sched/cputime: Fix omitted ticks passed in parameter
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_callchain_entry_ctx {
65 struct perf_callchain_entry *entry;
66 u32 max_stack;
67 u32 nr;
68 short contexts;
69 bool contexts_maxed;
70 };
71
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 unsigned long off, unsigned long len);
74
75 struct perf_raw_frag {
76 union {
77 struct perf_raw_frag *next;
78 unsigned long pad;
79 };
80 perf_copy_f copy;
81 void *data;
82 u32 size;
83 } __packed;
84
85 struct perf_raw_record {
86 struct perf_raw_frag frag;
87 u32 size;
88 };
89
90 /*
91 * branch stack layout:
92 * nr: number of taken branches stored in entries[]
93 *
94 * Note that nr can vary from sample to sample
95 * branches (to, from) are stored from most recent
96 * to least recent, i.e., entries[0] contains the most
97 * recent branch.
98 */
99 struct perf_branch_stack {
100 __u64 nr;
101 struct perf_branch_entry entries[0];
102 };
103
104 struct task_struct;
105
106 /*
107 * extra PMU register associated with an event
108 */
109 struct hw_perf_event_extra {
110 u64 config; /* register value */
111 unsigned int reg; /* register address or index */
112 int alloc; /* extra register already allocated */
113 int idx; /* index in shared_regs->regs[] */
114 };
115
116 /**
117 * struct hw_perf_event - performance event hardware details:
118 */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 union {
122 struct { /* hardware */
123 u64 config;
124 u64 last_tag;
125 unsigned long config_base;
126 unsigned long event_base;
127 int event_base_rdpmc;
128 int idx;
129 int last_cpu;
130 int flags;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 /* for tp_event->class */
140 struct list_head tp_list;
141 };
142 struct { /* intel_cqm */
143 int cqm_state;
144 u32 cqm_rmid;
145 int is_group_event;
146 struct list_head cqm_events_entry;
147 struct list_head cqm_groups_entry;
148 struct list_head cqm_group_entry;
149 };
150 struct { /* itrace */
151 int itrace_started;
152 };
153 struct { /* amd_power */
154 u64 pwr_acc;
155 u64 ptsc;
156 };
157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
158 struct { /* breakpoint */
159 /*
160 * Crufty hack to avoid the chicken and egg
161 * problem hw_breakpoint has with context
162 * creation and event initalization.
163 */
164 struct arch_hw_breakpoint info;
165 struct list_head bp_list;
166 };
167 #endif
168 };
169 /*
170 * If the event is a per task event, this will point to the task in
171 * question. See the comment in perf_event_alloc().
172 */
173 struct task_struct *target;
174
175 /*
176 * PMU would store hardware filter configuration
177 * here.
178 */
179 void *addr_filters;
180
181 /* Last sync'ed generation of filters */
182 unsigned long addr_filters_gen;
183
184 /*
185 * hw_perf_event::state flags; used to track the PERF_EF_* state.
186 */
187 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
188 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
189 #define PERF_HES_ARCH 0x04
190
191 int state;
192
193 /*
194 * The last observed hardware counter value, updated with a
195 * local64_cmpxchg() such that pmu::read() can be called nested.
196 */
197 local64_t prev_count;
198
199 /*
200 * The period to start the next sample with.
201 */
202 u64 sample_period;
203
204 /*
205 * The period we started this sample with.
206 */
207 u64 last_period;
208
209 /*
210 * However much is left of the current period; note that this is
211 * a full 64bit value and allows for generation of periods longer
212 * than hardware might allow.
213 */
214 local64_t period_left;
215
216 /*
217 * State for throttling the event, see __perf_event_overflow() and
218 * perf_adjust_freq_unthr_context().
219 */
220 u64 interrupts_seq;
221 u64 interrupts;
222
223 /*
224 * State for freq target events, see __perf_event_overflow() and
225 * perf_adjust_freq_unthr_context().
226 */
227 u64 freq_time_stamp;
228 u64 freq_count_stamp;
229 #endif
230 };
231
232 struct perf_event;
233
234 /*
235 * Common implementation detail of pmu::{start,commit,cancel}_txn
236 */
237 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
238 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
239
240 /**
241 * pmu::capabilities flags
242 */
243 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
244 #define PERF_PMU_CAP_NO_NMI 0x02
245 #define PERF_PMU_CAP_AUX_NO_SG 0x04
246 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
247 #define PERF_PMU_CAP_EXCLUSIVE 0x10
248 #define PERF_PMU_CAP_ITRACE 0x20
249 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
250
251 /**
252 * struct pmu - generic performance monitoring unit
253 */
254 struct pmu {
255 struct list_head entry;
256
257 struct module *module;
258 struct device *dev;
259 const struct attribute_group **attr_groups;
260 const char *name;
261 int type;
262
263 /*
264 * various common per-pmu feature flags
265 */
266 int capabilities;
267
268 int * __percpu pmu_disable_count;
269 struct perf_cpu_context * __percpu pmu_cpu_context;
270 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
271 int task_ctx_nr;
272 int hrtimer_interval_ms;
273
274 /* number of address filters this PMU can do */
275 unsigned int nr_addr_filters;
276
277 /*
278 * Fully disable/enable this PMU, can be used to protect from the PMI
279 * as well as for lazy/batch writing of the MSRs.
280 */
281 void (*pmu_enable) (struct pmu *pmu); /* optional */
282 void (*pmu_disable) (struct pmu *pmu); /* optional */
283
284 /*
285 * Try and initialize the event for this PMU.
286 *
287 * Returns:
288 * -ENOENT -- @event is not for this PMU
289 *
290 * -ENODEV -- @event is for this PMU but PMU not present
291 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
292 * -EINVAL -- @event is for this PMU but @event is not valid
293 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
294 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
295 *
296 * 0 -- @event is for this PMU and valid
297 *
298 * Other error return values are allowed.
299 */
300 int (*event_init) (struct perf_event *event);
301
302 /*
303 * Notification that the event was mapped or unmapped. Called
304 * in the context of the mapping task.
305 */
306 void (*event_mapped) (struct perf_event *event); /*optional*/
307 void (*event_unmapped) (struct perf_event *event); /*optional*/
308
309 /*
310 * Flags for ->add()/->del()/ ->start()/->stop(). There are
311 * matching hw_perf_event::state flags.
312 */
313 #define PERF_EF_START 0x01 /* start the counter when adding */
314 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
315 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
316
317 /*
318 * Adds/Removes a counter to/from the PMU, can be done inside a
319 * transaction, see the ->*_txn() methods.
320 *
321 * The add/del callbacks will reserve all hardware resources required
322 * to service the event, this includes any counter constraint
323 * scheduling etc.
324 *
325 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 * is on.
327 *
328 * ->add() called without PERF_EF_START should result in the same state
329 * as ->add() followed by ->stop().
330 *
331 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
332 * ->stop() that must deal with already being stopped without
333 * PERF_EF_UPDATE.
334 */
335 int (*add) (struct perf_event *event, int flags);
336 void (*del) (struct perf_event *event, int flags);
337
338 /*
339 * Starts/Stops a counter present on the PMU.
340 *
341 * The PMI handler should stop the counter when perf_event_overflow()
342 * returns !0. ->start() will be used to continue.
343 *
344 * Also used to change the sample period.
345 *
346 * Called with IRQs disabled and the PMU disabled on the CPU the event
347 * is on -- will be called from NMI context with the PMU generates
348 * NMIs.
349 *
350 * ->stop() with PERF_EF_UPDATE will read the counter and update
351 * period/count values like ->read() would.
352 *
353 * ->start() with PERF_EF_RELOAD will reprogram the the counter
354 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
355 */
356 void (*start) (struct perf_event *event, int flags);
357 void (*stop) (struct perf_event *event, int flags);
358
359 /*
360 * Updates the counter value of the event.
361 *
362 * For sampling capable PMUs this will also update the software period
363 * hw_perf_event::period_left field.
364 */
365 void (*read) (struct perf_event *event);
366
367 /*
368 * Group events scheduling is treated as a transaction, add
369 * group events as a whole and perform one schedulability test.
370 * If the test fails, roll back the whole group
371 *
372 * Start the transaction, after this ->add() doesn't need to
373 * do schedulability tests.
374 *
375 * Optional.
376 */
377 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
378 /*
379 * If ->start_txn() disabled the ->add() schedulability test
380 * then ->commit_txn() is required to perform one. On success
381 * the transaction is closed. On error the transaction is kept
382 * open until ->cancel_txn() is called.
383 *
384 * Optional.
385 */
386 int (*commit_txn) (struct pmu *pmu);
387 /*
388 * Will cancel the transaction, assumes ->del() is called
389 * for each successful ->add() during the transaction.
390 *
391 * Optional.
392 */
393 void (*cancel_txn) (struct pmu *pmu);
394
395 /*
396 * Will return the value for perf_event_mmap_page::index for this event,
397 * if no implementation is provided it will default to: event->hw.idx + 1.
398 */
399 int (*event_idx) (struct perf_event *event); /*optional */
400
401 /*
402 * context-switches callback
403 */
404 void (*sched_task) (struct perf_event_context *ctx,
405 bool sched_in);
406 /*
407 * PMU specific data size
408 */
409 size_t task_ctx_size;
410
411
412 /*
413 * Return the count value for a counter.
414 */
415 u64 (*count) (struct perf_event *event); /*optional*/
416
417 /*
418 * Set up pmu-private data structures for an AUX area
419 */
420 void *(*setup_aux) (int cpu, void **pages,
421 int nr_pages, bool overwrite);
422 /* optional */
423
424 /*
425 * Free pmu-private AUX data structures
426 */
427 void (*free_aux) (void *aux); /* optional */
428
429 /*
430 * Validate address range filters: make sure the HW supports the
431 * requested configuration and number of filters; return 0 if the
432 * supplied filters are valid, -errno otherwise.
433 *
434 * Runs in the context of the ioctl()ing process and is not serialized
435 * with the rest of the PMU callbacks.
436 */
437 int (*addr_filters_validate) (struct list_head *filters);
438 /* optional */
439
440 /*
441 * Synchronize address range filter configuration:
442 * translate hw-agnostic filters into hardware configuration in
443 * event::hw::addr_filters.
444 *
445 * Runs as a part of filter sync sequence that is done in ->start()
446 * callback by calling perf_event_addr_filters_sync().
447 *
448 * May (and should) traverse event::addr_filters::list, for which its
449 * caller provides necessary serialization.
450 */
451 void (*addr_filters_sync) (struct perf_event *event);
452 /* optional */
453
454 /*
455 * Filter events for PMU-specific reasons.
456 */
457 int (*filter_match) (struct perf_event *event); /* optional */
458 };
459
460 /**
461 * struct perf_addr_filter - address range filter definition
462 * @entry: event's filter list linkage
463 * @inode: object file's inode for file-based filters
464 * @offset: filter range offset
465 * @size: filter range size
466 * @range: 1: range, 0: address
467 * @filter: 1: filter/start, 0: stop
468 *
469 * This is a hardware-agnostic filter configuration as specified by the user.
470 */
471 struct perf_addr_filter {
472 struct list_head entry;
473 struct inode *inode;
474 unsigned long offset;
475 unsigned long size;
476 unsigned int range : 1,
477 filter : 1;
478 };
479
480 /**
481 * struct perf_addr_filters_head - container for address range filters
482 * @list: list of filters for this event
483 * @lock: spinlock that serializes accesses to the @list and event's
484 * (and its children's) filter generations.
485 *
486 * A child event will use parent's @list (and therefore @lock), so they are
487 * bundled together; see perf_event_addr_filters().
488 */
489 struct perf_addr_filters_head {
490 struct list_head list;
491 raw_spinlock_t lock;
492 };
493
494 /**
495 * enum perf_event_active_state - the states of a event
496 */
497 enum perf_event_active_state {
498 PERF_EVENT_STATE_DEAD = -4,
499 PERF_EVENT_STATE_EXIT = -3,
500 PERF_EVENT_STATE_ERROR = -2,
501 PERF_EVENT_STATE_OFF = -1,
502 PERF_EVENT_STATE_INACTIVE = 0,
503 PERF_EVENT_STATE_ACTIVE = 1,
504 };
505
506 struct file;
507 struct perf_sample_data;
508
509 typedef void (*perf_overflow_handler_t)(struct perf_event *,
510 struct perf_sample_data *,
511 struct pt_regs *regs);
512
513 enum perf_group_flag {
514 PERF_GROUP_SOFTWARE = 0x1,
515 };
516
517 #define SWEVENT_HLIST_BITS 8
518 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
519
520 struct swevent_hlist {
521 struct hlist_head heads[SWEVENT_HLIST_SIZE];
522 struct rcu_head rcu_head;
523 };
524
525 #define PERF_ATTACH_CONTEXT 0x01
526 #define PERF_ATTACH_GROUP 0x02
527 #define PERF_ATTACH_TASK 0x04
528 #define PERF_ATTACH_TASK_DATA 0x08
529
530 struct perf_cgroup;
531 struct ring_buffer;
532
533 struct pmu_event_list {
534 raw_spinlock_t lock;
535 struct list_head list;
536 };
537
538 /**
539 * struct perf_event - performance event kernel representation:
540 */
541 struct perf_event {
542 #ifdef CONFIG_PERF_EVENTS
543 /*
544 * entry onto perf_event_context::event_list;
545 * modifications require ctx->lock
546 * RCU safe iterations.
547 */
548 struct list_head event_entry;
549
550 /*
551 * XXX: group_entry and sibling_list should be mutually exclusive;
552 * either you're a sibling on a group, or you're the group leader.
553 * Rework the code to always use the same list element.
554 *
555 * Locked for modification by both ctx->mutex and ctx->lock; holding
556 * either sufficies for read.
557 */
558 struct list_head group_entry;
559 struct list_head sibling_list;
560
561 /*
562 * We need storage to track the entries in perf_pmu_migrate_context; we
563 * cannot use the event_entry because of RCU and we want to keep the
564 * group in tact which avoids us using the other two entries.
565 */
566 struct list_head migrate_entry;
567
568 struct hlist_node hlist_entry;
569 struct list_head active_entry;
570 int nr_siblings;
571 int group_flags;
572 struct perf_event *group_leader;
573 struct pmu *pmu;
574 void *pmu_private;
575
576 enum perf_event_active_state state;
577 unsigned int attach_state;
578 local64_t count;
579 atomic64_t child_count;
580
581 /*
582 * These are the total time in nanoseconds that the event
583 * has been enabled (i.e. eligible to run, and the task has
584 * been scheduled in, if this is a per-task event)
585 * and running (scheduled onto the CPU), respectively.
586 *
587 * They are computed from tstamp_enabled, tstamp_running and
588 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
589 */
590 u64 total_time_enabled;
591 u64 total_time_running;
592
593 /*
594 * These are timestamps used for computing total_time_enabled
595 * and total_time_running when the event is in INACTIVE or
596 * ACTIVE state, measured in nanoseconds from an arbitrary point
597 * in time.
598 * tstamp_enabled: the notional time when the event was enabled
599 * tstamp_running: the notional time when the event was scheduled on
600 * tstamp_stopped: in INACTIVE state, the notional time when the
601 * event was scheduled off.
602 */
603 u64 tstamp_enabled;
604 u64 tstamp_running;
605 u64 tstamp_stopped;
606
607 /*
608 * timestamp shadows the actual context timing but it can
609 * be safely used in NMI interrupt context. It reflects the
610 * context time as it was when the event was last scheduled in.
611 *
612 * ctx_time already accounts for ctx->timestamp. Therefore to
613 * compute ctx_time for a sample, simply add perf_clock().
614 */
615 u64 shadow_ctx_time;
616
617 struct perf_event_attr attr;
618 u16 header_size;
619 u16 id_header_size;
620 u16 read_size;
621 struct hw_perf_event hw;
622
623 struct perf_event_context *ctx;
624 atomic_long_t refcount;
625
626 /*
627 * These accumulate total time (in nanoseconds) that children
628 * events have been enabled and running, respectively.
629 */
630 atomic64_t child_total_time_enabled;
631 atomic64_t child_total_time_running;
632
633 /*
634 * Protect attach/detach and child_list:
635 */
636 struct mutex child_mutex;
637 struct list_head child_list;
638 struct perf_event *parent;
639
640 int oncpu;
641 int cpu;
642
643 struct list_head owner_entry;
644 struct task_struct *owner;
645
646 /* mmap bits */
647 struct mutex mmap_mutex;
648 atomic_t mmap_count;
649
650 struct ring_buffer *rb;
651 struct list_head rb_entry;
652 unsigned long rcu_batches;
653 int rcu_pending;
654
655 /* poll related */
656 wait_queue_head_t waitq;
657 struct fasync_struct *fasync;
658
659 /* delayed work for NMIs and such */
660 int pending_wakeup;
661 int pending_kill;
662 int pending_disable;
663 struct irq_work pending;
664
665 atomic_t event_limit;
666
667 /* address range filters */
668 struct perf_addr_filters_head addr_filters;
669 /* vma address array for file-based filders */
670 unsigned long *addr_filters_offs;
671 unsigned long addr_filters_gen;
672
673 void (*destroy)(struct perf_event *);
674 struct rcu_head rcu_head;
675
676 struct pid_namespace *ns;
677 u64 id;
678
679 u64 (*clock)(void);
680 perf_overflow_handler_t overflow_handler;
681 void *overflow_handler_context;
682
683 #ifdef CONFIG_EVENT_TRACING
684 struct trace_event_call *tp_event;
685 struct event_filter *filter;
686 #ifdef CONFIG_FUNCTION_TRACER
687 struct ftrace_ops ftrace_ops;
688 #endif
689 #endif
690
691 #ifdef CONFIG_CGROUP_PERF
692 struct perf_cgroup *cgrp; /* cgroup event is attach to */
693 int cgrp_defer_enabled;
694 #endif
695
696 struct list_head sb_list;
697 #endif /* CONFIG_PERF_EVENTS */
698 };
699
700 /**
701 * struct perf_event_context - event context structure
702 *
703 * Used as a container for task events and CPU events as well:
704 */
705 struct perf_event_context {
706 struct pmu *pmu;
707 /*
708 * Protect the states of the events in the list,
709 * nr_active, and the list:
710 */
711 raw_spinlock_t lock;
712 /*
713 * Protect the list of events. Locking either mutex or lock
714 * is sufficient to ensure the list doesn't change; to change
715 * the list you need to lock both the mutex and the spinlock.
716 */
717 struct mutex mutex;
718
719 struct list_head active_ctx_list;
720 struct list_head pinned_groups;
721 struct list_head flexible_groups;
722 struct list_head event_list;
723 int nr_events;
724 int nr_active;
725 int is_active;
726 int nr_stat;
727 int nr_freq;
728 int rotate_disable;
729 atomic_t refcount;
730 struct task_struct *task;
731
732 /*
733 * Context clock, runs when context enabled.
734 */
735 u64 time;
736 u64 timestamp;
737
738 /*
739 * These fields let us detect when two contexts have both
740 * been cloned (inherited) from a common ancestor.
741 */
742 struct perf_event_context *parent_ctx;
743 u64 parent_gen;
744 u64 generation;
745 int pin_count;
746 int nr_cgroups; /* cgroup evts */
747 void *task_ctx_data; /* pmu specific data */
748 struct rcu_head rcu_head;
749 };
750
751 /*
752 * Number of contexts where an event can trigger:
753 * task, softirq, hardirq, nmi.
754 */
755 #define PERF_NR_CONTEXTS 4
756
757 /**
758 * struct perf_event_cpu_context - per cpu event context structure
759 */
760 struct perf_cpu_context {
761 struct perf_event_context ctx;
762 struct perf_event_context *task_ctx;
763 int active_oncpu;
764 int exclusive;
765
766 raw_spinlock_t hrtimer_lock;
767 struct hrtimer hrtimer;
768 ktime_t hrtimer_interval;
769 unsigned int hrtimer_active;
770
771 struct pmu *unique_pmu;
772 struct perf_cgroup *cgrp;
773 };
774
775 struct perf_output_handle {
776 struct perf_event *event;
777 struct ring_buffer *rb;
778 unsigned long wakeup;
779 unsigned long size;
780 union {
781 void *addr;
782 unsigned long head;
783 };
784 int page;
785 };
786
787 #ifdef CONFIG_CGROUP_PERF
788
789 /*
790 * perf_cgroup_info keeps track of time_enabled for a cgroup.
791 * This is a per-cpu dynamically allocated data structure.
792 */
793 struct perf_cgroup_info {
794 u64 time;
795 u64 timestamp;
796 };
797
798 struct perf_cgroup {
799 struct cgroup_subsys_state css;
800 struct perf_cgroup_info __percpu *info;
801 };
802
803 /*
804 * Must ensure cgroup is pinned (css_get) before calling
805 * this function. In other words, we cannot call this function
806 * if there is no cgroup event for the current CPU context.
807 */
808 static inline struct perf_cgroup *
809 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
810 {
811 return container_of(task_css_check(task, perf_event_cgrp_id,
812 ctx ? lockdep_is_held(&ctx->lock)
813 : true),
814 struct perf_cgroup, css);
815 }
816 #endif /* CONFIG_CGROUP_PERF */
817
818 #ifdef CONFIG_PERF_EVENTS
819
820 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
821 struct perf_event *event);
822 extern void perf_aux_output_end(struct perf_output_handle *handle,
823 unsigned long size, bool truncated);
824 extern int perf_aux_output_skip(struct perf_output_handle *handle,
825 unsigned long size);
826 extern void *perf_get_aux(struct perf_output_handle *handle);
827
828 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
829 extern void perf_pmu_unregister(struct pmu *pmu);
830
831 extern int perf_num_counters(void);
832 extern const char *perf_pmu_name(void);
833 extern void __perf_event_task_sched_in(struct task_struct *prev,
834 struct task_struct *task);
835 extern void __perf_event_task_sched_out(struct task_struct *prev,
836 struct task_struct *next);
837 extern int perf_event_init_task(struct task_struct *child);
838 extern void perf_event_exit_task(struct task_struct *child);
839 extern void perf_event_free_task(struct task_struct *task);
840 extern void perf_event_delayed_put(struct task_struct *task);
841 extern struct file *perf_event_get(unsigned int fd);
842 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
843 extern void perf_event_print_debug(void);
844 extern void perf_pmu_disable(struct pmu *pmu);
845 extern void perf_pmu_enable(struct pmu *pmu);
846 extern void perf_sched_cb_dec(struct pmu *pmu);
847 extern void perf_sched_cb_inc(struct pmu *pmu);
848 extern int perf_event_task_disable(void);
849 extern int perf_event_task_enable(void);
850 extern int perf_event_refresh(struct perf_event *event, int refresh);
851 extern void perf_event_update_userpage(struct perf_event *event);
852 extern int perf_event_release_kernel(struct perf_event *event);
853 extern struct perf_event *
854 perf_event_create_kernel_counter(struct perf_event_attr *attr,
855 int cpu,
856 struct task_struct *task,
857 perf_overflow_handler_t callback,
858 void *context);
859 extern void perf_pmu_migrate_context(struct pmu *pmu,
860 int src_cpu, int dst_cpu);
861 extern u64 perf_event_read_local(struct perf_event *event);
862 extern u64 perf_event_read_value(struct perf_event *event,
863 u64 *enabled, u64 *running);
864
865
866 struct perf_sample_data {
867 /*
868 * Fields set by perf_sample_data_init(), group so as to
869 * minimize the cachelines touched.
870 */
871 u64 addr;
872 struct perf_raw_record *raw;
873 struct perf_branch_stack *br_stack;
874 u64 period;
875 u64 weight;
876 u64 txn;
877 union perf_mem_data_src data_src;
878
879 /*
880 * The other fields, optionally {set,used} by
881 * perf_{prepare,output}_sample().
882 */
883 u64 type;
884 u64 ip;
885 struct {
886 u32 pid;
887 u32 tid;
888 } tid_entry;
889 u64 time;
890 u64 id;
891 u64 stream_id;
892 struct {
893 u32 cpu;
894 u32 reserved;
895 } cpu_entry;
896 struct perf_callchain_entry *callchain;
897
898 /*
899 * regs_user may point to task_pt_regs or to regs_user_copy, depending
900 * on arch details.
901 */
902 struct perf_regs regs_user;
903 struct pt_regs regs_user_copy;
904
905 struct perf_regs regs_intr;
906 u64 stack_user_size;
907 } ____cacheline_aligned;
908
909 /* default value for data source */
910 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
911 PERF_MEM_S(LVL, NA) |\
912 PERF_MEM_S(SNOOP, NA) |\
913 PERF_MEM_S(LOCK, NA) |\
914 PERF_MEM_S(TLB, NA))
915
916 static inline void perf_sample_data_init(struct perf_sample_data *data,
917 u64 addr, u64 period)
918 {
919 /* remaining struct members initialized in perf_prepare_sample() */
920 data->addr = addr;
921 data->raw = NULL;
922 data->br_stack = NULL;
923 data->period = period;
924 data->weight = 0;
925 data->data_src.val = PERF_MEM_NA;
926 data->txn = 0;
927 }
928
929 extern void perf_output_sample(struct perf_output_handle *handle,
930 struct perf_event_header *header,
931 struct perf_sample_data *data,
932 struct perf_event *event);
933 extern void perf_prepare_sample(struct perf_event_header *header,
934 struct perf_sample_data *data,
935 struct perf_event *event,
936 struct pt_regs *regs);
937
938 extern int perf_event_overflow(struct perf_event *event,
939 struct perf_sample_data *data,
940 struct pt_regs *regs);
941
942 extern void perf_event_output_forward(struct perf_event *event,
943 struct perf_sample_data *data,
944 struct pt_regs *regs);
945 extern void perf_event_output_backward(struct perf_event *event,
946 struct perf_sample_data *data,
947 struct pt_regs *regs);
948 extern void perf_event_output(struct perf_event *event,
949 struct perf_sample_data *data,
950 struct pt_regs *regs);
951
952 static inline bool
953 is_default_overflow_handler(struct perf_event *event)
954 {
955 if (likely(event->overflow_handler == perf_event_output_forward))
956 return true;
957 if (unlikely(event->overflow_handler == perf_event_output_backward))
958 return true;
959 return false;
960 }
961
962 extern void
963 perf_event_header__init_id(struct perf_event_header *header,
964 struct perf_sample_data *data,
965 struct perf_event *event);
966 extern void
967 perf_event__output_id_sample(struct perf_event *event,
968 struct perf_output_handle *handle,
969 struct perf_sample_data *sample);
970
971 extern void
972 perf_log_lost_samples(struct perf_event *event, u64 lost);
973
974 static inline bool is_sampling_event(struct perf_event *event)
975 {
976 return event->attr.sample_period != 0;
977 }
978
979 /*
980 * Return 1 for a software event, 0 for a hardware event
981 */
982 static inline int is_software_event(struct perf_event *event)
983 {
984 return event->pmu->task_ctx_nr == perf_sw_context;
985 }
986
987 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
988
989 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
990 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
991
992 #ifndef perf_arch_fetch_caller_regs
993 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
994 #endif
995
996 /*
997 * Take a snapshot of the regs. Skip ip and frame pointer to
998 * the nth caller. We only need a few of the regs:
999 * - ip for PERF_SAMPLE_IP
1000 * - cs for user_mode() tests
1001 * - bp for callchains
1002 * - eflags, for future purposes, just in case
1003 */
1004 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1005 {
1006 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1007 }
1008
1009 static __always_inline void
1010 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1011 {
1012 if (static_key_false(&perf_swevent_enabled[event_id]))
1013 __perf_sw_event(event_id, nr, regs, addr);
1014 }
1015
1016 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1017
1018 /*
1019 * 'Special' version for the scheduler, it hard assumes no recursion,
1020 * which is guaranteed by us not actually scheduling inside other swevents
1021 * because those disable preemption.
1022 */
1023 static __always_inline void
1024 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1025 {
1026 if (static_key_false(&perf_swevent_enabled[event_id])) {
1027 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1028
1029 perf_fetch_caller_regs(regs);
1030 ___perf_sw_event(event_id, nr, regs, addr);
1031 }
1032 }
1033
1034 extern struct static_key_false perf_sched_events;
1035
1036 static __always_inline bool
1037 perf_sw_migrate_enabled(void)
1038 {
1039 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1040 return true;
1041 return false;
1042 }
1043
1044 static inline void perf_event_task_migrate(struct task_struct *task)
1045 {
1046 if (perf_sw_migrate_enabled())
1047 task->sched_migrated = 1;
1048 }
1049
1050 static inline void perf_event_task_sched_in(struct task_struct *prev,
1051 struct task_struct *task)
1052 {
1053 if (static_branch_unlikely(&perf_sched_events))
1054 __perf_event_task_sched_in(prev, task);
1055
1056 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1057 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1058
1059 perf_fetch_caller_regs(regs);
1060 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1061 task->sched_migrated = 0;
1062 }
1063 }
1064
1065 static inline void perf_event_task_sched_out(struct task_struct *prev,
1066 struct task_struct *next)
1067 {
1068 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1069
1070 if (static_branch_unlikely(&perf_sched_events))
1071 __perf_event_task_sched_out(prev, next);
1072 }
1073
1074 static inline u64 __perf_event_count(struct perf_event *event)
1075 {
1076 return local64_read(&event->count) + atomic64_read(&event->child_count);
1077 }
1078
1079 extern void perf_event_mmap(struct vm_area_struct *vma);
1080 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1081 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1082 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1083
1084 extern void perf_event_exec(void);
1085 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1086 extern void perf_event_fork(struct task_struct *tsk);
1087
1088 /* Callchains */
1089 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1090
1091 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1092 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1093 extern struct perf_callchain_entry *
1094 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1095 u32 max_stack, bool crosstask, bool add_mark);
1096 extern int get_callchain_buffers(int max_stack);
1097 extern void put_callchain_buffers(void);
1098
1099 extern int sysctl_perf_event_max_stack;
1100 extern int sysctl_perf_event_max_contexts_per_stack;
1101
1102 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1103 {
1104 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1105 struct perf_callchain_entry *entry = ctx->entry;
1106 entry->ip[entry->nr++] = ip;
1107 ++ctx->contexts;
1108 return 0;
1109 } else {
1110 ctx->contexts_maxed = true;
1111 return -1; /* no more room, stop walking the stack */
1112 }
1113 }
1114
1115 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1116 {
1117 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1118 struct perf_callchain_entry *entry = ctx->entry;
1119 entry->ip[entry->nr++] = ip;
1120 ++ctx->nr;
1121 return 0;
1122 } else {
1123 return -1; /* no more room, stop walking the stack */
1124 }
1125 }
1126
1127 extern int sysctl_perf_event_paranoid;
1128 extern int sysctl_perf_event_mlock;
1129 extern int sysctl_perf_event_sample_rate;
1130 extern int sysctl_perf_cpu_time_max_percent;
1131
1132 extern void perf_sample_event_took(u64 sample_len_ns);
1133
1134 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1135 void __user *buffer, size_t *lenp,
1136 loff_t *ppos);
1137 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1138 void __user *buffer, size_t *lenp,
1139 loff_t *ppos);
1140
1141 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1142 void __user *buffer, size_t *lenp, loff_t *ppos);
1143
1144 static inline bool perf_paranoid_tracepoint_raw(void)
1145 {
1146 return sysctl_perf_event_paranoid > -1;
1147 }
1148
1149 static inline bool perf_paranoid_cpu(void)
1150 {
1151 return sysctl_perf_event_paranoid > 0;
1152 }
1153
1154 static inline bool perf_paranoid_kernel(void)
1155 {
1156 return sysctl_perf_event_paranoid > 1;
1157 }
1158
1159 extern void perf_event_init(void);
1160 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1161 int entry_size, struct pt_regs *regs,
1162 struct hlist_head *head, int rctx,
1163 struct task_struct *task);
1164 extern void perf_bp_event(struct perf_event *event, void *data);
1165
1166 #ifndef perf_misc_flags
1167 # define perf_misc_flags(regs) \
1168 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1169 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1170 #endif
1171
1172 static inline bool has_branch_stack(struct perf_event *event)
1173 {
1174 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1175 }
1176
1177 static inline bool needs_branch_stack(struct perf_event *event)
1178 {
1179 return event->attr.branch_sample_type != 0;
1180 }
1181
1182 static inline bool has_aux(struct perf_event *event)
1183 {
1184 return event->pmu->setup_aux;
1185 }
1186
1187 static inline bool is_write_backward(struct perf_event *event)
1188 {
1189 return !!event->attr.write_backward;
1190 }
1191
1192 static inline bool has_addr_filter(struct perf_event *event)
1193 {
1194 return event->pmu->nr_addr_filters;
1195 }
1196
1197 /*
1198 * An inherited event uses parent's filters
1199 */
1200 static inline struct perf_addr_filters_head *
1201 perf_event_addr_filters(struct perf_event *event)
1202 {
1203 struct perf_addr_filters_head *ifh = &event->addr_filters;
1204
1205 if (event->parent)
1206 ifh = &event->parent->addr_filters;
1207
1208 return ifh;
1209 }
1210
1211 extern void perf_event_addr_filters_sync(struct perf_event *event);
1212
1213 extern int perf_output_begin(struct perf_output_handle *handle,
1214 struct perf_event *event, unsigned int size);
1215 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1216 struct perf_event *event,
1217 unsigned int size);
1218 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1219 struct perf_event *event,
1220 unsigned int size);
1221
1222 extern void perf_output_end(struct perf_output_handle *handle);
1223 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1224 const void *buf, unsigned int len);
1225 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1226 unsigned int len);
1227 extern int perf_swevent_get_recursion_context(void);
1228 extern void perf_swevent_put_recursion_context(int rctx);
1229 extern u64 perf_swevent_set_period(struct perf_event *event);
1230 extern void perf_event_enable(struct perf_event *event);
1231 extern void perf_event_disable(struct perf_event *event);
1232 extern void perf_event_disable_local(struct perf_event *event);
1233 extern void perf_event_task_tick(void);
1234 #else /* !CONFIG_PERF_EVENTS: */
1235 static inline void *
1236 perf_aux_output_begin(struct perf_output_handle *handle,
1237 struct perf_event *event) { return NULL; }
1238 static inline void
1239 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1240 bool truncated) { }
1241 static inline int
1242 perf_aux_output_skip(struct perf_output_handle *handle,
1243 unsigned long size) { return -EINVAL; }
1244 static inline void *
1245 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1246 static inline void
1247 perf_event_task_migrate(struct task_struct *task) { }
1248 static inline void
1249 perf_event_task_sched_in(struct task_struct *prev,
1250 struct task_struct *task) { }
1251 static inline void
1252 perf_event_task_sched_out(struct task_struct *prev,
1253 struct task_struct *next) { }
1254 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1255 static inline void perf_event_exit_task(struct task_struct *child) { }
1256 static inline void perf_event_free_task(struct task_struct *task) { }
1257 static inline void perf_event_delayed_put(struct task_struct *task) { }
1258 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1259 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1260 {
1261 return ERR_PTR(-EINVAL);
1262 }
1263 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; }
1264 static inline void perf_event_print_debug(void) { }
1265 static inline int perf_event_task_disable(void) { return -EINVAL; }
1266 static inline int perf_event_task_enable(void) { return -EINVAL; }
1267 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1268 {
1269 return -EINVAL;
1270 }
1271
1272 static inline void
1273 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1274 static inline void
1275 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1276 static inline void
1277 perf_bp_event(struct perf_event *event, void *data) { }
1278
1279 static inline int perf_register_guest_info_callbacks
1280 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1281 static inline int perf_unregister_guest_info_callbacks
1282 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1283
1284 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1285 static inline void perf_event_exec(void) { }
1286 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1287 static inline void perf_event_fork(struct task_struct *tsk) { }
1288 static inline void perf_event_init(void) { }
1289 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1290 static inline void perf_swevent_put_recursion_context(int rctx) { }
1291 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1292 static inline void perf_event_enable(struct perf_event *event) { }
1293 static inline void perf_event_disable(struct perf_event *event) { }
1294 static inline int __perf_event_disable(void *info) { return -1; }
1295 static inline void perf_event_task_tick(void) { }
1296 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1297 #endif
1298
1299 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1300 extern void perf_restore_debug_store(void);
1301 #else
1302 static inline void perf_restore_debug_store(void) { }
1303 #endif
1304
1305 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1306 {
1307 return frag->pad < sizeof(u64);
1308 }
1309
1310 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1311
1312 struct perf_pmu_events_attr {
1313 struct device_attribute attr;
1314 u64 id;
1315 const char *event_str;
1316 };
1317
1318 struct perf_pmu_events_ht_attr {
1319 struct device_attribute attr;
1320 u64 id;
1321 const char *event_str_ht;
1322 const char *event_str_noht;
1323 };
1324
1325 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1326 char *page);
1327
1328 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1329 static struct perf_pmu_events_attr _var = { \
1330 .attr = __ATTR(_name, 0444, _show, NULL), \
1331 .id = _id, \
1332 };
1333
1334 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1335 static struct perf_pmu_events_attr _var = { \
1336 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1337 .id = 0, \
1338 .event_str = _str, \
1339 };
1340
1341 #define PMU_FORMAT_ATTR(_name, _format) \
1342 static ssize_t \
1343 _name##_show(struct device *dev, \
1344 struct device_attribute *attr, \
1345 char *page) \
1346 { \
1347 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1348 return sprintf(page, _format "\n"); \
1349 } \
1350 \
1351 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1352
1353 /* Performance counter hotplug functions */
1354 #ifdef CONFIG_PERF_EVENTS
1355 int perf_event_init_cpu(unsigned int cpu);
1356 int perf_event_exit_cpu(unsigned int cpu);
1357 #else
1358 #define perf_event_init_cpu NULL
1359 #define perf_event_exit_cpu NULL
1360 #endif
1361
1362 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.057727 seconds and 5 git commands to generate.