev_ops->ndo_get_lock_subclass)
3591 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3592
3593 spin_lock_nested(&dev->addr_list_lock, subclass);
3594 }
3595
3596 static inline void netif_addr_lock_bh(struct net_device *dev)
3597 {
3598 spin_lock_bh(&dev->addr_list_lock);
3599 }
3600
3601 static inline void netif_addr_unlock(struct net_device *dev)
3602 {
3603 spin_unlock(&dev->addr_list_lock);
3604 }
3605
3606 static inline void netif_addr_unlock_bh(struct net_device *dev)
3607 {
3608 spin_unlock_bh(&dev->addr_list_lock);
3609 }
3610
3611 /*
3612 * dev_addrs walker. Should be used only for read access. Call with
3613 * rcu_read_lock held.
3614 */
3615 #define for_each_dev_addr(dev, ha) \
3616 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3617
3618 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3619
3620 void ether_setup(struct net_device *dev);
3621
3622 /* Support for loadable net-drivers */
3623 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3624 unsigned char name_assign_type,
3625 void (*setup)(struct net_device *),
3626 unsigned int txqs, unsigned int rxqs);
3627 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3628 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3629
3630 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3631 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3632 count)
3633
3634 int register_netdev(struct net_device *dev);
3635 void unregister_netdev(struct net_device *dev);
3636
3637 /* General hardware address lists handling functions */
3638 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3639 struct netdev_hw_addr_list *from_list, int addr_len);
3640 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3641 struct netdev_hw_addr_list *from_list, int addr_len);
3642 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3643 struct net_device *dev,
3644 int (*sync)(struct net_device *, const unsigned char *),
3645 int (*unsync)(struct net_device *,
3646 const unsigned char *));
3647 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3648 struct net_device *dev,
3649 int (*unsync)(struct net_device *,
3650 const unsigned char *));
3651 void __hw_addr_init(struct netdev_hw_addr_list *list);
3652
3653 /* Functions used for device addresses handling */
3654 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3655 unsigned char addr_type);
3656 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3657 unsigned char addr_type);
3658 void dev_addr_flush(struct net_device *dev);
3659 int dev_addr_init(struct net_device *dev);
3660
3661 /* Functions used for unicast addresses handling */
3662 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3663 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3664 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3665 int dev_uc_sync(struct net_device *to, struct net_device *from);
3666 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3667 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3668 void dev_uc_flush(struct net_device *dev);
3669 void dev_uc_init(struct net_device *dev);
3670
3671 /**
3672 * __dev_uc_sync - Synchonize device's unicast list
3673 * @dev: device to sync
3674 * @sync: function to call if address should be added
3675 * @unsync: function to call if address should be removed
3676 *
3677 * Add newly added addresses to the interface, and release
3678 * addresses that have been deleted.
3679 **/
3680 static inline int __dev_uc_sync(struct net_device *dev,
3681 int (*sync)(struct net_device *,
3682 const unsigned char *),
3683 int (*unsync)(struct net_device *,
3684 const unsigned char *))
3685 {
3686 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3687 }
3688
3689 /**
3690 * __dev_uc_unsync - Remove synchronized addresses from device
3691 * @dev: device to sync
3692 * @unsync: function to call if address should be removed
3693 *
3694 * Remove all addresses that were added to the device by dev_uc_sync().
3695 **/
3696 static inline void __dev_uc_unsync(struct net_device *dev,
3697 int (*unsync)(struct net_device *,
3698 const unsigned char *))
3699 {
3700 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3701 }
3702
3703 /* Functions used for multicast addresses handling */
3704 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3705 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3706 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3707 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3708 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3709 int dev_mc_sync(struct net_device *to, struct net_device *from);
3710 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3711 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3712 void dev_mc_flush(struct net_device *dev);
3713 void dev_mc_init(struct net_device *dev);
3714
3715 /**
3716 * __dev_mc_sync - Synchonize device's multicast list
3717 * @dev: device to sync
3718 * @sync: function to call if address should be added
3719 * @unsync: function to call if address should be removed
3720 *
3721 * Add newly added addresses to the interface, and release
3722 * addresses that have been deleted.
3723 **/
3724 static inline int __dev_mc_sync(struct net_device *dev,
3725 int (*sync)(struct net_device *,
3726 const unsigned char *),
3727 int (*unsync)(struct net_device *,
3728 const unsigned char *))
3729 {
3730 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3731 }
3732
3733 /**
3734 * __dev_mc_unsync - Remove synchronized addresses from device
3735 * @dev: device to sync
3736 * @unsync: function to call if address should be removed
3737 *
3738 * Remove all addresses that were added to the device by dev_mc_sync().
3739 **/
3740 static inline void __dev_mc_unsync(struct net_device *dev,
3741 int (*unsync)(struct net_device *,
3742 const unsigned char *))
3743 {
3744 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3745 }
3746
3747 /* Functions used for secondary unicast and multicast support */
3748 void dev_set_rx_mode(struct net_device *dev);
3749 void __dev_set_rx_mode(struct net_device *dev);
3750 int dev_set_promiscuity(struct net_device *dev, int inc);
3751 int dev_set_allmulti(struct net_device *dev, int inc);
3752 void netdev_state_change(struct net_device *dev);
3753 void netdev_notify_peers(struct net_device *dev);
3754 void netdev_features_change(struct net_device *dev);
3755 /* Load a device via the kmod */
3756 void dev_load(struct net *net, const char *name);
3757 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3758 struct rtnl_link_stats64 *storage);
3759 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3760 const struct net_device_stats *netdev_stats);
3761
3762 extern int netdev_max_backlog;
3763 extern int netdev_tstamp_prequeue;
3764 extern int weight_p;
3765 extern int bpf_jit_enable;
3766
3767 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3768 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3769 struct list_head **iter);
3770 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3771 struct list_head **iter);
3772
3773 /* iterate through upper list, must be called under RCU read lock */
3774 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3775 for (iter = &(dev)->adj_list.upper, \
3776 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3777 updev; \
3778 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3779
3780 /* iterate through upper list, must be called under RCU read lock */
3781 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3782 for (iter = &(dev)->all_adj_list.upper, \
3783 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3784 updev; \
3785 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3786
3787 void *netdev_lower_get_next_private(struct net_device *dev,
3788 struct list_head **iter);
3789 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3790 struct list_head **iter);
3791
3792 #define netdev_for_each_lower_private(dev, priv, iter) \
3793 for (iter = (dev)->adj_list.lower.next, \
3794 priv = netdev_lower_get_next_private(dev, &(iter)); \
3795 priv; \
3796 priv = netdev_lower_get_next_private(dev, &(iter)))
3797
3798 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3799 for (iter = &(dev)->adj_list.lower, \
3800 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3801 priv; \
3802 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3803
3804 void *netdev_lower_get_next(struct net_device *dev,
3805 struct list_head **iter);
3806 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3807 for (iter = (dev)->adj_list.lower.next, \
3808 ldev = netdev_lower_get_next(dev, &(iter)); \
3809 ldev; \
3810 ldev = netdev_lower_get_next(dev, &(iter)))
3811
3812 void *netdev_adjacent_get_private(struct list_head *adj_list);
3813 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3814 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3815 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3816 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3817 int netdev_master_upper_dev_link(struct net_device *dev,
3818 struct net_device *upper_dev,
3819 void *upper_priv, void *upper_info);
3820 void netdev_upper_dev_unlink(struct net_device *dev,
3821 struct net_device *upper_dev);
3822 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3823 void *netdev_lower_dev_get_private(struct net_device *dev,
3824 struct net_device *lower_dev);
3825 void netdev_lower_state_changed(struct net_device *lower_dev,
3826 void *lower_state_info);
3827
3828 /* RSS keys are 40 or 52 bytes long */
3829 #define NETDEV_RSS_KEY_LEN 52
3830 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3831 void netdev_rss_key_fill(void *buffer, size_t len);
3832
3833 int dev_get_nest_level(struct net_device *dev,
3834 bool (*type_check)(const struct net_device *dev));
3835 int skb_checksum_help(struct sk_buff *skb);
3836 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3837 netdev_features_t features, bool tx_path);
3838 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3839 netdev_features_t features);
3840
3841 struct netdev_bonding_info {
3842 ifslave slave;
3843 ifbond master;
3844 };
3845
3846 struct netdev_notifier_bonding_info {
3847 struct netdev_notifier_info info; /* must be first */
3848 struct netdev_bonding_info bonding_info;
3849 };
3850
3851 void netdev_bonding_info_change(struct net_device *dev,
3852 struct netdev_bonding_info *bonding_info);
3853
3854 static inline
3855 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3856 {
3857 return __skb_gso_segment(skb, features, true);
3858 }
3859 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3860
3861 static inline bool can_checksum_protocol(netdev_features_t features,
3862 __be16 protocol)
3863 {
3864 if (protocol == htons(ETH_P_FCOE))
3865 return !!(features & NETIF_F_FCOE_CRC);
3866
3867 /* Assume this is an IP checksum (not SCTP CRC) */
3868
3869 if (features & NETIF_F_HW_CSUM) {
3870 /* Can checksum everything */
3871 return true;
3872 }
3873
3874 switch (protocol) {
3875 case htons(ETH_P_IP):
3876 return !!(features & NETIF_F_IP_CSUM);
3877 case htons(ETH_P_IPV6):
3878 return !!(features & NETIF_F_IPV6_CSUM);
3879 default:
3880 return false;
3881 }
3882 }
3883
3884 /* Map an ethertype into IP protocol if possible */
3885 static inline int eproto_to_ipproto(int eproto)
3886 {
3887 switch (eproto) {
3888 case htons(ETH_P_IP):
3889 return IPPROTO_IP;
3890 case htons(ETH_P_IPV6):
3891 return IPPROTO_IPV6;
3892 default:
3893 return -1;
3894 }
3895 }
3896
3897 #ifdef CONFIG_BUG
3898 void netdev_rx_csum_fault(struct net_device *dev);
3899 #else
3900 static inline void netdev_rx_csum_fault(struct net_device *dev)
3901 {
3902 }
3903 #endif
3904 /* rx skb timestamps */
3905 void net_enable_timestamp(void);
3906 void net_disable_timestamp(void);
3907
3908 #ifdef CONFIG_PROC_FS
3909 int __init dev_proc_init(void);
3910 #else
3911 #define dev_proc_init() 0
3912 #endif
3913
3914 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3915 struct sk_buff *skb, struct net_device *dev,
3916 bool more)
3917 {
3918 skb->xmit_more = more ? 1 : 0;
3919 return ops->ndo_start_xmit(skb, dev);
3920 }
3921
3922 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3923 struct netdev_queue *txq, bool more)
3924 {
3925 const struct net_device_ops *ops = dev->netdev_ops;
3926 int rc;
3927
3928 rc = __netdev_start_xmit(ops, skb, dev, more);
3929 if (rc == NETDEV_TX_OK)
3930 txq_trans_update(txq);
3931
3932 return rc;
3933 }
3934
3935 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3936 const void *ns);
3937 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3938 const void *ns);
3939
3940 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3941 {
3942 return netdev_class_create_file_ns(class_attr, NULL);
3943 }
3944
3945 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3946 {
3947 netdev_class_remove_file_ns(class_attr, NULL);
3948 }
3949
3950 extern struct kobj_ns_type_operations net_ns_type_operations;
3951
3952 const char *netdev_drivername(const struct net_device *dev);
3953
3954 void linkwatch_run_queue(void);
3955
3956 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3957 netdev_features_t f2)
3958 {
3959 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3960 if (f1 & NETIF_F_HW_CSUM)
3961 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3962 else
3963 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3964 }
3965
3966 return f1 & f2;
3967 }
3968
3969 static inline netdev_features_t netdev_get_wanted_features(
3970 struct net_device *dev)
3971 {
3972 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3973 }
3974 netdev_features_t netdev_increment_features(netdev_features_t all,
3975 netdev_features_t one, netdev_features_t mask);
3976
3977 /* Allow TSO being used on stacked device :
3978 * Performing the GSO segmentation before last device
3979 * is a performance improvement.
3980 */
3981 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3982 netdev_features_t mask)
3983 {
3984 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3985 }
3986
3987 int __netdev_update_features(struct net_device *dev);
3988 void netdev_update_features(struct net_device *dev);
3989 void netdev_change_features(struct net_device *dev);
3990
3991 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3992 struct net_device *dev);
3993
3994 netdev_features_t passthru_features_check(struct sk_buff *skb,
3995 struct net_device *dev,
3996 netdev_features_t features);
3997 netdev_features_t netif_skb_features(struct sk_buff *skb);
3998
3999 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4000 {
4001 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
4002
4003 /* check flags correspondence */
4004 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4005 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4006 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4007 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4008 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4009 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4010 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4011 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4012 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
4013 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
4014 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4015 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4016 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4017
4018 return (features & feature) == feature;
4019 }
4020
4021 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4022 {
4023 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4024 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4025 }
4026
4027 static inline bool netif_needs_gso(struct sk_buff *skb,
4028 netdev_features_t features)
4029 {
4030 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4031 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4032 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4033 }
4034
4035 static inline void netif_set_gso_max_size(struct net_device *dev,
4036 unsigned int size)
4037 {
4038 dev->gso_max_size = size;
4039 }
4040
4041 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4042 int pulled_hlen, u16 mac_offset,
4043 int mac_len)
4044 {
4045 skb->protocol = protocol;
4046 skb->encapsulation = 1;
4047 skb_push(skb, pulled_hlen);
4048 skb_reset_transport_header(skb);
4049 skb->mac_header = mac_offset;
4050 skb->network_header = skb->mac_header + mac_len;
4051 skb->mac_len = mac_len;
4052 }
4053
4054 static inline bool netif_is_macsec(const struct net_device *dev)
4055 {
4056 return dev->priv_flags & IFF_MACSEC;
4057 }
4058
4059 static inline bool netif_is_macvlan(const struct net_device *dev)
4060 {
4061 return dev->priv_flags & IFF_MACVLAN;
4062 }
4063
4064 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4065 {
4066 return dev->priv_flags & IFF_MACVLAN_PORT;
4067 }
4068
4069 static inline bool netif_is_ipvlan(const struct net_device *dev)
4070 {
4071 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4072 }
4073
4074 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4075 {
4076 return dev->priv_flags & IFF_IPVLAN_MASTER;
4077 }
4078
4079 static inline bool netif_is_bond_master(const struct net_device *dev)
4080 {
4081 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4082 }
4083
4084 static inline bool netif_is_bond_slave(const struct net_device *dev)
4085 {
4086 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4087 }
4088
4089 static inline bool netif_supports_nofcs(struct net_device *dev)
4090 {
4091 return dev->priv_flags & IFF_SUPP_NOFCS;
4092 }
4093
4094 static inline bool netif_is_l3_master(const struct net_device *dev)
4095 {
4096 return dev->priv_flags & IFF_L3MDEV_MASTER;
4097 }
4098
4099 static inline bool netif_is_l3_slave(const struct net_device *dev)
4100 {
4101 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4102 }
4103
4104 static inline bool netif_is_bridge_master(const struct net_device *dev)
4105 {
4106 return dev->priv_flags & IFF_EBRIDGE;
4107 }
4108
4109 static inline bool netif_is_bridge_port(const struct net_device *dev)
4110 {
4111 return dev->priv_flags & IFF_BRIDGE_PORT;
4112 }
4113
4114 static inline bool netif_is_ovs_master(const struct net_device *dev)
4115 {
4116 return dev->priv_flags & IFF_OPENVSWITCH;
4117 }
4118
4119 static inline bool netif_is_team_master(const struct net_device *dev)
4120 {
4121 return dev->priv_flags & IFF_TEAM;
4122 }
4123
4124 static inline bool netif_is_team_port(const struct net_device *dev)
4125 {
4126 return dev->priv_flags & IFF_TEAM_PORT;
4127 }
4128
4129 static inline bool netif_is_lag_master(const struct net_device *dev)
4130 {
4131 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4132 }
4133
4134 static inline bool netif_is_lag_port(const struct net_device *dev)
4135 {
4136 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4137 }
4138
4139 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4140 {
4141 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4142 }
4143
4144 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4145 static inline void netif_keep_dst(struct net_device *dev)
4146 {
4147 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4148 }
4149
4150 extern struct pernet_operations __net_initdata loopback_net_ops;
4151
4152 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4153
4154 /* netdev_printk helpers, similar to dev_printk */
4155
4156 static inline const char *netdev_name(const struct net_device *dev)
4157 {
4158 if (!dev->name[0] || strchr(dev->name, '%'))
4159 return "(unnamed net_device)";
4160 return dev->name;
4161 }
4162
4163 static inline const char *netdev_reg_state(const struct net_device *dev)
4164 {
4165 switch (dev->reg_state) {
4166 case NETREG_UNINITIALIZED: return " (uninitialized)";
4167 case NETREG_REGISTERED: return "";
4168 case NETREG_UNREGISTERING: return " (unregistering)";
4169 case NETREG_UNREGISTERED: return " (unregistered)";
4170 case NETREG_RELEASED: return " (released)";
4171 case NETREG_DUMMY: return " (dummy)";
4172 }
4173
4174 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4175 return " (unknown)";
4176 }
4177
4178 __printf(3, 4)
4179 void netdev_printk(const char *level, const struct net_device *dev,
4180 const char *format, ...);
4181 __printf(2, 3)
4182 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4183 __printf(2, 3)
4184 void netdev_alert(const struct net_device *dev, const char *format, ...);
4185 __printf(2, 3)
4186 void netdev_crit(const struct net_device *dev, const char *format, ...);
4187 __printf(2, 3)
4188 void netdev_err(const struct net_device *dev, const char *format, ...);
4189 __printf(2, 3)
4190 void netdev_warn(const struct net_device *dev, const char *format, ...);
4191 __printf(2, 3)
4192 void netdev_notice(const struct net_device *dev, const char *format, ...);
4193 __printf(2, 3)
4194 void netdev_info(const struct net_device *dev, const char *format, ...);
4195
4196 #define MODULE_ALIAS_NETDEV(device) \
4197 MODULE_ALIAS("netdev-" device)
4198
4199 #if defined(CONFIG_DYNAMIC_DEBUG)
4200 #define netdev_dbg(__dev, format, args...) \
4201 do { \
4202 dynamic_netdev_dbg(__dev, format, ##args); \
4203 } while (0)
4204 #elif defined(DEBUG)
4205 #define netdev_dbg(__dev, format, args...) \
4206 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4207 #else
4208 #define netdev_dbg(__dev, format, args...) \
4209 ({ \
4210 if (0) \
4211 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4212 })
4213 #endif
4214
4215 #if defined(VERBOSE_DEBUG)
4216 #define netdev_vdbg netdev_dbg
4217 #else
4218
4219 #define netdev_vdbg(dev, format, args...) \
4220 ({ \
4221 if (0) \
4222 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4223 0; \
4224 })
4225 #endif
4226
4227 /*
4228 * netdev_WARN() acts like dev_printk(), but with the key difference
4229 * of using a WARN/WARN_ON to get the message out, including the
4230 * file/line information and a backtrace.
4231 */
4232 #define netdev_WARN(dev, format, args...) \
4233 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4234 netdev_reg_state(dev), ##args)
4235
4236 /* netif printk helpers, similar to netdev_printk */
4237
4238 #define netif_printk(priv, type, level, dev, fmt, args...) \
4239 do { \
4240 if (netif_msg_##type(priv)) \
4241 netdev_printk(level, (dev), fmt, ##args); \
4242 } while (0)
4243
4244 #define netif_level(level, priv, type, dev, fmt, args...) \
4245 do { \
4246 if (netif_msg_##type(priv)) \
4247 netdev_##level(dev, fmt, ##args); \
4248 } while (0)
4249
4250 #define netif_emerg(priv, type, dev, fmt, args...) \
4251 netif_level(emerg, priv, type, dev, fmt, ##args)
4252 #define netif_alert(priv, type, dev, fmt, args...) \
4253 netif_level(alert, priv, type, dev, fmt, ##args)
4254 #define netif_crit(priv, type, dev, fmt, args...) \
4255 netif_level(crit, priv, type, dev, fmt, ##args)
4256 #define netif_err(priv, type, dev, fmt, args...) \
4257 netif_level(err, priv, type, dev, fmt, ##args)
4258 #define netif_warn(priv, type, dev, fmt, args...) \
4259 netif_level(warn, priv, type, dev, fmt, ##args)
4260 #define netif_notice(priv, type, dev, fmt, args...) \
4261 netif_level(notice, priv, type, dev, fmt, ##args)
4262 #define netif_info(priv, type, dev, fmt, args...) \
4263 netif_level(info, priv, type, dev, fmt, ##args)
4264
4265 #if defined(CONFIG_DYNAMIC_DEBUG)
4266 #define netif_dbg(priv, type, netdev, format, args...) \
4267 do { \
4268 if (netif_msg_##type(priv)) \
4269 dynamic_netdev_dbg(netdev, format, ##args); \
4270 } while (0)
4271 #elif defined(DEBUG)
4272 #define netif_dbg(priv, type, dev, format, args...) \
4273 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4274 #else
4275 #define netif_dbg(priv, type, dev, format, args...) \
4276 ({ \
4277 if (0) \
4278 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4279 0; \
4280 })
4281 #endif
4282
4283 #if defined(VERBOSE_DEBUG)
4284 #define netif_vdbg netif_dbg
4285 #else
4286 #define netif_vdbg(priv, type, dev, format, args...) \
4287 ({ \
4288 if (0) \
4289 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4290 0; \
4291 })
4292 #endif
4293
4294 /*
4295 * The list of packet types we will receive (as opposed to discard)
4296 * and the routines to invoke.
4297 *
4298 * Why 16. Because with 16 the only overlap we get on a hash of the
4299 * low nibble of the protocol value is RARP/SNAP/X.25.
4300 *
4301 * NOTE: That is no longer true with the addition of VLAN tags. Not
4302 * sure which should go first, but I bet it won't make much
4303 * difference if we are running VLANs. The good news is that
4304 * this protocol won't be in the list unless compiled in, so
4305 * the average user (w/out VLANs) will not be adversely affected.
4306 * --BLG
4307 *
4308 * 0800 IP
4309 * 8100 802.1Q VLAN
4310 * 0001 802.3
4311 * 0002 AX.25
4312 * 0004 802.2
4313 * 8035 RARP
4314 * 0005 SNAP
4315 * 0805 X.25
4316 * 0806 ARP
4317 * 8137 IPX
4318 * 0009 Localtalk
4319 * 86DD IPv6
4320 */
4321 #define PTYPE_HASH_SIZE (16)
4322 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4323
4324 #endif /* _LINUX_NETDEVICE_H */
This page took 0.174275 seconds and 6 git commands to generate.