Merge remote-tracking branch 'regmap/topic/debugfs' into regmap-next
[deliverable/linux.git] / include / net / bluetooth / hci_core.h
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27
28 #include <linux/leds.h>
29 #include <net/bluetooth/hci.h>
30 #include <net/bluetooth/hci_sock.h>
31
32 /* HCI priority */
33 #define HCI_PRIO_MAX 7
34
35 /* HCI Core structures */
36 struct inquiry_data {
37 bdaddr_t bdaddr;
38 __u8 pscan_rep_mode;
39 __u8 pscan_period_mode;
40 __u8 pscan_mode;
41 __u8 dev_class[3];
42 __le16 clock_offset;
43 __s8 rssi;
44 __u8 ssp_mode;
45 };
46
47 struct inquiry_entry {
48 struct list_head all; /* inq_cache.all */
49 struct list_head list; /* unknown or resolve */
50 enum {
51 NAME_NOT_KNOWN,
52 NAME_NEEDED,
53 NAME_PENDING,
54 NAME_KNOWN,
55 } name_state;
56 __u32 timestamp;
57 struct inquiry_data data;
58 };
59
60 struct discovery_state {
61 int type;
62 enum {
63 DISCOVERY_STOPPED,
64 DISCOVERY_STARTING,
65 DISCOVERY_FINDING,
66 DISCOVERY_RESOLVING,
67 DISCOVERY_STOPPING,
68 } state;
69 struct list_head all; /* All devices found during inquiry */
70 struct list_head unknown; /* Name state not known */
71 struct list_head resolve; /* Name needs to be resolved */
72 __u32 timestamp;
73 bdaddr_t last_adv_addr;
74 u8 last_adv_addr_type;
75 s8 last_adv_rssi;
76 u32 last_adv_flags;
77 u8 last_adv_data[HCI_MAX_AD_LENGTH];
78 u8 last_adv_data_len;
79 bool report_invalid_rssi;
80 bool result_filtering;
81 bool limited;
82 s8 rssi;
83 u16 uuid_count;
84 u8 (*uuids)[16];
85 unsigned long scan_start;
86 unsigned long scan_duration;
87 };
88
89 struct hci_conn_hash {
90 struct list_head list;
91 unsigned int acl_num;
92 unsigned int amp_num;
93 unsigned int sco_num;
94 unsigned int le_num;
95 unsigned int le_num_slave;
96 };
97
98 struct bdaddr_list {
99 struct list_head list;
100 bdaddr_t bdaddr;
101 u8 bdaddr_type;
102 };
103
104 struct bt_uuid {
105 struct list_head list;
106 u8 uuid[16];
107 u8 size;
108 u8 svc_hint;
109 };
110
111 struct smp_csrk {
112 bdaddr_t bdaddr;
113 u8 bdaddr_type;
114 u8 type;
115 u8 val[16];
116 };
117
118 struct smp_ltk {
119 struct list_head list;
120 struct rcu_head rcu;
121 bdaddr_t bdaddr;
122 u8 bdaddr_type;
123 u8 authenticated;
124 u8 type;
125 u8 enc_size;
126 __le16 ediv;
127 __le64 rand;
128 u8 val[16];
129 };
130
131 struct smp_irk {
132 struct list_head list;
133 struct rcu_head rcu;
134 bdaddr_t rpa;
135 bdaddr_t bdaddr;
136 u8 addr_type;
137 u8 val[16];
138 };
139
140 struct link_key {
141 struct list_head list;
142 struct rcu_head rcu;
143 bdaddr_t bdaddr;
144 u8 type;
145 u8 val[HCI_LINK_KEY_SIZE];
146 u8 pin_len;
147 };
148
149 struct oob_data {
150 struct list_head list;
151 bdaddr_t bdaddr;
152 u8 bdaddr_type;
153 u8 present;
154 u8 hash192[16];
155 u8 rand192[16];
156 u8 hash256[16];
157 u8 rand256[16];
158 };
159
160 struct adv_info {
161 struct list_head list;
162 bool pending;
163 __u8 instance;
164 __u32 flags;
165 __u16 timeout;
166 __u16 remaining_time;
167 __u16 duration;
168 __u16 adv_data_len;
169 __u8 adv_data[HCI_MAX_AD_LENGTH];
170 __u16 scan_rsp_len;
171 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
172 };
173
174 #define HCI_MAX_ADV_INSTANCES 5
175 #define HCI_DEFAULT_ADV_DURATION 2
176
177 #define HCI_MAX_SHORT_NAME_LENGTH 10
178
179 /* Default LE RPA expiry time, 15 minutes */
180 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60)
181
182 /* Default min/max age of connection information (1s/3s) */
183 #define DEFAULT_CONN_INFO_MIN_AGE 1000
184 #define DEFAULT_CONN_INFO_MAX_AGE 3000
185
186 struct amp_assoc {
187 __u16 len;
188 __u16 offset;
189 __u16 rem_len;
190 __u16 len_so_far;
191 __u8 data[HCI_MAX_AMP_ASSOC_SIZE];
192 };
193
194 #define HCI_MAX_PAGES 3
195
196 struct hci_dev {
197 struct list_head list;
198 struct mutex lock;
199
200 char name[8];
201 unsigned long flags;
202 __u16 id;
203 __u8 bus;
204 __u8 dev_type;
205 bdaddr_t bdaddr;
206 bdaddr_t setup_addr;
207 bdaddr_t public_addr;
208 bdaddr_t random_addr;
209 bdaddr_t static_addr;
210 __u8 adv_addr_type;
211 __u8 dev_name[HCI_MAX_NAME_LENGTH];
212 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH];
213 __u8 eir[HCI_MAX_EIR_LENGTH];
214 __u8 dev_class[3];
215 __u8 major_class;
216 __u8 minor_class;
217 __u8 max_page;
218 __u8 features[HCI_MAX_PAGES][8];
219 __u8 le_features[8];
220 __u8 le_white_list_size;
221 __u8 le_states[8];
222 __u8 commands[64];
223 __u8 hci_ver;
224 __u16 hci_rev;
225 __u8 lmp_ver;
226 __u16 manufacturer;
227 __u16 lmp_subver;
228 __u16 voice_setting;
229 __u8 num_iac;
230 __u8 stored_max_keys;
231 __u8 stored_num_keys;
232 __u8 io_capability;
233 __s8 inq_tx_power;
234 __u16 page_scan_interval;
235 __u16 page_scan_window;
236 __u8 page_scan_type;
237 __u8 le_adv_channel_map;
238 __u16 le_adv_min_interval;
239 __u16 le_adv_max_interval;
240 __u8 le_scan_type;
241 __u16 le_scan_interval;
242 __u16 le_scan_window;
243 __u16 le_conn_min_interval;
244 __u16 le_conn_max_interval;
245 __u16 le_conn_latency;
246 __u16 le_supv_timeout;
247 __u16 le_def_tx_len;
248 __u16 le_def_tx_time;
249 __u16 le_max_tx_len;
250 __u16 le_max_tx_time;
251 __u16 le_max_rx_len;
252 __u16 le_max_rx_time;
253 __u16 discov_interleaved_timeout;
254 __u16 conn_info_min_age;
255 __u16 conn_info_max_age;
256 __u8 ssp_debug_mode;
257 __u8 hw_error_code;
258 __u32 clock;
259
260 __u16 devid_source;
261 __u16 devid_vendor;
262 __u16 devid_product;
263 __u16 devid_version;
264
265 __u16 pkt_type;
266 __u16 esco_type;
267 __u16 link_policy;
268 __u16 link_mode;
269
270 __u32 idle_timeout;
271 __u16 sniff_min_interval;
272 __u16 sniff_max_interval;
273
274 __u8 amp_status;
275 __u32 amp_total_bw;
276 __u32 amp_max_bw;
277 __u32 amp_min_latency;
278 __u32 amp_max_pdu;
279 __u8 amp_type;
280 __u16 amp_pal_cap;
281 __u16 amp_assoc_size;
282 __u32 amp_max_flush_to;
283 __u32 amp_be_flush_to;
284
285 struct amp_assoc loc_assoc;
286
287 __u8 flow_ctl_mode;
288
289 unsigned int auto_accept_delay;
290
291 unsigned long quirks;
292
293 atomic_t cmd_cnt;
294 unsigned int acl_cnt;
295 unsigned int sco_cnt;
296 unsigned int le_cnt;
297
298 unsigned int acl_mtu;
299 unsigned int sco_mtu;
300 unsigned int le_mtu;
301 unsigned int acl_pkts;
302 unsigned int sco_pkts;
303 unsigned int le_pkts;
304
305 __u16 block_len;
306 __u16 block_mtu;
307 __u16 num_blocks;
308 __u16 block_cnt;
309
310 unsigned long acl_last_tx;
311 unsigned long sco_last_tx;
312 unsigned long le_last_tx;
313
314 struct workqueue_struct *workqueue;
315 struct workqueue_struct *req_workqueue;
316
317 struct work_struct power_on;
318 struct delayed_work power_off;
319 struct work_struct error_reset;
320
321 __u16 discov_timeout;
322 struct delayed_work discov_off;
323
324 struct delayed_work service_cache;
325
326 struct delayed_work cmd_timer;
327
328 struct work_struct rx_work;
329 struct work_struct cmd_work;
330 struct work_struct tx_work;
331
332 struct work_struct discov_update;
333 struct work_struct bg_scan_update;
334 struct work_struct scan_update;
335 struct work_struct connectable_update;
336 struct work_struct discoverable_update;
337 struct delayed_work le_scan_disable;
338 struct delayed_work le_scan_restart;
339
340 struct sk_buff_head rx_q;
341 struct sk_buff_head raw_q;
342 struct sk_buff_head cmd_q;
343
344 struct sk_buff *sent_cmd;
345
346 struct mutex req_lock;
347 wait_queue_head_t req_wait_q;
348 __u32 req_status;
349 __u32 req_result;
350 struct sk_buff *req_skb;
351
352 void *smp_data;
353 void *smp_bredr_data;
354
355 struct discovery_state discovery;
356 struct hci_conn_hash conn_hash;
357
358 struct list_head mgmt_pending;
359 struct list_head blacklist;
360 struct list_head whitelist;
361 struct list_head uuids;
362 struct list_head link_keys;
363 struct list_head long_term_keys;
364 struct list_head identity_resolving_keys;
365 struct list_head remote_oob_data;
366 struct list_head le_white_list;
367 struct list_head le_conn_params;
368 struct list_head pend_le_conns;
369 struct list_head pend_le_reports;
370
371 struct hci_dev_stats stat;
372
373 atomic_t promisc;
374
375 const char *hw_info;
376 const char *fw_info;
377 struct dentry *debugfs;
378
379 struct device dev;
380
381 struct rfkill *rfkill;
382
383 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS);
384
385 __s8 adv_tx_power;
386 __u8 adv_data[HCI_MAX_AD_LENGTH];
387 __u8 adv_data_len;
388 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
389 __u8 scan_rsp_data_len;
390
391 struct list_head adv_instances;
392 unsigned int adv_instance_cnt;
393 __u8 cur_adv_instance;
394 __u16 adv_instance_timeout;
395 struct delayed_work adv_instance_expire;
396
397 __u8 irk[16];
398 __u32 rpa_timeout;
399 struct delayed_work rpa_expired;
400 bdaddr_t rpa;
401
402 struct led_trigger *power_led;
403
404 int (*open)(struct hci_dev *hdev);
405 int (*close)(struct hci_dev *hdev);
406 int (*flush)(struct hci_dev *hdev);
407 int (*setup)(struct hci_dev *hdev);
408 int (*shutdown)(struct hci_dev *hdev);
409 int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
410 void (*notify)(struct hci_dev *hdev, unsigned int evt);
411 void (*hw_error)(struct hci_dev *hdev, u8 code);
412 int (*post_init)(struct hci_dev *hdev);
413 int (*set_diag)(struct hci_dev *hdev, bool enable);
414 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
415 };
416
417 #define HCI_PHY_HANDLE(handle) (handle & 0xff)
418
419 struct hci_conn {
420 struct list_head list;
421
422 atomic_t refcnt;
423
424 bdaddr_t dst;
425 __u8 dst_type;
426 bdaddr_t src;
427 __u8 src_type;
428 bdaddr_t init_addr;
429 __u8 init_addr_type;
430 bdaddr_t resp_addr;
431 __u8 resp_addr_type;
432 __u16 handle;
433 __u16 state;
434 __u8 mode;
435 __u8 type;
436 __u8 role;
437 bool out;
438 __u8 attempt;
439 __u8 dev_class[3];
440 __u8 features[HCI_MAX_PAGES][8];
441 __u16 pkt_type;
442 __u16 link_policy;
443 __u8 key_type;
444 __u8 auth_type;
445 __u8 sec_level;
446 __u8 pending_sec_level;
447 __u8 pin_length;
448 __u8 enc_key_size;
449 __u8 io_capability;
450 __u32 passkey_notify;
451 __u8 passkey_entered;
452 __u16 disc_timeout;
453 __u16 conn_timeout;
454 __u16 setting;
455 __u16 le_conn_min_interval;
456 __u16 le_conn_max_interval;
457 __u16 le_conn_interval;
458 __u16 le_conn_latency;
459 __u16 le_supv_timeout;
460 __u8 le_adv_data[HCI_MAX_AD_LENGTH];
461 __u8 le_adv_data_len;
462 __s8 rssi;
463 __s8 tx_power;
464 __s8 max_tx_power;
465 unsigned long flags;
466
467 __u32 clock;
468 __u16 clock_accuracy;
469
470 unsigned long conn_info_timestamp;
471
472 __u8 remote_cap;
473 __u8 remote_auth;
474 __u8 remote_id;
475
476 unsigned int sent;
477
478 struct sk_buff_head data_q;
479 struct list_head chan_list;
480
481 struct delayed_work disc_work;
482 struct delayed_work auto_accept_work;
483 struct delayed_work idle_work;
484 struct delayed_work le_conn_timeout;
485 struct work_struct le_scan_cleanup;
486
487 struct device dev;
488 struct dentry *debugfs;
489
490 struct hci_dev *hdev;
491 void *l2cap_data;
492 void *sco_data;
493 struct amp_mgr *amp_mgr;
494
495 struct hci_conn *link;
496
497 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
498 void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
499 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
500 };
501
502 struct hci_chan {
503 struct list_head list;
504 __u16 handle;
505 struct hci_conn *conn;
506 struct sk_buff_head data_q;
507 unsigned int sent;
508 __u8 state;
509 };
510
511 struct hci_conn_params {
512 struct list_head list;
513 struct list_head action;
514
515 bdaddr_t addr;
516 u8 addr_type;
517
518 u16 conn_min_interval;
519 u16 conn_max_interval;
520 u16 conn_latency;
521 u16 supervision_timeout;
522
523 enum {
524 HCI_AUTO_CONN_DISABLED,
525 HCI_AUTO_CONN_REPORT,
526 HCI_AUTO_CONN_DIRECT,
527 HCI_AUTO_CONN_ALWAYS,
528 HCI_AUTO_CONN_LINK_LOSS,
529 HCI_AUTO_CONN_EXPLICIT,
530 } auto_connect;
531
532 struct hci_conn *conn;
533 bool explicit_connect;
534 };
535
536 extern struct list_head hci_dev_list;
537 extern struct list_head hci_cb_list;
538 extern rwlock_t hci_dev_list_lock;
539 extern struct mutex hci_cb_list_lock;
540
541 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags)
542 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags)
543 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags)
544 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags)
545 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags)
546 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags)
547 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags)
548
549 #define hci_dev_clear_volatile_flags(hdev) \
550 do { \
551 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \
552 hci_dev_clear_flag(hdev, HCI_LE_ADV); \
553 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \
554 } while (0)
555
556 /* ----- HCI interface to upper protocols ----- */
557 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
558 int l2cap_disconn_ind(struct hci_conn *hcon);
559 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
560
561 #if IS_ENABLED(CONFIG_BT_BREDR)
562 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
563 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
564 #else
565 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
566 __u8 *flags)
567 {
568 return 0;
569 }
570
571 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb)
572 {
573 }
574 #endif
575
576 /* ----- Inquiry cache ----- */
577 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
578 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
579
580 static inline void discovery_init(struct hci_dev *hdev)
581 {
582 hdev->discovery.state = DISCOVERY_STOPPED;
583 INIT_LIST_HEAD(&hdev->discovery.all);
584 INIT_LIST_HEAD(&hdev->discovery.unknown);
585 INIT_LIST_HEAD(&hdev->discovery.resolve);
586 hdev->discovery.report_invalid_rssi = true;
587 hdev->discovery.rssi = HCI_RSSI_INVALID;
588 }
589
590 static inline void hci_discovery_filter_clear(struct hci_dev *hdev)
591 {
592 hdev->discovery.result_filtering = false;
593 hdev->discovery.report_invalid_rssi = true;
594 hdev->discovery.rssi = HCI_RSSI_INVALID;
595 hdev->discovery.uuid_count = 0;
596 kfree(hdev->discovery.uuids);
597 hdev->discovery.uuids = NULL;
598 hdev->discovery.scan_start = 0;
599 hdev->discovery.scan_duration = 0;
600 }
601
602 bool hci_discovery_active(struct hci_dev *hdev);
603
604 void hci_discovery_set_state(struct hci_dev *hdev, int state);
605
606 static inline int inquiry_cache_empty(struct hci_dev *hdev)
607 {
608 return list_empty(&hdev->discovery.all);
609 }
610
611 static inline long inquiry_cache_age(struct hci_dev *hdev)
612 {
613 struct discovery_state *c = &hdev->discovery;
614 return jiffies - c->timestamp;
615 }
616
617 static inline long inquiry_entry_age(struct inquiry_entry *e)
618 {
619 return jiffies - e->timestamp;
620 }
621
622 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
623 bdaddr_t *bdaddr);
624 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
625 bdaddr_t *bdaddr);
626 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
627 bdaddr_t *bdaddr,
628 int state);
629 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
630 struct inquiry_entry *ie);
631 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
632 bool name_known);
633 void hci_inquiry_cache_flush(struct hci_dev *hdev);
634
635 /* ----- HCI Connections ----- */
636 enum {
637 HCI_CONN_AUTH_PEND,
638 HCI_CONN_REAUTH_PEND,
639 HCI_CONN_ENCRYPT_PEND,
640 HCI_CONN_RSWITCH_PEND,
641 HCI_CONN_MODE_CHANGE_PEND,
642 HCI_CONN_SCO_SETUP_PEND,
643 HCI_CONN_MGMT_CONNECTED,
644 HCI_CONN_SSP_ENABLED,
645 HCI_CONN_SC_ENABLED,
646 HCI_CONN_AES_CCM,
647 HCI_CONN_POWER_SAVE,
648 HCI_CONN_FLUSH_KEY,
649 HCI_CONN_ENCRYPT,
650 HCI_CONN_AUTH,
651 HCI_CONN_SECURE,
652 HCI_CONN_FIPS,
653 HCI_CONN_STK_ENCRYPT,
654 HCI_CONN_AUTH_INITIATOR,
655 HCI_CONN_DROP,
656 HCI_CONN_PARAM_REMOVAL_PEND,
657 HCI_CONN_NEW_LINK_KEY,
658 HCI_CONN_SCANNING,
659 HCI_CONN_AUTH_FAILURE,
660 };
661
662 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
663 {
664 struct hci_dev *hdev = conn->hdev;
665 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
666 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
667 }
668
669 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
670 {
671 struct hci_dev *hdev = conn->hdev;
672 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) &&
673 test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
674 }
675
676 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
677 {
678 struct hci_conn_hash *h = &hdev->conn_hash;
679 list_add_rcu(&c->list, &h->list);
680 switch (c->type) {
681 case ACL_LINK:
682 h->acl_num++;
683 break;
684 case AMP_LINK:
685 h->amp_num++;
686 break;
687 case LE_LINK:
688 h->le_num++;
689 if (c->role == HCI_ROLE_SLAVE)
690 h->le_num_slave++;
691 break;
692 case SCO_LINK:
693 case ESCO_LINK:
694 h->sco_num++;
695 break;
696 }
697 }
698
699 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
700 {
701 struct hci_conn_hash *h = &hdev->conn_hash;
702
703 list_del_rcu(&c->list);
704 synchronize_rcu();
705
706 switch (c->type) {
707 case ACL_LINK:
708 h->acl_num--;
709 break;
710 case AMP_LINK:
711 h->amp_num--;
712 break;
713 case LE_LINK:
714 h->le_num--;
715 if (c->role == HCI_ROLE_SLAVE)
716 h->le_num_slave--;
717 break;
718 case SCO_LINK:
719 case ESCO_LINK:
720 h->sco_num--;
721 break;
722 }
723 }
724
725 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
726 {
727 struct hci_conn_hash *h = &hdev->conn_hash;
728 switch (type) {
729 case ACL_LINK:
730 return h->acl_num;
731 case AMP_LINK:
732 return h->amp_num;
733 case LE_LINK:
734 return h->le_num;
735 case SCO_LINK:
736 case ESCO_LINK:
737 return h->sco_num;
738 default:
739 return 0;
740 }
741 }
742
743 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
744 {
745 struct hci_conn_hash *c = &hdev->conn_hash;
746
747 return c->acl_num + c->amp_num + c->sco_num + c->le_num;
748 }
749
750 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle)
751 {
752 struct hci_conn_hash *h = &hdev->conn_hash;
753 struct hci_conn *c;
754 __u8 type = INVALID_LINK;
755
756 rcu_read_lock();
757
758 list_for_each_entry_rcu(c, &h->list, list) {
759 if (c->handle == handle) {
760 type = c->type;
761 break;
762 }
763 }
764
765 rcu_read_unlock();
766
767 return type;
768 }
769
770 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
771 __u16 handle)
772 {
773 struct hci_conn_hash *h = &hdev->conn_hash;
774 struct hci_conn *c;
775
776 rcu_read_lock();
777
778 list_for_each_entry_rcu(c, &h->list, list) {
779 if (c->handle == handle) {
780 rcu_read_unlock();
781 return c;
782 }
783 }
784 rcu_read_unlock();
785
786 return NULL;
787 }
788
789 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
790 __u8 type, bdaddr_t *ba)
791 {
792 struct hci_conn_hash *h = &hdev->conn_hash;
793 struct hci_conn *c;
794
795 rcu_read_lock();
796
797 list_for_each_entry_rcu(c, &h->list, list) {
798 if (c->type == type && !bacmp(&c->dst, ba)) {
799 rcu_read_unlock();
800 return c;
801 }
802 }
803
804 rcu_read_unlock();
805
806 return NULL;
807 }
808
809 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev,
810 bdaddr_t *ba,
811 __u8 ba_type)
812 {
813 struct hci_conn_hash *h = &hdev->conn_hash;
814 struct hci_conn *c;
815
816 rcu_read_lock();
817
818 list_for_each_entry_rcu(c, &h->list, list) {
819 if (c->type != LE_LINK)
820 continue;
821
822 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) {
823 rcu_read_unlock();
824 return c;
825 }
826 }
827
828 rcu_read_unlock();
829
830 return NULL;
831 }
832
833 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
834 __u8 type, __u16 state)
835 {
836 struct hci_conn_hash *h = &hdev->conn_hash;
837 struct hci_conn *c;
838
839 rcu_read_lock();
840
841 list_for_each_entry_rcu(c, &h->list, list) {
842 if (c->type == type && c->state == state) {
843 rcu_read_unlock();
844 return c;
845 }
846 }
847
848 rcu_read_unlock();
849
850 return NULL;
851 }
852
853 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev)
854 {
855 struct hci_conn_hash *h = &hdev->conn_hash;
856 struct hci_conn *c;
857
858 rcu_read_lock();
859
860 list_for_each_entry_rcu(c, &h->list, list) {
861 if (c->type == LE_LINK && c->state == BT_CONNECT &&
862 !test_bit(HCI_CONN_SCANNING, &c->flags)) {
863 rcu_read_unlock();
864 return c;
865 }
866 }
867
868 rcu_read_unlock();
869
870 return NULL;
871 }
872
873 int hci_disconnect(struct hci_conn *conn, __u8 reason);
874 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
875 void hci_sco_setup(struct hci_conn *conn, __u8 status);
876
877 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
878 u8 role);
879 int hci_conn_del(struct hci_conn *conn);
880 void hci_conn_hash_flush(struct hci_dev *hdev);
881 void hci_conn_check_pending(struct hci_dev *hdev);
882
883 struct hci_chan *hci_chan_create(struct hci_conn *conn);
884 void hci_chan_del(struct hci_chan *chan);
885 void hci_chan_list_flush(struct hci_conn *conn);
886 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
887
888 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
889 u8 dst_type, u8 sec_level,
890 u16 conn_timeout);
891 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
892 u8 dst_type, u8 sec_level, u16 conn_timeout,
893 u8 role);
894 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
895 u8 sec_level, u8 auth_type);
896 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
897 __u16 setting);
898 int hci_conn_check_link_mode(struct hci_conn *conn);
899 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
900 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
901 bool initiator);
902 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
903
904 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
905
906 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
907
908 /*
909 * hci_conn_get() and hci_conn_put() are used to control the life-time of an
910 * "hci_conn" object. They do not guarantee that the hci_conn object is running,
911 * working or anything else. They just guarantee that the object is available
912 * and can be dereferenced. So you can use its locks, local variables and any
913 * other constant data.
914 * Before accessing runtime data, you _must_ lock the object and then check that
915 * it is still running. As soon as you release the locks, the connection might
916 * get dropped, though.
917 *
918 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
919 * how long the underlying connection is held. So every channel that runs on the
920 * hci_conn object calls this to prevent the connection from disappearing. As
921 * long as you hold a device, you must also guarantee that you have a valid
922 * reference to the device via hci_conn_get() (or the initial reference from
923 * hci_conn_add()).
924 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
925 * break because nobody cares for that. But this means, we cannot use
926 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
927 */
928
929 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn)
930 {
931 get_device(&conn->dev);
932 return conn;
933 }
934
935 static inline void hci_conn_put(struct hci_conn *conn)
936 {
937 put_device(&conn->dev);
938 }
939
940 static inline void hci_conn_hold(struct hci_conn *conn)
941 {
942 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
943
944 atomic_inc(&conn->refcnt);
945 cancel_delayed_work(&conn->disc_work);
946 }
947
948 static inline void hci_conn_drop(struct hci_conn *conn)
949 {
950 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
951
952 if (atomic_dec_and_test(&conn->refcnt)) {
953 unsigned long timeo;
954
955 switch (conn->type) {
956 case ACL_LINK:
957 case LE_LINK:
958 cancel_delayed_work(&conn->idle_work);
959 if (conn->state == BT_CONNECTED) {
960 timeo = conn->disc_timeout;
961 if (!conn->out)
962 timeo *= 2;
963 } else {
964 timeo = 0;
965 }
966 break;
967
968 case AMP_LINK:
969 timeo = conn->disc_timeout;
970 break;
971
972 default:
973 timeo = 0;
974 break;
975 }
976
977 cancel_delayed_work(&conn->disc_work);
978 queue_delayed_work(conn->hdev->workqueue,
979 &conn->disc_work, timeo);
980 }
981 }
982
983 /* ----- HCI Devices ----- */
984 static inline void hci_dev_put(struct hci_dev *d)
985 {
986 BT_DBG("%s orig refcnt %d", d->name,
987 atomic_read(&d->dev.kobj.kref.refcount));
988
989 put_device(&d->dev);
990 }
991
992 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
993 {
994 BT_DBG("%s orig refcnt %d", d->name,
995 atomic_read(&d->dev.kobj.kref.refcount));
996
997 get_device(&d->dev);
998 return d;
999 }
1000
1001 #define hci_dev_lock(d) mutex_lock(&d->lock)
1002 #define hci_dev_unlock(d) mutex_unlock(&d->lock)
1003
1004 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
1005 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
1006
1007 static inline void *hci_get_drvdata(struct hci_dev *hdev)
1008 {
1009 return dev_get_drvdata(&hdev->dev);
1010 }
1011
1012 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
1013 {
1014 dev_set_drvdata(&hdev->dev, data);
1015 }
1016
1017 struct hci_dev *hci_dev_get(int index);
1018 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);
1019
1020 struct hci_dev *hci_alloc_dev(void);
1021 void hci_free_dev(struct hci_dev *hdev);
1022 int hci_register_dev(struct hci_dev *hdev);
1023 void hci_unregister_dev(struct hci_dev *hdev);
1024 int hci_suspend_dev(struct hci_dev *hdev);
1025 int hci_resume_dev(struct hci_dev *hdev);
1026 int hci_reset_dev(struct hci_dev *hdev);
1027 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
1028 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb);
1029 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...);
1030 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...);
1031 int hci_dev_open(__u16 dev);
1032 int hci_dev_close(__u16 dev);
1033 int hci_dev_do_close(struct hci_dev *hdev);
1034 int hci_dev_reset(__u16 dev);
1035 int hci_dev_reset_stat(__u16 dev);
1036 int hci_dev_cmd(unsigned int cmd, void __user *arg);
1037 int hci_get_dev_list(void __user *arg);
1038 int hci_get_dev_info(void __user *arg);
1039 int hci_get_conn_list(void __user *arg);
1040 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
1041 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
1042 int hci_inquiry(void __user *arg);
1043
1044 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
1045 bdaddr_t *bdaddr, u8 type);
1046 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1047 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1048 void hci_bdaddr_list_clear(struct list_head *list);
1049
1050 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
1051 bdaddr_t *addr, u8 addr_type);
1052 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
1053 bdaddr_t *addr, u8 addr_type);
1054 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
1055 void hci_conn_params_clear_disabled(struct hci_dev *hdev);
1056
1057 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
1058 bdaddr_t *addr,
1059 u8 addr_type);
1060
1061 void hci_uuids_clear(struct hci_dev *hdev);
1062
1063 void hci_link_keys_clear(struct hci_dev *hdev);
1064 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1065 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1066 bdaddr_t *bdaddr, u8 *val, u8 type,
1067 u8 pin_len, bool *persistent);
1068 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1069 u8 addr_type, u8 type, u8 authenticated,
1070 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
1071 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1072 u8 addr_type, u8 role);
1073 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
1074 void hci_smp_ltks_clear(struct hci_dev *hdev);
1075 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1076
1077 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
1078 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1079 u8 addr_type);
1080 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1081 u8 addr_type, u8 val[16], bdaddr_t *rpa);
1082 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
1083 void hci_smp_irks_clear(struct hci_dev *hdev);
1084
1085 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1086
1087 void hci_remote_oob_data_clear(struct hci_dev *hdev);
1088 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1089 bdaddr_t *bdaddr, u8 bdaddr_type);
1090 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1091 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1092 u8 *hash256, u8 *rand256);
1093 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1094 u8 bdaddr_type);
1095
1096 void hci_adv_instances_clear(struct hci_dev *hdev);
1097 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance);
1098 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance);
1099 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
1100 u16 adv_data_len, u8 *adv_data,
1101 u16 scan_rsp_len, u8 *scan_rsp_data,
1102 u16 timeout, u16 duration);
1103 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance);
1104
1105 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
1106
1107 void hci_init_sysfs(struct hci_dev *hdev);
1108 void hci_conn_init_sysfs(struct hci_conn *conn);
1109 void hci_conn_add_sysfs(struct hci_conn *conn);
1110 void hci_conn_del_sysfs(struct hci_conn *conn);
1111
1112 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
1113
1114 /* ----- LMP capabilities ----- */
1115 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT)
1116 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH)
1117 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD)
1118 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF)
1119 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK)
1120 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ)
1121 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO)
1122 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR))
1123 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE)
1124 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
1125 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
1126 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ)
1127 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
1128 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
1129 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH)
1130 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO)
1131 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
1132 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES)
1133 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT)
1134
1135 /* ----- Extended LMP capabilities ----- */
1136 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
1137 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE)
1138 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
1139 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN)
1140 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC)
1141 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING)
1142
1143 /* ----- Host capabilities ----- */
1144 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP)
1145 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC)
1146 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE))
1147 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
1148
1149 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \
1150 !hci_dev_test_flag(dev, HCI_AUTO_OFF))
1151 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \
1152 hci_dev_test_flag(dev, HCI_SC_ENABLED))
1153
1154 /* ----- HCI protocols ----- */
1155 #define HCI_PROTO_DEFER 0x01
1156
1157 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
1158 __u8 type, __u8 *flags)
1159 {
1160 switch (type) {
1161 case ACL_LINK:
1162 return l2cap_connect_ind(hdev, bdaddr);
1163
1164 case SCO_LINK:
1165 case ESCO_LINK:
1166 return sco_connect_ind(hdev, bdaddr, flags);
1167
1168 default:
1169 BT_ERR("unknown link type %d", type);
1170 return -EINVAL;
1171 }
1172 }
1173
1174 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
1175 {
1176 if (conn->type != ACL_LINK && conn->type != LE_LINK)
1177 return HCI_ERROR_REMOTE_USER_TERM;
1178
1179 return l2cap_disconn_ind(conn);
1180 }
1181
1182 /* ----- HCI callbacks ----- */
1183 struct hci_cb {
1184 struct list_head list;
1185
1186 char *name;
1187
1188 void (*connect_cfm) (struct hci_conn *conn, __u8 status);
1189 void (*disconn_cfm) (struct hci_conn *conn, __u8 status);
1190 void (*security_cfm) (struct hci_conn *conn, __u8 status,
1191 __u8 encrypt);
1192 void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
1193 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
1194 };
1195
1196 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status)
1197 {
1198 struct hci_cb *cb;
1199
1200 mutex_lock(&hci_cb_list_lock);
1201 list_for_each_entry(cb, &hci_cb_list, list) {
1202 if (cb->connect_cfm)
1203 cb->connect_cfm(conn, status);
1204 }
1205 mutex_unlock(&hci_cb_list_lock);
1206
1207 if (conn->connect_cfm_cb)
1208 conn->connect_cfm_cb(conn, status);
1209 }
1210
1211 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason)
1212 {
1213 struct hci_cb *cb;
1214
1215 mutex_lock(&hci_cb_list_lock);
1216 list_for_each_entry(cb, &hci_cb_list, list) {
1217 if (cb->disconn_cfm)
1218 cb->disconn_cfm(conn, reason);
1219 }
1220 mutex_unlock(&hci_cb_list_lock);
1221
1222 if (conn->disconn_cfm_cb)
1223 conn->disconn_cfm_cb(conn, reason);
1224 }
1225
1226 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1227 {
1228 struct hci_cb *cb;
1229 __u8 encrypt;
1230
1231 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1232 return;
1233
1234 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1235
1236 mutex_lock(&hci_cb_list_lock);
1237 list_for_each_entry(cb, &hci_cb_list, list) {
1238 if (cb->security_cfm)
1239 cb->security_cfm(conn, status, encrypt);
1240 }
1241 mutex_unlock(&hci_cb_list_lock);
1242
1243 if (conn->security_cfm_cb)
1244 conn->security_cfm_cb(conn, status);
1245 }
1246
1247 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
1248 __u8 encrypt)
1249 {
1250 struct hci_cb *cb;
1251
1252 if (conn->sec_level == BT_SECURITY_SDP)
1253 conn->sec_level = BT_SECURITY_LOW;
1254
1255 if (conn->pending_sec_level > conn->sec_level)
1256 conn->sec_level = conn->pending_sec_level;
1257
1258 mutex_lock(&hci_cb_list_lock);
1259 list_for_each_entry(cb, &hci_cb_list, list) {
1260 if (cb->security_cfm)
1261 cb->security_cfm(conn, status, encrypt);
1262 }
1263 mutex_unlock(&hci_cb_list_lock);
1264
1265 if (conn->security_cfm_cb)
1266 conn->security_cfm_cb(conn, status);
1267 }
1268
1269 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1270 {
1271 struct hci_cb *cb;
1272
1273 mutex_lock(&hci_cb_list_lock);
1274 list_for_each_entry(cb, &hci_cb_list, list) {
1275 if (cb->key_change_cfm)
1276 cb->key_change_cfm(conn, status);
1277 }
1278 mutex_unlock(&hci_cb_list_lock);
1279 }
1280
1281 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1282 __u8 role)
1283 {
1284 struct hci_cb *cb;
1285
1286 mutex_lock(&hci_cb_list_lock);
1287 list_for_each_entry(cb, &hci_cb_list, list) {
1288 if (cb->role_switch_cfm)
1289 cb->role_switch_cfm(conn, status, role);
1290 }
1291 mutex_unlock(&hci_cb_list_lock);
1292 }
1293
1294 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type,
1295 size_t *data_len)
1296 {
1297 size_t parsed = 0;
1298
1299 if (eir_len < 2)
1300 return NULL;
1301
1302 while (parsed < eir_len - 1) {
1303 u8 field_len = eir[0];
1304
1305 if (field_len == 0)
1306 break;
1307
1308 parsed += field_len + 1;
1309
1310 if (parsed > eir_len)
1311 break;
1312
1313 if (eir[1] != type) {
1314 eir += field_len + 1;
1315 continue;
1316 }
1317
1318 /* Zero length data */
1319 if (field_len == 1)
1320 return NULL;
1321
1322 if (data_len)
1323 *data_len = field_len - 1;
1324
1325 return &eir[2];
1326 }
1327
1328 return NULL;
1329 }
1330
1331 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1332 {
1333 if (addr_type != ADDR_LE_DEV_RANDOM)
1334 return false;
1335
1336 if ((bdaddr->b[5] & 0xc0) == 0x40)
1337 return true;
1338
1339 return false;
1340 }
1341
1342 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
1343 {
1344 if (addr_type == ADDR_LE_DEV_PUBLIC)
1345 return true;
1346
1347 /* Check for Random Static address type */
1348 if ((addr->b[5] & 0xc0) == 0xc0)
1349 return true;
1350
1351 return false;
1352 }
1353
1354 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1355 bdaddr_t *bdaddr, u8 addr_type)
1356 {
1357 if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1358 return NULL;
1359
1360 return hci_find_irk_by_rpa(hdev, bdaddr);
1361 }
1362
1363 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
1364 u16 to_multiplier)
1365 {
1366 u16 max_latency;
1367
1368 if (min > max || min < 6 || max > 3200)
1369 return -EINVAL;
1370
1371 if (to_multiplier < 10 || to_multiplier > 3200)
1372 return -EINVAL;
1373
1374 if (max >= to_multiplier * 8)
1375 return -EINVAL;
1376
1377 max_latency = (to_multiplier * 4 / max) - 1;
1378 if (latency > 499 || latency > max_latency)
1379 return -EINVAL;
1380
1381 return 0;
1382 }
1383
1384 int hci_register_cb(struct hci_cb *hcb);
1385 int hci_unregister_cb(struct hci_cb *hcb);
1386
1387 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1388 const void *param, u32 timeout);
1389 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1390 const void *param, u8 event, u32 timeout);
1391
1392 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1393 const void *param);
1394 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1395 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1396
1397 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1398
1399 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1400 const void *param, u32 timeout);
1401
1402 /* ----- HCI Sockets ----- */
1403 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1404 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
1405 int flag, struct sock *skip_sk);
1406 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1407
1408 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1409
1410 #define HCI_MGMT_VAR_LEN BIT(0)
1411 #define HCI_MGMT_NO_HDEV BIT(1)
1412 #define HCI_MGMT_UNTRUSTED BIT(2)
1413 #define HCI_MGMT_UNCONFIGURED BIT(3)
1414
1415 struct hci_mgmt_handler {
1416 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data,
1417 u16 data_len);
1418 size_t data_len;
1419 unsigned long flags;
1420 };
1421
1422 struct hci_mgmt_chan {
1423 struct list_head list;
1424 unsigned short channel;
1425 size_t handler_count;
1426 const struct hci_mgmt_handler *handlers;
1427 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev);
1428 };
1429
1430 int hci_mgmt_chan_register(struct hci_mgmt_chan *c);
1431 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c);
1432
1433 /* Management interface */
1434 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR))
1435 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \
1436 BIT(BDADDR_LE_RANDOM))
1437 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \
1438 BIT(BDADDR_LE_PUBLIC) | \
1439 BIT(BDADDR_LE_RANDOM))
1440
1441 /* These LE scan and inquiry parameters were chosen according to LE General
1442 * Discovery Procedure specification.
1443 */
1444 #define DISCOV_LE_SCAN_WIN 0x12
1445 #define DISCOV_LE_SCAN_INT 0x12
1446 #define DISCOV_LE_TIMEOUT 10240 /* msec */
1447 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */
1448 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04
1449 #define DISCOV_BREDR_INQUIRY_LEN 0x08
1450 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */
1451
1452 int mgmt_new_settings(struct hci_dev *hdev);
1453 void mgmt_index_added(struct hci_dev *hdev);
1454 void mgmt_index_removed(struct hci_dev *hdev);
1455 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1456 void mgmt_power_on(struct hci_dev *hdev, int err);
1457 void __mgmt_power_off(struct hci_dev *hdev);
1458 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1459 bool persistent);
1460 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn,
1461 u32 flags, u8 *name, u8 name_len);
1462 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1463 u8 link_type, u8 addr_type, u8 reason,
1464 bool mgmt_connected);
1465 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1466 u8 link_type, u8 addr_type, u8 status);
1467 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1468 u8 addr_type, u8 status);
1469 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1470 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1471 u8 status);
1472 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1473 u8 status);
1474 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1475 u8 link_type, u8 addr_type, u32 value,
1476 u8 confirm_hint);
1477 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1478 u8 link_type, u8 addr_type, u8 status);
1479 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1480 u8 link_type, u8 addr_type, u8 status);
1481 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1482 u8 link_type, u8 addr_type);
1483 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1484 u8 link_type, u8 addr_type, u8 status);
1485 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1486 u8 link_type, u8 addr_type, u8 status);
1487 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1488 u8 link_type, u8 addr_type, u32 passkey,
1489 u8 entered);
1490 void mgmt_auth_failed(struct hci_conn *conn, u8 status);
1491 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1492 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1493 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1494 u8 status);
1495 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1496 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status);
1497 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status);
1498 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1499 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
1500 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
1501 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1502 u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1503 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1504 bool mgmt_powering_down(struct hci_dev *hdev);
1505 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1506 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent);
1507 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1508 bool persistent);
1509 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
1510 u8 bdaddr_type, u8 store_hint, u16 min_interval,
1511 u16 max_interval, u16 latency, u16 timeout);
1512 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1513 bool mgmt_get_connectable(struct hci_dev *hdev);
1514 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status);
1515 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status);
1516 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev);
1517 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev,
1518 u8 instance);
1519 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev,
1520 u8 instance);
1521
1522 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
1523 u16 to_multiplier);
1524 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1525 __u8 ltk[16], __u8 key_size);
1526
1527 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1528 u8 *bdaddr_type);
1529
1530 #define SCO_AIRMODE_MASK 0x0003
1531 #define SCO_AIRMODE_CVSD 0x0000
1532 #define SCO_AIRMODE_TRANSP 0x0003
1533
1534 #endif /* __HCI_CORE_H */
This page took 0.09395 seconds and 5 git commands to generate.