Merge remote-tracking branch 'vfio/next'
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_callchain_entry_ctx {
65 struct perf_callchain_entry *entry;
66 u32 max_stack;
67 u32 nr;
68 short contexts;
69 bool contexts_maxed;
70 };
71
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 unsigned long off, unsigned long len);
74
75 struct perf_raw_frag {
76 union {
77 struct perf_raw_frag *next;
78 unsigned long pad;
79 };
80 perf_copy_f copy;
81 void *data;
82 u32 size;
83 } __packed;
84
85 struct perf_raw_record {
86 struct perf_raw_frag frag;
87 u32 size;
88 };
89
90 /*
91 * branch stack layout:
92 * nr: number of taken branches stored in entries[]
93 *
94 * Note that nr can vary from sample to sample
95 * branches (to, from) are stored from most recent
96 * to least recent, i.e., entries[0] contains the most
97 * recent branch.
98 */
99 struct perf_branch_stack {
100 __u64 nr;
101 struct perf_branch_entry entries[0];
102 };
103
104 struct task_struct;
105
106 /*
107 * extra PMU register associated with an event
108 */
109 struct hw_perf_event_extra {
110 u64 config; /* register value */
111 unsigned int reg; /* register address or index */
112 int alloc; /* extra register already allocated */
113 int idx; /* index in shared_regs->regs[] */
114 };
115
116 /**
117 * struct hw_perf_event - performance event hardware details:
118 */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 union {
122 struct { /* hardware */
123 u64 config;
124 u64 last_tag;
125 unsigned long config_base;
126 unsigned long event_base;
127 int event_base_rdpmc;
128 int idx;
129 int last_cpu;
130 int flags;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 /* for tp_event->class */
140 struct list_head tp_list;
141 };
142 struct { /* intel_cqm */
143 int cqm_state;
144 u32 cqm_rmid;
145 int is_group_event;
146 struct list_head cqm_events_entry;
147 struct list_head cqm_groups_entry;
148 struct list_head cqm_group_entry;
149 };
150 struct { /* itrace */
151 int itrace_started;
152 };
153 struct { /* amd_power */
154 u64 pwr_acc;
155 u64 ptsc;
156 };
157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
158 struct { /* breakpoint */
159 /*
160 * Crufty hack to avoid the chicken and egg
161 * problem hw_breakpoint has with context
162 * creation and event initalization.
163 */
164 struct arch_hw_breakpoint info;
165 struct list_head bp_list;
166 };
167 #endif
168 };
169 /*
170 * If the event is a per task event, this will point to the task in
171 * question. See the comment in perf_event_alloc().
172 */
173 struct task_struct *target;
174
175 /*
176 * PMU would store hardware filter configuration
177 * here.
178 */
179 void *addr_filters;
180
181 /* Last sync'ed generation of filters */
182 unsigned long addr_filters_gen;
183
184 /*
185 * hw_perf_event::state flags; used to track the PERF_EF_* state.
186 */
187 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
188 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
189 #define PERF_HES_ARCH 0x04
190
191 int state;
192
193 /*
194 * The last observed hardware counter value, updated with a
195 * local64_cmpxchg() such that pmu::read() can be called nested.
196 */
197 local64_t prev_count;
198
199 /*
200 * The period to start the next sample with.
201 */
202 u64 sample_period;
203
204 /*
205 * The period we started this sample with.
206 */
207 u64 last_period;
208
209 /*
210 * However much is left of the current period; note that this is
211 * a full 64bit value and allows for generation of periods longer
212 * than hardware might allow.
213 */
214 local64_t period_left;
215
216 /*
217 * State for throttling the event, see __perf_event_overflow() and
218 * perf_adjust_freq_unthr_context().
219 */
220 u64 interrupts_seq;
221 u64 interrupts;
222
223 /*
224 * State for freq target events, see __perf_event_overflow() and
225 * perf_adjust_freq_unthr_context().
226 */
227 u64 freq_time_stamp;
228 u64 freq_count_stamp;
229 #endif
230 };
231
232 struct perf_event;
233
234 /*
235 * Common implementation detail of pmu::{start,commit,cancel}_txn
236 */
237 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
238 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
239
240 /**
241 * pmu::capabilities flags
242 */
243 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
244 #define PERF_PMU_CAP_NO_NMI 0x02
245 #define PERF_PMU_CAP_AUX_NO_SG 0x04
246 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
247 #define PERF_PMU_CAP_EXCLUSIVE 0x10
248 #define PERF_PMU_CAP_ITRACE 0x20
249 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
250
251 /**
252 * struct pmu - generic performance monitoring unit
253 */
254 struct pmu {
255 struct list_head entry;
256
257 struct module *module;
258 struct device *dev;
259 const struct attribute_group **attr_groups;
260 const char *name;
261 int type;
262
263 /*
264 * various common per-pmu feature flags
265 */
266 int capabilities;
267
268 int * __percpu pmu_disable_count;
269 struct perf_cpu_context * __percpu pmu_cpu_context;
270 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
271 int task_ctx_nr;
272 int hrtimer_interval_ms;
273
274 /* number of address filters this PMU can do */
275 unsigned int nr_addr_filters;
276
277 /*
278 * Fully disable/enable this PMU, can be used to protect from the PMI
279 * as well as for lazy/batch writing of the MSRs.
280 */
281 void (*pmu_enable) (struct pmu *pmu); /* optional */
282 void (*pmu_disable) (struct pmu *pmu); /* optional */
283
284 /*
285 * Try and initialize the event for this PMU.
286 *
287 * Returns:
288 * -ENOENT -- @event is not for this PMU
289 *
290 * -ENODEV -- @event is for this PMU but PMU not present
291 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
292 * -EINVAL -- @event is for this PMU but @event is not valid
293 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
294 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
295 *
296 * 0 -- @event is for this PMU and valid
297 *
298 * Other error return values are allowed.
299 */
300 int (*event_init) (struct perf_event *event);
301
302 /*
303 * Notification that the event was mapped or unmapped. Called
304 * in the context of the mapping task.
305 */
306 void (*event_mapped) (struct perf_event *event); /*optional*/
307 void (*event_unmapped) (struct perf_event *event); /*optional*/
308
309 /*
310 * Flags for ->add()/->del()/ ->start()/->stop(). There are
311 * matching hw_perf_event::state flags.
312 */
313 #define PERF_EF_START 0x01 /* start the counter when adding */
314 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
315 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
316
317 /*
318 * Adds/Removes a counter to/from the PMU, can be done inside a
319 * transaction, see the ->*_txn() methods.
320 *
321 * The add/del callbacks will reserve all hardware resources required
322 * to service the event, this includes any counter constraint
323 * scheduling etc.
324 *
325 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 * is on.
327 *
328 * ->add() called without PERF_EF_START should result in the same state
329 * as ->add() followed by ->stop().
330 *
331 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
332 * ->stop() that must deal with already being stopped without
333 * PERF_EF_UPDATE.
334 */
335 int (*add) (struct perf_event *event, int flags);
336 void (*del) (struct perf_event *event, int flags);
337
338 /*
339 * Starts/Stops a counter present on the PMU.
340 *
341 * The PMI handler should stop the counter when perf_event_overflow()
342 * returns !0. ->start() will be used to continue.
343 *
344 * Also used to change the sample period.
345 *
346 * Called with IRQs disabled and the PMU disabled on the CPU the event
347 * is on -- will be called from NMI context with the PMU generates
348 * NMIs.
349 *
350 * ->stop() with PERF_EF_UPDATE will read the counter and update
351 * period/count values like ->read() would.
352 *
353 * ->start() with PERF_EF_RELOAD will reprogram the the counter
354 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
355 */
356 void (*start) (struct perf_event *event, int flags);
357 void (*stop) (struct perf_event *event, int flags);
358
359 /*
360 * Updates the counter value of the event.
361 *
362 * For sampling capable PMUs this will also update the software period
363 * hw_perf_event::period_left field.
364 */
365 void (*read) (struct perf_event *event);
366
367 /*
368 * Group events scheduling is treated as a transaction, add
369 * group events as a whole and perform one schedulability test.
370 * If the test fails, roll back the whole group
371 *
372 * Start the transaction, after this ->add() doesn't need to
373 * do schedulability tests.
374 *
375 * Optional.
376 */
377 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
378 /*
379 * If ->start_txn() disabled the ->add() schedulability test
380 * then ->commit_txn() is required to perform one. On success
381 * the transaction is closed. On error the transaction is kept
382 * open until ->cancel_txn() is called.
383 *
384 * Optional.
385 */
386 int (*commit_txn) (struct pmu *pmu);
387 /*
388 * Will cancel the transaction, assumes ->del() is called
389 * for each successful ->add() during the transaction.
390 *
391 * Optional.
392 */
393 void (*cancel_txn) (struct pmu *pmu);
394
395 /*
396 * Will return the value for perf_event_mmap_page::index for this event,
397 * if no implementation is provided it will default to: event->hw.idx + 1.
398 */
399 int (*event_idx) (struct perf_event *event); /*optional */
400
401 /*
402 * context-switches callback
403 */
404 void (*sched_task) (struct perf_event_context *ctx,
405 bool sched_in);
406 /*
407 * PMU specific data size
408 */
409 size_t task_ctx_size;
410
411
412 /*
413 * Return the count value for a counter.
414 */
415 u64 (*count) (struct perf_event *event); /*optional*/
416
417 /*
418 * Set up pmu-private data structures for an AUX area
419 */
420 void *(*setup_aux) (int cpu, void **pages,
421 int nr_pages, bool overwrite);
422 /* optional */
423
424 /*
425 * Free pmu-private AUX data structures
426 */
427 void (*free_aux) (void *aux); /* optional */
428
429 /*
430 * Validate address range filters: make sure the HW supports the
431 * requested configuration and number of filters; return 0 if the
432 * supplied filters are valid, -errno otherwise.
433 *
434 * Runs in the context of the ioctl()ing process and is not serialized
435 * with the rest of the PMU callbacks.
436 */
437 int (*addr_filters_validate) (struct list_head *filters);
438 /* optional */
439
440 /*
441 * Synchronize address range filter configuration:
442 * translate hw-agnostic filters into hardware configuration in
443 * event::hw::addr_filters.
444 *
445 * Runs as a part of filter sync sequence that is done in ->start()
446 * callback by calling perf_event_addr_filters_sync().
447 *
448 * May (and should) traverse event::addr_filters::list, for which its
449 * caller provides necessary serialization.
450 */
451 void (*addr_filters_sync) (struct perf_event *event);
452 /* optional */
453
454 /*
455 * Filter events for PMU-specific reasons.
456 */
457 int (*filter_match) (struct perf_event *event); /* optional */
458 };
459
460 /**
461 * struct perf_addr_filter - address range filter definition
462 * @entry: event's filter list linkage
463 * @inode: object file's inode for file-based filters
464 * @offset: filter range offset
465 * @size: filter range size
466 * @range: 1: range, 0: address
467 * @filter: 1: filter/start, 0: stop
468 *
469 * This is a hardware-agnostic filter configuration as specified by the user.
470 */
471 struct perf_addr_filter {
472 struct list_head entry;
473 struct inode *inode;
474 unsigned long offset;
475 unsigned long size;
476 unsigned int range : 1,
477 filter : 1;
478 };
479
480 /**
481 * struct perf_addr_filters_head - container for address range filters
482 * @list: list of filters for this event
483 * @lock: spinlock that serializes accesses to the @list and event's
484 * (and its children's) filter generations.
485 *
486 * A child event will use parent's @list (and therefore @lock), so they are
487 * bundled together; see perf_event_addr_filters().
488 */
489 struct perf_addr_filters_head {
490 struct list_head list;
491 raw_spinlock_t lock;
492 };
493
494 /**
495 * enum perf_event_active_state - the states of a event
496 */
497 enum perf_event_active_state {
498 PERF_EVENT_STATE_DEAD = -4,
499 PERF_EVENT_STATE_EXIT = -3,
500 PERF_EVENT_STATE_ERROR = -2,
501 PERF_EVENT_STATE_OFF = -1,
502 PERF_EVENT_STATE_INACTIVE = 0,
503 PERF_EVENT_STATE_ACTIVE = 1,
504 };
505
506 struct file;
507 struct perf_sample_data;
508
509 typedef void (*perf_overflow_handler_t)(struct perf_event *,
510 struct perf_sample_data *,
511 struct pt_regs *regs);
512
513 enum perf_group_flag {
514 PERF_GROUP_SOFTWARE = 0x1,
515 };
516
517 #define SWEVENT_HLIST_BITS 8
518 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
519
520 struct swevent_hlist {
521 struct hlist_head heads[SWEVENT_HLIST_SIZE];
522 struct rcu_head rcu_head;
523 };
524
525 #define PERF_ATTACH_CONTEXT 0x01
526 #define PERF_ATTACH_GROUP 0x02
527 #define PERF_ATTACH_TASK 0x04
528 #define PERF_ATTACH_TASK_DATA 0x08
529
530 struct perf_cgroup;
531 struct ring_buffer;
532
533 struct pmu_event_list {
534 raw_spinlock_t lock;
535 struct list_head list;
536 };
537
538 /**
539 * struct perf_event - performance event kernel representation:
540 */
541 struct perf_event {
542 #ifdef CONFIG_PERF_EVENTS
543 /*
544 * entry onto perf_event_context::event_list;
545 * modifications require ctx->lock
546 * RCU safe iterations.
547 */
548 struct list_head event_entry;
549
550 /*
551 * XXX: group_entry and sibling_list should be mutually exclusive;
552 * either you're a sibling on a group, or you're the group leader.
553 * Rework the code to always use the same list element.
554 *
555 * Locked for modification by both ctx->mutex and ctx->lock; holding
556 * either sufficies for read.
557 */
558 struct list_head group_entry;
559 struct list_head sibling_list;
560
561 /*
562 * We need storage to track the entries in perf_pmu_migrate_context; we
563 * cannot use the event_entry because of RCU and we want to keep the
564 * group in tact which avoids us using the other two entries.
565 */
566 struct list_head migrate_entry;
567
568 struct hlist_node hlist_entry;
569 struct list_head active_entry;
570 int nr_siblings;
571 int group_flags;
572 struct perf_event *group_leader;
573 struct pmu *pmu;
574 void *pmu_private;
575
576 enum perf_event_active_state state;
577 unsigned int attach_state;
578 local64_t count;
579 atomic64_t child_count;
580
581 /*
582 * These are the total time in nanoseconds that the event
583 * has been enabled (i.e. eligible to run, and the task has
584 * been scheduled in, if this is a per-task event)
585 * and running (scheduled onto the CPU), respectively.
586 *
587 * They are computed from tstamp_enabled, tstamp_running and
588 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
589 */
590 u64 total_time_enabled;
591 u64 total_time_running;
592
593 /*
594 * These are timestamps used for computing total_time_enabled
595 * and total_time_running when the event is in INACTIVE or
596 * ACTIVE state, measured in nanoseconds from an arbitrary point
597 * in time.
598 * tstamp_enabled: the notional time when the event was enabled
599 * tstamp_running: the notional time when the event was scheduled on
600 * tstamp_stopped: in INACTIVE state, the notional time when the
601 * event was scheduled off.
602 */
603 u64 tstamp_enabled;
604 u64 tstamp_running;
605 u64 tstamp_stopped;
606
607 /*
608 * timestamp shadows the actual context timing but it can
609 * be safely used in NMI interrupt context. It reflects the
610 * context time as it was when the event was last scheduled in.
611 *
612 * ctx_time already accounts for ctx->timestamp. Therefore to
613 * compute ctx_time for a sample, simply add perf_clock().
614 */
615 u64 shadow_ctx_time;
616
617 struct perf_event_attr attr;
618 u16 header_size;
619 u16 id_header_size;
620 u16 read_size;
621 struct hw_perf_event hw;
622
623 struct perf_event_context *ctx;
624 atomic_long_t refcount;
625
626 /*
627 * These accumulate total time (in nanoseconds) that children
628 * events have been enabled and running, respectively.
629 */
630 atomic64_t child_total_time_enabled;
631 atomic64_t child_total_time_running;
632
633 /*
634 * Protect attach/detach and child_list:
635 */
636 struct mutex child_mutex;
637 struct list_head child_list;
638 struct perf_event *parent;
639
640 int oncpu;
641 int cpu;
642
643 struct list_head owner_entry;
644 struct task_struct *owner;
645
646 /* mmap bits */
647 struct mutex mmap_mutex;
648 atomic_t mmap_count;
649
650 struct ring_buffer *rb;
651 struct list_head rb_entry;
652 unsigned long rcu_batches;
653 int rcu_pending;
654
655 /* poll related */
656 wait_queue_head_t waitq;
657 struct fasync_struct *fasync;
658
659 /* delayed work for NMIs and such */
660 int pending_wakeup;
661 int pending_kill;
662 int pending_disable;
663 struct irq_work pending;
664
665 atomic_t event_limit;
666
667 /* address range filters */
668 struct perf_addr_filters_head addr_filters;
669 /* vma address array for file-based filders */
670 unsigned long *addr_filters_offs;
671 unsigned long addr_filters_gen;
672
673 void (*destroy)(struct perf_event *);
674 struct rcu_head rcu_head;
675
676 struct pid_namespace *ns;
677 u64 id;
678
679 u64 (*clock)(void);
680 perf_overflow_handler_t overflow_handler;
681 void *overflow_handler_context;
682 #ifdef CONFIG_BPF_SYSCALL
683 perf_overflow_handler_t orig_overflow_handler;
684 struct bpf_prog *prog;
685 #endif
686
687 #ifdef CONFIG_EVENT_TRACING
688 struct trace_event_call *tp_event;
689 struct event_filter *filter;
690 #ifdef CONFIG_FUNCTION_TRACER
691 struct ftrace_ops ftrace_ops;
692 #endif
693 #endif
694
695 #ifdef CONFIG_CGROUP_PERF
696 struct perf_cgroup *cgrp; /* cgroup event is attach to */
697 int cgrp_defer_enabled;
698 #endif
699
700 struct list_head sb_list;
701 #endif /* CONFIG_PERF_EVENTS */
702 };
703
704 /**
705 * struct perf_event_context - event context structure
706 *
707 * Used as a container for task events and CPU events as well:
708 */
709 struct perf_event_context {
710 struct pmu *pmu;
711 /*
712 * Protect the states of the events in the list,
713 * nr_active, and the list:
714 */
715 raw_spinlock_t lock;
716 /*
717 * Protect the list of events. Locking either mutex or lock
718 * is sufficient to ensure the list doesn't change; to change
719 * the list you need to lock both the mutex and the spinlock.
720 */
721 struct mutex mutex;
722
723 struct list_head active_ctx_list;
724 struct list_head pinned_groups;
725 struct list_head flexible_groups;
726 struct list_head event_list;
727 int nr_events;
728 int nr_active;
729 int is_active;
730 int nr_stat;
731 int nr_freq;
732 int rotate_disable;
733 atomic_t refcount;
734 struct task_struct *task;
735
736 /*
737 * Context clock, runs when context enabled.
738 */
739 u64 time;
740 u64 timestamp;
741
742 /*
743 * These fields let us detect when two contexts have both
744 * been cloned (inherited) from a common ancestor.
745 */
746 struct perf_event_context *parent_ctx;
747 u64 parent_gen;
748 u64 generation;
749 int pin_count;
750 #ifdef CONFIG_CGROUP_PERF
751 int nr_cgroups; /* cgroup evts */
752 #endif
753 void *task_ctx_data; /* pmu specific data */
754 struct rcu_head rcu_head;
755 };
756
757 /*
758 * Number of contexts where an event can trigger:
759 * task, softirq, hardirq, nmi.
760 */
761 #define PERF_NR_CONTEXTS 4
762
763 /**
764 * struct perf_event_cpu_context - per cpu event context structure
765 */
766 struct perf_cpu_context {
767 struct perf_event_context ctx;
768 struct perf_event_context *task_ctx;
769 int active_oncpu;
770 int exclusive;
771
772 raw_spinlock_t hrtimer_lock;
773 struct hrtimer hrtimer;
774 ktime_t hrtimer_interval;
775 unsigned int hrtimer_active;
776
777 struct pmu *unique_pmu;
778 #ifdef CONFIG_CGROUP_PERF
779 struct perf_cgroup *cgrp;
780 #endif
781 };
782
783 struct perf_output_handle {
784 struct perf_event *event;
785 struct ring_buffer *rb;
786 unsigned long wakeup;
787 unsigned long size;
788 union {
789 void *addr;
790 unsigned long head;
791 };
792 int page;
793 };
794
795 struct bpf_perf_event_data_kern {
796 struct pt_regs *regs;
797 struct perf_sample_data *data;
798 };
799
800 #ifdef CONFIG_CGROUP_PERF
801
802 /*
803 * perf_cgroup_info keeps track of time_enabled for a cgroup.
804 * This is a per-cpu dynamically allocated data structure.
805 */
806 struct perf_cgroup_info {
807 u64 time;
808 u64 timestamp;
809 };
810
811 struct perf_cgroup {
812 struct cgroup_subsys_state css;
813 struct perf_cgroup_info __percpu *info;
814 };
815
816 /*
817 * Must ensure cgroup is pinned (css_get) before calling
818 * this function. In other words, we cannot call this function
819 * if there is no cgroup event for the current CPU context.
820 */
821 static inline struct perf_cgroup *
822 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
823 {
824 return container_of(task_css_check(task, perf_event_cgrp_id,
825 ctx ? lockdep_is_held(&ctx->lock)
826 : true),
827 struct perf_cgroup, css);
828 }
829 #endif /* CONFIG_CGROUP_PERF */
830
831 #ifdef CONFIG_PERF_EVENTS
832
833 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
834 struct perf_event *event);
835 extern void perf_aux_output_end(struct perf_output_handle *handle,
836 unsigned long size, bool truncated);
837 extern int perf_aux_output_skip(struct perf_output_handle *handle,
838 unsigned long size);
839 extern void *perf_get_aux(struct perf_output_handle *handle);
840
841 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
842 extern void perf_pmu_unregister(struct pmu *pmu);
843
844 extern int perf_num_counters(void);
845 extern const char *perf_pmu_name(void);
846 extern void __perf_event_task_sched_in(struct task_struct *prev,
847 struct task_struct *task);
848 extern void __perf_event_task_sched_out(struct task_struct *prev,
849 struct task_struct *next);
850 extern int perf_event_init_task(struct task_struct *child);
851 extern void perf_event_exit_task(struct task_struct *child);
852 extern void perf_event_free_task(struct task_struct *task);
853 extern void perf_event_delayed_put(struct task_struct *task);
854 extern struct file *perf_event_get(unsigned int fd);
855 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
856 extern void perf_event_print_debug(void);
857 extern void perf_pmu_disable(struct pmu *pmu);
858 extern void perf_pmu_enable(struct pmu *pmu);
859 extern void perf_sched_cb_dec(struct pmu *pmu);
860 extern void perf_sched_cb_inc(struct pmu *pmu);
861 extern int perf_event_task_disable(void);
862 extern int perf_event_task_enable(void);
863 extern int perf_event_refresh(struct perf_event *event, int refresh);
864 extern void perf_event_update_userpage(struct perf_event *event);
865 extern int perf_event_release_kernel(struct perf_event *event);
866 extern struct perf_event *
867 perf_event_create_kernel_counter(struct perf_event_attr *attr,
868 int cpu,
869 struct task_struct *task,
870 perf_overflow_handler_t callback,
871 void *context);
872 extern void perf_pmu_migrate_context(struct pmu *pmu,
873 int src_cpu, int dst_cpu);
874 extern u64 perf_event_read_local(struct perf_event *event);
875 extern u64 perf_event_read_value(struct perf_event *event,
876 u64 *enabled, u64 *running);
877
878
879 struct perf_sample_data {
880 /*
881 * Fields set by perf_sample_data_init(), group so as to
882 * minimize the cachelines touched.
883 */
884 u64 addr;
885 struct perf_raw_record *raw;
886 struct perf_branch_stack *br_stack;
887 u64 period;
888 u64 weight;
889 u64 txn;
890 union perf_mem_data_src data_src;
891
892 /*
893 * The other fields, optionally {set,used} by
894 * perf_{prepare,output}_sample().
895 */
896 u64 type;
897 u64 ip;
898 struct {
899 u32 pid;
900 u32 tid;
901 } tid_entry;
902 u64 time;
903 u64 id;
904 u64 stream_id;
905 struct {
906 u32 cpu;
907 u32 reserved;
908 } cpu_entry;
909 struct perf_callchain_entry *callchain;
910
911 /*
912 * regs_user may point to task_pt_regs or to regs_user_copy, depending
913 * on arch details.
914 */
915 struct perf_regs regs_user;
916 struct pt_regs regs_user_copy;
917
918 struct perf_regs regs_intr;
919 u64 stack_user_size;
920 } ____cacheline_aligned;
921
922 /* default value for data source */
923 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
924 PERF_MEM_S(LVL, NA) |\
925 PERF_MEM_S(SNOOP, NA) |\
926 PERF_MEM_S(LOCK, NA) |\
927 PERF_MEM_S(TLB, NA))
928
929 static inline void perf_sample_data_init(struct perf_sample_data *data,
930 u64 addr, u64 period)
931 {
932 /* remaining struct members initialized in perf_prepare_sample() */
933 data->addr = addr;
934 data->raw = NULL;
935 data->br_stack = NULL;
936 data->period = period;
937 data->weight = 0;
938 data->data_src.val = PERF_MEM_NA;
939 data->txn = 0;
940 }
941
942 extern void perf_output_sample(struct perf_output_handle *handle,
943 struct perf_event_header *header,
944 struct perf_sample_data *data,
945 struct perf_event *event);
946 extern void perf_prepare_sample(struct perf_event_header *header,
947 struct perf_sample_data *data,
948 struct perf_event *event,
949 struct pt_regs *regs);
950
951 extern int perf_event_overflow(struct perf_event *event,
952 struct perf_sample_data *data,
953 struct pt_regs *regs);
954
955 extern void perf_event_output_forward(struct perf_event *event,
956 struct perf_sample_data *data,
957 struct pt_regs *regs);
958 extern void perf_event_output_backward(struct perf_event *event,
959 struct perf_sample_data *data,
960 struct pt_regs *regs);
961 extern void perf_event_output(struct perf_event *event,
962 struct perf_sample_data *data,
963 struct pt_regs *regs);
964
965 static inline bool
966 is_default_overflow_handler(struct perf_event *event)
967 {
968 if (likely(event->overflow_handler == perf_event_output_forward))
969 return true;
970 if (unlikely(event->overflow_handler == perf_event_output_backward))
971 return true;
972 return false;
973 }
974
975 extern void
976 perf_event_header__init_id(struct perf_event_header *header,
977 struct perf_sample_data *data,
978 struct perf_event *event);
979 extern void
980 perf_event__output_id_sample(struct perf_event *event,
981 struct perf_output_handle *handle,
982 struct perf_sample_data *sample);
983
984 extern void
985 perf_log_lost_samples(struct perf_event *event, u64 lost);
986
987 static inline bool is_sampling_event(struct perf_event *event)
988 {
989 return event->attr.sample_period != 0;
990 }
991
992 /*
993 * Return 1 for a software event, 0 for a hardware event
994 */
995 static inline int is_software_event(struct perf_event *event)
996 {
997 return event->pmu->task_ctx_nr == perf_sw_context;
998 }
999
1000 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1001
1002 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1003 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1004
1005 #ifndef perf_arch_fetch_caller_regs
1006 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1007 #endif
1008
1009 /*
1010 * Take a snapshot of the regs. Skip ip and frame pointer to
1011 * the nth caller. We only need a few of the regs:
1012 * - ip for PERF_SAMPLE_IP
1013 * - cs for user_mode() tests
1014 * - bp for callchains
1015 * - eflags, for future purposes, just in case
1016 */
1017 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1018 {
1019 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1020 }
1021
1022 static __always_inline void
1023 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1024 {
1025 if (static_key_false(&perf_swevent_enabled[event_id]))
1026 __perf_sw_event(event_id, nr, regs, addr);
1027 }
1028
1029 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1030
1031 /*
1032 * 'Special' version for the scheduler, it hard assumes no recursion,
1033 * which is guaranteed by us not actually scheduling inside other swevents
1034 * because those disable preemption.
1035 */
1036 static __always_inline void
1037 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1038 {
1039 if (static_key_false(&perf_swevent_enabled[event_id])) {
1040 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1041
1042 perf_fetch_caller_regs(regs);
1043 ___perf_sw_event(event_id, nr, regs, addr);
1044 }
1045 }
1046
1047 extern struct static_key_false perf_sched_events;
1048
1049 static __always_inline bool
1050 perf_sw_migrate_enabled(void)
1051 {
1052 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1053 return true;
1054 return false;
1055 }
1056
1057 static inline void perf_event_task_migrate(struct task_struct *task)
1058 {
1059 if (perf_sw_migrate_enabled())
1060 task->sched_migrated = 1;
1061 }
1062
1063 static inline void perf_event_task_sched_in(struct task_struct *prev,
1064 struct task_struct *task)
1065 {
1066 if (static_branch_unlikely(&perf_sched_events))
1067 __perf_event_task_sched_in(prev, task);
1068
1069 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1070 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1071
1072 perf_fetch_caller_regs(regs);
1073 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1074 task->sched_migrated = 0;
1075 }
1076 }
1077
1078 static inline void perf_event_task_sched_out(struct task_struct *prev,
1079 struct task_struct *next)
1080 {
1081 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1082
1083 if (static_branch_unlikely(&perf_sched_events))
1084 __perf_event_task_sched_out(prev, next);
1085 }
1086
1087 static inline u64 __perf_event_count(struct perf_event *event)
1088 {
1089 return local64_read(&event->count) + atomic64_read(&event->child_count);
1090 }
1091
1092 extern void perf_event_mmap(struct vm_area_struct *vma);
1093 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1094 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1095 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1096
1097 extern void perf_event_exec(void);
1098 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1099 extern void perf_event_fork(struct task_struct *tsk);
1100
1101 /* Callchains */
1102 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1103
1104 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1105 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1106 extern struct perf_callchain_entry *
1107 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1108 u32 max_stack, bool crosstask, bool add_mark);
1109 extern int get_callchain_buffers(int max_stack);
1110 extern void put_callchain_buffers(void);
1111
1112 extern int sysctl_perf_event_max_stack;
1113 extern int sysctl_perf_event_max_contexts_per_stack;
1114
1115 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1116 {
1117 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1118 struct perf_callchain_entry *entry = ctx->entry;
1119 entry->ip[entry->nr++] = ip;
1120 ++ctx->contexts;
1121 return 0;
1122 } else {
1123 ctx->contexts_maxed = true;
1124 return -1; /* no more room, stop walking the stack */
1125 }
1126 }
1127
1128 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1129 {
1130 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1131 struct perf_callchain_entry *entry = ctx->entry;
1132 entry->ip[entry->nr++] = ip;
1133 ++ctx->nr;
1134 return 0;
1135 } else {
1136 return -1; /* no more room, stop walking the stack */
1137 }
1138 }
1139
1140 extern int sysctl_perf_event_paranoid;
1141 extern int sysctl_perf_event_mlock;
1142 extern int sysctl_perf_event_sample_rate;
1143 extern int sysctl_perf_cpu_time_max_percent;
1144
1145 extern void perf_sample_event_took(u64 sample_len_ns);
1146
1147 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1148 void __user *buffer, size_t *lenp,
1149 loff_t *ppos);
1150 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1151 void __user *buffer, size_t *lenp,
1152 loff_t *ppos);
1153
1154 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1155 void __user *buffer, size_t *lenp, loff_t *ppos);
1156
1157 static inline bool perf_paranoid_tracepoint_raw(void)
1158 {
1159 return sysctl_perf_event_paranoid > -1;
1160 }
1161
1162 static inline bool perf_paranoid_cpu(void)
1163 {
1164 return sysctl_perf_event_paranoid > 0;
1165 }
1166
1167 static inline bool perf_paranoid_kernel(void)
1168 {
1169 return sysctl_perf_event_paranoid > 1;
1170 }
1171
1172 extern void perf_event_init(void);
1173 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1174 int entry_size, struct pt_regs *regs,
1175 struct hlist_head *head, int rctx,
1176 struct task_struct *task);
1177 extern void perf_bp_event(struct perf_event *event, void *data);
1178
1179 #ifndef perf_misc_flags
1180 # define perf_misc_flags(regs) \
1181 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1182 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1183 #endif
1184
1185 static inline bool has_branch_stack(struct perf_event *event)
1186 {
1187 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1188 }
1189
1190 static inline bool needs_branch_stack(struct perf_event *event)
1191 {
1192 return event->attr.branch_sample_type != 0;
1193 }
1194
1195 static inline bool has_aux(struct perf_event *event)
1196 {
1197 return event->pmu->setup_aux;
1198 }
1199
1200 static inline bool is_write_backward(struct perf_event *event)
1201 {
1202 return !!event->attr.write_backward;
1203 }
1204
1205 static inline bool has_addr_filter(struct perf_event *event)
1206 {
1207 return event->pmu->nr_addr_filters;
1208 }
1209
1210 /*
1211 * An inherited event uses parent's filters
1212 */
1213 static inline struct perf_addr_filters_head *
1214 perf_event_addr_filters(struct perf_event *event)
1215 {
1216 struct perf_addr_filters_head *ifh = &event->addr_filters;
1217
1218 if (event->parent)
1219 ifh = &event->parent->addr_filters;
1220
1221 return ifh;
1222 }
1223
1224 extern void perf_event_addr_filters_sync(struct perf_event *event);
1225
1226 extern int perf_output_begin(struct perf_output_handle *handle,
1227 struct perf_event *event, unsigned int size);
1228 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1229 struct perf_event *event,
1230 unsigned int size);
1231 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1232 struct perf_event *event,
1233 unsigned int size);
1234
1235 extern void perf_output_end(struct perf_output_handle *handle);
1236 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1237 const void *buf, unsigned int len);
1238 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1239 unsigned int len);
1240 extern int perf_swevent_get_recursion_context(void);
1241 extern void perf_swevent_put_recursion_context(int rctx);
1242 extern u64 perf_swevent_set_period(struct perf_event *event);
1243 extern void perf_event_enable(struct perf_event *event);
1244 extern void perf_event_disable(struct perf_event *event);
1245 extern void perf_event_disable_local(struct perf_event *event);
1246 extern void perf_event_task_tick(void);
1247 #else /* !CONFIG_PERF_EVENTS: */
1248 static inline void *
1249 perf_aux_output_begin(struct perf_output_handle *handle,
1250 struct perf_event *event) { return NULL; }
1251 static inline void
1252 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1253 bool truncated) { }
1254 static inline int
1255 perf_aux_output_skip(struct perf_output_handle *handle,
1256 unsigned long size) { return -EINVAL; }
1257 static inline void *
1258 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1259 static inline void
1260 perf_event_task_migrate(struct task_struct *task) { }
1261 static inline void
1262 perf_event_task_sched_in(struct task_struct *prev,
1263 struct task_struct *task) { }
1264 static inline void
1265 perf_event_task_sched_out(struct task_struct *prev,
1266 struct task_struct *next) { }
1267 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1268 static inline void perf_event_exit_task(struct task_struct *child) { }
1269 static inline void perf_event_free_task(struct task_struct *task) { }
1270 static inline void perf_event_delayed_put(struct task_struct *task) { }
1271 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1272 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1273 {
1274 return ERR_PTR(-EINVAL);
1275 }
1276 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; }
1277 static inline void perf_event_print_debug(void) { }
1278 static inline int perf_event_task_disable(void) { return -EINVAL; }
1279 static inline int perf_event_task_enable(void) { return -EINVAL; }
1280 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1281 {
1282 return -EINVAL;
1283 }
1284
1285 static inline void
1286 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1287 static inline void
1288 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1289 static inline void
1290 perf_bp_event(struct perf_event *event, void *data) { }
1291
1292 static inline int perf_register_guest_info_callbacks
1293 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1294 static inline int perf_unregister_guest_info_callbacks
1295 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1296
1297 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1298 static inline void perf_event_exec(void) { }
1299 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1300 static inline void perf_event_fork(struct task_struct *tsk) { }
1301 static inline void perf_event_init(void) { }
1302 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1303 static inline void perf_swevent_put_recursion_context(int rctx) { }
1304 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1305 static inline void perf_event_enable(struct perf_event *event) { }
1306 static inline void perf_event_disable(struct perf_event *event) { }
1307 static inline int __perf_event_disable(void *info) { return -1; }
1308 static inline void perf_event_task_tick(void) { }
1309 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1310 #endif
1311
1312 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1313 extern void perf_restore_debug_store(void);
1314 #else
1315 static inline void perf_restore_debug_store(void) { }
1316 #endif
1317
1318 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1319 {
1320 return frag->pad < sizeof(u64);
1321 }
1322
1323 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1324
1325 struct perf_pmu_events_attr {
1326 struct device_attribute attr;
1327 u64 id;
1328 const char *event_str;
1329 };
1330
1331 struct perf_pmu_events_ht_attr {
1332 struct device_attribute attr;
1333 u64 id;
1334 const char *event_str_ht;
1335 const char *event_str_noht;
1336 };
1337
1338 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1339 char *page);
1340
1341 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1342 static struct perf_pmu_events_attr _var = { \
1343 .attr = __ATTR(_name, 0444, _show, NULL), \
1344 .id = _id, \
1345 };
1346
1347 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1348 static struct perf_pmu_events_attr _var = { \
1349 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1350 .id = 0, \
1351 .event_str = _str, \
1352 };
1353
1354 #define PMU_FORMAT_ATTR(_name, _format) \
1355 static ssize_t \
1356 _name##_show(struct device *dev, \
1357 struct device_attribute *attr, \
1358 char *page) \
1359 { \
1360 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1361 return sprintf(page, _format "\n"); \
1362 } \
1363 \
1364 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1365
1366 /* Performance counter hotplug functions */
1367 #ifdef CONFIG_PERF_EVENTS
1368 int perf_event_init_cpu(unsigned int cpu);
1369 int perf_event_exit_cpu(unsigned int cpu);
1370 #else
1371 #define perf_event_init_cpu NULL
1372 #define perf_event_exit_cpu NULL
1373 #endif
1374
1375 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.060109 seconds and 5 git commands to generate.