sched/deadline: Add SCHED_DEADLINE inheritance logic
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/plist.h>
20 #include <linux/rbtree.h>
21 #include <linux/thread_info.h>
22 #include <linux/cpumask.h>
23 #include <linux/errno.h>
24 #include <linux/nodemask.h>
25 #include <linux/mm_types.h>
26 #include <linux/preempt_mask.h>
27
28 #include <asm/page.h>
29 #include <asm/ptrace.h>
30 #include <asm/cputime.h>
31
32 #include <linux/smp.h>
33 #include <linux/sem.h>
34 #include <linux/signal.h>
35 #include <linux/compiler.h>
36 #include <linux/completion.h>
37 #include <linux/pid.h>
38 #include <linux/percpu.h>
39 #include <linux/topology.h>
40 #include <linux/proportions.h>
41 #include <linux/seccomp.h>
42 #include <linux/rcupdate.h>
43 #include <linux/rculist.h>
44 #include <linux/rtmutex.h>
45
46 #include <linux/time.h>
47 #include <linux/param.h>
48 #include <linux/resource.h>
49 #include <linux/timer.h>
50 #include <linux/hrtimer.h>
51 #include <linux/task_io_accounting.h>
52 #include <linux/latencytop.h>
53 #include <linux/cred.h>
54 #include <linux/llist.h>
55 #include <linux/uidgid.h>
56 #include <linux/gfp.h>
57
58 #include <asm/processor.h>
59
60 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
61
62 /*
63 * Extended scheduling parameters data structure.
64 *
65 * This is needed because the original struct sched_param can not be
66 * altered without introducing ABI issues with legacy applications
67 * (e.g., in sched_getparam()).
68 *
69 * However, the possibility of specifying more than just a priority for
70 * the tasks may be useful for a wide variety of application fields, e.g.,
71 * multimedia, streaming, automation and control, and many others.
72 *
73 * This variant (sched_attr) is meant at describing a so-called
74 * sporadic time-constrained task. In such model a task is specified by:
75 * - the activation period or minimum instance inter-arrival time;
76 * - the maximum (or average, depending on the actual scheduling
77 * discipline) computation time of all instances, a.k.a. runtime;
78 * - the deadline (relative to the actual activation time) of each
79 * instance.
80 * Very briefly, a periodic (sporadic) task asks for the execution of
81 * some specific computation --which is typically called an instance--
82 * (at most) every period. Moreover, each instance typically lasts no more
83 * than the runtime and must be completed by time instant t equal to
84 * the instance activation time + the deadline.
85 *
86 * This is reflected by the actual fields of the sched_attr structure:
87 *
88 * @size size of the structure, for fwd/bwd compat.
89 *
90 * @sched_policy task's scheduling policy
91 * @sched_flags for customizing the scheduler behaviour
92 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
93 * @sched_priority task's static priority (SCHED_FIFO/RR)
94 * @sched_deadline representative of the task's deadline
95 * @sched_runtime representative of the task's runtime
96 * @sched_period representative of the task's period
97 *
98 * Given this task model, there are a multiplicity of scheduling algorithms
99 * and policies, that can be used to ensure all the tasks will make their
100 * timing constraints.
101 *
102 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
103 * only user of this new interface. More information about the algorithm
104 * available in the scheduling class file or in Documentation/.
105 */
106 struct sched_attr {
107 u32 size;
108
109 u32 sched_policy;
110 u64 sched_flags;
111
112 /* SCHED_NORMAL, SCHED_BATCH */
113 s32 sched_nice;
114
115 /* SCHED_FIFO, SCHED_RR */
116 u32 sched_priority;
117
118 /* SCHED_DEADLINE */
119 u64 sched_runtime;
120 u64 sched_deadline;
121 u64 sched_period;
122 };
123
124 struct exec_domain;
125 struct futex_pi_state;
126 struct robust_list_head;
127 struct bio_list;
128 struct fs_struct;
129 struct perf_event_context;
130 struct blk_plug;
131
132 /*
133 * List of flags we want to share for kernel threads,
134 * if only because they are not used by them anyway.
135 */
136 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
137
138 /*
139 * These are the constant used to fake the fixed-point load-average
140 * counting. Some notes:
141 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
142 * a load-average precision of 10 bits integer + 11 bits fractional
143 * - if you want to count load-averages more often, you need more
144 * precision, or rounding will get you. With 2-second counting freq,
145 * the EXP_n values would be 1981, 2034 and 2043 if still using only
146 * 11 bit fractions.
147 */
148 extern unsigned long avenrun[]; /* Load averages */
149 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
150
151 #define FSHIFT 11 /* nr of bits of precision */
152 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
153 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
154 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
155 #define EXP_5 2014 /* 1/exp(5sec/5min) */
156 #define EXP_15 2037 /* 1/exp(5sec/15min) */
157
158 #define CALC_LOAD(load,exp,n) \
159 load *= exp; \
160 load += n*(FIXED_1-exp); \
161 load >>= FSHIFT;
162
163 extern unsigned long total_forks;
164 extern int nr_threads;
165 DECLARE_PER_CPU(unsigned long, process_counts);
166 extern int nr_processes(void);
167 extern unsigned long nr_running(void);
168 extern unsigned long nr_iowait(void);
169 extern unsigned long nr_iowait_cpu(int cpu);
170 extern unsigned long this_cpu_load(void);
171
172
173 extern void calc_global_load(unsigned long ticks);
174 extern void update_cpu_load_nohz(void);
175
176 extern unsigned long get_parent_ip(unsigned long addr);
177
178 extern void dump_cpu_task(int cpu);
179
180 struct seq_file;
181 struct cfs_rq;
182 struct task_group;
183 #ifdef CONFIG_SCHED_DEBUG
184 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
185 extern void proc_sched_set_task(struct task_struct *p);
186 extern void
187 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
188 #endif
189
190 /*
191 * Task state bitmask. NOTE! These bits are also
192 * encoded in fs/proc/array.c: get_task_state().
193 *
194 * We have two separate sets of flags: task->state
195 * is about runnability, while task->exit_state are
196 * about the task exiting. Confusing, but this way
197 * modifying one set can't modify the other one by
198 * mistake.
199 */
200 #define TASK_RUNNING 0
201 #define TASK_INTERRUPTIBLE 1
202 #define TASK_UNINTERRUPTIBLE 2
203 #define __TASK_STOPPED 4
204 #define __TASK_TRACED 8
205 /* in tsk->exit_state */
206 #define EXIT_ZOMBIE 16
207 #define EXIT_DEAD 32
208 /* in tsk->state again */
209 #define TASK_DEAD 64
210 #define TASK_WAKEKILL 128
211 #define TASK_WAKING 256
212 #define TASK_PARKED 512
213 #define TASK_STATE_MAX 1024
214
215 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
216
217 extern char ___assert_task_state[1 - 2*!!(
218 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
219
220 /* Convenience macros for the sake of set_task_state */
221 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
222 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
223 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
224
225 /* Convenience macros for the sake of wake_up */
226 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
227 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
228
229 /* get_task_state() */
230 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
231 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
232 __TASK_TRACED)
233
234 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
235 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
236 #define task_is_stopped_or_traced(task) \
237 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
238 #define task_contributes_to_load(task) \
239 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
240 (task->flags & PF_FROZEN) == 0)
241
242 #define __set_task_state(tsk, state_value) \
243 do { (tsk)->state = (state_value); } while (0)
244 #define set_task_state(tsk, state_value) \
245 set_mb((tsk)->state, (state_value))
246
247 /*
248 * set_current_state() includes a barrier so that the write of current->state
249 * is correctly serialised wrt the caller's subsequent test of whether to
250 * actually sleep:
251 *
252 * set_current_state(TASK_UNINTERRUPTIBLE);
253 * if (do_i_need_to_sleep())
254 * schedule();
255 *
256 * If the caller does not need such serialisation then use __set_current_state()
257 */
258 #define __set_current_state(state_value) \
259 do { current->state = (state_value); } while (0)
260 #define set_current_state(state_value) \
261 set_mb(current->state, (state_value))
262
263 /* Task command name length */
264 #define TASK_COMM_LEN 16
265
266 #include <linux/spinlock.h>
267
268 /*
269 * This serializes "schedule()" and also protects
270 * the run-queue from deletions/modifications (but
271 * _adding_ to the beginning of the run-queue has
272 * a separate lock).
273 */
274 extern rwlock_t tasklist_lock;
275 extern spinlock_t mmlist_lock;
276
277 struct task_struct;
278
279 #ifdef CONFIG_PROVE_RCU
280 extern int lockdep_tasklist_lock_is_held(void);
281 #endif /* #ifdef CONFIG_PROVE_RCU */
282
283 extern void sched_init(void);
284 extern void sched_init_smp(void);
285 extern asmlinkage void schedule_tail(struct task_struct *prev);
286 extern void init_idle(struct task_struct *idle, int cpu);
287 extern void init_idle_bootup_task(struct task_struct *idle);
288
289 extern int runqueue_is_locked(int cpu);
290
291 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
292 extern void nohz_balance_enter_idle(int cpu);
293 extern void set_cpu_sd_state_idle(void);
294 extern int get_nohz_timer_target(void);
295 #else
296 static inline void nohz_balance_enter_idle(int cpu) { }
297 static inline void set_cpu_sd_state_idle(void) { }
298 #endif
299
300 /*
301 * Only dump TASK_* tasks. (0 for all tasks)
302 */
303 extern void show_state_filter(unsigned long state_filter);
304
305 static inline void show_state(void)
306 {
307 show_state_filter(0);
308 }
309
310 extern void show_regs(struct pt_regs *);
311
312 /*
313 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
314 * task), SP is the stack pointer of the first frame that should be shown in the back
315 * trace (or NULL if the entire call-chain of the task should be shown).
316 */
317 extern void show_stack(struct task_struct *task, unsigned long *sp);
318
319 void io_schedule(void);
320 long io_schedule_timeout(long timeout);
321
322 extern void cpu_init (void);
323 extern void trap_init(void);
324 extern void update_process_times(int user);
325 extern void scheduler_tick(void);
326
327 extern void sched_show_task(struct task_struct *p);
328
329 #ifdef CONFIG_LOCKUP_DETECTOR
330 extern void touch_softlockup_watchdog(void);
331 extern void touch_softlockup_watchdog_sync(void);
332 extern void touch_all_softlockup_watchdogs(void);
333 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
334 void __user *buffer,
335 size_t *lenp, loff_t *ppos);
336 extern unsigned int softlockup_panic;
337 void lockup_detector_init(void);
338 #else
339 static inline void touch_softlockup_watchdog(void)
340 {
341 }
342 static inline void touch_softlockup_watchdog_sync(void)
343 {
344 }
345 static inline void touch_all_softlockup_watchdogs(void)
346 {
347 }
348 static inline void lockup_detector_init(void)
349 {
350 }
351 #endif
352
353 #ifdef CONFIG_DETECT_HUNG_TASK
354 void reset_hung_task_detector(void);
355 #else
356 static inline void reset_hung_task_detector(void)
357 {
358 }
359 #endif
360
361 /* Attach to any functions which should be ignored in wchan output. */
362 #define __sched __attribute__((__section__(".sched.text")))
363
364 /* Linker adds these: start and end of __sched functions */
365 extern char __sched_text_start[], __sched_text_end[];
366
367 /* Is this address in the __sched functions? */
368 extern int in_sched_functions(unsigned long addr);
369
370 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
371 extern signed long schedule_timeout(signed long timeout);
372 extern signed long schedule_timeout_interruptible(signed long timeout);
373 extern signed long schedule_timeout_killable(signed long timeout);
374 extern signed long schedule_timeout_uninterruptible(signed long timeout);
375 asmlinkage void schedule(void);
376 extern void schedule_preempt_disabled(void);
377
378 struct nsproxy;
379 struct user_namespace;
380
381 #ifdef CONFIG_MMU
382 extern void arch_pick_mmap_layout(struct mm_struct *mm);
383 extern unsigned long
384 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
385 unsigned long, unsigned long);
386 extern unsigned long
387 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
388 unsigned long len, unsigned long pgoff,
389 unsigned long flags);
390 #else
391 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
392 #endif
393
394
395 extern void set_dumpable(struct mm_struct *mm, int value);
396 extern int get_dumpable(struct mm_struct *mm);
397
398 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
399 #define SUID_DUMP_USER 1 /* Dump as user of process */
400 #define SUID_DUMP_ROOT 2 /* Dump as root */
401
402 /* mm flags */
403 /* dumpable bits */
404 #define MMF_DUMPABLE 0 /* core dump is permitted */
405 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
406
407 #define MMF_DUMPABLE_BITS 2
408 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
409
410 /* coredump filter bits */
411 #define MMF_DUMP_ANON_PRIVATE 2
412 #define MMF_DUMP_ANON_SHARED 3
413 #define MMF_DUMP_MAPPED_PRIVATE 4
414 #define MMF_DUMP_MAPPED_SHARED 5
415 #define MMF_DUMP_ELF_HEADERS 6
416 #define MMF_DUMP_HUGETLB_PRIVATE 7
417 #define MMF_DUMP_HUGETLB_SHARED 8
418
419 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
420 #define MMF_DUMP_FILTER_BITS 7
421 #define MMF_DUMP_FILTER_MASK \
422 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
423 #define MMF_DUMP_FILTER_DEFAULT \
424 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
425 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
426
427 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
428 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
429 #else
430 # define MMF_DUMP_MASK_DEFAULT_ELF 0
431 #endif
432 /* leave room for more dump flags */
433 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
434 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
435 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
436
437 #define MMF_HAS_UPROBES 19 /* has uprobes */
438 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
439
440 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
441
442 struct sighand_struct {
443 atomic_t count;
444 struct k_sigaction action[_NSIG];
445 spinlock_t siglock;
446 wait_queue_head_t signalfd_wqh;
447 };
448
449 struct pacct_struct {
450 int ac_flag;
451 long ac_exitcode;
452 unsigned long ac_mem;
453 cputime_t ac_utime, ac_stime;
454 unsigned long ac_minflt, ac_majflt;
455 };
456
457 struct cpu_itimer {
458 cputime_t expires;
459 cputime_t incr;
460 u32 error;
461 u32 incr_error;
462 };
463
464 /**
465 * struct cputime - snaphsot of system and user cputime
466 * @utime: time spent in user mode
467 * @stime: time spent in system mode
468 *
469 * Gathers a generic snapshot of user and system time.
470 */
471 struct cputime {
472 cputime_t utime;
473 cputime_t stime;
474 };
475
476 /**
477 * struct task_cputime - collected CPU time counts
478 * @utime: time spent in user mode, in &cputime_t units
479 * @stime: time spent in kernel mode, in &cputime_t units
480 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
481 *
482 * This is an extension of struct cputime that includes the total runtime
483 * spent by the task from the scheduler point of view.
484 *
485 * As a result, this structure groups together three kinds of CPU time
486 * that are tracked for threads and thread groups. Most things considering
487 * CPU time want to group these counts together and treat all three
488 * of them in parallel.
489 */
490 struct task_cputime {
491 cputime_t utime;
492 cputime_t stime;
493 unsigned long long sum_exec_runtime;
494 };
495 /* Alternate field names when used to cache expirations. */
496 #define prof_exp stime
497 #define virt_exp utime
498 #define sched_exp sum_exec_runtime
499
500 #define INIT_CPUTIME \
501 (struct task_cputime) { \
502 .utime = 0, \
503 .stime = 0, \
504 .sum_exec_runtime = 0, \
505 }
506
507 #ifdef CONFIG_PREEMPT_COUNT
508 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
509 #else
510 #define PREEMPT_DISABLED PREEMPT_ENABLED
511 #endif
512
513 /*
514 * Disable preemption until the scheduler is running.
515 * Reset by start_kernel()->sched_init()->init_idle().
516 *
517 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
518 * before the scheduler is active -- see should_resched().
519 */
520 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
521
522 /**
523 * struct thread_group_cputimer - thread group interval timer counts
524 * @cputime: thread group interval timers.
525 * @running: non-zero when there are timers running and
526 * @cputime receives updates.
527 * @lock: lock for fields in this struct.
528 *
529 * This structure contains the version of task_cputime, above, that is
530 * used for thread group CPU timer calculations.
531 */
532 struct thread_group_cputimer {
533 struct task_cputime cputime;
534 int running;
535 raw_spinlock_t lock;
536 };
537
538 #include <linux/rwsem.h>
539 struct autogroup;
540
541 /*
542 * NOTE! "signal_struct" does not have its own
543 * locking, because a shared signal_struct always
544 * implies a shared sighand_struct, so locking
545 * sighand_struct is always a proper superset of
546 * the locking of signal_struct.
547 */
548 struct signal_struct {
549 atomic_t sigcnt;
550 atomic_t live;
551 int nr_threads;
552
553 wait_queue_head_t wait_chldexit; /* for wait4() */
554
555 /* current thread group signal load-balancing target: */
556 struct task_struct *curr_target;
557
558 /* shared signal handling: */
559 struct sigpending shared_pending;
560
561 /* thread group exit support */
562 int group_exit_code;
563 /* overloaded:
564 * - notify group_exit_task when ->count is equal to notify_count
565 * - everyone except group_exit_task is stopped during signal delivery
566 * of fatal signals, group_exit_task processes the signal.
567 */
568 int notify_count;
569 struct task_struct *group_exit_task;
570
571 /* thread group stop support, overloads group_exit_code too */
572 int group_stop_count;
573 unsigned int flags; /* see SIGNAL_* flags below */
574
575 /*
576 * PR_SET_CHILD_SUBREAPER marks a process, like a service
577 * manager, to re-parent orphan (double-forking) child processes
578 * to this process instead of 'init'. The service manager is
579 * able to receive SIGCHLD signals and is able to investigate
580 * the process until it calls wait(). All children of this
581 * process will inherit a flag if they should look for a
582 * child_subreaper process at exit.
583 */
584 unsigned int is_child_subreaper:1;
585 unsigned int has_child_subreaper:1;
586
587 /* POSIX.1b Interval Timers */
588 int posix_timer_id;
589 struct list_head posix_timers;
590
591 /* ITIMER_REAL timer for the process */
592 struct hrtimer real_timer;
593 struct pid *leader_pid;
594 ktime_t it_real_incr;
595
596 /*
597 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
598 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
599 * values are defined to 0 and 1 respectively
600 */
601 struct cpu_itimer it[2];
602
603 /*
604 * Thread group totals for process CPU timers.
605 * See thread_group_cputimer(), et al, for details.
606 */
607 struct thread_group_cputimer cputimer;
608
609 /* Earliest-expiration cache. */
610 struct task_cputime cputime_expires;
611
612 struct list_head cpu_timers[3];
613
614 struct pid *tty_old_pgrp;
615
616 /* boolean value for session group leader */
617 int leader;
618
619 struct tty_struct *tty; /* NULL if no tty */
620
621 #ifdef CONFIG_SCHED_AUTOGROUP
622 struct autogroup *autogroup;
623 #endif
624 /*
625 * Cumulative resource counters for dead threads in the group,
626 * and for reaped dead child processes forked by this group.
627 * Live threads maintain their own counters and add to these
628 * in __exit_signal, except for the group leader.
629 */
630 cputime_t utime, stime, cutime, cstime;
631 cputime_t gtime;
632 cputime_t cgtime;
633 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
634 struct cputime prev_cputime;
635 #endif
636 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
637 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
638 unsigned long inblock, oublock, cinblock, coublock;
639 unsigned long maxrss, cmaxrss;
640 struct task_io_accounting ioac;
641
642 /*
643 * Cumulative ns of schedule CPU time fo dead threads in the
644 * group, not including a zombie group leader, (This only differs
645 * from jiffies_to_ns(utime + stime) if sched_clock uses something
646 * other than jiffies.)
647 */
648 unsigned long long sum_sched_runtime;
649
650 /*
651 * We don't bother to synchronize most readers of this at all,
652 * because there is no reader checking a limit that actually needs
653 * to get both rlim_cur and rlim_max atomically, and either one
654 * alone is a single word that can safely be read normally.
655 * getrlimit/setrlimit use task_lock(current->group_leader) to
656 * protect this instead of the siglock, because they really
657 * have no need to disable irqs.
658 */
659 struct rlimit rlim[RLIM_NLIMITS];
660
661 #ifdef CONFIG_BSD_PROCESS_ACCT
662 struct pacct_struct pacct; /* per-process accounting information */
663 #endif
664 #ifdef CONFIG_TASKSTATS
665 struct taskstats *stats;
666 #endif
667 #ifdef CONFIG_AUDIT
668 unsigned audit_tty;
669 unsigned audit_tty_log_passwd;
670 struct tty_audit_buf *tty_audit_buf;
671 #endif
672 #ifdef CONFIG_CGROUPS
673 /*
674 * group_rwsem prevents new tasks from entering the threadgroup and
675 * member tasks from exiting,a more specifically, setting of
676 * PF_EXITING. fork and exit paths are protected with this rwsem
677 * using threadgroup_change_begin/end(). Users which require
678 * threadgroup to remain stable should use threadgroup_[un]lock()
679 * which also takes care of exec path. Currently, cgroup is the
680 * only user.
681 */
682 struct rw_semaphore group_rwsem;
683 #endif
684
685 oom_flags_t oom_flags;
686 short oom_score_adj; /* OOM kill score adjustment */
687 short oom_score_adj_min; /* OOM kill score adjustment min value.
688 * Only settable by CAP_SYS_RESOURCE. */
689
690 struct mutex cred_guard_mutex; /* guard against foreign influences on
691 * credential calculations
692 * (notably. ptrace) */
693 };
694
695 /*
696 * Bits in flags field of signal_struct.
697 */
698 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
699 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
700 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
701 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
702 /*
703 * Pending notifications to parent.
704 */
705 #define SIGNAL_CLD_STOPPED 0x00000010
706 #define SIGNAL_CLD_CONTINUED 0x00000020
707 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
708
709 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
710
711 /* If true, all threads except ->group_exit_task have pending SIGKILL */
712 static inline int signal_group_exit(const struct signal_struct *sig)
713 {
714 return (sig->flags & SIGNAL_GROUP_EXIT) ||
715 (sig->group_exit_task != NULL);
716 }
717
718 /*
719 * Some day this will be a full-fledged user tracking system..
720 */
721 struct user_struct {
722 atomic_t __count; /* reference count */
723 atomic_t processes; /* How many processes does this user have? */
724 atomic_t files; /* How many open files does this user have? */
725 atomic_t sigpending; /* How many pending signals does this user have? */
726 #ifdef CONFIG_INOTIFY_USER
727 atomic_t inotify_watches; /* How many inotify watches does this user have? */
728 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
729 #endif
730 #ifdef CONFIG_FANOTIFY
731 atomic_t fanotify_listeners;
732 #endif
733 #ifdef CONFIG_EPOLL
734 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
735 #endif
736 #ifdef CONFIG_POSIX_MQUEUE
737 /* protected by mq_lock */
738 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
739 #endif
740 unsigned long locked_shm; /* How many pages of mlocked shm ? */
741
742 #ifdef CONFIG_KEYS
743 struct key *uid_keyring; /* UID specific keyring */
744 struct key *session_keyring; /* UID's default session keyring */
745 #endif
746
747 /* Hash table maintenance information */
748 struct hlist_node uidhash_node;
749 kuid_t uid;
750
751 #ifdef CONFIG_PERF_EVENTS
752 atomic_long_t locked_vm;
753 #endif
754 };
755
756 extern int uids_sysfs_init(void);
757
758 extern struct user_struct *find_user(kuid_t);
759
760 extern struct user_struct root_user;
761 #define INIT_USER (&root_user)
762
763
764 struct backing_dev_info;
765 struct reclaim_state;
766
767 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
768 struct sched_info {
769 /* cumulative counters */
770 unsigned long pcount; /* # of times run on this cpu */
771 unsigned long long run_delay; /* time spent waiting on a runqueue */
772
773 /* timestamps */
774 unsigned long long last_arrival,/* when we last ran on a cpu */
775 last_queued; /* when we were last queued to run */
776 };
777 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
778
779 #ifdef CONFIG_TASK_DELAY_ACCT
780 struct task_delay_info {
781 spinlock_t lock;
782 unsigned int flags; /* Private per-task flags */
783
784 /* For each stat XXX, add following, aligned appropriately
785 *
786 * struct timespec XXX_start, XXX_end;
787 * u64 XXX_delay;
788 * u32 XXX_count;
789 *
790 * Atomicity of updates to XXX_delay, XXX_count protected by
791 * single lock above (split into XXX_lock if contention is an issue).
792 */
793
794 /*
795 * XXX_count is incremented on every XXX operation, the delay
796 * associated with the operation is added to XXX_delay.
797 * XXX_delay contains the accumulated delay time in nanoseconds.
798 */
799 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
800 u64 blkio_delay; /* wait for sync block io completion */
801 u64 swapin_delay; /* wait for swapin block io completion */
802 u32 blkio_count; /* total count of the number of sync block */
803 /* io operations performed */
804 u32 swapin_count; /* total count of the number of swapin block */
805 /* io operations performed */
806
807 struct timespec freepages_start, freepages_end;
808 u64 freepages_delay; /* wait for memory reclaim */
809 u32 freepages_count; /* total count of memory reclaim */
810 };
811 #endif /* CONFIG_TASK_DELAY_ACCT */
812
813 static inline int sched_info_on(void)
814 {
815 #ifdef CONFIG_SCHEDSTATS
816 return 1;
817 #elif defined(CONFIG_TASK_DELAY_ACCT)
818 extern int delayacct_on;
819 return delayacct_on;
820 #else
821 return 0;
822 #endif
823 }
824
825 enum cpu_idle_type {
826 CPU_IDLE,
827 CPU_NOT_IDLE,
828 CPU_NEWLY_IDLE,
829 CPU_MAX_IDLE_TYPES
830 };
831
832 /*
833 * Increase resolution of cpu_power calculations
834 */
835 #define SCHED_POWER_SHIFT 10
836 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
837
838 /*
839 * sched-domains (multiprocessor balancing) declarations:
840 */
841 #ifdef CONFIG_SMP
842 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
843 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
844 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
845 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
846 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
847 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
848 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
849 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
850 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
851 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
852 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
853 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
854 #define SD_NUMA 0x4000 /* cross-node balancing */
855
856 extern int __weak arch_sd_sibiling_asym_packing(void);
857
858 struct sched_domain_attr {
859 int relax_domain_level;
860 };
861
862 #define SD_ATTR_INIT (struct sched_domain_attr) { \
863 .relax_domain_level = -1, \
864 }
865
866 extern int sched_domain_level_max;
867
868 struct sched_group;
869
870 struct sched_domain {
871 /* These fields must be setup */
872 struct sched_domain *parent; /* top domain must be null terminated */
873 struct sched_domain *child; /* bottom domain must be null terminated */
874 struct sched_group *groups; /* the balancing groups of the domain */
875 unsigned long min_interval; /* Minimum balance interval ms */
876 unsigned long max_interval; /* Maximum balance interval ms */
877 unsigned int busy_factor; /* less balancing by factor if busy */
878 unsigned int imbalance_pct; /* No balance until over watermark */
879 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
880 unsigned int busy_idx;
881 unsigned int idle_idx;
882 unsigned int newidle_idx;
883 unsigned int wake_idx;
884 unsigned int forkexec_idx;
885 unsigned int smt_gain;
886
887 int nohz_idle; /* NOHZ IDLE status */
888 int flags; /* See SD_* */
889 int level;
890
891 /* Runtime fields. */
892 unsigned long last_balance; /* init to jiffies. units in jiffies */
893 unsigned int balance_interval; /* initialise to 1. units in ms. */
894 unsigned int nr_balance_failed; /* initialise to 0 */
895
896 /* idle_balance() stats */
897 u64 max_newidle_lb_cost;
898 unsigned long next_decay_max_lb_cost;
899
900 #ifdef CONFIG_SCHEDSTATS
901 /* load_balance() stats */
902 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
903 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
904 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
905 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
906 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
907 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
908 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
909 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
910
911 /* Active load balancing */
912 unsigned int alb_count;
913 unsigned int alb_failed;
914 unsigned int alb_pushed;
915
916 /* SD_BALANCE_EXEC stats */
917 unsigned int sbe_count;
918 unsigned int sbe_balanced;
919 unsigned int sbe_pushed;
920
921 /* SD_BALANCE_FORK stats */
922 unsigned int sbf_count;
923 unsigned int sbf_balanced;
924 unsigned int sbf_pushed;
925
926 /* try_to_wake_up() stats */
927 unsigned int ttwu_wake_remote;
928 unsigned int ttwu_move_affine;
929 unsigned int ttwu_move_balance;
930 #endif
931 #ifdef CONFIG_SCHED_DEBUG
932 char *name;
933 #endif
934 union {
935 void *private; /* used during construction */
936 struct rcu_head rcu; /* used during destruction */
937 };
938
939 unsigned int span_weight;
940 /*
941 * Span of all CPUs in this domain.
942 *
943 * NOTE: this field is variable length. (Allocated dynamically
944 * by attaching extra space to the end of the structure,
945 * depending on how many CPUs the kernel has booted up with)
946 */
947 unsigned long span[0];
948 };
949
950 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
951 {
952 return to_cpumask(sd->span);
953 }
954
955 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
956 struct sched_domain_attr *dattr_new);
957
958 /* Allocate an array of sched domains, for partition_sched_domains(). */
959 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
960 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
961
962 bool cpus_share_cache(int this_cpu, int that_cpu);
963
964 #else /* CONFIG_SMP */
965
966 struct sched_domain_attr;
967
968 static inline void
969 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
970 struct sched_domain_attr *dattr_new)
971 {
972 }
973
974 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
975 {
976 return true;
977 }
978
979 #endif /* !CONFIG_SMP */
980
981
982 struct io_context; /* See blkdev.h */
983
984
985 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
986 extern void prefetch_stack(struct task_struct *t);
987 #else
988 static inline void prefetch_stack(struct task_struct *t) { }
989 #endif
990
991 struct audit_context; /* See audit.c */
992 struct mempolicy;
993 struct pipe_inode_info;
994 struct uts_namespace;
995
996 struct load_weight {
997 unsigned long weight;
998 u32 inv_weight;
999 };
1000
1001 struct sched_avg {
1002 /*
1003 * These sums represent an infinite geometric series and so are bound
1004 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1005 * choices of y < 1-2^(-32)*1024.
1006 */
1007 u32 runnable_avg_sum, runnable_avg_period;
1008 u64 last_runnable_update;
1009 s64 decay_count;
1010 unsigned long load_avg_contrib;
1011 };
1012
1013 #ifdef CONFIG_SCHEDSTATS
1014 struct sched_statistics {
1015 u64 wait_start;
1016 u64 wait_max;
1017 u64 wait_count;
1018 u64 wait_sum;
1019 u64 iowait_count;
1020 u64 iowait_sum;
1021
1022 u64 sleep_start;
1023 u64 sleep_max;
1024 s64 sum_sleep_runtime;
1025
1026 u64 block_start;
1027 u64 block_max;
1028 u64 exec_max;
1029 u64 slice_max;
1030
1031 u64 nr_migrations_cold;
1032 u64 nr_failed_migrations_affine;
1033 u64 nr_failed_migrations_running;
1034 u64 nr_failed_migrations_hot;
1035 u64 nr_forced_migrations;
1036
1037 u64 nr_wakeups;
1038 u64 nr_wakeups_sync;
1039 u64 nr_wakeups_migrate;
1040 u64 nr_wakeups_local;
1041 u64 nr_wakeups_remote;
1042 u64 nr_wakeups_affine;
1043 u64 nr_wakeups_affine_attempts;
1044 u64 nr_wakeups_passive;
1045 u64 nr_wakeups_idle;
1046 };
1047 #endif
1048
1049 struct sched_entity {
1050 struct load_weight load; /* for load-balancing */
1051 struct rb_node run_node;
1052 struct list_head group_node;
1053 unsigned int on_rq;
1054
1055 u64 exec_start;
1056 u64 sum_exec_runtime;
1057 u64 vruntime;
1058 u64 prev_sum_exec_runtime;
1059
1060 u64 nr_migrations;
1061
1062 #ifdef CONFIG_SCHEDSTATS
1063 struct sched_statistics statistics;
1064 #endif
1065
1066 #ifdef CONFIG_FAIR_GROUP_SCHED
1067 struct sched_entity *parent;
1068 /* rq on which this entity is (to be) queued: */
1069 struct cfs_rq *cfs_rq;
1070 /* rq "owned" by this entity/group: */
1071 struct cfs_rq *my_q;
1072 #endif
1073
1074 #ifdef CONFIG_SMP
1075 /* Per-entity load-tracking */
1076 struct sched_avg avg;
1077 #endif
1078 };
1079
1080 struct sched_rt_entity {
1081 struct list_head run_list;
1082 unsigned long timeout;
1083 unsigned long watchdog_stamp;
1084 unsigned int time_slice;
1085
1086 struct sched_rt_entity *back;
1087 #ifdef CONFIG_RT_GROUP_SCHED
1088 struct sched_rt_entity *parent;
1089 /* rq on which this entity is (to be) queued: */
1090 struct rt_rq *rt_rq;
1091 /* rq "owned" by this entity/group: */
1092 struct rt_rq *my_q;
1093 #endif
1094 };
1095
1096 struct sched_dl_entity {
1097 struct rb_node rb_node;
1098
1099 /*
1100 * Original scheduling parameters. Copied here from sched_attr
1101 * during sched_setscheduler2(), they will remain the same until
1102 * the next sched_setscheduler2().
1103 */
1104 u64 dl_runtime; /* maximum runtime for each instance */
1105 u64 dl_deadline; /* relative deadline of each instance */
1106 u64 dl_period; /* separation of two instances (period) */
1107
1108 /*
1109 * Actual scheduling parameters. Initialized with the values above,
1110 * they are continously updated during task execution. Note that
1111 * the remaining runtime could be < 0 in case we are in overrun.
1112 */
1113 s64 runtime; /* remaining runtime for this instance */
1114 u64 deadline; /* absolute deadline for this instance */
1115 unsigned int flags; /* specifying the scheduler behaviour */
1116
1117 /*
1118 * Some bool flags:
1119 *
1120 * @dl_throttled tells if we exhausted the runtime. If so, the
1121 * task has to wait for a replenishment to be performed at the
1122 * next firing of dl_timer.
1123 *
1124 * @dl_new tells if a new instance arrived. If so we must
1125 * start executing it with full runtime and reset its absolute
1126 * deadline;
1127 *
1128 * @dl_boosted tells if we are boosted due to DI. If so we are
1129 * outside bandwidth enforcement mechanism (but only until we
1130 * exit the critical section).
1131 */
1132 int dl_throttled, dl_new, dl_boosted;
1133
1134 /*
1135 * Bandwidth enforcement timer. Each -deadline task has its
1136 * own bandwidth to be enforced, thus we need one timer per task.
1137 */
1138 struct hrtimer dl_timer;
1139 };
1140
1141 struct rcu_node;
1142
1143 enum perf_event_task_context {
1144 perf_invalid_context = -1,
1145 perf_hw_context = 0,
1146 perf_sw_context,
1147 perf_nr_task_contexts,
1148 };
1149
1150 struct task_struct {
1151 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1152 void *stack;
1153 atomic_t usage;
1154 unsigned int flags; /* per process flags, defined below */
1155 unsigned int ptrace;
1156
1157 #ifdef CONFIG_SMP
1158 struct llist_node wake_entry;
1159 int on_cpu;
1160 struct task_struct *last_wakee;
1161 unsigned long wakee_flips;
1162 unsigned long wakee_flip_decay_ts;
1163
1164 int wake_cpu;
1165 #endif
1166 int on_rq;
1167
1168 int prio, static_prio, normal_prio;
1169 unsigned int rt_priority;
1170 const struct sched_class *sched_class;
1171 struct sched_entity se;
1172 struct sched_rt_entity rt;
1173 #ifdef CONFIG_CGROUP_SCHED
1174 struct task_group *sched_task_group;
1175 #endif
1176 struct sched_dl_entity dl;
1177
1178 #ifdef CONFIG_PREEMPT_NOTIFIERS
1179 /* list of struct preempt_notifier: */
1180 struct hlist_head preempt_notifiers;
1181 #endif
1182
1183 #ifdef CONFIG_BLK_DEV_IO_TRACE
1184 unsigned int btrace_seq;
1185 #endif
1186
1187 unsigned int policy;
1188 int nr_cpus_allowed;
1189 cpumask_t cpus_allowed;
1190
1191 #ifdef CONFIG_PREEMPT_RCU
1192 int rcu_read_lock_nesting;
1193 char rcu_read_unlock_special;
1194 struct list_head rcu_node_entry;
1195 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1196 #ifdef CONFIG_TREE_PREEMPT_RCU
1197 struct rcu_node *rcu_blocked_node;
1198 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1199 #ifdef CONFIG_RCU_BOOST
1200 struct rt_mutex *rcu_boost_mutex;
1201 #endif /* #ifdef CONFIG_RCU_BOOST */
1202
1203 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1204 struct sched_info sched_info;
1205 #endif
1206
1207 struct list_head tasks;
1208 #ifdef CONFIG_SMP
1209 struct plist_node pushable_tasks;
1210 struct rb_node pushable_dl_tasks;
1211 #endif
1212
1213 struct mm_struct *mm, *active_mm;
1214 #ifdef CONFIG_COMPAT_BRK
1215 unsigned brk_randomized:1;
1216 #endif
1217 #if defined(SPLIT_RSS_COUNTING)
1218 struct task_rss_stat rss_stat;
1219 #endif
1220 /* task state */
1221 int exit_state;
1222 int exit_code, exit_signal;
1223 int pdeath_signal; /* The signal sent when the parent dies */
1224 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1225
1226 /* Used for emulating ABI behavior of previous Linux versions */
1227 unsigned int personality;
1228
1229 unsigned did_exec:1;
1230 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1231 * execve */
1232 unsigned in_iowait:1;
1233
1234 /* task may not gain privileges */
1235 unsigned no_new_privs:1;
1236
1237 /* Revert to default priority/policy when forking */
1238 unsigned sched_reset_on_fork:1;
1239 unsigned sched_contributes_to_load:1;
1240
1241 pid_t pid;
1242 pid_t tgid;
1243
1244 #ifdef CONFIG_CC_STACKPROTECTOR
1245 /* Canary value for the -fstack-protector gcc feature */
1246 unsigned long stack_canary;
1247 #endif
1248 /*
1249 * pointers to (original) parent process, youngest child, younger sibling,
1250 * older sibling, respectively. (p->father can be replaced with
1251 * p->real_parent->pid)
1252 */
1253 struct task_struct __rcu *real_parent; /* real parent process */
1254 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1255 /*
1256 * children/sibling forms the list of my natural children
1257 */
1258 struct list_head children; /* list of my children */
1259 struct list_head sibling; /* linkage in my parent's children list */
1260 struct task_struct *group_leader; /* threadgroup leader */
1261
1262 /*
1263 * ptraced is the list of tasks this task is using ptrace on.
1264 * This includes both natural children and PTRACE_ATTACH targets.
1265 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1266 */
1267 struct list_head ptraced;
1268 struct list_head ptrace_entry;
1269
1270 /* PID/PID hash table linkage. */
1271 struct pid_link pids[PIDTYPE_MAX];
1272 struct list_head thread_group;
1273
1274 struct completion *vfork_done; /* for vfork() */
1275 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1276 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1277
1278 cputime_t utime, stime, utimescaled, stimescaled;
1279 cputime_t gtime;
1280 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1281 struct cputime prev_cputime;
1282 #endif
1283 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1284 seqlock_t vtime_seqlock;
1285 unsigned long long vtime_snap;
1286 enum {
1287 VTIME_SLEEPING = 0,
1288 VTIME_USER,
1289 VTIME_SYS,
1290 } vtime_snap_whence;
1291 #endif
1292 unsigned long nvcsw, nivcsw; /* context switch counts */
1293 struct timespec start_time; /* monotonic time */
1294 struct timespec real_start_time; /* boot based time */
1295 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1296 unsigned long min_flt, maj_flt;
1297
1298 struct task_cputime cputime_expires;
1299 struct list_head cpu_timers[3];
1300
1301 /* process credentials */
1302 const struct cred __rcu *real_cred; /* objective and real subjective task
1303 * credentials (COW) */
1304 const struct cred __rcu *cred; /* effective (overridable) subjective task
1305 * credentials (COW) */
1306 char comm[TASK_COMM_LEN]; /* executable name excluding path
1307 - access with [gs]et_task_comm (which lock
1308 it with task_lock())
1309 - initialized normally by setup_new_exec */
1310 /* file system info */
1311 int link_count, total_link_count;
1312 #ifdef CONFIG_SYSVIPC
1313 /* ipc stuff */
1314 struct sysv_sem sysvsem;
1315 #endif
1316 #ifdef CONFIG_DETECT_HUNG_TASK
1317 /* hung task detection */
1318 unsigned long last_switch_count;
1319 #endif
1320 /* CPU-specific state of this task */
1321 struct thread_struct thread;
1322 /* filesystem information */
1323 struct fs_struct *fs;
1324 /* open file information */
1325 struct files_struct *files;
1326 /* namespaces */
1327 struct nsproxy *nsproxy;
1328 /* signal handlers */
1329 struct signal_struct *signal;
1330 struct sighand_struct *sighand;
1331
1332 sigset_t blocked, real_blocked;
1333 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1334 struct sigpending pending;
1335
1336 unsigned long sas_ss_sp;
1337 size_t sas_ss_size;
1338 int (*notifier)(void *priv);
1339 void *notifier_data;
1340 sigset_t *notifier_mask;
1341 struct callback_head *task_works;
1342
1343 struct audit_context *audit_context;
1344 #ifdef CONFIG_AUDITSYSCALL
1345 kuid_t loginuid;
1346 unsigned int sessionid;
1347 #endif
1348 struct seccomp seccomp;
1349
1350 /* Thread group tracking */
1351 u32 parent_exec_id;
1352 u32 self_exec_id;
1353 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1354 * mempolicy */
1355 spinlock_t alloc_lock;
1356
1357 /* Protection of the PI data structures: */
1358 raw_spinlock_t pi_lock;
1359
1360 #ifdef CONFIG_RT_MUTEXES
1361 /* PI waiters blocked on a rt_mutex held by this task */
1362 struct rb_root pi_waiters;
1363 struct rb_node *pi_waiters_leftmost;
1364 /* Deadlock detection and priority inheritance handling */
1365 struct rt_mutex_waiter *pi_blocked_on;
1366 /* Top pi_waiters task */
1367 struct task_struct *pi_top_task;
1368 #endif
1369
1370 #ifdef CONFIG_DEBUG_MUTEXES
1371 /* mutex deadlock detection */
1372 struct mutex_waiter *blocked_on;
1373 #endif
1374 #ifdef CONFIG_TRACE_IRQFLAGS
1375 unsigned int irq_events;
1376 unsigned long hardirq_enable_ip;
1377 unsigned long hardirq_disable_ip;
1378 unsigned int hardirq_enable_event;
1379 unsigned int hardirq_disable_event;
1380 int hardirqs_enabled;
1381 int hardirq_context;
1382 unsigned long softirq_disable_ip;
1383 unsigned long softirq_enable_ip;
1384 unsigned int softirq_disable_event;
1385 unsigned int softirq_enable_event;
1386 int softirqs_enabled;
1387 int softirq_context;
1388 #endif
1389 #ifdef CONFIG_LOCKDEP
1390 # define MAX_LOCK_DEPTH 48UL
1391 u64 curr_chain_key;
1392 int lockdep_depth;
1393 unsigned int lockdep_recursion;
1394 struct held_lock held_locks[MAX_LOCK_DEPTH];
1395 gfp_t lockdep_reclaim_gfp;
1396 #endif
1397
1398 /* journalling filesystem info */
1399 void *journal_info;
1400
1401 /* stacked block device info */
1402 struct bio_list *bio_list;
1403
1404 #ifdef CONFIG_BLOCK
1405 /* stack plugging */
1406 struct blk_plug *plug;
1407 #endif
1408
1409 /* VM state */
1410 struct reclaim_state *reclaim_state;
1411
1412 struct backing_dev_info *backing_dev_info;
1413
1414 struct io_context *io_context;
1415
1416 unsigned long ptrace_message;
1417 siginfo_t *last_siginfo; /* For ptrace use. */
1418 struct task_io_accounting ioac;
1419 #if defined(CONFIG_TASK_XACCT)
1420 u64 acct_rss_mem1; /* accumulated rss usage */
1421 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1422 cputime_t acct_timexpd; /* stime + utime since last update */
1423 #endif
1424 #ifdef CONFIG_CPUSETS
1425 nodemask_t mems_allowed; /* Protected by alloc_lock */
1426 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1427 int cpuset_mem_spread_rotor;
1428 int cpuset_slab_spread_rotor;
1429 #endif
1430 #ifdef CONFIG_CGROUPS
1431 /* Control Group info protected by css_set_lock */
1432 struct css_set __rcu *cgroups;
1433 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1434 struct list_head cg_list;
1435 #endif
1436 #ifdef CONFIG_FUTEX
1437 struct robust_list_head __user *robust_list;
1438 #ifdef CONFIG_COMPAT
1439 struct compat_robust_list_head __user *compat_robust_list;
1440 #endif
1441 struct list_head pi_state_list;
1442 struct futex_pi_state *pi_state_cache;
1443 #endif
1444 #ifdef CONFIG_PERF_EVENTS
1445 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1446 struct mutex perf_event_mutex;
1447 struct list_head perf_event_list;
1448 #endif
1449 #ifdef CONFIG_NUMA
1450 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1451 short il_next;
1452 short pref_node_fork;
1453 #endif
1454 #ifdef CONFIG_NUMA_BALANCING
1455 int numa_scan_seq;
1456 unsigned int numa_scan_period;
1457 unsigned int numa_scan_period_max;
1458 int numa_preferred_nid;
1459 int numa_migrate_deferred;
1460 unsigned long numa_migrate_retry;
1461 u64 node_stamp; /* migration stamp */
1462 struct callback_head numa_work;
1463
1464 struct list_head numa_entry;
1465 struct numa_group *numa_group;
1466
1467 /*
1468 * Exponential decaying average of faults on a per-node basis.
1469 * Scheduling placement decisions are made based on the these counts.
1470 * The values remain static for the duration of a PTE scan
1471 */
1472 unsigned long *numa_faults;
1473 unsigned long total_numa_faults;
1474
1475 /*
1476 * numa_faults_buffer records faults per node during the current
1477 * scan window. When the scan completes, the counts in numa_faults
1478 * decay and these values are copied.
1479 */
1480 unsigned long *numa_faults_buffer;
1481
1482 /*
1483 * numa_faults_locality tracks if faults recorded during the last
1484 * scan window were remote/local. The task scan period is adapted
1485 * based on the locality of the faults with different weights
1486 * depending on whether they were shared or private faults
1487 */
1488 unsigned long numa_faults_locality[2];
1489
1490 unsigned long numa_pages_migrated;
1491 #endif /* CONFIG_NUMA_BALANCING */
1492
1493 struct rcu_head rcu;
1494
1495 /*
1496 * cache last used pipe for splice
1497 */
1498 struct pipe_inode_info *splice_pipe;
1499
1500 struct page_frag task_frag;
1501
1502 #ifdef CONFIG_TASK_DELAY_ACCT
1503 struct task_delay_info *delays;
1504 #endif
1505 #ifdef CONFIG_FAULT_INJECTION
1506 int make_it_fail;
1507 #endif
1508 /*
1509 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1510 * balance_dirty_pages() for some dirty throttling pause
1511 */
1512 int nr_dirtied;
1513 int nr_dirtied_pause;
1514 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1515
1516 #ifdef CONFIG_LATENCYTOP
1517 int latency_record_count;
1518 struct latency_record latency_record[LT_SAVECOUNT];
1519 #endif
1520 /*
1521 * time slack values; these are used to round up poll() and
1522 * select() etc timeout values. These are in nanoseconds.
1523 */
1524 unsigned long timer_slack_ns;
1525 unsigned long default_timer_slack_ns;
1526
1527 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1528 /* Index of current stored address in ret_stack */
1529 int curr_ret_stack;
1530 /* Stack of return addresses for return function tracing */
1531 struct ftrace_ret_stack *ret_stack;
1532 /* time stamp for last schedule */
1533 unsigned long long ftrace_timestamp;
1534 /*
1535 * Number of functions that haven't been traced
1536 * because of depth overrun.
1537 */
1538 atomic_t trace_overrun;
1539 /* Pause for the tracing */
1540 atomic_t tracing_graph_pause;
1541 #endif
1542 #ifdef CONFIG_TRACING
1543 /* state flags for use by tracers */
1544 unsigned long trace;
1545 /* bitmask and counter of trace recursion */
1546 unsigned long trace_recursion;
1547 #endif /* CONFIG_TRACING */
1548 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1549 struct memcg_batch_info {
1550 int do_batch; /* incremented when batch uncharge started */
1551 struct mem_cgroup *memcg; /* target memcg of uncharge */
1552 unsigned long nr_pages; /* uncharged usage */
1553 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1554 } memcg_batch;
1555 unsigned int memcg_kmem_skip_account;
1556 struct memcg_oom_info {
1557 struct mem_cgroup *memcg;
1558 gfp_t gfp_mask;
1559 int order;
1560 unsigned int may_oom:1;
1561 } memcg_oom;
1562 #endif
1563 #ifdef CONFIG_UPROBES
1564 struct uprobe_task *utask;
1565 #endif
1566 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1567 unsigned int sequential_io;
1568 unsigned int sequential_io_avg;
1569 #endif
1570 };
1571
1572 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1573 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1574
1575 #define TNF_MIGRATED 0x01
1576 #define TNF_NO_GROUP 0x02
1577 #define TNF_SHARED 0x04
1578 #define TNF_FAULT_LOCAL 0x08
1579
1580 #ifdef CONFIG_NUMA_BALANCING
1581 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1582 extern pid_t task_numa_group_id(struct task_struct *p);
1583 extern void set_numabalancing_state(bool enabled);
1584 extern void task_numa_free(struct task_struct *p);
1585
1586 extern unsigned int sysctl_numa_balancing_migrate_deferred;
1587 #else
1588 static inline void task_numa_fault(int last_node, int node, int pages,
1589 int flags)
1590 {
1591 }
1592 static inline pid_t task_numa_group_id(struct task_struct *p)
1593 {
1594 return 0;
1595 }
1596 static inline void set_numabalancing_state(bool enabled)
1597 {
1598 }
1599 static inline void task_numa_free(struct task_struct *p)
1600 {
1601 }
1602 #endif
1603
1604 static inline struct pid *task_pid(struct task_struct *task)
1605 {
1606 return task->pids[PIDTYPE_PID].pid;
1607 }
1608
1609 static inline struct pid *task_tgid(struct task_struct *task)
1610 {
1611 return task->group_leader->pids[PIDTYPE_PID].pid;
1612 }
1613
1614 /*
1615 * Without tasklist or rcu lock it is not safe to dereference
1616 * the result of task_pgrp/task_session even if task == current,
1617 * we can race with another thread doing sys_setsid/sys_setpgid.
1618 */
1619 static inline struct pid *task_pgrp(struct task_struct *task)
1620 {
1621 return task->group_leader->pids[PIDTYPE_PGID].pid;
1622 }
1623
1624 static inline struct pid *task_session(struct task_struct *task)
1625 {
1626 return task->group_leader->pids[PIDTYPE_SID].pid;
1627 }
1628
1629 struct pid_namespace;
1630
1631 /*
1632 * the helpers to get the task's different pids as they are seen
1633 * from various namespaces
1634 *
1635 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1636 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1637 * current.
1638 * task_xid_nr_ns() : id seen from the ns specified;
1639 *
1640 * set_task_vxid() : assigns a virtual id to a task;
1641 *
1642 * see also pid_nr() etc in include/linux/pid.h
1643 */
1644 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1645 struct pid_namespace *ns);
1646
1647 static inline pid_t task_pid_nr(struct task_struct *tsk)
1648 {
1649 return tsk->pid;
1650 }
1651
1652 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1653 struct pid_namespace *ns)
1654 {
1655 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1656 }
1657
1658 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1659 {
1660 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1661 }
1662
1663
1664 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1665 {
1666 return tsk->tgid;
1667 }
1668
1669 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1670
1671 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1672 {
1673 return pid_vnr(task_tgid(tsk));
1674 }
1675
1676
1677 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1678 struct pid_namespace *ns)
1679 {
1680 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1681 }
1682
1683 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1684 {
1685 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1686 }
1687
1688
1689 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1690 struct pid_namespace *ns)
1691 {
1692 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1693 }
1694
1695 static inline pid_t task_session_vnr(struct task_struct *tsk)
1696 {
1697 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1698 }
1699
1700 /* obsolete, do not use */
1701 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1702 {
1703 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1704 }
1705
1706 /**
1707 * pid_alive - check that a task structure is not stale
1708 * @p: Task structure to be checked.
1709 *
1710 * Test if a process is not yet dead (at most zombie state)
1711 * If pid_alive fails, then pointers within the task structure
1712 * can be stale and must not be dereferenced.
1713 *
1714 * Return: 1 if the process is alive. 0 otherwise.
1715 */
1716 static inline int pid_alive(struct task_struct *p)
1717 {
1718 return p->pids[PIDTYPE_PID].pid != NULL;
1719 }
1720
1721 /**
1722 * is_global_init - check if a task structure is init
1723 * @tsk: Task structure to be checked.
1724 *
1725 * Check if a task structure is the first user space task the kernel created.
1726 *
1727 * Return: 1 if the task structure is init. 0 otherwise.
1728 */
1729 static inline int is_global_init(struct task_struct *tsk)
1730 {
1731 return tsk->pid == 1;
1732 }
1733
1734 extern struct pid *cad_pid;
1735
1736 extern void free_task(struct task_struct *tsk);
1737 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1738
1739 extern void __put_task_struct(struct task_struct *t);
1740
1741 static inline void put_task_struct(struct task_struct *t)
1742 {
1743 if (atomic_dec_and_test(&t->usage))
1744 __put_task_struct(t);
1745 }
1746
1747 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1748 extern void task_cputime(struct task_struct *t,
1749 cputime_t *utime, cputime_t *stime);
1750 extern void task_cputime_scaled(struct task_struct *t,
1751 cputime_t *utimescaled, cputime_t *stimescaled);
1752 extern cputime_t task_gtime(struct task_struct *t);
1753 #else
1754 static inline void task_cputime(struct task_struct *t,
1755 cputime_t *utime, cputime_t *stime)
1756 {
1757 if (utime)
1758 *utime = t->utime;
1759 if (stime)
1760 *stime = t->stime;
1761 }
1762
1763 static inline void task_cputime_scaled(struct task_struct *t,
1764 cputime_t *utimescaled,
1765 cputime_t *stimescaled)
1766 {
1767 if (utimescaled)
1768 *utimescaled = t->utimescaled;
1769 if (stimescaled)
1770 *stimescaled = t->stimescaled;
1771 }
1772
1773 static inline cputime_t task_gtime(struct task_struct *t)
1774 {
1775 return t->gtime;
1776 }
1777 #endif
1778 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1779 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1780
1781 /*
1782 * Per process flags
1783 */
1784 #define PF_EXITING 0x00000004 /* getting shut down */
1785 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1786 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1787 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1788 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1789 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1790 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1791 #define PF_DUMPCORE 0x00000200 /* dumped core */
1792 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1793 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1794 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1795 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1796 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1797 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1798 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1799 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1800 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1801 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1802 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1803 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1804 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1805 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1806 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1807 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1808 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1809 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1810 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1811 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1812 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1813 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1814
1815 /*
1816 * Only the _current_ task can read/write to tsk->flags, but other
1817 * tasks can access tsk->flags in readonly mode for example
1818 * with tsk_used_math (like during threaded core dumping).
1819 * There is however an exception to this rule during ptrace
1820 * or during fork: the ptracer task is allowed to write to the
1821 * child->flags of its traced child (same goes for fork, the parent
1822 * can write to the child->flags), because we're guaranteed the
1823 * child is not running and in turn not changing child->flags
1824 * at the same time the parent does it.
1825 */
1826 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1827 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1828 #define clear_used_math() clear_stopped_child_used_math(current)
1829 #define set_used_math() set_stopped_child_used_math(current)
1830 #define conditional_stopped_child_used_math(condition, child) \
1831 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1832 #define conditional_used_math(condition) \
1833 conditional_stopped_child_used_math(condition, current)
1834 #define copy_to_stopped_child_used_math(child) \
1835 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1836 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1837 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1838 #define used_math() tsk_used_math(current)
1839
1840 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1841 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1842 {
1843 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1844 flags &= ~__GFP_IO;
1845 return flags;
1846 }
1847
1848 static inline unsigned int memalloc_noio_save(void)
1849 {
1850 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1851 current->flags |= PF_MEMALLOC_NOIO;
1852 return flags;
1853 }
1854
1855 static inline void memalloc_noio_restore(unsigned int flags)
1856 {
1857 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1858 }
1859
1860 /*
1861 * task->jobctl flags
1862 */
1863 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1864
1865 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1866 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1867 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1868 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1869 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1870 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1871 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1872
1873 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1874 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1875 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1876 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1877 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1878 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1879 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1880
1881 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1882 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1883
1884 extern bool task_set_jobctl_pending(struct task_struct *task,
1885 unsigned int mask);
1886 extern void task_clear_jobctl_trapping(struct task_struct *task);
1887 extern void task_clear_jobctl_pending(struct task_struct *task,
1888 unsigned int mask);
1889
1890 #ifdef CONFIG_PREEMPT_RCU
1891
1892 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1893 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1894
1895 static inline void rcu_copy_process(struct task_struct *p)
1896 {
1897 p->rcu_read_lock_nesting = 0;
1898 p->rcu_read_unlock_special = 0;
1899 #ifdef CONFIG_TREE_PREEMPT_RCU
1900 p->rcu_blocked_node = NULL;
1901 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1902 #ifdef CONFIG_RCU_BOOST
1903 p->rcu_boost_mutex = NULL;
1904 #endif /* #ifdef CONFIG_RCU_BOOST */
1905 INIT_LIST_HEAD(&p->rcu_node_entry);
1906 }
1907
1908 #else
1909
1910 static inline void rcu_copy_process(struct task_struct *p)
1911 {
1912 }
1913
1914 #endif
1915
1916 static inline void tsk_restore_flags(struct task_struct *task,
1917 unsigned long orig_flags, unsigned long flags)
1918 {
1919 task->flags &= ~flags;
1920 task->flags |= orig_flags & flags;
1921 }
1922
1923 #ifdef CONFIG_SMP
1924 extern void do_set_cpus_allowed(struct task_struct *p,
1925 const struct cpumask *new_mask);
1926
1927 extern int set_cpus_allowed_ptr(struct task_struct *p,
1928 const struct cpumask *new_mask);
1929 #else
1930 static inline void do_set_cpus_allowed(struct task_struct *p,
1931 const struct cpumask *new_mask)
1932 {
1933 }
1934 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1935 const struct cpumask *new_mask)
1936 {
1937 if (!cpumask_test_cpu(0, new_mask))
1938 return -EINVAL;
1939 return 0;
1940 }
1941 #endif
1942
1943 #ifdef CONFIG_NO_HZ_COMMON
1944 void calc_load_enter_idle(void);
1945 void calc_load_exit_idle(void);
1946 #else
1947 static inline void calc_load_enter_idle(void) { }
1948 static inline void calc_load_exit_idle(void) { }
1949 #endif /* CONFIG_NO_HZ_COMMON */
1950
1951 #ifndef CONFIG_CPUMASK_OFFSTACK
1952 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1953 {
1954 return set_cpus_allowed_ptr(p, &new_mask);
1955 }
1956 #endif
1957
1958 /*
1959 * Do not use outside of architecture code which knows its limitations.
1960 *
1961 * sched_clock() has no promise of monotonicity or bounded drift between
1962 * CPUs, use (which you should not) requires disabling IRQs.
1963 *
1964 * Please use one of the three interfaces below.
1965 */
1966 extern unsigned long long notrace sched_clock(void);
1967 /*
1968 * See the comment in kernel/sched/clock.c
1969 */
1970 extern u64 cpu_clock(int cpu);
1971 extern u64 local_clock(void);
1972 extern u64 sched_clock_cpu(int cpu);
1973
1974
1975 extern void sched_clock_init(void);
1976
1977 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1978 static inline void sched_clock_tick(void)
1979 {
1980 }
1981
1982 static inline void sched_clock_idle_sleep_event(void)
1983 {
1984 }
1985
1986 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1987 {
1988 }
1989 #else
1990 /*
1991 * Architectures can set this to 1 if they have specified
1992 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1993 * but then during bootup it turns out that sched_clock()
1994 * is reliable after all:
1995 */
1996 extern int sched_clock_stable;
1997
1998 extern void sched_clock_tick(void);
1999 extern void sched_clock_idle_sleep_event(void);
2000 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2001 #endif
2002
2003 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2004 /*
2005 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2006 * The reason for this explicit opt-in is not to have perf penalty with
2007 * slow sched_clocks.
2008 */
2009 extern void enable_sched_clock_irqtime(void);
2010 extern void disable_sched_clock_irqtime(void);
2011 #else
2012 static inline void enable_sched_clock_irqtime(void) {}
2013 static inline void disable_sched_clock_irqtime(void) {}
2014 #endif
2015
2016 extern unsigned long long
2017 task_sched_runtime(struct task_struct *task);
2018
2019 /* sched_exec is called by processes performing an exec */
2020 #ifdef CONFIG_SMP
2021 extern void sched_exec(void);
2022 #else
2023 #define sched_exec() {}
2024 #endif
2025
2026 extern void sched_clock_idle_sleep_event(void);
2027 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2028
2029 #ifdef CONFIG_HOTPLUG_CPU
2030 extern void idle_task_exit(void);
2031 #else
2032 static inline void idle_task_exit(void) {}
2033 #endif
2034
2035 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2036 extern void wake_up_nohz_cpu(int cpu);
2037 #else
2038 static inline void wake_up_nohz_cpu(int cpu) { }
2039 #endif
2040
2041 #ifdef CONFIG_NO_HZ_FULL
2042 extern bool sched_can_stop_tick(void);
2043 extern u64 scheduler_tick_max_deferment(void);
2044 #else
2045 static inline bool sched_can_stop_tick(void) { return false; }
2046 #endif
2047
2048 #ifdef CONFIG_SCHED_AUTOGROUP
2049 extern void sched_autogroup_create_attach(struct task_struct *p);
2050 extern void sched_autogroup_detach(struct task_struct *p);
2051 extern void sched_autogroup_fork(struct signal_struct *sig);
2052 extern void sched_autogroup_exit(struct signal_struct *sig);
2053 #ifdef CONFIG_PROC_FS
2054 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2055 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2056 #endif
2057 #else
2058 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2059 static inline void sched_autogroup_detach(struct task_struct *p) { }
2060 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2061 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2062 #endif
2063
2064 extern bool yield_to(struct task_struct *p, bool preempt);
2065 extern void set_user_nice(struct task_struct *p, long nice);
2066 extern int task_prio(const struct task_struct *p);
2067 extern int task_nice(const struct task_struct *p);
2068 extern int can_nice(const struct task_struct *p, const int nice);
2069 extern int task_curr(const struct task_struct *p);
2070 extern int idle_cpu(int cpu);
2071 extern int sched_setscheduler(struct task_struct *, int,
2072 const struct sched_param *);
2073 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2074 const struct sched_param *);
2075 extern int sched_setattr(struct task_struct *,
2076 const struct sched_attr *);
2077 extern struct task_struct *idle_task(int cpu);
2078 /**
2079 * is_idle_task - is the specified task an idle task?
2080 * @p: the task in question.
2081 *
2082 * Return: 1 if @p is an idle task. 0 otherwise.
2083 */
2084 static inline bool is_idle_task(const struct task_struct *p)
2085 {
2086 return p->pid == 0;
2087 }
2088 extern struct task_struct *curr_task(int cpu);
2089 extern void set_curr_task(int cpu, struct task_struct *p);
2090
2091 void yield(void);
2092
2093 /*
2094 * The default (Linux) execution domain.
2095 */
2096 extern struct exec_domain default_exec_domain;
2097
2098 union thread_union {
2099 struct thread_info thread_info;
2100 unsigned long stack[THREAD_SIZE/sizeof(long)];
2101 };
2102
2103 #ifndef __HAVE_ARCH_KSTACK_END
2104 static inline int kstack_end(void *addr)
2105 {
2106 /* Reliable end of stack detection:
2107 * Some APM bios versions misalign the stack
2108 */
2109 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2110 }
2111 #endif
2112
2113 extern union thread_union init_thread_union;
2114 extern struct task_struct init_task;
2115
2116 extern struct mm_struct init_mm;
2117
2118 extern struct pid_namespace init_pid_ns;
2119
2120 /*
2121 * find a task by one of its numerical ids
2122 *
2123 * find_task_by_pid_ns():
2124 * finds a task by its pid in the specified namespace
2125 * find_task_by_vpid():
2126 * finds a task by its virtual pid
2127 *
2128 * see also find_vpid() etc in include/linux/pid.h
2129 */
2130
2131 extern struct task_struct *find_task_by_vpid(pid_t nr);
2132 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2133 struct pid_namespace *ns);
2134
2135 /* per-UID process charging. */
2136 extern struct user_struct * alloc_uid(kuid_t);
2137 static inline struct user_struct *get_uid(struct user_struct *u)
2138 {
2139 atomic_inc(&u->__count);
2140 return u;
2141 }
2142 extern void free_uid(struct user_struct *);
2143
2144 #include <asm/current.h>
2145
2146 extern void xtime_update(unsigned long ticks);
2147
2148 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2149 extern int wake_up_process(struct task_struct *tsk);
2150 extern void wake_up_new_task(struct task_struct *tsk);
2151 #ifdef CONFIG_SMP
2152 extern void kick_process(struct task_struct *tsk);
2153 #else
2154 static inline void kick_process(struct task_struct *tsk) { }
2155 #endif
2156 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2157 extern void sched_dead(struct task_struct *p);
2158
2159 extern void proc_caches_init(void);
2160 extern void flush_signals(struct task_struct *);
2161 extern void __flush_signals(struct task_struct *);
2162 extern void ignore_signals(struct task_struct *);
2163 extern void flush_signal_handlers(struct task_struct *, int force_default);
2164 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2165
2166 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2167 {
2168 unsigned long flags;
2169 int ret;
2170
2171 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2172 ret = dequeue_signal(tsk, mask, info);
2173 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2174
2175 return ret;
2176 }
2177
2178 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2179 sigset_t *mask);
2180 extern void unblock_all_signals(void);
2181 extern void release_task(struct task_struct * p);
2182 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2183 extern int force_sigsegv(int, struct task_struct *);
2184 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2185 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2186 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2187 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2188 const struct cred *, u32);
2189 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2190 extern int kill_pid(struct pid *pid, int sig, int priv);
2191 extern int kill_proc_info(int, struct siginfo *, pid_t);
2192 extern __must_check bool do_notify_parent(struct task_struct *, int);
2193 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2194 extern void force_sig(int, struct task_struct *);
2195 extern int send_sig(int, struct task_struct *, int);
2196 extern int zap_other_threads(struct task_struct *p);
2197 extern struct sigqueue *sigqueue_alloc(void);
2198 extern void sigqueue_free(struct sigqueue *);
2199 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2200 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2201
2202 static inline void restore_saved_sigmask(void)
2203 {
2204 if (test_and_clear_restore_sigmask())
2205 __set_current_blocked(&current->saved_sigmask);
2206 }
2207
2208 static inline sigset_t *sigmask_to_save(void)
2209 {
2210 sigset_t *res = &current->blocked;
2211 if (unlikely(test_restore_sigmask()))
2212 res = &current->saved_sigmask;
2213 return res;
2214 }
2215
2216 static inline int kill_cad_pid(int sig, int priv)
2217 {
2218 return kill_pid(cad_pid, sig, priv);
2219 }
2220
2221 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2222 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2223 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2224 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2225
2226 /*
2227 * True if we are on the alternate signal stack.
2228 */
2229 static inline int on_sig_stack(unsigned long sp)
2230 {
2231 #ifdef CONFIG_STACK_GROWSUP
2232 return sp >= current->sas_ss_sp &&
2233 sp - current->sas_ss_sp < current->sas_ss_size;
2234 #else
2235 return sp > current->sas_ss_sp &&
2236 sp - current->sas_ss_sp <= current->sas_ss_size;
2237 #endif
2238 }
2239
2240 static inline int sas_ss_flags(unsigned long sp)
2241 {
2242 return (current->sas_ss_size == 0 ? SS_DISABLE
2243 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2244 }
2245
2246 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2247 {
2248 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2249 #ifdef CONFIG_STACK_GROWSUP
2250 return current->sas_ss_sp;
2251 #else
2252 return current->sas_ss_sp + current->sas_ss_size;
2253 #endif
2254 return sp;
2255 }
2256
2257 /*
2258 * Routines for handling mm_structs
2259 */
2260 extern struct mm_struct * mm_alloc(void);
2261
2262 /* mmdrop drops the mm and the page tables */
2263 extern void __mmdrop(struct mm_struct *);
2264 static inline void mmdrop(struct mm_struct * mm)
2265 {
2266 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2267 __mmdrop(mm);
2268 }
2269
2270 /* mmput gets rid of the mappings and all user-space */
2271 extern void mmput(struct mm_struct *);
2272 /* Grab a reference to a task's mm, if it is not already going away */
2273 extern struct mm_struct *get_task_mm(struct task_struct *task);
2274 /*
2275 * Grab a reference to a task's mm, if it is not already going away
2276 * and ptrace_may_access with the mode parameter passed to it
2277 * succeeds.
2278 */
2279 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2280 /* Remove the current tasks stale references to the old mm_struct */
2281 extern void mm_release(struct task_struct *, struct mm_struct *);
2282 /* Allocate a new mm structure and copy contents from tsk->mm */
2283 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2284
2285 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2286 struct task_struct *);
2287 extern void flush_thread(void);
2288 extern void exit_thread(void);
2289
2290 extern void exit_files(struct task_struct *);
2291 extern void __cleanup_sighand(struct sighand_struct *);
2292
2293 extern void exit_itimers(struct signal_struct *);
2294 extern void flush_itimer_signals(void);
2295
2296 extern void do_group_exit(int);
2297
2298 extern int allow_signal(int);
2299 extern int disallow_signal(int);
2300
2301 extern int do_execve(const char *,
2302 const char __user * const __user *,
2303 const char __user * const __user *);
2304 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2305 struct task_struct *fork_idle(int);
2306 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2307
2308 extern void set_task_comm(struct task_struct *tsk, char *from);
2309 extern char *get_task_comm(char *to, struct task_struct *tsk);
2310
2311 #ifdef CONFIG_SMP
2312 void scheduler_ipi(void);
2313 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2314 #else
2315 static inline void scheduler_ipi(void) { }
2316 static inline unsigned long wait_task_inactive(struct task_struct *p,
2317 long match_state)
2318 {
2319 return 1;
2320 }
2321 #endif
2322
2323 #define next_task(p) \
2324 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2325
2326 #define for_each_process(p) \
2327 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2328
2329 extern bool current_is_single_threaded(void);
2330
2331 /*
2332 * Careful: do_each_thread/while_each_thread is a double loop so
2333 * 'break' will not work as expected - use goto instead.
2334 */
2335 #define do_each_thread(g, t) \
2336 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2337
2338 #define while_each_thread(g, t) \
2339 while ((t = next_thread(t)) != g)
2340
2341 static inline int get_nr_threads(struct task_struct *tsk)
2342 {
2343 return tsk->signal->nr_threads;
2344 }
2345
2346 static inline bool thread_group_leader(struct task_struct *p)
2347 {
2348 return p->exit_signal >= 0;
2349 }
2350
2351 /* Do to the insanities of de_thread it is possible for a process
2352 * to have the pid of the thread group leader without actually being
2353 * the thread group leader. For iteration through the pids in proc
2354 * all we care about is that we have a task with the appropriate
2355 * pid, we don't actually care if we have the right task.
2356 */
2357 static inline bool has_group_leader_pid(struct task_struct *p)
2358 {
2359 return task_pid(p) == p->signal->leader_pid;
2360 }
2361
2362 static inline
2363 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2364 {
2365 return p1->signal == p2->signal;
2366 }
2367
2368 static inline struct task_struct *next_thread(const struct task_struct *p)
2369 {
2370 return list_entry_rcu(p->thread_group.next,
2371 struct task_struct, thread_group);
2372 }
2373
2374 static inline int thread_group_empty(struct task_struct *p)
2375 {
2376 return list_empty(&p->thread_group);
2377 }
2378
2379 #define delay_group_leader(p) \
2380 (thread_group_leader(p) && !thread_group_empty(p))
2381
2382 /*
2383 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2384 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2385 * pins the final release of task.io_context. Also protects ->cpuset and
2386 * ->cgroup.subsys[]. And ->vfork_done.
2387 *
2388 * Nests both inside and outside of read_lock(&tasklist_lock).
2389 * It must not be nested with write_lock_irq(&tasklist_lock),
2390 * neither inside nor outside.
2391 */
2392 static inline void task_lock(struct task_struct *p)
2393 {
2394 spin_lock(&p->alloc_lock);
2395 }
2396
2397 static inline void task_unlock(struct task_struct *p)
2398 {
2399 spin_unlock(&p->alloc_lock);
2400 }
2401
2402 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2403 unsigned long *flags);
2404
2405 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2406 unsigned long *flags)
2407 {
2408 struct sighand_struct *ret;
2409
2410 ret = __lock_task_sighand(tsk, flags);
2411 (void)__cond_lock(&tsk->sighand->siglock, ret);
2412 return ret;
2413 }
2414
2415 static inline void unlock_task_sighand(struct task_struct *tsk,
2416 unsigned long *flags)
2417 {
2418 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2419 }
2420
2421 #ifdef CONFIG_CGROUPS
2422 static inline void threadgroup_change_begin(struct task_struct *tsk)
2423 {
2424 down_read(&tsk->signal->group_rwsem);
2425 }
2426 static inline void threadgroup_change_end(struct task_struct *tsk)
2427 {
2428 up_read(&tsk->signal->group_rwsem);
2429 }
2430
2431 /**
2432 * threadgroup_lock - lock threadgroup
2433 * @tsk: member task of the threadgroup to lock
2434 *
2435 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2436 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2437 * change ->group_leader/pid. This is useful for cases where the threadgroup
2438 * needs to stay stable across blockable operations.
2439 *
2440 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2441 * synchronization. While held, no new task will be added to threadgroup
2442 * and no existing live task will have its PF_EXITING set.
2443 *
2444 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2445 * sub-thread becomes a new leader.
2446 */
2447 static inline void threadgroup_lock(struct task_struct *tsk)
2448 {
2449 down_write(&tsk->signal->group_rwsem);
2450 }
2451
2452 /**
2453 * threadgroup_unlock - unlock threadgroup
2454 * @tsk: member task of the threadgroup to unlock
2455 *
2456 * Reverse threadgroup_lock().
2457 */
2458 static inline void threadgroup_unlock(struct task_struct *tsk)
2459 {
2460 up_write(&tsk->signal->group_rwsem);
2461 }
2462 #else
2463 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2464 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2465 static inline void threadgroup_lock(struct task_struct *tsk) {}
2466 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2467 #endif
2468
2469 #ifndef __HAVE_THREAD_FUNCTIONS
2470
2471 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2472 #define task_stack_page(task) ((task)->stack)
2473
2474 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2475 {
2476 *task_thread_info(p) = *task_thread_info(org);
2477 task_thread_info(p)->task = p;
2478 }
2479
2480 static inline unsigned long *end_of_stack(struct task_struct *p)
2481 {
2482 return (unsigned long *)(task_thread_info(p) + 1);
2483 }
2484
2485 #endif
2486
2487 static inline int object_is_on_stack(void *obj)
2488 {
2489 void *stack = task_stack_page(current);
2490
2491 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2492 }
2493
2494 extern void thread_info_cache_init(void);
2495
2496 #ifdef CONFIG_DEBUG_STACK_USAGE
2497 static inline unsigned long stack_not_used(struct task_struct *p)
2498 {
2499 unsigned long *n = end_of_stack(p);
2500
2501 do { /* Skip over canary */
2502 n++;
2503 } while (!*n);
2504
2505 return (unsigned long)n - (unsigned long)end_of_stack(p);
2506 }
2507 #endif
2508
2509 /* set thread flags in other task's structures
2510 * - see asm/thread_info.h for TIF_xxxx flags available
2511 */
2512 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2513 {
2514 set_ti_thread_flag(task_thread_info(tsk), flag);
2515 }
2516
2517 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2518 {
2519 clear_ti_thread_flag(task_thread_info(tsk), flag);
2520 }
2521
2522 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2523 {
2524 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2525 }
2526
2527 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2528 {
2529 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2530 }
2531
2532 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2533 {
2534 return test_ti_thread_flag(task_thread_info(tsk), flag);
2535 }
2536
2537 static inline void set_tsk_need_resched(struct task_struct *tsk)
2538 {
2539 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2540 }
2541
2542 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2543 {
2544 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2545 }
2546
2547 static inline int test_tsk_need_resched(struct task_struct *tsk)
2548 {
2549 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2550 }
2551
2552 static inline int restart_syscall(void)
2553 {
2554 set_tsk_thread_flag(current, TIF_SIGPENDING);
2555 return -ERESTARTNOINTR;
2556 }
2557
2558 static inline int signal_pending(struct task_struct *p)
2559 {
2560 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2561 }
2562
2563 static inline int __fatal_signal_pending(struct task_struct *p)
2564 {
2565 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2566 }
2567
2568 static inline int fatal_signal_pending(struct task_struct *p)
2569 {
2570 return signal_pending(p) && __fatal_signal_pending(p);
2571 }
2572
2573 static inline int signal_pending_state(long state, struct task_struct *p)
2574 {
2575 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2576 return 0;
2577 if (!signal_pending(p))
2578 return 0;
2579
2580 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2581 }
2582
2583 /*
2584 * cond_resched() and cond_resched_lock(): latency reduction via
2585 * explicit rescheduling in places that are safe. The return
2586 * value indicates whether a reschedule was done in fact.
2587 * cond_resched_lock() will drop the spinlock before scheduling,
2588 * cond_resched_softirq() will enable bhs before scheduling.
2589 */
2590 extern int _cond_resched(void);
2591
2592 #define cond_resched() ({ \
2593 __might_sleep(__FILE__, __LINE__, 0); \
2594 _cond_resched(); \
2595 })
2596
2597 extern int __cond_resched_lock(spinlock_t *lock);
2598
2599 #ifdef CONFIG_PREEMPT_COUNT
2600 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2601 #else
2602 #define PREEMPT_LOCK_OFFSET 0
2603 #endif
2604
2605 #define cond_resched_lock(lock) ({ \
2606 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2607 __cond_resched_lock(lock); \
2608 })
2609
2610 extern int __cond_resched_softirq(void);
2611
2612 #define cond_resched_softirq() ({ \
2613 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2614 __cond_resched_softirq(); \
2615 })
2616
2617 static inline void cond_resched_rcu(void)
2618 {
2619 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2620 rcu_read_unlock();
2621 cond_resched();
2622 rcu_read_lock();
2623 #endif
2624 }
2625
2626 /*
2627 * Does a critical section need to be broken due to another
2628 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2629 * but a general need for low latency)
2630 */
2631 static inline int spin_needbreak(spinlock_t *lock)
2632 {
2633 #ifdef CONFIG_PREEMPT
2634 return spin_is_contended(lock);
2635 #else
2636 return 0;
2637 #endif
2638 }
2639
2640 /*
2641 * Idle thread specific functions to determine the need_resched
2642 * polling state. We have two versions, one based on TS_POLLING in
2643 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2644 * thread_info.flags
2645 */
2646 #ifdef TS_POLLING
2647 static inline int tsk_is_polling(struct task_struct *p)
2648 {
2649 return task_thread_info(p)->status & TS_POLLING;
2650 }
2651 static inline void __current_set_polling(void)
2652 {
2653 current_thread_info()->status |= TS_POLLING;
2654 }
2655
2656 static inline bool __must_check current_set_polling_and_test(void)
2657 {
2658 __current_set_polling();
2659
2660 /*
2661 * Polling state must be visible before we test NEED_RESCHED,
2662 * paired by resched_task()
2663 */
2664 smp_mb();
2665
2666 return unlikely(tif_need_resched());
2667 }
2668
2669 static inline void __current_clr_polling(void)
2670 {
2671 current_thread_info()->status &= ~TS_POLLING;
2672 }
2673
2674 static inline bool __must_check current_clr_polling_and_test(void)
2675 {
2676 __current_clr_polling();
2677
2678 /*
2679 * Polling state must be visible before we test NEED_RESCHED,
2680 * paired by resched_task()
2681 */
2682 smp_mb();
2683
2684 return unlikely(tif_need_resched());
2685 }
2686 #elif defined(TIF_POLLING_NRFLAG)
2687 static inline int tsk_is_polling(struct task_struct *p)
2688 {
2689 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2690 }
2691
2692 static inline void __current_set_polling(void)
2693 {
2694 set_thread_flag(TIF_POLLING_NRFLAG);
2695 }
2696
2697 static inline bool __must_check current_set_polling_and_test(void)
2698 {
2699 __current_set_polling();
2700
2701 /*
2702 * Polling state must be visible before we test NEED_RESCHED,
2703 * paired by resched_task()
2704 *
2705 * XXX: assumes set/clear bit are identical barrier wise.
2706 */
2707 smp_mb__after_clear_bit();
2708
2709 return unlikely(tif_need_resched());
2710 }
2711
2712 static inline void __current_clr_polling(void)
2713 {
2714 clear_thread_flag(TIF_POLLING_NRFLAG);
2715 }
2716
2717 static inline bool __must_check current_clr_polling_and_test(void)
2718 {
2719 __current_clr_polling();
2720
2721 /*
2722 * Polling state must be visible before we test NEED_RESCHED,
2723 * paired by resched_task()
2724 */
2725 smp_mb__after_clear_bit();
2726
2727 return unlikely(tif_need_resched());
2728 }
2729
2730 #else
2731 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2732 static inline void __current_set_polling(void) { }
2733 static inline void __current_clr_polling(void) { }
2734
2735 static inline bool __must_check current_set_polling_and_test(void)
2736 {
2737 return unlikely(tif_need_resched());
2738 }
2739 static inline bool __must_check current_clr_polling_and_test(void)
2740 {
2741 return unlikely(tif_need_resched());
2742 }
2743 #endif
2744
2745 static __always_inline bool need_resched(void)
2746 {
2747 return unlikely(tif_need_resched());
2748 }
2749
2750 /*
2751 * Thread group CPU time accounting.
2752 */
2753 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2754 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2755
2756 static inline void thread_group_cputime_init(struct signal_struct *sig)
2757 {
2758 raw_spin_lock_init(&sig->cputimer.lock);
2759 }
2760
2761 /*
2762 * Reevaluate whether the task has signals pending delivery.
2763 * Wake the task if so.
2764 * This is required every time the blocked sigset_t changes.
2765 * callers must hold sighand->siglock.
2766 */
2767 extern void recalc_sigpending_and_wake(struct task_struct *t);
2768 extern void recalc_sigpending(void);
2769
2770 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2771
2772 static inline void signal_wake_up(struct task_struct *t, bool resume)
2773 {
2774 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2775 }
2776 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2777 {
2778 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2779 }
2780
2781 /*
2782 * Wrappers for p->thread_info->cpu access. No-op on UP.
2783 */
2784 #ifdef CONFIG_SMP
2785
2786 static inline unsigned int task_cpu(const struct task_struct *p)
2787 {
2788 return task_thread_info(p)->cpu;
2789 }
2790
2791 static inline int task_node(const struct task_struct *p)
2792 {
2793 return cpu_to_node(task_cpu(p));
2794 }
2795
2796 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2797
2798 #else
2799
2800 static inline unsigned int task_cpu(const struct task_struct *p)
2801 {
2802 return 0;
2803 }
2804
2805 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2806 {
2807 }
2808
2809 #endif /* CONFIG_SMP */
2810
2811 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2812 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2813
2814 #ifdef CONFIG_CGROUP_SCHED
2815 extern struct task_group root_task_group;
2816 #endif /* CONFIG_CGROUP_SCHED */
2817
2818 extern int task_can_switch_user(struct user_struct *up,
2819 struct task_struct *tsk);
2820
2821 #ifdef CONFIG_TASK_XACCT
2822 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2823 {
2824 tsk->ioac.rchar += amt;
2825 }
2826
2827 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2828 {
2829 tsk->ioac.wchar += amt;
2830 }
2831
2832 static inline void inc_syscr(struct task_struct *tsk)
2833 {
2834 tsk->ioac.syscr++;
2835 }
2836
2837 static inline void inc_syscw(struct task_struct *tsk)
2838 {
2839 tsk->ioac.syscw++;
2840 }
2841 #else
2842 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2843 {
2844 }
2845
2846 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2847 {
2848 }
2849
2850 static inline void inc_syscr(struct task_struct *tsk)
2851 {
2852 }
2853
2854 static inline void inc_syscw(struct task_struct *tsk)
2855 {
2856 }
2857 #endif
2858
2859 #ifndef TASK_SIZE_OF
2860 #define TASK_SIZE_OF(tsk) TASK_SIZE
2861 #endif
2862
2863 #ifdef CONFIG_MM_OWNER
2864 extern void mm_update_next_owner(struct mm_struct *mm);
2865 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2866 #else
2867 static inline void mm_update_next_owner(struct mm_struct *mm)
2868 {
2869 }
2870
2871 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2872 {
2873 }
2874 #endif /* CONFIG_MM_OWNER */
2875
2876 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2877 unsigned int limit)
2878 {
2879 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2880 }
2881
2882 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2883 unsigned int limit)
2884 {
2885 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2886 }
2887
2888 static inline unsigned long rlimit(unsigned int limit)
2889 {
2890 return task_rlimit(current, limit);
2891 }
2892
2893 static inline unsigned long rlimit_max(unsigned int limit)
2894 {
2895 return task_rlimit_max(current, limit);
2896 }
2897
2898 #endif
This page took 0.095127 seconds and 5 git commands to generate.