tracing: add sched_set_prio tracepoint
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65 u32 size;
66 void *data;
67 };
68
69 /*
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
72 *
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
77 */
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86 * extra PMU register associated with an event
87 */
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
93 };
94
95 /**
96 * struct hw_perf_event - performance event hardware details:
97 */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 union {
101 struct { /* hardware */
102 u64 config;
103 u64 last_tag;
104 unsigned long config_base;
105 unsigned long event_base;
106 int event_base_rdpmc;
107 int idx;
108 int last_cpu;
109 int flags;
110
111 struct hw_perf_event_extra extra_reg;
112 struct hw_perf_event_extra branch_reg;
113 };
114 struct { /* software */
115 struct hrtimer hrtimer;
116 };
117 struct { /* tracepoint */
118 /* for tp_event->class */
119 struct list_head tp_list;
120 };
121 struct { /* intel_cqm */
122 int cqm_state;
123 u32 cqm_rmid;
124 int is_group_event;
125 struct list_head cqm_events_entry;
126 struct list_head cqm_groups_entry;
127 struct list_head cqm_group_entry;
128 };
129 struct { /* itrace */
130 int itrace_started;
131 };
132 struct { /* amd_power */
133 u64 pwr_acc;
134 u64 ptsc;
135 };
136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
137 struct { /* breakpoint */
138 /*
139 * Crufty hack to avoid the chicken and egg
140 * problem hw_breakpoint has with context
141 * creation and event initalization.
142 */
143 struct arch_hw_breakpoint info;
144 struct list_head bp_list;
145 };
146 #endif
147 };
148 /*
149 * If the event is a per task event, this will point to the task in
150 * question. See the comment in perf_event_alloc().
151 */
152 struct task_struct *target;
153
154 /*
155 * hw_perf_event::state flags; used to track the PERF_EF_* state.
156 */
157 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
158 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
159 #define PERF_HES_ARCH 0x04
160
161 int state;
162
163 /*
164 * The last observed hardware counter value, updated with a
165 * local64_cmpxchg() such that pmu::read() can be called nested.
166 */
167 local64_t prev_count;
168
169 /*
170 * The period to start the next sample with.
171 */
172 u64 sample_period;
173
174 /*
175 * The period we started this sample with.
176 */
177 u64 last_period;
178
179 /*
180 * However much is left of the current period; note that this is
181 * a full 64bit value and allows for generation of periods longer
182 * than hardware might allow.
183 */
184 local64_t period_left;
185
186 /*
187 * State for throttling the event, see __perf_event_overflow() and
188 * perf_adjust_freq_unthr_context().
189 */
190 u64 interrupts_seq;
191 u64 interrupts;
192
193 /*
194 * State for freq target events, see __perf_event_overflow() and
195 * perf_adjust_freq_unthr_context().
196 */
197 u64 freq_time_stamp;
198 u64 freq_count_stamp;
199 #endif
200 };
201
202 struct perf_event;
203
204 /*
205 * Common implementation detail of pmu::{start,commit,cancel}_txn
206 */
207 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
208 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
209
210 /**
211 * pmu::capabilities flags
212 */
213 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
214 #define PERF_PMU_CAP_NO_NMI 0x02
215 #define PERF_PMU_CAP_AUX_NO_SG 0x04
216 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
217 #define PERF_PMU_CAP_EXCLUSIVE 0x10
218 #define PERF_PMU_CAP_ITRACE 0x20
219
220 /**
221 * struct pmu - generic performance monitoring unit
222 */
223 struct pmu {
224 struct list_head entry;
225
226 struct module *module;
227 struct device *dev;
228 const struct attribute_group **attr_groups;
229 const char *name;
230 int type;
231
232 /*
233 * various common per-pmu feature flags
234 */
235 int capabilities;
236
237 int * __percpu pmu_disable_count;
238 struct perf_cpu_context * __percpu pmu_cpu_context;
239 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
240 int task_ctx_nr;
241 int hrtimer_interval_ms;
242
243 /*
244 * Fully disable/enable this PMU, can be used to protect from the PMI
245 * as well as for lazy/batch writing of the MSRs.
246 */
247 void (*pmu_enable) (struct pmu *pmu); /* optional */
248 void (*pmu_disable) (struct pmu *pmu); /* optional */
249
250 /*
251 * Try and initialize the event for this PMU.
252 *
253 * Returns:
254 * -ENOENT -- @event is not for this PMU
255 *
256 * -ENODEV -- @event is for this PMU but PMU not present
257 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
258 * -EINVAL -- @event is for this PMU but @event is not valid
259 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
260 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
261 *
262 * 0 -- @event is for this PMU and valid
263 *
264 * Other error return values are allowed.
265 */
266 int (*event_init) (struct perf_event *event);
267
268 /*
269 * Notification that the event was mapped or unmapped. Called
270 * in the context of the mapping task.
271 */
272 void (*event_mapped) (struct perf_event *event); /*optional*/
273 void (*event_unmapped) (struct perf_event *event); /*optional*/
274
275 /*
276 * Flags for ->add()/->del()/ ->start()/->stop(). There are
277 * matching hw_perf_event::state flags.
278 */
279 #define PERF_EF_START 0x01 /* start the counter when adding */
280 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
281 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
282
283 /*
284 * Adds/Removes a counter to/from the PMU, can be done inside a
285 * transaction, see the ->*_txn() methods.
286 *
287 * The add/del callbacks will reserve all hardware resources required
288 * to service the event, this includes any counter constraint
289 * scheduling etc.
290 *
291 * Called with IRQs disabled and the PMU disabled on the CPU the event
292 * is on.
293 *
294 * ->add() called without PERF_EF_START should result in the same state
295 * as ->add() followed by ->stop().
296 *
297 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
298 * ->stop() that must deal with already being stopped without
299 * PERF_EF_UPDATE.
300 */
301 int (*add) (struct perf_event *event, int flags);
302 void (*del) (struct perf_event *event, int flags);
303
304 /*
305 * Starts/Stops a counter present on the PMU.
306 *
307 * The PMI handler should stop the counter when perf_event_overflow()
308 * returns !0. ->start() will be used to continue.
309 *
310 * Also used to change the sample period.
311 *
312 * Called with IRQs disabled and the PMU disabled on the CPU the event
313 * is on -- will be called from NMI context with the PMU generates
314 * NMIs.
315 *
316 * ->stop() with PERF_EF_UPDATE will read the counter and update
317 * period/count values like ->read() would.
318 *
319 * ->start() with PERF_EF_RELOAD will reprogram the the counter
320 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
321 */
322 void (*start) (struct perf_event *event, int flags);
323 void (*stop) (struct perf_event *event, int flags);
324
325 /*
326 * Updates the counter value of the event.
327 *
328 * For sampling capable PMUs this will also update the software period
329 * hw_perf_event::period_left field.
330 */
331 void (*read) (struct perf_event *event);
332
333 /*
334 * Group events scheduling is treated as a transaction, add
335 * group events as a whole and perform one schedulability test.
336 * If the test fails, roll back the whole group
337 *
338 * Start the transaction, after this ->add() doesn't need to
339 * do schedulability tests.
340 *
341 * Optional.
342 */
343 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
344 /*
345 * If ->start_txn() disabled the ->add() schedulability test
346 * then ->commit_txn() is required to perform one. On success
347 * the transaction is closed. On error the transaction is kept
348 * open until ->cancel_txn() is called.
349 *
350 * Optional.
351 */
352 int (*commit_txn) (struct pmu *pmu);
353 /*
354 * Will cancel the transaction, assumes ->del() is called
355 * for each successful ->add() during the transaction.
356 *
357 * Optional.
358 */
359 void (*cancel_txn) (struct pmu *pmu);
360
361 /*
362 * Will return the value for perf_event_mmap_page::index for this event,
363 * if no implementation is provided it will default to: event->hw.idx + 1.
364 */
365 int (*event_idx) (struct perf_event *event); /*optional */
366
367 /*
368 * context-switches callback
369 */
370 void (*sched_task) (struct perf_event_context *ctx,
371 bool sched_in);
372 /*
373 * PMU specific data size
374 */
375 size_t task_ctx_size;
376
377
378 /*
379 * Return the count value for a counter.
380 */
381 u64 (*count) (struct perf_event *event); /*optional*/
382
383 /*
384 * Set up pmu-private data structures for an AUX area
385 */
386 void *(*setup_aux) (int cpu, void **pages,
387 int nr_pages, bool overwrite);
388 /* optional */
389
390 /*
391 * Free pmu-private AUX data structures
392 */
393 void (*free_aux) (void *aux); /* optional */
394
395 /*
396 * Filter events for PMU-specific reasons.
397 */
398 int (*filter_match) (struct perf_event *event); /* optional */
399 };
400
401 /**
402 * enum perf_event_active_state - the states of a event
403 */
404 enum perf_event_active_state {
405 PERF_EVENT_STATE_DEAD = -4,
406 PERF_EVENT_STATE_EXIT = -3,
407 PERF_EVENT_STATE_ERROR = -2,
408 PERF_EVENT_STATE_OFF = -1,
409 PERF_EVENT_STATE_INACTIVE = 0,
410 PERF_EVENT_STATE_ACTIVE = 1,
411 };
412
413 struct file;
414 struct perf_sample_data;
415
416 typedef void (*perf_overflow_handler_t)(struct perf_event *,
417 struct perf_sample_data *,
418 struct pt_regs *regs);
419
420 enum perf_group_flag {
421 PERF_GROUP_SOFTWARE = 0x1,
422 };
423
424 #define SWEVENT_HLIST_BITS 8
425 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
426
427 struct swevent_hlist {
428 struct hlist_head heads[SWEVENT_HLIST_SIZE];
429 struct rcu_head rcu_head;
430 };
431
432 #define PERF_ATTACH_CONTEXT 0x01
433 #define PERF_ATTACH_GROUP 0x02
434 #define PERF_ATTACH_TASK 0x04
435 #define PERF_ATTACH_TASK_DATA 0x08
436
437 struct perf_cgroup;
438 struct ring_buffer;
439
440 /**
441 * struct perf_event - performance event kernel representation:
442 */
443 struct perf_event {
444 #ifdef CONFIG_PERF_EVENTS
445 /*
446 * entry onto perf_event_context::event_list;
447 * modifications require ctx->lock
448 * RCU safe iterations.
449 */
450 struct list_head event_entry;
451
452 /*
453 * XXX: group_entry and sibling_list should be mutually exclusive;
454 * either you're a sibling on a group, or you're the group leader.
455 * Rework the code to always use the same list element.
456 *
457 * Locked for modification by both ctx->mutex and ctx->lock; holding
458 * either sufficies for read.
459 */
460 struct list_head group_entry;
461 struct list_head sibling_list;
462
463 /*
464 * We need storage to track the entries in perf_pmu_migrate_context; we
465 * cannot use the event_entry because of RCU and we want to keep the
466 * group in tact which avoids us using the other two entries.
467 */
468 struct list_head migrate_entry;
469
470 struct hlist_node hlist_entry;
471 struct list_head active_entry;
472 int nr_siblings;
473 int group_flags;
474 struct perf_event *group_leader;
475 struct pmu *pmu;
476 void *pmu_private;
477
478 enum perf_event_active_state state;
479 unsigned int attach_state;
480 local64_t count;
481 atomic64_t child_count;
482
483 /*
484 * These are the total time in nanoseconds that the event
485 * has been enabled (i.e. eligible to run, and the task has
486 * been scheduled in, if this is a per-task event)
487 * and running (scheduled onto the CPU), respectively.
488 *
489 * They are computed from tstamp_enabled, tstamp_running and
490 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
491 */
492 u64 total_time_enabled;
493 u64 total_time_running;
494
495 /*
496 * These are timestamps used for computing total_time_enabled
497 * and total_time_running when the event is in INACTIVE or
498 * ACTIVE state, measured in nanoseconds from an arbitrary point
499 * in time.
500 * tstamp_enabled: the notional time when the event was enabled
501 * tstamp_running: the notional time when the event was scheduled on
502 * tstamp_stopped: in INACTIVE state, the notional time when the
503 * event was scheduled off.
504 */
505 u64 tstamp_enabled;
506 u64 tstamp_running;
507 u64 tstamp_stopped;
508
509 /*
510 * timestamp shadows the actual context timing but it can
511 * be safely used in NMI interrupt context. It reflects the
512 * context time as it was when the event was last scheduled in.
513 *
514 * ctx_time already accounts for ctx->timestamp. Therefore to
515 * compute ctx_time for a sample, simply add perf_clock().
516 */
517 u64 shadow_ctx_time;
518
519 struct perf_event_attr attr;
520 u16 header_size;
521 u16 id_header_size;
522 u16 read_size;
523 struct hw_perf_event hw;
524
525 struct perf_event_context *ctx;
526 atomic_long_t refcount;
527
528 /*
529 * These accumulate total time (in nanoseconds) that children
530 * events have been enabled and running, respectively.
531 */
532 atomic64_t child_total_time_enabled;
533 atomic64_t child_total_time_running;
534
535 /*
536 * Protect attach/detach and child_list:
537 */
538 struct mutex child_mutex;
539 struct list_head child_list;
540 struct perf_event *parent;
541
542 int oncpu;
543 int cpu;
544
545 struct list_head owner_entry;
546 struct task_struct *owner;
547
548 /* mmap bits */
549 struct mutex mmap_mutex;
550 atomic_t mmap_count;
551
552 struct ring_buffer *rb;
553 struct list_head rb_entry;
554 unsigned long rcu_batches;
555 int rcu_pending;
556
557 /* poll related */
558 wait_queue_head_t waitq;
559 struct fasync_struct *fasync;
560
561 /* delayed work for NMIs and such */
562 int pending_wakeup;
563 int pending_kill;
564 int pending_disable;
565 struct irq_work pending;
566
567 atomic_t event_limit;
568
569 void (*destroy)(struct perf_event *);
570 struct rcu_head rcu_head;
571
572 struct pid_namespace *ns;
573 u64 id;
574
575 u64 (*clock)(void);
576 perf_overflow_handler_t overflow_handler;
577 void *overflow_handler_context;
578
579 #ifdef CONFIG_EVENT_TRACING
580 struct trace_event_call *tp_event;
581 struct event_filter *filter;
582 #ifdef CONFIG_FUNCTION_TRACER
583 struct ftrace_ops ftrace_ops;
584 #endif
585 #endif
586
587 #ifdef CONFIG_CGROUP_PERF
588 struct perf_cgroup *cgrp; /* cgroup event is attach to */
589 int cgrp_defer_enabled;
590 #endif
591
592 #endif /* CONFIG_PERF_EVENTS */
593 };
594
595 /**
596 * struct perf_event_context - event context structure
597 *
598 * Used as a container for task events and CPU events as well:
599 */
600 struct perf_event_context {
601 struct pmu *pmu;
602 /*
603 * Protect the states of the events in the list,
604 * nr_active, and the list:
605 */
606 raw_spinlock_t lock;
607 /*
608 * Protect the list of events. Locking either mutex or lock
609 * is sufficient to ensure the list doesn't change; to change
610 * the list you need to lock both the mutex and the spinlock.
611 */
612 struct mutex mutex;
613
614 struct list_head active_ctx_list;
615 struct list_head pinned_groups;
616 struct list_head flexible_groups;
617 struct list_head event_list;
618 int nr_events;
619 int nr_active;
620 int is_active;
621 int nr_stat;
622 int nr_freq;
623 int rotate_disable;
624 atomic_t refcount;
625 struct task_struct *task;
626
627 /*
628 * Context clock, runs when context enabled.
629 */
630 u64 time;
631 u64 timestamp;
632
633 /*
634 * These fields let us detect when two contexts have both
635 * been cloned (inherited) from a common ancestor.
636 */
637 struct perf_event_context *parent_ctx;
638 u64 parent_gen;
639 u64 generation;
640 int pin_count;
641 int nr_cgroups; /* cgroup evts */
642 void *task_ctx_data; /* pmu specific data */
643 struct rcu_head rcu_head;
644 };
645
646 /*
647 * Number of contexts where an event can trigger:
648 * task, softirq, hardirq, nmi.
649 */
650 #define PERF_NR_CONTEXTS 4
651
652 /**
653 * struct perf_event_cpu_context - per cpu event context structure
654 */
655 struct perf_cpu_context {
656 struct perf_event_context ctx;
657 struct perf_event_context *task_ctx;
658 int active_oncpu;
659 int exclusive;
660
661 raw_spinlock_t hrtimer_lock;
662 struct hrtimer hrtimer;
663 ktime_t hrtimer_interval;
664 unsigned int hrtimer_active;
665
666 struct pmu *unique_pmu;
667 struct perf_cgroup *cgrp;
668 };
669
670 struct perf_output_handle {
671 struct perf_event *event;
672 struct ring_buffer *rb;
673 unsigned long wakeup;
674 unsigned long size;
675 union {
676 void *addr;
677 unsigned long head;
678 };
679 int page;
680 };
681
682 #ifdef CONFIG_CGROUP_PERF
683
684 /*
685 * perf_cgroup_info keeps track of time_enabled for a cgroup.
686 * This is a per-cpu dynamically allocated data structure.
687 */
688 struct perf_cgroup_info {
689 u64 time;
690 u64 timestamp;
691 };
692
693 struct perf_cgroup {
694 struct cgroup_subsys_state css;
695 struct perf_cgroup_info __percpu *info;
696 };
697
698 /*
699 * Must ensure cgroup is pinned (css_get) before calling
700 * this function. In other words, we cannot call this function
701 * if there is no cgroup event for the current CPU context.
702 */
703 static inline struct perf_cgroup *
704 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
705 {
706 return container_of(task_css_check(task, perf_event_cgrp_id,
707 ctx ? lockdep_is_held(&ctx->lock)
708 : true),
709 struct perf_cgroup, css);
710 }
711 #endif /* CONFIG_CGROUP_PERF */
712
713 #ifdef CONFIG_PERF_EVENTS
714
715 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
716 struct perf_event *event);
717 extern void perf_aux_output_end(struct perf_output_handle *handle,
718 unsigned long size, bool truncated);
719 extern int perf_aux_output_skip(struct perf_output_handle *handle,
720 unsigned long size);
721 extern void *perf_get_aux(struct perf_output_handle *handle);
722
723 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
724 extern void perf_pmu_unregister(struct pmu *pmu);
725
726 extern int perf_num_counters(void);
727 extern const char *perf_pmu_name(void);
728 extern void __perf_event_task_sched_in(struct task_struct *prev,
729 struct task_struct *task);
730 extern void __perf_event_task_sched_out(struct task_struct *prev,
731 struct task_struct *next);
732 extern int perf_event_init_task(struct task_struct *child);
733 extern void perf_event_exit_task(struct task_struct *child);
734 extern void perf_event_free_task(struct task_struct *task);
735 extern void perf_event_delayed_put(struct task_struct *task);
736 extern struct file *perf_event_get(unsigned int fd);
737 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
738 extern void perf_event_print_debug(void);
739 extern void perf_pmu_disable(struct pmu *pmu);
740 extern void perf_pmu_enable(struct pmu *pmu);
741 extern void perf_sched_cb_dec(struct pmu *pmu);
742 extern void perf_sched_cb_inc(struct pmu *pmu);
743 extern int perf_event_task_disable(void);
744 extern int perf_event_task_enable(void);
745 extern int perf_event_refresh(struct perf_event *event, int refresh);
746 extern void perf_event_update_userpage(struct perf_event *event);
747 extern int perf_event_release_kernel(struct perf_event *event);
748 extern struct perf_event *
749 perf_event_create_kernel_counter(struct perf_event_attr *attr,
750 int cpu,
751 struct task_struct *task,
752 perf_overflow_handler_t callback,
753 void *context);
754 extern void perf_pmu_migrate_context(struct pmu *pmu,
755 int src_cpu, int dst_cpu);
756 extern u64 perf_event_read_local(struct perf_event *event);
757 extern u64 perf_event_read_value(struct perf_event *event,
758 u64 *enabled, u64 *running);
759
760
761 struct perf_sample_data {
762 /*
763 * Fields set by perf_sample_data_init(), group so as to
764 * minimize the cachelines touched.
765 */
766 u64 addr;
767 struct perf_raw_record *raw;
768 struct perf_branch_stack *br_stack;
769 u64 period;
770 u64 weight;
771 u64 txn;
772 union perf_mem_data_src data_src;
773
774 /*
775 * The other fields, optionally {set,used} by
776 * perf_{prepare,output}_sample().
777 */
778 u64 type;
779 u64 ip;
780 struct {
781 u32 pid;
782 u32 tid;
783 } tid_entry;
784 u64 time;
785 u64 id;
786 u64 stream_id;
787 struct {
788 u32 cpu;
789 u32 reserved;
790 } cpu_entry;
791 struct perf_callchain_entry *callchain;
792
793 /*
794 * regs_user may point to task_pt_regs or to regs_user_copy, depending
795 * on arch details.
796 */
797 struct perf_regs regs_user;
798 struct pt_regs regs_user_copy;
799
800 struct perf_regs regs_intr;
801 u64 stack_user_size;
802 } ____cacheline_aligned;
803
804 /* default value for data source */
805 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
806 PERF_MEM_S(LVL, NA) |\
807 PERF_MEM_S(SNOOP, NA) |\
808 PERF_MEM_S(LOCK, NA) |\
809 PERF_MEM_S(TLB, NA))
810
811 static inline void perf_sample_data_init(struct perf_sample_data *data,
812 u64 addr, u64 period)
813 {
814 /* remaining struct members initialized in perf_prepare_sample() */
815 data->addr = addr;
816 data->raw = NULL;
817 data->br_stack = NULL;
818 data->period = period;
819 data->weight = 0;
820 data->data_src.val = PERF_MEM_NA;
821 data->txn = 0;
822 }
823
824 extern void perf_output_sample(struct perf_output_handle *handle,
825 struct perf_event_header *header,
826 struct perf_sample_data *data,
827 struct perf_event *event);
828 extern void perf_prepare_sample(struct perf_event_header *header,
829 struct perf_sample_data *data,
830 struct perf_event *event,
831 struct pt_regs *regs);
832
833 extern int perf_event_overflow(struct perf_event *event,
834 struct perf_sample_data *data,
835 struct pt_regs *regs);
836
837 extern void perf_event_output(struct perf_event *event,
838 struct perf_sample_data *data,
839 struct pt_regs *regs);
840
841 extern void
842 perf_event_header__init_id(struct perf_event_header *header,
843 struct perf_sample_data *data,
844 struct perf_event *event);
845 extern void
846 perf_event__output_id_sample(struct perf_event *event,
847 struct perf_output_handle *handle,
848 struct perf_sample_data *sample);
849
850 extern void
851 perf_log_lost_samples(struct perf_event *event, u64 lost);
852
853 static inline bool is_sampling_event(struct perf_event *event)
854 {
855 return event->attr.sample_period != 0;
856 }
857
858 /*
859 * Return 1 for a software event, 0 for a hardware event
860 */
861 static inline int is_software_event(struct perf_event *event)
862 {
863 return event->pmu->task_ctx_nr == perf_sw_context;
864 }
865
866 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
867
868 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
869 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
870
871 #ifndef perf_arch_fetch_caller_regs
872 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
873 #endif
874
875 /*
876 * Take a snapshot of the regs. Skip ip and frame pointer to
877 * the nth caller. We only need a few of the regs:
878 * - ip for PERF_SAMPLE_IP
879 * - cs for user_mode() tests
880 * - bp for callchains
881 * - eflags, for future purposes, just in case
882 */
883 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
884 {
885 memset(regs, 0, sizeof(*regs));
886
887 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
888 }
889
890 static __always_inline void
891 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
892 {
893 if (static_key_false(&perf_swevent_enabled[event_id]))
894 __perf_sw_event(event_id, nr, regs, addr);
895 }
896
897 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
898
899 /*
900 * 'Special' version for the scheduler, it hard assumes no recursion,
901 * which is guaranteed by us not actually scheduling inside other swevents
902 * because those disable preemption.
903 */
904 static __always_inline void
905 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
906 {
907 if (static_key_false(&perf_swevent_enabled[event_id])) {
908 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
909
910 perf_fetch_caller_regs(regs);
911 ___perf_sw_event(event_id, nr, regs, addr);
912 }
913 }
914
915 extern struct static_key_false perf_sched_events;
916
917 static __always_inline bool
918 perf_sw_migrate_enabled(void)
919 {
920 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
921 return true;
922 return false;
923 }
924
925 static inline void perf_event_task_migrate(struct task_struct *task)
926 {
927 if (perf_sw_migrate_enabled())
928 task->sched_migrated = 1;
929 }
930
931 static inline void perf_event_task_sched_in(struct task_struct *prev,
932 struct task_struct *task)
933 {
934 if (static_branch_unlikely(&perf_sched_events))
935 __perf_event_task_sched_in(prev, task);
936
937 if (perf_sw_migrate_enabled() && task->sched_migrated) {
938 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
939
940 perf_fetch_caller_regs(regs);
941 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
942 task->sched_migrated = 0;
943 }
944 }
945
946 static inline void perf_event_task_sched_out(struct task_struct *prev,
947 struct task_struct *next)
948 {
949 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
950
951 if (static_branch_unlikely(&perf_sched_events))
952 __perf_event_task_sched_out(prev, next);
953 }
954
955 static inline u64 __perf_event_count(struct perf_event *event)
956 {
957 return local64_read(&event->count) + atomic64_read(&event->child_count);
958 }
959
960 extern void perf_event_mmap(struct vm_area_struct *vma);
961 extern struct perf_guest_info_callbacks *perf_guest_cbs;
962 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
963 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
964
965 extern void perf_event_exec(void);
966 extern void perf_event_comm(struct task_struct *tsk, bool exec);
967 extern void perf_event_fork(struct task_struct *tsk);
968
969 /* Callchains */
970 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
971
972 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
973 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
974 extern struct perf_callchain_entry *
975 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
976 bool crosstask, bool add_mark);
977 extern int get_callchain_buffers(void);
978 extern void put_callchain_buffers(void);
979
980 static inline int perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
981 {
982 if (entry->nr < PERF_MAX_STACK_DEPTH) {
983 entry->ip[entry->nr++] = ip;
984 return 0;
985 } else {
986 return -1; /* no more room, stop walking the stack */
987 }
988 }
989
990 extern int sysctl_perf_event_paranoid;
991 extern int sysctl_perf_event_mlock;
992 extern int sysctl_perf_event_sample_rate;
993 extern int sysctl_perf_cpu_time_max_percent;
994
995 extern void perf_sample_event_took(u64 sample_len_ns);
996
997 extern int perf_proc_update_handler(struct ctl_table *table, int write,
998 void __user *buffer, size_t *lenp,
999 loff_t *ppos);
1000 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1001 void __user *buffer, size_t *lenp,
1002 loff_t *ppos);
1003
1004
1005 static inline bool perf_paranoid_tracepoint_raw(void)
1006 {
1007 return sysctl_perf_event_paranoid > -1;
1008 }
1009
1010 static inline bool perf_paranoid_cpu(void)
1011 {
1012 return sysctl_perf_event_paranoid > 0;
1013 }
1014
1015 static inline bool perf_paranoid_kernel(void)
1016 {
1017 return sysctl_perf_event_paranoid > 1;
1018 }
1019
1020 extern void perf_event_init(void);
1021 extern void perf_tp_event(u64 addr, u64 count, void *record,
1022 int entry_size, struct pt_regs *regs,
1023 struct hlist_head *head, int rctx,
1024 struct task_struct *task);
1025 extern void perf_bp_event(struct perf_event *event, void *data);
1026
1027 #ifndef perf_misc_flags
1028 # define perf_misc_flags(regs) \
1029 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1030 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1031 #endif
1032
1033 static inline bool has_branch_stack(struct perf_event *event)
1034 {
1035 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1036 }
1037
1038 static inline bool needs_branch_stack(struct perf_event *event)
1039 {
1040 return event->attr.branch_sample_type != 0;
1041 }
1042
1043 static inline bool has_aux(struct perf_event *event)
1044 {
1045 return event->pmu->setup_aux;
1046 }
1047
1048 extern int perf_output_begin(struct perf_output_handle *handle,
1049 struct perf_event *event, unsigned int size);
1050 extern void perf_output_end(struct perf_output_handle *handle);
1051 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1052 const void *buf, unsigned int len);
1053 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1054 unsigned int len);
1055 extern int perf_swevent_get_recursion_context(void);
1056 extern void perf_swevent_put_recursion_context(int rctx);
1057 extern u64 perf_swevent_set_period(struct perf_event *event);
1058 extern void perf_event_enable(struct perf_event *event);
1059 extern void perf_event_disable(struct perf_event *event);
1060 extern void perf_event_disable_local(struct perf_event *event);
1061 extern void perf_event_task_tick(void);
1062 #else /* !CONFIG_PERF_EVENTS: */
1063 static inline void *
1064 perf_aux_output_begin(struct perf_output_handle *handle,
1065 struct perf_event *event) { return NULL; }
1066 static inline void
1067 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1068 bool truncated) { }
1069 static inline int
1070 perf_aux_output_skip(struct perf_output_handle *handle,
1071 unsigned long size) { return -EINVAL; }
1072 static inline void *
1073 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1074 static inline void
1075 perf_event_task_migrate(struct task_struct *task) { }
1076 static inline void
1077 perf_event_task_sched_in(struct task_struct *prev,
1078 struct task_struct *task) { }
1079 static inline void
1080 perf_event_task_sched_out(struct task_struct *prev,
1081 struct task_struct *next) { }
1082 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1083 static inline void perf_event_exit_task(struct task_struct *child) { }
1084 static inline void perf_event_free_task(struct task_struct *task) { }
1085 static inline void perf_event_delayed_put(struct task_struct *task) { }
1086 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1087 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1088 {
1089 return ERR_PTR(-EINVAL);
1090 }
1091 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; }
1092 static inline void perf_event_print_debug(void) { }
1093 static inline int perf_event_task_disable(void) { return -EINVAL; }
1094 static inline int perf_event_task_enable(void) { return -EINVAL; }
1095 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1096 {
1097 return -EINVAL;
1098 }
1099
1100 static inline void
1101 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1102 static inline void
1103 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1104 static inline void
1105 perf_bp_event(struct perf_event *event, void *data) { }
1106
1107 static inline int perf_register_guest_info_callbacks
1108 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1109 static inline int perf_unregister_guest_info_callbacks
1110 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1111
1112 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1113 static inline void perf_event_exec(void) { }
1114 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1115 static inline void perf_event_fork(struct task_struct *tsk) { }
1116 static inline void perf_event_init(void) { }
1117 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1118 static inline void perf_swevent_put_recursion_context(int rctx) { }
1119 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1120 static inline void perf_event_enable(struct perf_event *event) { }
1121 static inline void perf_event_disable(struct perf_event *event) { }
1122 static inline int __perf_event_disable(void *info) { return -1; }
1123 static inline void perf_event_task_tick(void) { }
1124 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1125 #endif
1126
1127 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1128 extern void perf_restore_debug_store(void);
1129 #else
1130 static inline void perf_restore_debug_store(void) { }
1131 #endif
1132
1133 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1134
1135 /*
1136 * This has to have a higher priority than migration_notifier in sched/core.c.
1137 */
1138 #define perf_cpu_notifier(fn) \
1139 do { \
1140 static struct notifier_block fn##_nb = \
1141 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1142 unsigned long cpu = smp_processor_id(); \
1143 unsigned long flags; \
1144 \
1145 cpu_notifier_register_begin(); \
1146 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1147 (void *)(unsigned long)cpu); \
1148 local_irq_save(flags); \
1149 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1150 (void *)(unsigned long)cpu); \
1151 local_irq_restore(flags); \
1152 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1153 (void *)(unsigned long)cpu); \
1154 __register_cpu_notifier(&fn##_nb); \
1155 cpu_notifier_register_done(); \
1156 } while (0)
1157
1158 /*
1159 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1160 * callback for already online CPUs.
1161 */
1162 #define __perf_cpu_notifier(fn) \
1163 do { \
1164 static struct notifier_block fn##_nb = \
1165 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1166 \
1167 __register_cpu_notifier(&fn##_nb); \
1168 } while (0)
1169
1170 struct perf_pmu_events_attr {
1171 struct device_attribute attr;
1172 u64 id;
1173 const char *event_str;
1174 };
1175
1176 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1177 char *page);
1178
1179 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1180 static struct perf_pmu_events_attr _var = { \
1181 .attr = __ATTR(_name, 0444, _show, NULL), \
1182 .id = _id, \
1183 };
1184
1185 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1186 static struct perf_pmu_events_attr _var = { \
1187 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1188 .id = 0, \
1189 .event_str = _str, \
1190 };
1191
1192 #define PMU_FORMAT_ATTR(_name, _format) \
1193 static ssize_t \
1194 _name##_show(struct device *dev, \
1195 struct device_attribute *attr, \
1196 char *page) \
1197 { \
1198 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1199 return sprintf(page, _format "\n"); \
1200 } \
1201 \
1202 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1203
1204 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.055634 seconds and 5 git commands to generate.