Merge branches 'acpica-fixes' and 'device-properties-fixes'
[deliverable/linux.git] / include / linux / seqlock.h
1 #ifndef __LINUX_SEQLOCK_H
2 #define __LINUX_SEQLOCK_H
3 /*
4 * Reader/writer consistent mechanism without starving writers. This type of
5 * lock for data where the reader wants a consistent set of information
6 * and is willing to retry if the information changes. There are two types
7 * of readers:
8 * 1. Sequence readers which never block a writer but they may have to retry
9 * if a writer is in progress by detecting change in sequence number.
10 * Writers do not wait for a sequence reader.
11 * 2. Locking readers which will wait if a writer or another locking reader
12 * is in progress. A locking reader in progress will also block a writer
13 * from going forward. Unlike the regular rwlock, the read lock here is
14 * exclusive so that only one locking reader can get it.
15 *
16 * This is not as cache friendly as brlock. Also, this may not work well
17 * for data that contains pointers, because any writer could
18 * invalidate a pointer that a reader was following.
19 *
20 * Expected non-blocking reader usage:
21 * do {
22 * seq = read_seqbegin(&foo);
23 * ...
24 * } while (read_seqretry(&foo, seq));
25 *
26 *
27 * On non-SMP the spin locks disappear but the writer still needs
28 * to increment the sequence variables because an interrupt routine could
29 * change the state of the data.
30 *
31 * Based on x86_64 vsyscall gettimeofday
32 * by Keith Owens and Andrea Arcangeli
33 */
34
35 #include <linux/spinlock.h>
36 #include <linux/preempt.h>
37 #include <linux/lockdep.h>
38 #include <linux/compiler.h>
39 #include <asm/processor.h>
40
41 /*
42 * Version using sequence counter only.
43 * This can be used when code has its own mutex protecting the
44 * updating starting before the write_seqcountbeqin() and ending
45 * after the write_seqcount_end().
46 */
47 typedef struct seqcount {
48 unsigned sequence;
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 struct lockdep_map dep_map;
51 #endif
52 } seqcount_t;
53
54 static inline void __seqcount_init(seqcount_t *s, const char *name,
55 struct lock_class_key *key)
56 {
57 /*
58 * Make sure we are not reinitializing a held lock:
59 */
60 lockdep_init_map(&s->dep_map, name, key, 0);
61 s->sequence = 0;
62 }
63
64 #ifdef CONFIG_DEBUG_LOCK_ALLOC
65 # define SEQCOUNT_DEP_MAP_INIT(lockname) \
66 .dep_map = { .name = #lockname } \
67
68 # define seqcount_init(s) \
69 do { \
70 static struct lock_class_key __key; \
71 __seqcount_init((s), #s, &__key); \
72 } while (0)
73
74 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
75 {
76 seqcount_t *l = (seqcount_t *)s;
77 unsigned long flags;
78
79 local_irq_save(flags);
80 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
81 seqcount_release(&l->dep_map, 1, _RET_IP_);
82 local_irq_restore(flags);
83 }
84
85 #else
86 # define SEQCOUNT_DEP_MAP_INIT(lockname)
87 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
88 # define seqcount_lockdep_reader_access(x)
89 #endif
90
91 #define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
92
93
94 /**
95 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
96 * @s: pointer to seqcount_t
97 * Returns: count to be passed to read_seqcount_retry
98 *
99 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
100 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
101 * provided before actually loading any of the variables that are to be
102 * protected in this critical section.
103 *
104 * Use carefully, only in critical code, and comment how the barrier is
105 * provided.
106 */
107 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
108 {
109 unsigned ret;
110
111 repeat:
112 ret = READ_ONCE(s->sequence);
113 if (unlikely(ret & 1)) {
114 cpu_relax();
115 goto repeat;
116 }
117 return ret;
118 }
119
120 /**
121 * raw_read_seqcount - Read the raw seqcount
122 * @s: pointer to seqcount_t
123 * Returns: count to be passed to read_seqcount_retry
124 *
125 * raw_read_seqcount opens a read critical section of the given
126 * seqcount without any lockdep checking and without checking or
127 * masking the LSB. Calling code is responsible for handling that.
128 */
129 static inline unsigned raw_read_seqcount(const seqcount_t *s)
130 {
131 unsigned ret = READ_ONCE(s->sequence);
132 smp_rmb();
133 return ret;
134 }
135
136 /**
137 * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
138 * @s: pointer to seqcount_t
139 * Returns: count to be passed to read_seqcount_retry
140 *
141 * raw_read_seqcount_begin opens a read critical section of the given
142 * seqcount, but without any lockdep checking. Validity of the critical
143 * section is tested by checking read_seqcount_retry function.
144 */
145 static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
146 {
147 unsigned ret = __read_seqcount_begin(s);
148 smp_rmb();
149 return ret;
150 }
151
152 /**
153 * read_seqcount_begin - begin a seq-read critical section
154 * @s: pointer to seqcount_t
155 * Returns: count to be passed to read_seqcount_retry
156 *
157 * read_seqcount_begin opens a read critical section of the given seqcount.
158 * Validity of the critical section is tested by checking read_seqcount_retry
159 * function.
160 */
161 static inline unsigned read_seqcount_begin(const seqcount_t *s)
162 {
163 seqcount_lockdep_reader_access(s);
164 return raw_read_seqcount_begin(s);
165 }
166
167 /**
168 * raw_seqcount_begin - begin a seq-read critical section
169 * @s: pointer to seqcount_t
170 * Returns: count to be passed to read_seqcount_retry
171 *
172 * raw_seqcount_begin opens a read critical section of the given seqcount.
173 * Validity of the critical section is tested by checking read_seqcount_retry
174 * function.
175 *
176 * Unlike read_seqcount_begin(), this function will not wait for the count
177 * to stabilize. If a writer is active when we begin, we will fail the
178 * read_seqcount_retry() instead of stabilizing at the beginning of the
179 * critical section.
180 */
181 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
182 {
183 unsigned ret = READ_ONCE(s->sequence);
184 smp_rmb();
185 return ret & ~1;
186 }
187
188 /**
189 * __read_seqcount_retry - end a seq-read critical section (without barrier)
190 * @s: pointer to seqcount_t
191 * @start: count, from read_seqcount_begin
192 * Returns: 1 if retry is required, else 0
193 *
194 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
195 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
196 * provided before actually loading any of the variables that are to be
197 * protected in this critical section.
198 *
199 * Use carefully, only in critical code, and comment how the barrier is
200 * provided.
201 */
202 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
203 {
204 return unlikely(s->sequence != start);
205 }
206
207 /**
208 * read_seqcount_retry - end a seq-read critical section
209 * @s: pointer to seqcount_t
210 * @start: count, from read_seqcount_begin
211 * Returns: 1 if retry is required, else 0
212 *
213 * read_seqcount_retry closes a read critical section of the given seqcount.
214 * If the critical section was invalid, it must be ignored (and typically
215 * retried).
216 */
217 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
218 {
219 smp_rmb();
220 return __read_seqcount_retry(s, start);
221 }
222
223
224
225 static inline void raw_write_seqcount_begin(seqcount_t *s)
226 {
227 s->sequence++;
228 smp_wmb();
229 }
230
231 static inline void raw_write_seqcount_end(seqcount_t *s)
232 {
233 smp_wmb();
234 s->sequence++;
235 }
236
237 /**
238 * raw_write_seqcount_barrier - do a seq write barrier
239 * @s: pointer to seqcount_t
240 *
241 * This can be used to provide an ordering guarantee instead of the
242 * usual consistency guarantee. It is one wmb cheaper, because we can
243 * collapse the two back-to-back wmb()s.
244 *
245 * seqcount_t seq;
246 * bool X = true, Y = false;
247 *
248 * void read(void)
249 * {
250 * bool x, y;
251 *
252 * do {
253 * int s = read_seqcount_begin(&seq);
254 *
255 * x = X; y = Y;
256 *
257 * } while (read_seqcount_retry(&seq, s));
258 *
259 * BUG_ON(!x && !y);
260 * }
261 *
262 * void write(void)
263 * {
264 * Y = true;
265 *
266 * raw_write_seqcount_barrier(seq);
267 *
268 * X = false;
269 * }
270 */
271 static inline void raw_write_seqcount_barrier(seqcount_t *s)
272 {
273 s->sequence++;
274 smp_wmb();
275 s->sequence++;
276 }
277
278 static inline int raw_read_seqcount_latch(seqcount_t *s)
279 {
280 return lockless_dereference(s->sequence);
281 }
282
283 /**
284 * raw_write_seqcount_latch - redirect readers to even/odd copy
285 * @s: pointer to seqcount_t
286 *
287 * The latch technique is a multiversion concurrency control method that allows
288 * queries during non-atomic modifications. If you can guarantee queries never
289 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
290 * -- you most likely do not need this.
291 *
292 * Where the traditional RCU/lockless data structures rely on atomic
293 * modifications to ensure queries observe either the old or the new state the
294 * latch allows the same for non-atomic updates. The trade-off is doubling the
295 * cost of storage; we have to maintain two copies of the entire data
296 * structure.
297 *
298 * Very simply put: we first modify one copy and then the other. This ensures
299 * there is always one copy in a stable state, ready to give us an answer.
300 *
301 * The basic form is a data structure like:
302 *
303 * struct latch_struct {
304 * seqcount_t seq;
305 * struct data_struct data[2];
306 * };
307 *
308 * Where a modification, which is assumed to be externally serialized, does the
309 * following:
310 *
311 * void latch_modify(struct latch_struct *latch, ...)
312 * {
313 * smp_wmb(); <- Ensure that the last data[1] update is visible
314 * latch->seq++;
315 * smp_wmb(); <- Ensure that the seqcount update is visible
316 *
317 * modify(latch->data[0], ...);
318 *
319 * smp_wmb(); <- Ensure that the data[0] update is visible
320 * latch->seq++;
321 * smp_wmb(); <- Ensure that the seqcount update is visible
322 *
323 * modify(latch->data[1], ...);
324 * }
325 *
326 * The query will have a form like:
327 *
328 * struct entry *latch_query(struct latch_struct *latch, ...)
329 * {
330 * struct entry *entry;
331 * unsigned seq, idx;
332 *
333 * do {
334 * seq = lockless_dereference(latch->seq);
335 *
336 * idx = seq & 0x01;
337 * entry = data_query(latch->data[idx], ...);
338 *
339 * smp_rmb();
340 * } while (seq != latch->seq);
341 *
342 * return entry;
343 * }
344 *
345 * So during the modification, queries are first redirected to data[1]. Then we
346 * modify data[0]. When that is complete, we redirect queries back to data[0]
347 * and we can modify data[1].
348 *
349 * NOTE: The non-requirement for atomic modifications does _NOT_ include
350 * the publishing of new entries in the case where data is a dynamic
351 * data structure.
352 *
353 * An iteration might start in data[0] and get suspended long enough
354 * to miss an entire modification sequence, once it resumes it might
355 * observe the new entry.
356 *
357 * NOTE: When data is a dynamic data structure; one should use regular RCU
358 * patterns to manage the lifetimes of the objects within.
359 */
360 static inline void raw_write_seqcount_latch(seqcount_t *s)
361 {
362 smp_wmb(); /* prior stores before incrementing "sequence" */
363 s->sequence++;
364 smp_wmb(); /* increment "sequence" before following stores */
365 }
366
367 /*
368 * Sequence counter only version assumes that callers are using their
369 * own mutexing.
370 */
371 static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
372 {
373 raw_write_seqcount_begin(s);
374 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
375 }
376
377 static inline void write_seqcount_begin(seqcount_t *s)
378 {
379 write_seqcount_begin_nested(s, 0);
380 }
381
382 static inline void write_seqcount_end(seqcount_t *s)
383 {
384 seqcount_release(&s->dep_map, 1, _RET_IP_);
385 raw_write_seqcount_end(s);
386 }
387
388 /**
389 * write_seqcount_invalidate - invalidate in-progress read-side seq operations
390 * @s: pointer to seqcount_t
391 *
392 * After write_seqcount_invalidate, no read-side seq operations will complete
393 * successfully and see data older than this.
394 */
395 static inline void write_seqcount_invalidate(seqcount_t *s)
396 {
397 smp_wmb();
398 s->sequence+=2;
399 }
400
401 typedef struct {
402 struct seqcount seqcount;
403 spinlock_t lock;
404 } seqlock_t;
405
406 /*
407 * These macros triggered gcc-3.x compile-time problems. We think these are
408 * OK now. Be cautious.
409 */
410 #define __SEQLOCK_UNLOCKED(lockname) \
411 { \
412 .seqcount = SEQCNT_ZERO(lockname), \
413 .lock = __SPIN_LOCK_UNLOCKED(lockname) \
414 }
415
416 #define seqlock_init(x) \
417 do { \
418 seqcount_init(&(x)->seqcount); \
419 spin_lock_init(&(x)->lock); \
420 } while (0)
421
422 #define DEFINE_SEQLOCK(x) \
423 seqlock_t x = __SEQLOCK_UNLOCKED(x)
424
425 /*
426 * Read side functions for starting and finalizing a read side section.
427 */
428 static inline unsigned read_seqbegin(const seqlock_t *sl)
429 {
430 return read_seqcount_begin(&sl->seqcount);
431 }
432
433 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
434 {
435 return read_seqcount_retry(&sl->seqcount, start);
436 }
437
438 /*
439 * Lock out other writers and update the count.
440 * Acts like a normal spin_lock/unlock.
441 * Don't need preempt_disable() because that is in the spin_lock already.
442 */
443 static inline void write_seqlock(seqlock_t *sl)
444 {
445 spin_lock(&sl->lock);
446 write_seqcount_begin(&sl->seqcount);
447 }
448
449 static inline void write_sequnlock(seqlock_t *sl)
450 {
451 write_seqcount_end(&sl->seqcount);
452 spin_unlock(&sl->lock);
453 }
454
455 static inline void write_seqlock_bh(seqlock_t *sl)
456 {
457 spin_lock_bh(&sl->lock);
458 write_seqcount_begin(&sl->seqcount);
459 }
460
461 static inline void write_sequnlock_bh(seqlock_t *sl)
462 {
463 write_seqcount_end(&sl->seqcount);
464 spin_unlock_bh(&sl->lock);
465 }
466
467 static inline void write_seqlock_irq(seqlock_t *sl)
468 {
469 spin_lock_irq(&sl->lock);
470 write_seqcount_begin(&sl->seqcount);
471 }
472
473 static inline void write_sequnlock_irq(seqlock_t *sl)
474 {
475 write_seqcount_end(&sl->seqcount);
476 spin_unlock_irq(&sl->lock);
477 }
478
479 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
480 {
481 unsigned long flags;
482
483 spin_lock_irqsave(&sl->lock, flags);
484 write_seqcount_begin(&sl->seqcount);
485 return flags;
486 }
487
488 #define write_seqlock_irqsave(lock, flags) \
489 do { flags = __write_seqlock_irqsave(lock); } while (0)
490
491 static inline void
492 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
493 {
494 write_seqcount_end(&sl->seqcount);
495 spin_unlock_irqrestore(&sl->lock, flags);
496 }
497
498 /*
499 * A locking reader exclusively locks out other writers and locking readers,
500 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
501 * Don't need preempt_disable() because that is in the spin_lock already.
502 */
503 static inline void read_seqlock_excl(seqlock_t *sl)
504 {
505 spin_lock(&sl->lock);
506 }
507
508 static inline void read_sequnlock_excl(seqlock_t *sl)
509 {
510 spin_unlock(&sl->lock);
511 }
512
513 /**
514 * read_seqbegin_or_lock - begin a sequence number check or locking block
515 * @lock: sequence lock
516 * @seq : sequence number to be checked
517 *
518 * First try it once optimistically without taking the lock. If that fails,
519 * take the lock. The sequence number is also used as a marker for deciding
520 * whether to be a reader (even) or writer (odd).
521 * N.B. seq must be initialized to an even number to begin with.
522 */
523 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
524 {
525 if (!(*seq & 1)) /* Even */
526 *seq = read_seqbegin(lock);
527 else /* Odd */
528 read_seqlock_excl(lock);
529 }
530
531 static inline int need_seqretry(seqlock_t *lock, int seq)
532 {
533 return !(seq & 1) && read_seqretry(lock, seq);
534 }
535
536 static inline void done_seqretry(seqlock_t *lock, int seq)
537 {
538 if (seq & 1)
539 read_sequnlock_excl(lock);
540 }
541
542 static inline void read_seqlock_excl_bh(seqlock_t *sl)
543 {
544 spin_lock_bh(&sl->lock);
545 }
546
547 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
548 {
549 spin_unlock_bh(&sl->lock);
550 }
551
552 static inline void read_seqlock_excl_irq(seqlock_t *sl)
553 {
554 spin_lock_irq(&sl->lock);
555 }
556
557 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
558 {
559 spin_unlock_irq(&sl->lock);
560 }
561
562 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
563 {
564 unsigned long flags;
565
566 spin_lock_irqsave(&sl->lock, flags);
567 return flags;
568 }
569
570 #define read_seqlock_excl_irqsave(lock, flags) \
571 do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
572
573 static inline void
574 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
575 {
576 spin_unlock_irqrestore(&sl->lock, flags);
577 }
578
579 static inline unsigned long
580 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
581 {
582 unsigned long flags = 0;
583
584 if (!(*seq & 1)) /* Even */
585 *seq = read_seqbegin(lock);
586 else /* Odd */
587 read_seqlock_excl_irqsave(lock, flags);
588
589 return flags;
590 }
591
592 static inline void
593 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
594 {
595 if (seq & 1)
596 read_sequnlock_excl_irqrestore(lock, flags);
597 }
598 #endif /* __LINUX_SEQLOCK_H */
This page took 0.051478 seconds and 5 git commands to generate.