schedstat: consolidate per-task cpu runtime stats
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99
100 /*
101 * List of flags we want to share for kernel threads,
102 * if only because they are not used by them anyway.
103 */
104 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
105
106 /*
107 * These are the constant used to fake the fixed-point load-average
108 * counting. Some notes:
109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
110 * a load-average precision of 10 bits integer + 11 bits fractional
111 * - if you want to count load-averages more often, you need more
112 * precision, or rounding will get you. With 2-second counting freq,
113 * the EXP_n values would be 1981, 2034 and 2043 if still using only
114 * 11 bit fractions.
115 */
116 extern unsigned long avenrun[]; /* Load averages */
117
118 #define FSHIFT 11 /* nr of bits of precision */
119 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
120 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
121 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
122 #define EXP_5 2014 /* 1/exp(5sec/5min) */
123 #define EXP_15 2037 /* 1/exp(5sec/15min) */
124
125 #define CALC_LOAD(load,exp,n) \
126 load *= exp; \
127 load += n*(FIXED_1-exp); \
128 load >>= FSHIFT;
129
130 extern unsigned long total_forks;
131 extern int nr_threads;
132 DECLARE_PER_CPU(unsigned long, process_counts);
133 extern int nr_processes(void);
134 extern unsigned long nr_running(void);
135 extern unsigned long nr_uninterruptible(void);
136 extern unsigned long nr_active(void);
137 extern unsigned long nr_iowait(void);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 extern unsigned long long time_sync_thresh;
162
163 /*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211 /*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern int runqueue_is_locked(void);
250 extern void task_rq_unlock_wait(struct task_struct *p);
251
252 extern cpumask_t nohz_cpu_mask;
253 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
254 extern int select_nohz_load_balancer(int cpu);
255 #else
256 static inline int select_nohz_load_balancer(int cpu)
257 {
258 return 0;
259 }
260 #endif
261
262 /*
263 * Only dump TASK_* tasks. (0 for all tasks)
264 */
265 extern void show_state_filter(unsigned long state_filter);
266
267 static inline void show_state(void)
268 {
269 show_state_filter(0);
270 }
271
272 extern void show_regs(struct pt_regs *);
273
274 /*
275 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
276 * task), SP is the stack pointer of the first frame that should be shown in the back
277 * trace (or NULL if the entire call-chain of the task should be shown).
278 */
279 extern void show_stack(struct task_struct *task, unsigned long *sp);
280
281 void io_schedule(void);
282 long io_schedule_timeout(long timeout);
283
284 extern void cpu_init (void);
285 extern void trap_init(void);
286 extern void account_process_tick(struct task_struct *task, int user);
287 extern void update_process_times(int user);
288 extern void scheduler_tick(void);
289
290 extern void sched_show_task(struct task_struct *p);
291
292 #ifdef CONFIG_DETECT_SOFTLOCKUP
293 extern void softlockup_tick(void);
294 extern void touch_softlockup_watchdog(void);
295 extern void touch_all_softlockup_watchdogs(void);
296 extern unsigned int softlockup_panic;
297 extern unsigned long sysctl_hung_task_check_count;
298 extern unsigned long sysctl_hung_task_timeout_secs;
299 extern unsigned long sysctl_hung_task_warnings;
300 extern int softlockup_thresh;
301 #else
302 static inline void softlockup_tick(void)
303 {
304 }
305 static inline void spawn_softlockup_task(void)
306 {
307 }
308 static inline void touch_softlockup_watchdog(void)
309 {
310 }
311 static inline void touch_all_softlockup_watchdogs(void)
312 {
313 }
314 #endif
315
316
317 /* Attach to any functions which should be ignored in wchan output. */
318 #define __sched __attribute__((__section__(".sched.text")))
319
320 /* Linker adds these: start and end of __sched functions */
321 extern char __sched_text_start[], __sched_text_end[];
322
323 /* Is this address in the __sched functions? */
324 extern int in_sched_functions(unsigned long addr);
325
326 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
327 extern signed long schedule_timeout(signed long timeout);
328 extern signed long schedule_timeout_interruptible(signed long timeout);
329 extern signed long schedule_timeout_killable(signed long timeout);
330 extern signed long schedule_timeout_uninterruptible(signed long timeout);
331 asmlinkage void schedule(void);
332
333 struct nsproxy;
334 struct user_namespace;
335
336 /* Maximum number of active map areas.. This is a random (large) number */
337 #define DEFAULT_MAX_MAP_COUNT 65536
338
339 extern int sysctl_max_map_count;
340
341 #include <linux/aio.h>
342
343 extern unsigned long
344 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
345 unsigned long, unsigned long);
346 extern unsigned long
347 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
348 unsigned long len, unsigned long pgoff,
349 unsigned long flags);
350 extern void arch_unmap_area(struct mm_struct *, unsigned long);
351 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
352
353 #if USE_SPLIT_PTLOCKS
354 /*
355 * The mm counters are not protected by its page_table_lock,
356 * so must be incremented atomically.
357 */
358 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
359 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
360 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
361 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
362 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
363
364 #else /* !USE_SPLIT_PTLOCKS */
365 /*
366 * The mm counters are protected by its page_table_lock,
367 * so can be incremented directly.
368 */
369 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
370 #define get_mm_counter(mm, member) ((mm)->_##member)
371 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
372 #define inc_mm_counter(mm, member) (mm)->_##member++
373 #define dec_mm_counter(mm, member) (mm)->_##member--
374
375 #endif /* !USE_SPLIT_PTLOCKS */
376
377 #define get_mm_rss(mm) \
378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
379 #define update_hiwater_rss(mm) do { \
380 unsigned long _rss = get_mm_rss(mm); \
381 if ((mm)->hiwater_rss < _rss) \
382 (mm)->hiwater_rss = _rss; \
383 } while (0)
384 #define update_hiwater_vm(mm) do { \
385 if ((mm)->hiwater_vm < (mm)->total_vm) \
386 (mm)->hiwater_vm = (mm)->total_vm; \
387 } while (0)
388
389 extern void set_dumpable(struct mm_struct *mm, int value);
390 extern int get_dumpable(struct mm_struct *mm);
391
392 /* mm flags */
393 /* dumpable bits */
394 #define MMF_DUMPABLE 0 /* core dump is permitted */
395 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
396 #define MMF_DUMPABLE_BITS 2
397
398 /* coredump filter bits */
399 #define MMF_DUMP_ANON_PRIVATE 2
400 #define MMF_DUMP_ANON_SHARED 3
401 #define MMF_DUMP_MAPPED_PRIVATE 4
402 #define MMF_DUMP_MAPPED_SHARED 5
403 #define MMF_DUMP_ELF_HEADERS 6
404 #define MMF_DUMP_HUGETLB_PRIVATE 7
405 #define MMF_DUMP_HUGETLB_SHARED 8
406 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
407 #define MMF_DUMP_FILTER_BITS 7
408 #define MMF_DUMP_FILTER_MASK \
409 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
410 #define MMF_DUMP_FILTER_DEFAULT \
411 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
412 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
413
414 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
415 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
416 #else
417 # define MMF_DUMP_MASK_DEFAULT_ELF 0
418 #endif
419
420 struct sighand_struct {
421 atomic_t count;
422 struct k_sigaction action[_NSIG];
423 spinlock_t siglock;
424 wait_queue_head_t signalfd_wqh;
425 };
426
427 struct pacct_struct {
428 int ac_flag;
429 long ac_exitcode;
430 unsigned long ac_mem;
431 cputime_t ac_utime, ac_stime;
432 unsigned long ac_minflt, ac_majflt;
433 };
434
435 /**
436 * struct task_cputime - collected CPU time counts
437 * @utime: time spent in user mode, in &cputime_t units
438 * @stime: time spent in kernel mode, in &cputime_t units
439 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
440 *
441 * This structure groups together three kinds of CPU time that are
442 * tracked for threads and thread groups. Most things considering
443 * CPU time want to group these counts together and treat all three
444 * of them in parallel.
445 */
446 struct task_cputime {
447 cputime_t utime;
448 cputime_t stime;
449 unsigned long long sum_exec_runtime;
450 };
451 /* Alternate field names when used to cache expirations. */
452 #define prof_exp stime
453 #define virt_exp utime
454 #define sched_exp sum_exec_runtime
455
456 /**
457 * struct thread_group_cputime - thread group interval timer counts
458 * @totals: thread group interval timers; substructure for
459 * uniprocessor kernel, per-cpu for SMP kernel.
460 *
461 * This structure contains the version of task_cputime, above, that is
462 * used for thread group CPU clock calculations.
463 */
464 struct thread_group_cputime {
465 struct task_cputime *totals;
466 };
467
468 /*
469 * NOTE! "signal_struct" does not have it's own
470 * locking, because a shared signal_struct always
471 * implies a shared sighand_struct, so locking
472 * sighand_struct is always a proper superset of
473 * the locking of signal_struct.
474 */
475 struct signal_struct {
476 atomic_t count;
477 atomic_t live;
478
479 wait_queue_head_t wait_chldexit; /* for wait4() */
480
481 /* current thread group signal load-balancing target: */
482 struct task_struct *curr_target;
483
484 /* shared signal handling: */
485 struct sigpending shared_pending;
486
487 /* thread group exit support */
488 int group_exit_code;
489 /* overloaded:
490 * - notify group_exit_task when ->count is equal to notify_count
491 * - everyone except group_exit_task is stopped during signal delivery
492 * of fatal signals, group_exit_task processes the signal.
493 */
494 int notify_count;
495 struct task_struct *group_exit_task;
496
497 /* thread group stop support, overloads group_exit_code too */
498 int group_stop_count;
499 unsigned int flags; /* see SIGNAL_* flags below */
500
501 /* POSIX.1b Interval Timers */
502 struct list_head posix_timers;
503
504 /* ITIMER_REAL timer for the process */
505 struct hrtimer real_timer;
506 struct pid *leader_pid;
507 ktime_t it_real_incr;
508
509 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
510 cputime_t it_prof_expires, it_virt_expires;
511 cputime_t it_prof_incr, it_virt_incr;
512
513 /*
514 * Thread group totals for process CPU clocks.
515 * See thread_group_cputime(), et al, for details.
516 */
517 struct thread_group_cputime cputime;
518
519 /* Earliest-expiration cache. */
520 struct task_cputime cputime_expires;
521
522 struct list_head cpu_timers[3];
523
524 /* job control IDs */
525
526 /*
527 * pgrp and session fields are deprecated.
528 * use the task_session_Xnr and task_pgrp_Xnr routines below
529 */
530
531 union {
532 pid_t pgrp __deprecated;
533 pid_t __pgrp;
534 };
535
536 struct pid *tty_old_pgrp;
537
538 union {
539 pid_t session __deprecated;
540 pid_t __session;
541 };
542
543 /* boolean value for session group leader */
544 int leader;
545
546 struct tty_struct *tty; /* NULL if no tty */
547
548 /*
549 * Cumulative resource counters for dead threads in the group,
550 * and for reaped dead child processes forked by this group.
551 * Live threads maintain their own counters and add to these
552 * in __exit_signal, except for the group leader.
553 */
554 cputime_t cutime, cstime;
555 cputime_t gtime;
556 cputime_t cgtime;
557 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
558 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
559 unsigned long inblock, oublock, cinblock, coublock;
560 struct task_io_accounting ioac;
561
562 /*
563 * We don't bother to synchronize most readers of this at all,
564 * because there is no reader checking a limit that actually needs
565 * to get both rlim_cur and rlim_max atomically, and either one
566 * alone is a single word that can safely be read normally.
567 * getrlimit/setrlimit use task_lock(current->group_leader) to
568 * protect this instead of the siglock, because they really
569 * have no need to disable irqs.
570 */
571 struct rlimit rlim[RLIM_NLIMITS];
572
573 /* keep the process-shared keyrings here so that they do the right
574 * thing in threads created with CLONE_THREAD */
575 #ifdef CONFIG_KEYS
576 struct key *session_keyring; /* keyring inherited over fork */
577 struct key *process_keyring; /* keyring private to this process */
578 #endif
579 #ifdef CONFIG_BSD_PROCESS_ACCT
580 struct pacct_struct pacct; /* per-process accounting information */
581 #endif
582 #ifdef CONFIG_TASKSTATS
583 struct taskstats *stats;
584 #endif
585 #ifdef CONFIG_AUDIT
586 unsigned audit_tty;
587 struct tty_audit_buf *tty_audit_buf;
588 #endif
589 };
590
591 /* Context switch must be unlocked if interrupts are to be enabled */
592 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
593 # define __ARCH_WANT_UNLOCKED_CTXSW
594 #endif
595
596 /*
597 * Bits in flags field of signal_struct.
598 */
599 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
600 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
601 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
602 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
603 /*
604 * Pending notifications to parent.
605 */
606 #define SIGNAL_CLD_STOPPED 0x00000010
607 #define SIGNAL_CLD_CONTINUED 0x00000020
608 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
609
610 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
611
612 /* If true, all threads except ->group_exit_task have pending SIGKILL */
613 static inline int signal_group_exit(const struct signal_struct *sig)
614 {
615 return (sig->flags & SIGNAL_GROUP_EXIT) ||
616 (sig->group_exit_task != NULL);
617 }
618
619 /*
620 * Some day this will be a full-fledged user tracking system..
621 */
622 struct user_struct {
623 atomic_t __count; /* reference count */
624 atomic_t processes; /* How many processes does this user have? */
625 atomic_t files; /* How many open files does this user have? */
626 atomic_t sigpending; /* How many pending signals does this user have? */
627 #ifdef CONFIG_INOTIFY_USER
628 atomic_t inotify_watches; /* How many inotify watches does this user have? */
629 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
630 #endif
631 #ifdef CONFIG_EPOLL
632 atomic_t epoll_devs; /* The number of epoll descriptors currently open */
633 atomic_t epoll_watches; /* The number of file descriptors currently watched */
634 #endif
635 #ifdef CONFIG_POSIX_MQUEUE
636 /* protected by mq_lock */
637 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
638 #endif
639 unsigned long locked_shm; /* How many pages of mlocked shm ? */
640
641 #ifdef CONFIG_KEYS
642 struct key *uid_keyring; /* UID specific keyring */
643 struct key *session_keyring; /* UID's default session keyring */
644 #endif
645
646 /* Hash table maintenance information */
647 struct hlist_node uidhash_node;
648 uid_t uid;
649
650 #ifdef CONFIG_USER_SCHED
651 struct task_group *tg;
652 #ifdef CONFIG_SYSFS
653 struct kobject kobj;
654 struct work_struct work;
655 #endif
656 #endif
657 };
658
659 extern int uids_sysfs_init(void);
660
661 extern struct user_struct *find_user(uid_t);
662
663 extern struct user_struct root_user;
664 #define INIT_USER (&root_user)
665
666 struct backing_dev_info;
667 struct reclaim_state;
668
669 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
670 struct sched_info {
671 /* cumulative counters */
672 unsigned long pcount; /* # of times run on this cpu */
673 unsigned long long run_delay; /* time spent waiting on a runqueue */
674
675 /* timestamps */
676 unsigned long long last_arrival,/* when we last ran on a cpu */
677 last_queued; /* when we were last queued to run */
678 #ifdef CONFIG_SCHEDSTATS
679 /* BKL stats */
680 unsigned int bkl_count;
681 #endif
682 };
683 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
684
685 #ifdef CONFIG_TASK_DELAY_ACCT
686 struct task_delay_info {
687 spinlock_t lock;
688 unsigned int flags; /* Private per-task flags */
689
690 /* For each stat XXX, add following, aligned appropriately
691 *
692 * struct timespec XXX_start, XXX_end;
693 * u64 XXX_delay;
694 * u32 XXX_count;
695 *
696 * Atomicity of updates to XXX_delay, XXX_count protected by
697 * single lock above (split into XXX_lock if contention is an issue).
698 */
699
700 /*
701 * XXX_count is incremented on every XXX operation, the delay
702 * associated with the operation is added to XXX_delay.
703 * XXX_delay contains the accumulated delay time in nanoseconds.
704 */
705 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
706 u64 blkio_delay; /* wait for sync block io completion */
707 u64 swapin_delay; /* wait for swapin block io completion */
708 u32 blkio_count; /* total count of the number of sync block */
709 /* io operations performed */
710 u32 swapin_count; /* total count of the number of swapin block */
711 /* io operations performed */
712
713 struct timespec freepages_start, freepages_end;
714 u64 freepages_delay; /* wait for memory reclaim */
715 u32 freepages_count; /* total count of memory reclaim */
716 };
717 #endif /* CONFIG_TASK_DELAY_ACCT */
718
719 static inline int sched_info_on(void)
720 {
721 #ifdef CONFIG_SCHEDSTATS
722 return 1;
723 #elif defined(CONFIG_TASK_DELAY_ACCT)
724 extern int delayacct_on;
725 return delayacct_on;
726 #else
727 return 0;
728 #endif
729 }
730
731 enum cpu_idle_type {
732 CPU_IDLE,
733 CPU_NOT_IDLE,
734 CPU_NEWLY_IDLE,
735 CPU_MAX_IDLE_TYPES
736 };
737
738 /*
739 * sched-domains (multiprocessor balancing) declarations:
740 */
741
742 /*
743 * Increase resolution of nice-level calculations:
744 */
745 #define SCHED_LOAD_SHIFT 10
746 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
747
748 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
749
750 #ifdef CONFIG_SMP
751 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
752 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
753 #define SD_BALANCE_EXEC 4 /* Balance on exec */
754 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
755 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
756 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
757 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
758 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
759 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
760 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
761 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
762 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
763
764 #define BALANCE_FOR_MC_POWER \
765 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
766
767 #define BALANCE_FOR_PKG_POWER \
768 ((sched_mc_power_savings || sched_smt_power_savings) ? \
769 SD_POWERSAVINGS_BALANCE : 0)
770
771 #define test_sd_parent(sd, flag) ((sd->parent && \
772 (sd->parent->flags & flag)) ? 1 : 0)
773
774
775 struct sched_group {
776 struct sched_group *next; /* Must be a circular list */
777 cpumask_t cpumask;
778
779 /*
780 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
781 * single CPU. This is read only (except for setup, hotplug CPU).
782 * Note : Never change cpu_power without recompute its reciprocal
783 */
784 unsigned int __cpu_power;
785 /*
786 * reciprocal value of cpu_power to avoid expensive divides
787 * (see include/linux/reciprocal_div.h)
788 */
789 u32 reciprocal_cpu_power;
790 };
791
792 enum sched_domain_level {
793 SD_LV_NONE = 0,
794 SD_LV_SIBLING,
795 SD_LV_MC,
796 SD_LV_CPU,
797 SD_LV_NODE,
798 SD_LV_ALLNODES,
799 SD_LV_MAX
800 };
801
802 struct sched_domain_attr {
803 int relax_domain_level;
804 };
805
806 #define SD_ATTR_INIT (struct sched_domain_attr) { \
807 .relax_domain_level = -1, \
808 }
809
810 struct sched_domain {
811 /* These fields must be setup */
812 struct sched_domain *parent; /* top domain must be null terminated */
813 struct sched_domain *child; /* bottom domain must be null terminated */
814 struct sched_group *groups; /* the balancing groups of the domain */
815 cpumask_t span; /* span of all CPUs in this domain */
816 unsigned long min_interval; /* Minimum balance interval ms */
817 unsigned long max_interval; /* Maximum balance interval ms */
818 unsigned int busy_factor; /* less balancing by factor if busy */
819 unsigned int imbalance_pct; /* No balance until over watermark */
820 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
821 unsigned int busy_idx;
822 unsigned int idle_idx;
823 unsigned int newidle_idx;
824 unsigned int wake_idx;
825 unsigned int forkexec_idx;
826 int flags; /* See SD_* */
827 enum sched_domain_level level;
828
829 /* Runtime fields. */
830 unsigned long last_balance; /* init to jiffies. units in jiffies */
831 unsigned int balance_interval; /* initialise to 1. units in ms. */
832 unsigned int nr_balance_failed; /* initialise to 0 */
833
834 u64 last_update;
835
836 #ifdef CONFIG_SCHEDSTATS
837 /* load_balance() stats */
838 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
839 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
840 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
841 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
842 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
843 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
844 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
845 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
846
847 /* Active load balancing */
848 unsigned int alb_count;
849 unsigned int alb_failed;
850 unsigned int alb_pushed;
851
852 /* SD_BALANCE_EXEC stats */
853 unsigned int sbe_count;
854 unsigned int sbe_balanced;
855 unsigned int sbe_pushed;
856
857 /* SD_BALANCE_FORK stats */
858 unsigned int sbf_count;
859 unsigned int sbf_balanced;
860 unsigned int sbf_pushed;
861
862 /* try_to_wake_up() stats */
863 unsigned int ttwu_wake_remote;
864 unsigned int ttwu_move_affine;
865 unsigned int ttwu_move_balance;
866 #endif
867 #ifdef CONFIG_SCHED_DEBUG
868 char *name;
869 #endif
870 };
871
872 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
873 struct sched_domain_attr *dattr_new);
874 extern int arch_reinit_sched_domains(void);
875
876 #else /* CONFIG_SMP */
877
878 struct sched_domain_attr;
879
880 static inline void
881 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
882 struct sched_domain_attr *dattr_new)
883 {
884 }
885 #endif /* !CONFIG_SMP */
886
887 struct io_context; /* See blkdev.h */
888 #define NGROUPS_SMALL 32
889 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
890 struct group_info {
891 int ngroups;
892 atomic_t usage;
893 gid_t small_block[NGROUPS_SMALL];
894 int nblocks;
895 gid_t *blocks[0];
896 };
897
898 /*
899 * get_group_info() must be called with the owning task locked (via task_lock())
900 * when task != current. The reason being that the vast majority of callers are
901 * looking at current->group_info, which can not be changed except by the
902 * current task. Changing current->group_info requires the task lock, too.
903 */
904 #define get_group_info(group_info) do { \
905 atomic_inc(&(group_info)->usage); \
906 } while (0)
907
908 #define put_group_info(group_info) do { \
909 if (atomic_dec_and_test(&(group_info)->usage)) \
910 groups_free(group_info); \
911 } while (0)
912
913 extern struct group_info *groups_alloc(int gidsetsize);
914 extern void groups_free(struct group_info *group_info);
915 extern int set_current_groups(struct group_info *group_info);
916 extern int groups_search(struct group_info *group_info, gid_t grp);
917 /* access the groups "array" with this macro */
918 #define GROUP_AT(gi, i) \
919 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
920
921 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
922 extern void prefetch_stack(struct task_struct *t);
923 #else
924 static inline void prefetch_stack(struct task_struct *t) { }
925 #endif
926
927 struct audit_context; /* See audit.c */
928 struct mempolicy;
929 struct pipe_inode_info;
930 struct uts_namespace;
931
932 struct rq;
933 struct sched_domain;
934
935 struct sched_class {
936 const struct sched_class *next;
937
938 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
939 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
940 void (*yield_task) (struct rq *rq);
941
942 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
943
944 struct task_struct * (*pick_next_task) (struct rq *rq);
945 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
946
947 #ifdef CONFIG_SMP
948 int (*select_task_rq)(struct task_struct *p, int sync);
949
950 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
951 struct rq *busiest, unsigned long max_load_move,
952 struct sched_domain *sd, enum cpu_idle_type idle,
953 int *all_pinned, int *this_best_prio);
954
955 int (*move_one_task) (struct rq *this_rq, int this_cpu,
956 struct rq *busiest, struct sched_domain *sd,
957 enum cpu_idle_type idle);
958 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
959 void (*post_schedule) (struct rq *this_rq);
960 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
961
962 void (*set_cpus_allowed)(struct task_struct *p,
963 const cpumask_t *newmask);
964
965 void (*rq_online)(struct rq *rq);
966 void (*rq_offline)(struct rq *rq);
967 #endif
968
969 void (*set_curr_task) (struct rq *rq);
970 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
971 void (*task_new) (struct rq *rq, struct task_struct *p);
972
973 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
974 int running);
975 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
976 int running);
977 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
978 int oldprio, int running);
979
980 #ifdef CONFIG_FAIR_GROUP_SCHED
981 void (*moved_group) (struct task_struct *p);
982 #endif
983 };
984
985 struct load_weight {
986 unsigned long weight, inv_weight;
987 };
988
989 /*
990 * CFS stats for a schedulable entity (task, task-group etc)
991 *
992 * Current field usage histogram:
993 *
994 * 4 se->block_start
995 * 4 se->run_node
996 * 4 se->sleep_start
997 * 6 se->load.weight
998 */
999 struct sched_entity {
1000 struct load_weight load; /* for load-balancing */
1001 struct rb_node run_node;
1002 struct list_head group_node;
1003 unsigned int on_rq;
1004
1005 u64 exec_start;
1006 u64 sum_exec_runtime;
1007 u64 vruntime;
1008 u64 prev_sum_exec_runtime;
1009
1010 u64 last_wakeup;
1011 u64 avg_overlap;
1012
1013 #ifdef CONFIG_SCHEDSTATS
1014 u64 wait_start;
1015 u64 wait_max;
1016 u64 wait_count;
1017 u64 wait_sum;
1018
1019 u64 sleep_start;
1020 u64 sleep_max;
1021 s64 sum_sleep_runtime;
1022
1023 u64 block_start;
1024 u64 block_max;
1025 u64 exec_max;
1026 u64 slice_max;
1027
1028 u64 nr_migrations;
1029 u64 nr_migrations_cold;
1030 u64 nr_failed_migrations_affine;
1031 u64 nr_failed_migrations_running;
1032 u64 nr_failed_migrations_hot;
1033 u64 nr_forced_migrations;
1034 u64 nr_forced2_migrations;
1035
1036 u64 nr_wakeups;
1037 u64 nr_wakeups_sync;
1038 u64 nr_wakeups_migrate;
1039 u64 nr_wakeups_local;
1040 u64 nr_wakeups_remote;
1041 u64 nr_wakeups_affine;
1042 u64 nr_wakeups_affine_attempts;
1043 u64 nr_wakeups_passive;
1044 u64 nr_wakeups_idle;
1045 #endif
1046
1047 #ifdef CONFIG_FAIR_GROUP_SCHED
1048 struct sched_entity *parent;
1049 /* rq on which this entity is (to be) queued: */
1050 struct cfs_rq *cfs_rq;
1051 /* rq "owned" by this entity/group: */
1052 struct cfs_rq *my_q;
1053 #endif
1054 };
1055
1056 struct sched_rt_entity {
1057 struct list_head run_list;
1058 unsigned long timeout;
1059 unsigned int time_slice;
1060 int nr_cpus_allowed;
1061
1062 struct sched_rt_entity *back;
1063 #ifdef CONFIG_RT_GROUP_SCHED
1064 struct sched_rt_entity *parent;
1065 /* rq on which this entity is (to be) queued: */
1066 struct rt_rq *rt_rq;
1067 /* rq "owned" by this entity/group: */
1068 struct rt_rq *my_q;
1069 #endif
1070 };
1071
1072 struct task_struct {
1073 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1074 void *stack;
1075 atomic_t usage;
1076 unsigned int flags; /* per process flags, defined below */
1077 unsigned int ptrace;
1078
1079 int lock_depth; /* BKL lock depth */
1080
1081 #ifdef CONFIG_SMP
1082 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1083 int oncpu;
1084 #endif
1085 #endif
1086
1087 int prio, static_prio, normal_prio;
1088 unsigned int rt_priority;
1089 const struct sched_class *sched_class;
1090 struct sched_entity se;
1091 struct sched_rt_entity rt;
1092
1093 #ifdef CONFIG_PREEMPT_NOTIFIERS
1094 /* list of struct preempt_notifier: */
1095 struct hlist_head preempt_notifiers;
1096 #endif
1097
1098 /*
1099 * fpu_counter contains the number of consecutive context switches
1100 * that the FPU is used. If this is over a threshold, the lazy fpu
1101 * saving becomes unlazy to save the trap. This is an unsigned char
1102 * so that after 256 times the counter wraps and the behavior turns
1103 * lazy again; this to deal with bursty apps that only use FPU for
1104 * a short time
1105 */
1106 unsigned char fpu_counter;
1107 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1108 #ifdef CONFIG_BLK_DEV_IO_TRACE
1109 unsigned int btrace_seq;
1110 #endif
1111
1112 unsigned int policy;
1113 cpumask_t cpus_allowed;
1114
1115 #ifdef CONFIG_PREEMPT_RCU
1116 int rcu_read_lock_nesting;
1117 int rcu_flipctr_idx;
1118 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1119
1120 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1121 struct sched_info sched_info;
1122 #endif
1123
1124 struct list_head tasks;
1125
1126 struct mm_struct *mm, *active_mm;
1127
1128 /* task state */
1129 struct linux_binfmt *binfmt;
1130 int exit_state;
1131 int exit_code, exit_signal;
1132 int pdeath_signal; /* The signal sent when the parent dies */
1133 /* ??? */
1134 unsigned int personality;
1135 unsigned did_exec:1;
1136 pid_t pid;
1137 pid_t tgid;
1138
1139 #ifdef CONFIG_CC_STACKPROTECTOR
1140 /* Canary value for the -fstack-protector gcc feature */
1141 unsigned long stack_canary;
1142 #endif
1143 /*
1144 * pointers to (original) parent process, youngest child, younger sibling,
1145 * older sibling, respectively. (p->father can be replaced with
1146 * p->real_parent->pid)
1147 */
1148 struct task_struct *real_parent; /* real parent process */
1149 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1150 /*
1151 * children/sibling forms the list of my natural children
1152 */
1153 struct list_head children; /* list of my children */
1154 struct list_head sibling; /* linkage in my parent's children list */
1155 struct task_struct *group_leader; /* threadgroup leader */
1156
1157 /*
1158 * ptraced is the list of tasks this task is using ptrace on.
1159 * This includes both natural children and PTRACE_ATTACH targets.
1160 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1161 */
1162 struct list_head ptraced;
1163 struct list_head ptrace_entry;
1164
1165 /* PID/PID hash table linkage. */
1166 struct pid_link pids[PIDTYPE_MAX];
1167 struct list_head thread_group;
1168
1169 struct completion *vfork_done; /* for vfork() */
1170 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1171 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1172
1173 cputime_t utime, stime, utimescaled, stimescaled;
1174 cputime_t gtime;
1175 cputime_t prev_utime, prev_stime;
1176 unsigned long nvcsw, nivcsw; /* context switch counts */
1177 struct timespec start_time; /* monotonic time */
1178 struct timespec real_start_time; /* boot based time */
1179 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1180 unsigned long min_flt, maj_flt;
1181
1182 struct task_cputime cputime_expires;
1183 struct list_head cpu_timers[3];
1184
1185 /* process credentials */
1186 uid_t uid,euid,suid,fsuid;
1187 gid_t gid,egid,sgid,fsgid;
1188 struct group_info *group_info;
1189 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1190 struct user_struct *user;
1191 unsigned securebits;
1192 #ifdef CONFIG_KEYS
1193 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1194 struct key *request_key_auth; /* assumed request_key authority */
1195 struct key *thread_keyring; /* keyring private to this thread */
1196 #endif
1197 char comm[TASK_COMM_LEN]; /* executable name excluding path
1198 - access with [gs]et_task_comm (which lock
1199 it with task_lock())
1200 - initialized normally by flush_old_exec */
1201 /* file system info */
1202 int link_count, total_link_count;
1203 #ifdef CONFIG_SYSVIPC
1204 /* ipc stuff */
1205 struct sysv_sem sysvsem;
1206 #endif
1207 #ifdef CONFIG_DETECT_SOFTLOCKUP
1208 /* hung task detection */
1209 unsigned long last_switch_timestamp;
1210 unsigned long last_switch_count;
1211 #endif
1212 /* CPU-specific state of this task */
1213 struct thread_struct thread;
1214 /* filesystem information */
1215 struct fs_struct *fs;
1216 /* open file information */
1217 struct files_struct *files;
1218 /* namespaces */
1219 struct nsproxy *nsproxy;
1220 /* signal handlers */
1221 struct signal_struct *signal;
1222 struct sighand_struct *sighand;
1223
1224 sigset_t blocked, real_blocked;
1225 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1226 struct sigpending pending;
1227
1228 unsigned long sas_ss_sp;
1229 size_t sas_ss_size;
1230 int (*notifier)(void *priv);
1231 void *notifier_data;
1232 sigset_t *notifier_mask;
1233 #ifdef CONFIG_SECURITY
1234 void *security;
1235 #endif
1236 struct audit_context *audit_context;
1237 #ifdef CONFIG_AUDITSYSCALL
1238 uid_t loginuid;
1239 unsigned int sessionid;
1240 #endif
1241 seccomp_t seccomp;
1242
1243 /* Thread group tracking */
1244 u32 parent_exec_id;
1245 u32 self_exec_id;
1246 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1247 spinlock_t alloc_lock;
1248
1249 /* Protection of the PI data structures: */
1250 spinlock_t pi_lock;
1251
1252 #ifdef CONFIG_RT_MUTEXES
1253 /* PI waiters blocked on a rt_mutex held by this task */
1254 struct plist_head pi_waiters;
1255 /* Deadlock detection and priority inheritance handling */
1256 struct rt_mutex_waiter *pi_blocked_on;
1257 #endif
1258
1259 #ifdef CONFIG_DEBUG_MUTEXES
1260 /* mutex deadlock detection */
1261 struct mutex_waiter *blocked_on;
1262 #endif
1263 #ifdef CONFIG_TRACE_IRQFLAGS
1264 unsigned int irq_events;
1265 int hardirqs_enabled;
1266 unsigned long hardirq_enable_ip;
1267 unsigned int hardirq_enable_event;
1268 unsigned long hardirq_disable_ip;
1269 unsigned int hardirq_disable_event;
1270 int softirqs_enabled;
1271 unsigned long softirq_disable_ip;
1272 unsigned int softirq_disable_event;
1273 unsigned long softirq_enable_ip;
1274 unsigned int softirq_enable_event;
1275 int hardirq_context;
1276 int softirq_context;
1277 #endif
1278 #ifdef CONFIG_LOCKDEP
1279 # define MAX_LOCK_DEPTH 48UL
1280 u64 curr_chain_key;
1281 int lockdep_depth;
1282 unsigned int lockdep_recursion;
1283 struct held_lock held_locks[MAX_LOCK_DEPTH];
1284 #endif
1285
1286 /* journalling filesystem info */
1287 void *journal_info;
1288
1289 /* stacked block device info */
1290 struct bio *bio_list, **bio_tail;
1291
1292 /* VM state */
1293 struct reclaim_state *reclaim_state;
1294
1295 struct backing_dev_info *backing_dev_info;
1296
1297 struct io_context *io_context;
1298
1299 unsigned long ptrace_message;
1300 siginfo_t *last_siginfo; /* For ptrace use. */
1301 struct task_io_accounting ioac;
1302 #if defined(CONFIG_TASK_XACCT)
1303 u64 acct_rss_mem1; /* accumulated rss usage */
1304 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1305 cputime_t acct_timexpd; /* stime + utime since last update */
1306 #endif
1307 #ifdef CONFIG_CPUSETS
1308 nodemask_t mems_allowed;
1309 int cpuset_mems_generation;
1310 int cpuset_mem_spread_rotor;
1311 #endif
1312 #ifdef CONFIG_CGROUPS
1313 /* Control Group info protected by css_set_lock */
1314 struct css_set *cgroups;
1315 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1316 struct list_head cg_list;
1317 #endif
1318 #ifdef CONFIG_FUTEX
1319 struct robust_list_head __user *robust_list;
1320 #ifdef CONFIG_COMPAT
1321 struct compat_robust_list_head __user *compat_robust_list;
1322 #endif
1323 struct list_head pi_state_list;
1324 struct futex_pi_state *pi_state_cache;
1325 #endif
1326 #ifdef CONFIG_NUMA
1327 struct mempolicy *mempolicy;
1328 short il_next;
1329 #endif
1330 atomic_t fs_excl; /* holding fs exclusive resources */
1331 struct rcu_head rcu;
1332
1333 /*
1334 * cache last used pipe for splice
1335 */
1336 struct pipe_inode_info *splice_pipe;
1337 #ifdef CONFIG_TASK_DELAY_ACCT
1338 struct task_delay_info *delays;
1339 #endif
1340 #ifdef CONFIG_FAULT_INJECTION
1341 int make_it_fail;
1342 #endif
1343 struct prop_local_single dirties;
1344 #ifdef CONFIG_LATENCYTOP
1345 int latency_record_count;
1346 struct latency_record latency_record[LT_SAVECOUNT];
1347 #endif
1348 /*
1349 * time slack values; these are used to round up poll() and
1350 * select() etc timeout values. These are in nanoseconds.
1351 */
1352 unsigned long timer_slack_ns;
1353 unsigned long default_timer_slack_ns;
1354
1355 struct list_head *scm_work_list;
1356 };
1357
1358 /*
1359 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1360 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1361 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1362 * values are inverted: lower p->prio value means higher priority.
1363 *
1364 * The MAX_USER_RT_PRIO value allows the actual maximum
1365 * RT priority to be separate from the value exported to
1366 * user-space. This allows kernel threads to set their
1367 * priority to a value higher than any user task. Note:
1368 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1369 */
1370
1371 #define MAX_USER_RT_PRIO 100
1372 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1373
1374 #define MAX_PRIO (MAX_RT_PRIO + 40)
1375 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1376
1377 static inline int rt_prio(int prio)
1378 {
1379 if (unlikely(prio < MAX_RT_PRIO))
1380 return 1;
1381 return 0;
1382 }
1383
1384 static inline int rt_task(struct task_struct *p)
1385 {
1386 return rt_prio(p->prio);
1387 }
1388
1389 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1390 {
1391 tsk->signal->__session = session;
1392 }
1393
1394 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1395 {
1396 tsk->signal->__pgrp = pgrp;
1397 }
1398
1399 static inline struct pid *task_pid(struct task_struct *task)
1400 {
1401 return task->pids[PIDTYPE_PID].pid;
1402 }
1403
1404 static inline struct pid *task_tgid(struct task_struct *task)
1405 {
1406 return task->group_leader->pids[PIDTYPE_PID].pid;
1407 }
1408
1409 static inline struct pid *task_pgrp(struct task_struct *task)
1410 {
1411 return task->group_leader->pids[PIDTYPE_PGID].pid;
1412 }
1413
1414 static inline struct pid *task_session(struct task_struct *task)
1415 {
1416 return task->group_leader->pids[PIDTYPE_SID].pid;
1417 }
1418
1419 struct pid_namespace;
1420
1421 /*
1422 * the helpers to get the task's different pids as they are seen
1423 * from various namespaces
1424 *
1425 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1426 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1427 * current.
1428 * task_xid_nr_ns() : id seen from the ns specified;
1429 *
1430 * set_task_vxid() : assigns a virtual id to a task;
1431 *
1432 * see also pid_nr() etc in include/linux/pid.h
1433 */
1434
1435 static inline pid_t task_pid_nr(struct task_struct *tsk)
1436 {
1437 return tsk->pid;
1438 }
1439
1440 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1441
1442 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1443 {
1444 return pid_vnr(task_pid(tsk));
1445 }
1446
1447
1448 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1449 {
1450 return tsk->tgid;
1451 }
1452
1453 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1454
1455 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1456 {
1457 return pid_vnr(task_tgid(tsk));
1458 }
1459
1460
1461 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1462 {
1463 return tsk->signal->__pgrp;
1464 }
1465
1466 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1467
1468 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1469 {
1470 return pid_vnr(task_pgrp(tsk));
1471 }
1472
1473
1474 static inline pid_t task_session_nr(struct task_struct *tsk)
1475 {
1476 return tsk->signal->__session;
1477 }
1478
1479 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1480
1481 static inline pid_t task_session_vnr(struct task_struct *tsk)
1482 {
1483 return pid_vnr(task_session(tsk));
1484 }
1485
1486
1487 /**
1488 * pid_alive - check that a task structure is not stale
1489 * @p: Task structure to be checked.
1490 *
1491 * Test if a process is not yet dead (at most zombie state)
1492 * If pid_alive fails, then pointers within the task structure
1493 * can be stale and must not be dereferenced.
1494 */
1495 static inline int pid_alive(struct task_struct *p)
1496 {
1497 return p->pids[PIDTYPE_PID].pid != NULL;
1498 }
1499
1500 /**
1501 * is_global_init - check if a task structure is init
1502 * @tsk: Task structure to be checked.
1503 *
1504 * Check if a task structure is the first user space task the kernel created.
1505 */
1506 static inline int is_global_init(struct task_struct *tsk)
1507 {
1508 return tsk->pid == 1;
1509 }
1510
1511 /*
1512 * is_container_init:
1513 * check whether in the task is init in its own pid namespace.
1514 */
1515 extern int is_container_init(struct task_struct *tsk);
1516
1517 extern struct pid *cad_pid;
1518
1519 extern void free_task(struct task_struct *tsk);
1520 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1521
1522 extern void __put_task_struct(struct task_struct *t);
1523
1524 static inline void put_task_struct(struct task_struct *t)
1525 {
1526 if (atomic_dec_and_test(&t->usage))
1527 __put_task_struct(t);
1528 }
1529
1530 extern cputime_t task_utime(struct task_struct *p);
1531 extern cputime_t task_stime(struct task_struct *p);
1532 extern cputime_t task_gtime(struct task_struct *p);
1533
1534 /*
1535 * Per process flags
1536 */
1537 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1538 /* Not implemented yet, only for 486*/
1539 #define PF_STARTING 0x00000002 /* being created */
1540 #define PF_EXITING 0x00000004 /* getting shut down */
1541 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1542 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1543 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1544 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1545 #define PF_DUMPCORE 0x00000200 /* dumped core */
1546 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1547 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1548 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1549 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1550 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1551 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1552 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1553 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1554 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1555 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1556 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1557 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1558 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1559 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1560 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1561 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1562 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1563 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1564 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1565 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1566
1567 /*
1568 * Only the _current_ task can read/write to tsk->flags, but other
1569 * tasks can access tsk->flags in readonly mode for example
1570 * with tsk_used_math (like during threaded core dumping).
1571 * There is however an exception to this rule during ptrace
1572 * or during fork: the ptracer task is allowed to write to the
1573 * child->flags of its traced child (same goes for fork, the parent
1574 * can write to the child->flags), because we're guaranteed the
1575 * child is not running and in turn not changing child->flags
1576 * at the same time the parent does it.
1577 */
1578 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1579 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1580 #define clear_used_math() clear_stopped_child_used_math(current)
1581 #define set_used_math() set_stopped_child_used_math(current)
1582 #define conditional_stopped_child_used_math(condition, child) \
1583 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1584 #define conditional_used_math(condition) \
1585 conditional_stopped_child_used_math(condition, current)
1586 #define copy_to_stopped_child_used_math(child) \
1587 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1588 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1589 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1590 #define used_math() tsk_used_math(current)
1591
1592 #ifdef CONFIG_SMP
1593 extern int set_cpus_allowed_ptr(struct task_struct *p,
1594 const cpumask_t *new_mask);
1595 #else
1596 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1597 const cpumask_t *new_mask)
1598 {
1599 if (!cpu_isset(0, *new_mask))
1600 return -EINVAL;
1601 return 0;
1602 }
1603 #endif
1604 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1605 {
1606 return set_cpus_allowed_ptr(p, &new_mask);
1607 }
1608
1609 extern unsigned long long sched_clock(void);
1610
1611 extern void sched_clock_init(void);
1612 extern u64 sched_clock_cpu(int cpu);
1613
1614 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1615 static inline void sched_clock_tick(void)
1616 {
1617 }
1618
1619 static inline void sched_clock_idle_sleep_event(void)
1620 {
1621 }
1622
1623 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1624 {
1625 }
1626 #else
1627 extern void sched_clock_tick(void);
1628 extern void sched_clock_idle_sleep_event(void);
1629 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1630 #endif
1631
1632 /*
1633 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1634 * clock constructed from sched_clock():
1635 */
1636 extern unsigned long long cpu_clock(int cpu);
1637
1638 extern unsigned long long
1639 task_sched_runtime(struct task_struct *task);
1640 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1641
1642 /* sched_exec is called by processes performing an exec */
1643 #ifdef CONFIG_SMP
1644 extern void sched_exec(void);
1645 #else
1646 #define sched_exec() {}
1647 #endif
1648
1649 extern void sched_clock_idle_sleep_event(void);
1650 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1651
1652 #ifdef CONFIG_HOTPLUG_CPU
1653 extern void idle_task_exit(void);
1654 #else
1655 static inline void idle_task_exit(void) {}
1656 #endif
1657
1658 extern void sched_idle_next(void);
1659
1660 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1661 extern void wake_up_idle_cpu(int cpu);
1662 #else
1663 static inline void wake_up_idle_cpu(int cpu) { }
1664 #endif
1665
1666 #ifdef CONFIG_SCHED_DEBUG
1667 extern unsigned int sysctl_sched_latency;
1668 extern unsigned int sysctl_sched_min_granularity;
1669 extern unsigned int sysctl_sched_wakeup_granularity;
1670 extern unsigned int sysctl_sched_child_runs_first;
1671 extern unsigned int sysctl_sched_features;
1672 extern unsigned int sysctl_sched_migration_cost;
1673 extern unsigned int sysctl_sched_nr_migrate;
1674 extern unsigned int sysctl_sched_shares_ratelimit;
1675 extern unsigned int sysctl_sched_shares_thresh;
1676
1677 int sched_nr_latency_handler(struct ctl_table *table, int write,
1678 struct file *file, void __user *buffer, size_t *length,
1679 loff_t *ppos);
1680 #endif
1681 extern unsigned int sysctl_sched_rt_period;
1682 extern int sysctl_sched_rt_runtime;
1683
1684 int sched_rt_handler(struct ctl_table *table, int write,
1685 struct file *filp, void __user *buffer, size_t *lenp,
1686 loff_t *ppos);
1687
1688 extern unsigned int sysctl_sched_compat_yield;
1689
1690 #ifdef CONFIG_RT_MUTEXES
1691 extern int rt_mutex_getprio(struct task_struct *p);
1692 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1693 extern void rt_mutex_adjust_pi(struct task_struct *p);
1694 #else
1695 static inline int rt_mutex_getprio(struct task_struct *p)
1696 {
1697 return p->normal_prio;
1698 }
1699 # define rt_mutex_adjust_pi(p) do { } while (0)
1700 #endif
1701
1702 extern void set_user_nice(struct task_struct *p, long nice);
1703 extern int task_prio(const struct task_struct *p);
1704 extern int task_nice(const struct task_struct *p);
1705 extern int can_nice(const struct task_struct *p, const int nice);
1706 extern int task_curr(const struct task_struct *p);
1707 extern int idle_cpu(int cpu);
1708 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1709 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1710 struct sched_param *);
1711 extern struct task_struct *idle_task(int cpu);
1712 extern struct task_struct *curr_task(int cpu);
1713 extern void set_curr_task(int cpu, struct task_struct *p);
1714
1715 void yield(void);
1716
1717 /*
1718 * The default (Linux) execution domain.
1719 */
1720 extern struct exec_domain default_exec_domain;
1721
1722 union thread_union {
1723 struct thread_info thread_info;
1724 unsigned long stack[THREAD_SIZE/sizeof(long)];
1725 };
1726
1727 #ifndef __HAVE_ARCH_KSTACK_END
1728 static inline int kstack_end(void *addr)
1729 {
1730 /* Reliable end of stack detection:
1731 * Some APM bios versions misalign the stack
1732 */
1733 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1734 }
1735 #endif
1736
1737 extern union thread_union init_thread_union;
1738 extern struct task_struct init_task;
1739
1740 extern struct mm_struct init_mm;
1741
1742 extern struct pid_namespace init_pid_ns;
1743
1744 /*
1745 * find a task by one of its numerical ids
1746 *
1747 * find_task_by_pid_type_ns():
1748 * it is the most generic call - it finds a task by all id,
1749 * type and namespace specified
1750 * find_task_by_pid_ns():
1751 * finds a task by its pid in the specified namespace
1752 * find_task_by_vpid():
1753 * finds a task by its virtual pid
1754 *
1755 * see also find_vpid() etc in include/linux/pid.h
1756 */
1757
1758 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1759 struct pid_namespace *ns);
1760
1761 extern struct task_struct *find_task_by_vpid(pid_t nr);
1762 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1763 struct pid_namespace *ns);
1764
1765 extern void __set_special_pids(struct pid *pid);
1766
1767 /* per-UID process charging. */
1768 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1769 static inline struct user_struct *get_uid(struct user_struct *u)
1770 {
1771 atomic_inc(&u->__count);
1772 return u;
1773 }
1774 extern void free_uid(struct user_struct *);
1775 extern void switch_uid(struct user_struct *);
1776 extern void release_uids(struct user_namespace *ns);
1777
1778 #include <asm/current.h>
1779
1780 extern void do_timer(unsigned long ticks);
1781
1782 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1783 extern int wake_up_process(struct task_struct *tsk);
1784 extern void wake_up_new_task(struct task_struct *tsk,
1785 unsigned long clone_flags);
1786 #ifdef CONFIG_SMP
1787 extern void kick_process(struct task_struct *tsk);
1788 #else
1789 static inline void kick_process(struct task_struct *tsk) { }
1790 #endif
1791 extern void sched_fork(struct task_struct *p, int clone_flags);
1792 extern void sched_dead(struct task_struct *p);
1793
1794 extern int in_group_p(gid_t);
1795 extern int in_egroup_p(gid_t);
1796
1797 extern void proc_caches_init(void);
1798 extern void flush_signals(struct task_struct *);
1799 extern void ignore_signals(struct task_struct *);
1800 extern void flush_signal_handlers(struct task_struct *, int force_default);
1801 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1802
1803 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1804 {
1805 unsigned long flags;
1806 int ret;
1807
1808 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1809 ret = dequeue_signal(tsk, mask, info);
1810 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1811
1812 return ret;
1813 }
1814
1815 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1816 sigset_t *mask);
1817 extern void unblock_all_signals(void);
1818 extern void release_task(struct task_struct * p);
1819 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1820 extern int force_sigsegv(int, struct task_struct *);
1821 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1822 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1823 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1824 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1825 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1826 extern int kill_pid(struct pid *pid, int sig, int priv);
1827 extern int kill_proc_info(int, struct siginfo *, pid_t);
1828 extern int do_notify_parent(struct task_struct *, int);
1829 extern void force_sig(int, struct task_struct *);
1830 extern void force_sig_specific(int, struct task_struct *);
1831 extern int send_sig(int, struct task_struct *, int);
1832 extern void zap_other_threads(struct task_struct *p);
1833 extern struct sigqueue *sigqueue_alloc(void);
1834 extern void sigqueue_free(struct sigqueue *);
1835 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1836 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1837 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1838
1839 static inline int kill_cad_pid(int sig, int priv)
1840 {
1841 return kill_pid(cad_pid, sig, priv);
1842 }
1843
1844 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1845 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1846 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1847 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1848
1849 static inline int is_si_special(const struct siginfo *info)
1850 {
1851 return info <= SEND_SIG_FORCED;
1852 }
1853
1854 /* True if we are on the alternate signal stack. */
1855
1856 static inline int on_sig_stack(unsigned long sp)
1857 {
1858 return (sp - current->sas_ss_sp < current->sas_ss_size);
1859 }
1860
1861 static inline int sas_ss_flags(unsigned long sp)
1862 {
1863 return (current->sas_ss_size == 0 ? SS_DISABLE
1864 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1865 }
1866
1867 /*
1868 * Routines for handling mm_structs
1869 */
1870 extern struct mm_struct * mm_alloc(void);
1871
1872 /* mmdrop drops the mm and the page tables */
1873 extern void __mmdrop(struct mm_struct *);
1874 static inline void mmdrop(struct mm_struct * mm)
1875 {
1876 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1877 __mmdrop(mm);
1878 }
1879
1880 /* mmput gets rid of the mappings and all user-space */
1881 extern void mmput(struct mm_struct *);
1882 /* Grab a reference to a task's mm, if it is not already going away */
1883 extern struct mm_struct *get_task_mm(struct task_struct *task);
1884 /* Remove the current tasks stale references to the old mm_struct */
1885 extern void mm_release(struct task_struct *, struct mm_struct *);
1886 /* Allocate a new mm structure and copy contents from tsk->mm */
1887 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1888
1889 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1890 extern void flush_thread(void);
1891 extern void exit_thread(void);
1892
1893 extern void exit_files(struct task_struct *);
1894 extern void __cleanup_signal(struct signal_struct *);
1895 extern void __cleanup_sighand(struct sighand_struct *);
1896
1897 extern void exit_itimers(struct signal_struct *);
1898 extern void flush_itimer_signals(void);
1899
1900 extern NORET_TYPE void do_group_exit(int);
1901
1902 extern void daemonize(const char *, ...);
1903 extern int allow_signal(int);
1904 extern int disallow_signal(int);
1905
1906 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1907 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1908 struct task_struct *fork_idle(int);
1909
1910 extern void set_task_comm(struct task_struct *tsk, char *from);
1911 extern char *get_task_comm(char *to, struct task_struct *tsk);
1912
1913 #ifdef CONFIG_SMP
1914 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1915 #else
1916 static inline unsigned long wait_task_inactive(struct task_struct *p,
1917 long match_state)
1918 {
1919 return 1;
1920 }
1921 #endif
1922
1923 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1924
1925 #define for_each_process(p) \
1926 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1927
1928 /*
1929 * Careful: do_each_thread/while_each_thread is a double loop so
1930 * 'break' will not work as expected - use goto instead.
1931 */
1932 #define do_each_thread(g, t) \
1933 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1934
1935 #define while_each_thread(g, t) \
1936 while ((t = next_thread(t)) != g)
1937
1938 /* de_thread depends on thread_group_leader not being a pid based check */
1939 #define thread_group_leader(p) (p == p->group_leader)
1940
1941 /* Do to the insanities of de_thread it is possible for a process
1942 * to have the pid of the thread group leader without actually being
1943 * the thread group leader. For iteration through the pids in proc
1944 * all we care about is that we have a task with the appropriate
1945 * pid, we don't actually care if we have the right task.
1946 */
1947 static inline int has_group_leader_pid(struct task_struct *p)
1948 {
1949 return p->pid == p->tgid;
1950 }
1951
1952 static inline
1953 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1954 {
1955 return p1->tgid == p2->tgid;
1956 }
1957
1958 static inline struct task_struct *next_thread(const struct task_struct *p)
1959 {
1960 return list_entry(rcu_dereference(p->thread_group.next),
1961 struct task_struct, thread_group);
1962 }
1963
1964 static inline int thread_group_empty(struct task_struct *p)
1965 {
1966 return list_empty(&p->thread_group);
1967 }
1968
1969 #define delay_group_leader(p) \
1970 (thread_group_leader(p) && !thread_group_empty(p))
1971
1972 /*
1973 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1974 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1975 * pins the final release of task.io_context. Also protects ->cpuset and
1976 * ->cgroup.subsys[].
1977 *
1978 * Nests both inside and outside of read_lock(&tasklist_lock).
1979 * It must not be nested with write_lock_irq(&tasklist_lock),
1980 * neither inside nor outside.
1981 */
1982 static inline void task_lock(struct task_struct *p)
1983 {
1984 spin_lock(&p->alloc_lock);
1985 }
1986
1987 static inline void task_unlock(struct task_struct *p)
1988 {
1989 spin_unlock(&p->alloc_lock);
1990 }
1991
1992 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1993 unsigned long *flags);
1994
1995 static inline void unlock_task_sighand(struct task_struct *tsk,
1996 unsigned long *flags)
1997 {
1998 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1999 }
2000
2001 #ifndef __HAVE_THREAD_FUNCTIONS
2002
2003 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2004 #define task_stack_page(task) ((task)->stack)
2005
2006 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2007 {
2008 *task_thread_info(p) = *task_thread_info(org);
2009 task_thread_info(p)->task = p;
2010 }
2011
2012 static inline unsigned long *end_of_stack(struct task_struct *p)
2013 {
2014 return (unsigned long *)(task_thread_info(p) + 1);
2015 }
2016
2017 #endif
2018
2019 static inline int object_is_on_stack(void *obj)
2020 {
2021 void *stack = task_stack_page(current);
2022
2023 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2024 }
2025
2026 extern void thread_info_cache_init(void);
2027
2028 /* set thread flags in other task's structures
2029 * - see asm/thread_info.h for TIF_xxxx flags available
2030 */
2031 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2032 {
2033 set_ti_thread_flag(task_thread_info(tsk), flag);
2034 }
2035
2036 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2037 {
2038 clear_ti_thread_flag(task_thread_info(tsk), flag);
2039 }
2040
2041 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2042 {
2043 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2044 }
2045
2046 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2047 {
2048 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2049 }
2050
2051 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2052 {
2053 return test_ti_thread_flag(task_thread_info(tsk), flag);
2054 }
2055
2056 static inline void set_tsk_need_resched(struct task_struct *tsk)
2057 {
2058 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2059 }
2060
2061 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2062 {
2063 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2064 }
2065
2066 static inline int test_tsk_need_resched(struct task_struct *tsk)
2067 {
2068 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2069 }
2070
2071 static inline int signal_pending(struct task_struct *p)
2072 {
2073 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2074 }
2075
2076 extern int __fatal_signal_pending(struct task_struct *p);
2077
2078 static inline int fatal_signal_pending(struct task_struct *p)
2079 {
2080 return signal_pending(p) && __fatal_signal_pending(p);
2081 }
2082
2083 static inline int signal_pending_state(long state, struct task_struct *p)
2084 {
2085 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2086 return 0;
2087 if (!signal_pending(p))
2088 return 0;
2089
2090 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2091 }
2092
2093 static inline int need_resched(void)
2094 {
2095 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2096 }
2097
2098 /*
2099 * cond_resched() and cond_resched_lock(): latency reduction via
2100 * explicit rescheduling in places that are safe. The return
2101 * value indicates whether a reschedule was done in fact.
2102 * cond_resched_lock() will drop the spinlock before scheduling,
2103 * cond_resched_softirq() will enable bhs before scheduling.
2104 */
2105 extern int _cond_resched(void);
2106 #ifdef CONFIG_PREEMPT_BKL
2107 static inline int cond_resched(void)
2108 {
2109 return 0;
2110 }
2111 #else
2112 static inline int cond_resched(void)
2113 {
2114 return _cond_resched();
2115 }
2116 #endif
2117 extern int cond_resched_lock(spinlock_t * lock);
2118 extern int cond_resched_softirq(void);
2119 static inline int cond_resched_bkl(void)
2120 {
2121 return _cond_resched();
2122 }
2123
2124 /*
2125 * Does a critical section need to be broken due to another
2126 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2127 * but a general need for low latency)
2128 */
2129 static inline int spin_needbreak(spinlock_t *lock)
2130 {
2131 #ifdef CONFIG_PREEMPT
2132 return spin_is_contended(lock);
2133 #else
2134 return 0;
2135 #endif
2136 }
2137
2138 /*
2139 * Thread group CPU time accounting.
2140 */
2141
2142 extern int thread_group_cputime_alloc(struct task_struct *);
2143 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2144
2145 static inline void thread_group_cputime_init(struct signal_struct *sig)
2146 {
2147 sig->cputime.totals = NULL;
2148 }
2149
2150 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2151 {
2152 if (curr->signal->cputime.totals)
2153 return 0;
2154 return thread_group_cputime_alloc(curr);
2155 }
2156
2157 static inline void thread_group_cputime_free(struct signal_struct *sig)
2158 {
2159 free_percpu(sig->cputime.totals);
2160 }
2161
2162 /*
2163 * Reevaluate whether the task has signals pending delivery.
2164 * Wake the task if so.
2165 * This is required every time the blocked sigset_t changes.
2166 * callers must hold sighand->siglock.
2167 */
2168 extern void recalc_sigpending_and_wake(struct task_struct *t);
2169 extern void recalc_sigpending(void);
2170
2171 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2172
2173 /*
2174 * Wrappers for p->thread_info->cpu access. No-op on UP.
2175 */
2176 #ifdef CONFIG_SMP
2177
2178 static inline unsigned int task_cpu(const struct task_struct *p)
2179 {
2180 return task_thread_info(p)->cpu;
2181 }
2182
2183 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2184
2185 #else
2186
2187 static inline unsigned int task_cpu(const struct task_struct *p)
2188 {
2189 return 0;
2190 }
2191
2192 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2193 {
2194 }
2195
2196 #endif /* CONFIG_SMP */
2197
2198 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2199
2200 #ifdef CONFIG_TRACING
2201 extern void
2202 __trace_special(void *__tr, void *__data,
2203 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2204 #else
2205 static inline void
2206 __trace_special(void *__tr, void *__data,
2207 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2208 {
2209 }
2210 #endif
2211
2212 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2213 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2214
2215 extern int sched_mc_power_savings, sched_smt_power_savings;
2216
2217 extern void normalize_rt_tasks(void);
2218
2219 #ifdef CONFIG_GROUP_SCHED
2220
2221 extern struct task_group init_task_group;
2222 #ifdef CONFIG_USER_SCHED
2223 extern struct task_group root_task_group;
2224 extern void set_tg_uid(struct user_struct *user);
2225 #endif
2226
2227 extern struct task_group *sched_create_group(struct task_group *parent);
2228 extern void sched_destroy_group(struct task_group *tg);
2229 extern void sched_move_task(struct task_struct *tsk);
2230 #ifdef CONFIG_FAIR_GROUP_SCHED
2231 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2232 extern unsigned long sched_group_shares(struct task_group *tg);
2233 #endif
2234 #ifdef CONFIG_RT_GROUP_SCHED
2235 extern int sched_group_set_rt_runtime(struct task_group *tg,
2236 long rt_runtime_us);
2237 extern long sched_group_rt_runtime(struct task_group *tg);
2238 extern int sched_group_set_rt_period(struct task_group *tg,
2239 long rt_period_us);
2240 extern long sched_group_rt_period(struct task_group *tg);
2241 #endif
2242 #endif
2243
2244 #ifdef CONFIG_TASK_XACCT
2245 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2246 {
2247 tsk->ioac.rchar += amt;
2248 }
2249
2250 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2251 {
2252 tsk->ioac.wchar += amt;
2253 }
2254
2255 static inline void inc_syscr(struct task_struct *tsk)
2256 {
2257 tsk->ioac.syscr++;
2258 }
2259
2260 static inline void inc_syscw(struct task_struct *tsk)
2261 {
2262 tsk->ioac.syscw++;
2263 }
2264 #else
2265 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2266 {
2267 }
2268
2269 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2270 {
2271 }
2272
2273 static inline void inc_syscr(struct task_struct *tsk)
2274 {
2275 }
2276
2277 static inline void inc_syscw(struct task_struct *tsk)
2278 {
2279 }
2280 #endif
2281
2282 #ifndef TASK_SIZE_OF
2283 #define TASK_SIZE_OF(tsk) TASK_SIZE
2284 #endif
2285
2286 #ifdef CONFIG_MM_OWNER
2287 extern void mm_update_next_owner(struct mm_struct *mm);
2288 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2289 #else
2290 static inline void mm_update_next_owner(struct mm_struct *mm)
2291 {
2292 }
2293
2294 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2295 {
2296 }
2297 #endif /* CONFIG_MM_OWNER */
2298
2299 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2300
2301 #endif /* __KERNEL__ */
2302
2303 #endif
This page took 0.07691 seconds and 5 git commands to generate.