pxa168_eth: fix mdiobus_scan() error check
[deliverable/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58
59 #include <linux/if_link.h>
60 #include <linux/atomic.h>
61 #include <linux/mmu_notifier.h>
62 #include <asm/uaccess.h>
63
64 extern struct workqueue_struct *ib_wq;
65 extern struct workqueue_struct *ib_comp_wq;
66
67 union ib_gid {
68 u8 raw[16];
69 struct {
70 __be64 subnet_prefix;
71 __be64 interface_id;
72 } global;
73 };
74
75 extern union ib_gid zgid;
76
77 enum ib_gid_type {
78 /* If link layer is Ethernet, this is RoCE V1 */
79 IB_GID_TYPE_IB = 0,
80 IB_GID_TYPE_ROCE = 0,
81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
82 IB_GID_TYPE_SIZE
83 };
84
85 #define ROCE_V2_UDP_DPORT 4791
86 struct ib_gid_attr {
87 enum ib_gid_type gid_type;
88 struct net_device *ndev;
89 };
90
91 enum rdma_node_type {
92 /* IB values map to NodeInfo:NodeType. */
93 RDMA_NODE_IB_CA = 1,
94 RDMA_NODE_IB_SWITCH,
95 RDMA_NODE_IB_ROUTER,
96 RDMA_NODE_RNIC,
97 RDMA_NODE_USNIC,
98 RDMA_NODE_USNIC_UDP,
99 };
100
101 enum {
102 /* set the local administered indication */
103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
104 };
105
106 enum rdma_transport_type {
107 RDMA_TRANSPORT_IB,
108 RDMA_TRANSPORT_IWARP,
109 RDMA_TRANSPORT_USNIC,
110 RDMA_TRANSPORT_USNIC_UDP
111 };
112
113 enum rdma_protocol_type {
114 RDMA_PROTOCOL_IB,
115 RDMA_PROTOCOL_IBOE,
116 RDMA_PROTOCOL_IWARP,
117 RDMA_PROTOCOL_USNIC_UDP
118 };
119
120 __attribute_const__ enum rdma_transport_type
121 rdma_node_get_transport(enum rdma_node_type node_type);
122
123 enum rdma_network_type {
124 RDMA_NETWORK_IB,
125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
126 RDMA_NETWORK_IPV4,
127 RDMA_NETWORK_IPV6
128 };
129
130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
131 {
132 if (network_type == RDMA_NETWORK_IPV4 ||
133 network_type == RDMA_NETWORK_IPV6)
134 return IB_GID_TYPE_ROCE_UDP_ENCAP;
135
136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
137 return IB_GID_TYPE_IB;
138 }
139
140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
141 union ib_gid *gid)
142 {
143 if (gid_type == IB_GID_TYPE_IB)
144 return RDMA_NETWORK_IB;
145
146 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
147 return RDMA_NETWORK_IPV4;
148 else
149 return RDMA_NETWORK_IPV6;
150 }
151
152 enum rdma_link_layer {
153 IB_LINK_LAYER_UNSPECIFIED,
154 IB_LINK_LAYER_INFINIBAND,
155 IB_LINK_LAYER_ETHERNET,
156 };
157
158 enum ib_device_cap_flags {
159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
162 IB_DEVICE_RAW_MULTI = (1 << 3),
163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
168 IB_DEVICE_INIT_TYPE = (1 << 9),
169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
172 IB_DEVICE_SRQ_RESIZE = (1 << 13),
173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
174
175 /*
176 * This device supports a per-device lkey or stag that can be
177 * used without performing a memory registration for the local
178 * memory. Note that ULPs should never check this flag, but
179 * instead of use the local_dma_lkey flag in the ib_pd structure,
180 * which will always contain a usable lkey.
181 */
182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
184 IB_DEVICE_MEM_WINDOW = (1 << 17),
185 /*
186 * Devices should set IB_DEVICE_UD_IP_SUM if they support
187 * insertion of UDP and TCP checksum on outgoing UD IPoIB
188 * messages and can verify the validity of checksum for
189 * incoming messages. Setting this flag implies that the
190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
191 */
192 IB_DEVICE_UD_IP_CSUM = (1 << 18),
193 IB_DEVICE_UD_TSO = (1 << 19),
194 IB_DEVICE_XRC = (1 << 20),
195
196 /*
197 * This device supports the IB "base memory management extension",
198 * which includes support for fast registrations (IB_WR_REG_MR,
199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
200 * also be set by any iWarp device which must support FRs to comply
201 * to the iWarp verbs spec. iWarp devices also support the
202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
203 * stag.
204 */
205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
209 IB_DEVICE_RC_IP_CSUM = (1 << 25),
210 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
211 /*
212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
213 * support execution of WQEs that involve synchronization
214 * of I/O operations with single completion queue managed
215 * by hardware.
216 */
217 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
220 IB_DEVICE_ON_DEMAND_PAGING = (1 << 31),
221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
222 IB_DEVICE_VIRTUAL_FUNCTION = ((u64)1 << 33),
223 };
224
225 enum ib_signature_prot_cap {
226 IB_PROT_T10DIF_TYPE_1 = 1,
227 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
228 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
229 };
230
231 enum ib_signature_guard_cap {
232 IB_GUARD_T10DIF_CRC = 1,
233 IB_GUARD_T10DIF_CSUM = 1 << 1,
234 };
235
236 enum ib_atomic_cap {
237 IB_ATOMIC_NONE,
238 IB_ATOMIC_HCA,
239 IB_ATOMIC_GLOB
240 };
241
242 enum ib_odp_general_cap_bits {
243 IB_ODP_SUPPORT = 1 << 0,
244 };
245
246 enum ib_odp_transport_cap_bits {
247 IB_ODP_SUPPORT_SEND = 1 << 0,
248 IB_ODP_SUPPORT_RECV = 1 << 1,
249 IB_ODP_SUPPORT_WRITE = 1 << 2,
250 IB_ODP_SUPPORT_READ = 1 << 3,
251 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
252 };
253
254 struct ib_odp_caps {
255 uint64_t general_caps;
256 struct {
257 uint32_t rc_odp_caps;
258 uint32_t uc_odp_caps;
259 uint32_t ud_odp_caps;
260 } per_transport_caps;
261 };
262
263 enum ib_cq_creation_flags {
264 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
265 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
266 };
267
268 struct ib_cq_init_attr {
269 unsigned int cqe;
270 int comp_vector;
271 u32 flags;
272 };
273
274 struct ib_device_attr {
275 u64 fw_ver;
276 __be64 sys_image_guid;
277 u64 max_mr_size;
278 u64 page_size_cap;
279 u32 vendor_id;
280 u32 vendor_part_id;
281 u32 hw_ver;
282 int max_qp;
283 int max_qp_wr;
284 u64 device_cap_flags;
285 int max_sge;
286 int max_sge_rd;
287 int max_cq;
288 int max_cqe;
289 int max_mr;
290 int max_pd;
291 int max_qp_rd_atom;
292 int max_ee_rd_atom;
293 int max_res_rd_atom;
294 int max_qp_init_rd_atom;
295 int max_ee_init_rd_atom;
296 enum ib_atomic_cap atomic_cap;
297 enum ib_atomic_cap masked_atomic_cap;
298 int max_ee;
299 int max_rdd;
300 int max_mw;
301 int max_raw_ipv6_qp;
302 int max_raw_ethy_qp;
303 int max_mcast_grp;
304 int max_mcast_qp_attach;
305 int max_total_mcast_qp_attach;
306 int max_ah;
307 int max_fmr;
308 int max_map_per_fmr;
309 int max_srq;
310 int max_srq_wr;
311 int max_srq_sge;
312 unsigned int max_fast_reg_page_list_len;
313 u16 max_pkeys;
314 u8 local_ca_ack_delay;
315 int sig_prot_cap;
316 int sig_guard_cap;
317 struct ib_odp_caps odp_caps;
318 uint64_t timestamp_mask;
319 uint64_t hca_core_clock; /* in KHZ */
320 };
321
322 enum ib_mtu {
323 IB_MTU_256 = 1,
324 IB_MTU_512 = 2,
325 IB_MTU_1024 = 3,
326 IB_MTU_2048 = 4,
327 IB_MTU_4096 = 5
328 };
329
330 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
331 {
332 switch (mtu) {
333 case IB_MTU_256: return 256;
334 case IB_MTU_512: return 512;
335 case IB_MTU_1024: return 1024;
336 case IB_MTU_2048: return 2048;
337 case IB_MTU_4096: return 4096;
338 default: return -1;
339 }
340 }
341
342 enum ib_port_state {
343 IB_PORT_NOP = 0,
344 IB_PORT_DOWN = 1,
345 IB_PORT_INIT = 2,
346 IB_PORT_ARMED = 3,
347 IB_PORT_ACTIVE = 4,
348 IB_PORT_ACTIVE_DEFER = 5
349 };
350
351 enum ib_port_cap_flags {
352 IB_PORT_SM = 1 << 1,
353 IB_PORT_NOTICE_SUP = 1 << 2,
354 IB_PORT_TRAP_SUP = 1 << 3,
355 IB_PORT_OPT_IPD_SUP = 1 << 4,
356 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
357 IB_PORT_SL_MAP_SUP = 1 << 6,
358 IB_PORT_MKEY_NVRAM = 1 << 7,
359 IB_PORT_PKEY_NVRAM = 1 << 8,
360 IB_PORT_LED_INFO_SUP = 1 << 9,
361 IB_PORT_SM_DISABLED = 1 << 10,
362 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
363 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
364 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
365 IB_PORT_CM_SUP = 1 << 16,
366 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
367 IB_PORT_REINIT_SUP = 1 << 18,
368 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
369 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
370 IB_PORT_DR_NOTICE_SUP = 1 << 21,
371 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
372 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
373 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
374 IB_PORT_CLIENT_REG_SUP = 1 << 25,
375 IB_PORT_IP_BASED_GIDS = 1 << 26,
376 };
377
378 enum ib_port_width {
379 IB_WIDTH_1X = 1,
380 IB_WIDTH_4X = 2,
381 IB_WIDTH_8X = 4,
382 IB_WIDTH_12X = 8
383 };
384
385 static inline int ib_width_enum_to_int(enum ib_port_width width)
386 {
387 switch (width) {
388 case IB_WIDTH_1X: return 1;
389 case IB_WIDTH_4X: return 4;
390 case IB_WIDTH_8X: return 8;
391 case IB_WIDTH_12X: return 12;
392 default: return -1;
393 }
394 }
395
396 enum ib_port_speed {
397 IB_SPEED_SDR = 1,
398 IB_SPEED_DDR = 2,
399 IB_SPEED_QDR = 4,
400 IB_SPEED_FDR10 = 8,
401 IB_SPEED_FDR = 16,
402 IB_SPEED_EDR = 32
403 };
404
405 struct ib_protocol_stats {
406 /* TBD... */
407 };
408
409 struct iw_protocol_stats {
410 u64 ipInReceives;
411 u64 ipInHdrErrors;
412 u64 ipInTooBigErrors;
413 u64 ipInNoRoutes;
414 u64 ipInAddrErrors;
415 u64 ipInUnknownProtos;
416 u64 ipInTruncatedPkts;
417 u64 ipInDiscards;
418 u64 ipInDelivers;
419 u64 ipOutForwDatagrams;
420 u64 ipOutRequests;
421 u64 ipOutDiscards;
422 u64 ipOutNoRoutes;
423 u64 ipReasmTimeout;
424 u64 ipReasmReqds;
425 u64 ipReasmOKs;
426 u64 ipReasmFails;
427 u64 ipFragOKs;
428 u64 ipFragFails;
429 u64 ipFragCreates;
430 u64 ipInMcastPkts;
431 u64 ipOutMcastPkts;
432 u64 ipInBcastPkts;
433 u64 ipOutBcastPkts;
434
435 u64 tcpRtoAlgorithm;
436 u64 tcpRtoMin;
437 u64 tcpRtoMax;
438 u64 tcpMaxConn;
439 u64 tcpActiveOpens;
440 u64 tcpPassiveOpens;
441 u64 tcpAttemptFails;
442 u64 tcpEstabResets;
443 u64 tcpCurrEstab;
444 u64 tcpInSegs;
445 u64 tcpOutSegs;
446 u64 tcpRetransSegs;
447 u64 tcpInErrs;
448 u64 tcpOutRsts;
449 };
450
451 union rdma_protocol_stats {
452 struct ib_protocol_stats ib;
453 struct iw_protocol_stats iw;
454 };
455
456 /* Define bits for the various functionality this port needs to be supported by
457 * the core.
458 */
459 /* Management 0x00000FFF */
460 #define RDMA_CORE_CAP_IB_MAD 0x00000001
461 #define RDMA_CORE_CAP_IB_SMI 0x00000002
462 #define RDMA_CORE_CAP_IB_CM 0x00000004
463 #define RDMA_CORE_CAP_IW_CM 0x00000008
464 #define RDMA_CORE_CAP_IB_SA 0x00000010
465 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
466
467 /* Address format 0x000FF000 */
468 #define RDMA_CORE_CAP_AF_IB 0x00001000
469 #define RDMA_CORE_CAP_ETH_AH 0x00002000
470
471 /* Protocol 0xFFF00000 */
472 #define RDMA_CORE_CAP_PROT_IB 0x00100000
473 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
474 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
475 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
476
477 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
478 | RDMA_CORE_CAP_IB_MAD \
479 | RDMA_CORE_CAP_IB_SMI \
480 | RDMA_CORE_CAP_IB_CM \
481 | RDMA_CORE_CAP_IB_SA \
482 | RDMA_CORE_CAP_AF_IB)
483 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
484 | RDMA_CORE_CAP_IB_MAD \
485 | RDMA_CORE_CAP_IB_CM \
486 | RDMA_CORE_CAP_AF_IB \
487 | RDMA_CORE_CAP_ETH_AH)
488 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
489 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
490 | RDMA_CORE_CAP_IB_MAD \
491 | RDMA_CORE_CAP_IB_CM \
492 | RDMA_CORE_CAP_AF_IB \
493 | RDMA_CORE_CAP_ETH_AH)
494 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
495 | RDMA_CORE_CAP_IW_CM)
496 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
497 | RDMA_CORE_CAP_OPA_MAD)
498
499 struct ib_port_attr {
500 u64 subnet_prefix;
501 enum ib_port_state state;
502 enum ib_mtu max_mtu;
503 enum ib_mtu active_mtu;
504 int gid_tbl_len;
505 u32 port_cap_flags;
506 u32 max_msg_sz;
507 u32 bad_pkey_cntr;
508 u32 qkey_viol_cntr;
509 u16 pkey_tbl_len;
510 u16 lid;
511 u16 sm_lid;
512 u8 lmc;
513 u8 max_vl_num;
514 u8 sm_sl;
515 u8 subnet_timeout;
516 u8 init_type_reply;
517 u8 active_width;
518 u8 active_speed;
519 u8 phys_state;
520 bool grh_required;
521 };
522
523 enum ib_device_modify_flags {
524 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
525 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
526 };
527
528 struct ib_device_modify {
529 u64 sys_image_guid;
530 char node_desc[64];
531 };
532
533 enum ib_port_modify_flags {
534 IB_PORT_SHUTDOWN = 1,
535 IB_PORT_INIT_TYPE = (1<<2),
536 IB_PORT_RESET_QKEY_CNTR = (1<<3)
537 };
538
539 struct ib_port_modify {
540 u32 set_port_cap_mask;
541 u32 clr_port_cap_mask;
542 u8 init_type;
543 };
544
545 enum ib_event_type {
546 IB_EVENT_CQ_ERR,
547 IB_EVENT_QP_FATAL,
548 IB_EVENT_QP_REQ_ERR,
549 IB_EVENT_QP_ACCESS_ERR,
550 IB_EVENT_COMM_EST,
551 IB_EVENT_SQ_DRAINED,
552 IB_EVENT_PATH_MIG,
553 IB_EVENT_PATH_MIG_ERR,
554 IB_EVENT_DEVICE_FATAL,
555 IB_EVENT_PORT_ACTIVE,
556 IB_EVENT_PORT_ERR,
557 IB_EVENT_LID_CHANGE,
558 IB_EVENT_PKEY_CHANGE,
559 IB_EVENT_SM_CHANGE,
560 IB_EVENT_SRQ_ERR,
561 IB_EVENT_SRQ_LIMIT_REACHED,
562 IB_EVENT_QP_LAST_WQE_REACHED,
563 IB_EVENT_CLIENT_REREGISTER,
564 IB_EVENT_GID_CHANGE,
565 };
566
567 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
568
569 struct ib_event {
570 struct ib_device *device;
571 union {
572 struct ib_cq *cq;
573 struct ib_qp *qp;
574 struct ib_srq *srq;
575 u8 port_num;
576 } element;
577 enum ib_event_type event;
578 };
579
580 struct ib_event_handler {
581 struct ib_device *device;
582 void (*handler)(struct ib_event_handler *, struct ib_event *);
583 struct list_head list;
584 };
585
586 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
587 do { \
588 (_ptr)->device = _device; \
589 (_ptr)->handler = _handler; \
590 INIT_LIST_HEAD(&(_ptr)->list); \
591 } while (0)
592
593 struct ib_global_route {
594 union ib_gid dgid;
595 u32 flow_label;
596 u8 sgid_index;
597 u8 hop_limit;
598 u8 traffic_class;
599 };
600
601 struct ib_grh {
602 __be32 version_tclass_flow;
603 __be16 paylen;
604 u8 next_hdr;
605 u8 hop_limit;
606 union ib_gid sgid;
607 union ib_gid dgid;
608 };
609
610 union rdma_network_hdr {
611 struct ib_grh ibgrh;
612 struct {
613 /* The IB spec states that if it's IPv4, the header
614 * is located in the last 20 bytes of the header.
615 */
616 u8 reserved[20];
617 struct iphdr roce4grh;
618 };
619 };
620
621 enum {
622 IB_MULTICAST_QPN = 0xffffff
623 };
624
625 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
626 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
627
628 enum ib_ah_flags {
629 IB_AH_GRH = 1
630 };
631
632 enum ib_rate {
633 IB_RATE_PORT_CURRENT = 0,
634 IB_RATE_2_5_GBPS = 2,
635 IB_RATE_5_GBPS = 5,
636 IB_RATE_10_GBPS = 3,
637 IB_RATE_20_GBPS = 6,
638 IB_RATE_30_GBPS = 4,
639 IB_RATE_40_GBPS = 7,
640 IB_RATE_60_GBPS = 8,
641 IB_RATE_80_GBPS = 9,
642 IB_RATE_120_GBPS = 10,
643 IB_RATE_14_GBPS = 11,
644 IB_RATE_56_GBPS = 12,
645 IB_RATE_112_GBPS = 13,
646 IB_RATE_168_GBPS = 14,
647 IB_RATE_25_GBPS = 15,
648 IB_RATE_100_GBPS = 16,
649 IB_RATE_200_GBPS = 17,
650 IB_RATE_300_GBPS = 18
651 };
652
653 /**
654 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
655 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
656 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
657 * @rate: rate to convert.
658 */
659 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
660
661 /**
662 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
663 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
664 * @rate: rate to convert.
665 */
666 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
667
668
669 /**
670 * enum ib_mr_type - memory region type
671 * @IB_MR_TYPE_MEM_REG: memory region that is used for
672 * normal registration
673 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
674 * signature operations (data-integrity
675 * capable regions)
676 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
677 * register any arbitrary sg lists (without
678 * the normal mr constraints - see
679 * ib_map_mr_sg)
680 */
681 enum ib_mr_type {
682 IB_MR_TYPE_MEM_REG,
683 IB_MR_TYPE_SIGNATURE,
684 IB_MR_TYPE_SG_GAPS,
685 };
686
687 /**
688 * Signature types
689 * IB_SIG_TYPE_NONE: Unprotected.
690 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
691 */
692 enum ib_signature_type {
693 IB_SIG_TYPE_NONE,
694 IB_SIG_TYPE_T10_DIF,
695 };
696
697 /**
698 * Signature T10-DIF block-guard types
699 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
700 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
701 */
702 enum ib_t10_dif_bg_type {
703 IB_T10DIF_CRC,
704 IB_T10DIF_CSUM
705 };
706
707 /**
708 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
709 * domain.
710 * @bg_type: T10-DIF block guard type (CRC|CSUM)
711 * @pi_interval: protection information interval.
712 * @bg: seed of guard computation.
713 * @app_tag: application tag of guard block
714 * @ref_tag: initial guard block reference tag.
715 * @ref_remap: Indicate wethear the reftag increments each block
716 * @app_escape: Indicate to skip block check if apptag=0xffff
717 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
718 * @apptag_check_mask: check bitmask of application tag.
719 */
720 struct ib_t10_dif_domain {
721 enum ib_t10_dif_bg_type bg_type;
722 u16 pi_interval;
723 u16 bg;
724 u16 app_tag;
725 u32 ref_tag;
726 bool ref_remap;
727 bool app_escape;
728 bool ref_escape;
729 u16 apptag_check_mask;
730 };
731
732 /**
733 * struct ib_sig_domain - Parameters for signature domain
734 * @sig_type: specific signauture type
735 * @sig: union of all signature domain attributes that may
736 * be used to set domain layout.
737 */
738 struct ib_sig_domain {
739 enum ib_signature_type sig_type;
740 union {
741 struct ib_t10_dif_domain dif;
742 } sig;
743 };
744
745 /**
746 * struct ib_sig_attrs - Parameters for signature handover operation
747 * @check_mask: bitmask for signature byte check (8 bytes)
748 * @mem: memory domain layout desciptor.
749 * @wire: wire domain layout desciptor.
750 */
751 struct ib_sig_attrs {
752 u8 check_mask;
753 struct ib_sig_domain mem;
754 struct ib_sig_domain wire;
755 };
756
757 enum ib_sig_err_type {
758 IB_SIG_BAD_GUARD,
759 IB_SIG_BAD_REFTAG,
760 IB_SIG_BAD_APPTAG,
761 };
762
763 /**
764 * struct ib_sig_err - signature error descriptor
765 */
766 struct ib_sig_err {
767 enum ib_sig_err_type err_type;
768 u32 expected;
769 u32 actual;
770 u64 sig_err_offset;
771 u32 key;
772 };
773
774 enum ib_mr_status_check {
775 IB_MR_CHECK_SIG_STATUS = 1,
776 };
777
778 /**
779 * struct ib_mr_status - Memory region status container
780 *
781 * @fail_status: Bitmask of MR checks status. For each
782 * failed check a corresponding status bit is set.
783 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
784 * failure.
785 */
786 struct ib_mr_status {
787 u32 fail_status;
788 struct ib_sig_err sig_err;
789 };
790
791 /**
792 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
793 * enum.
794 * @mult: multiple to convert.
795 */
796 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
797
798 struct ib_ah_attr {
799 struct ib_global_route grh;
800 u16 dlid;
801 u8 sl;
802 u8 src_path_bits;
803 u8 static_rate;
804 u8 ah_flags;
805 u8 port_num;
806 u8 dmac[ETH_ALEN];
807 };
808
809 enum ib_wc_status {
810 IB_WC_SUCCESS,
811 IB_WC_LOC_LEN_ERR,
812 IB_WC_LOC_QP_OP_ERR,
813 IB_WC_LOC_EEC_OP_ERR,
814 IB_WC_LOC_PROT_ERR,
815 IB_WC_WR_FLUSH_ERR,
816 IB_WC_MW_BIND_ERR,
817 IB_WC_BAD_RESP_ERR,
818 IB_WC_LOC_ACCESS_ERR,
819 IB_WC_REM_INV_REQ_ERR,
820 IB_WC_REM_ACCESS_ERR,
821 IB_WC_REM_OP_ERR,
822 IB_WC_RETRY_EXC_ERR,
823 IB_WC_RNR_RETRY_EXC_ERR,
824 IB_WC_LOC_RDD_VIOL_ERR,
825 IB_WC_REM_INV_RD_REQ_ERR,
826 IB_WC_REM_ABORT_ERR,
827 IB_WC_INV_EECN_ERR,
828 IB_WC_INV_EEC_STATE_ERR,
829 IB_WC_FATAL_ERR,
830 IB_WC_RESP_TIMEOUT_ERR,
831 IB_WC_GENERAL_ERR
832 };
833
834 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
835
836 enum ib_wc_opcode {
837 IB_WC_SEND,
838 IB_WC_RDMA_WRITE,
839 IB_WC_RDMA_READ,
840 IB_WC_COMP_SWAP,
841 IB_WC_FETCH_ADD,
842 IB_WC_LSO,
843 IB_WC_LOCAL_INV,
844 IB_WC_REG_MR,
845 IB_WC_MASKED_COMP_SWAP,
846 IB_WC_MASKED_FETCH_ADD,
847 /*
848 * Set value of IB_WC_RECV so consumers can test if a completion is a
849 * receive by testing (opcode & IB_WC_RECV).
850 */
851 IB_WC_RECV = 1 << 7,
852 IB_WC_RECV_RDMA_WITH_IMM
853 };
854
855 enum ib_wc_flags {
856 IB_WC_GRH = 1,
857 IB_WC_WITH_IMM = (1<<1),
858 IB_WC_WITH_INVALIDATE = (1<<2),
859 IB_WC_IP_CSUM_OK = (1<<3),
860 IB_WC_WITH_SMAC = (1<<4),
861 IB_WC_WITH_VLAN = (1<<5),
862 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
863 };
864
865 struct ib_wc {
866 union {
867 u64 wr_id;
868 struct ib_cqe *wr_cqe;
869 };
870 enum ib_wc_status status;
871 enum ib_wc_opcode opcode;
872 u32 vendor_err;
873 u32 byte_len;
874 struct ib_qp *qp;
875 union {
876 __be32 imm_data;
877 u32 invalidate_rkey;
878 } ex;
879 u32 src_qp;
880 int wc_flags;
881 u16 pkey_index;
882 u16 slid;
883 u8 sl;
884 u8 dlid_path_bits;
885 u8 port_num; /* valid only for DR SMPs on switches */
886 u8 smac[ETH_ALEN];
887 u16 vlan_id;
888 u8 network_hdr_type;
889 };
890
891 enum ib_cq_notify_flags {
892 IB_CQ_SOLICITED = 1 << 0,
893 IB_CQ_NEXT_COMP = 1 << 1,
894 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
895 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
896 };
897
898 enum ib_srq_type {
899 IB_SRQT_BASIC,
900 IB_SRQT_XRC
901 };
902
903 enum ib_srq_attr_mask {
904 IB_SRQ_MAX_WR = 1 << 0,
905 IB_SRQ_LIMIT = 1 << 1,
906 };
907
908 struct ib_srq_attr {
909 u32 max_wr;
910 u32 max_sge;
911 u32 srq_limit;
912 };
913
914 struct ib_srq_init_attr {
915 void (*event_handler)(struct ib_event *, void *);
916 void *srq_context;
917 struct ib_srq_attr attr;
918 enum ib_srq_type srq_type;
919
920 union {
921 struct {
922 struct ib_xrcd *xrcd;
923 struct ib_cq *cq;
924 } xrc;
925 } ext;
926 };
927
928 struct ib_qp_cap {
929 u32 max_send_wr;
930 u32 max_recv_wr;
931 u32 max_send_sge;
932 u32 max_recv_sge;
933 u32 max_inline_data;
934 };
935
936 enum ib_sig_type {
937 IB_SIGNAL_ALL_WR,
938 IB_SIGNAL_REQ_WR
939 };
940
941 enum ib_qp_type {
942 /*
943 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
944 * here (and in that order) since the MAD layer uses them as
945 * indices into a 2-entry table.
946 */
947 IB_QPT_SMI,
948 IB_QPT_GSI,
949
950 IB_QPT_RC,
951 IB_QPT_UC,
952 IB_QPT_UD,
953 IB_QPT_RAW_IPV6,
954 IB_QPT_RAW_ETHERTYPE,
955 IB_QPT_RAW_PACKET = 8,
956 IB_QPT_XRC_INI = 9,
957 IB_QPT_XRC_TGT,
958 IB_QPT_MAX,
959 /* Reserve a range for qp types internal to the low level driver.
960 * These qp types will not be visible at the IB core layer, so the
961 * IB_QPT_MAX usages should not be affected in the core layer
962 */
963 IB_QPT_RESERVED1 = 0x1000,
964 IB_QPT_RESERVED2,
965 IB_QPT_RESERVED3,
966 IB_QPT_RESERVED4,
967 IB_QPT_RESERVED5,
968 IB_QPT_RESERVED6,
969 IB_QPT_RESERVED7,
970 IB_QPT_RESERVED8,
971 IB_QPT_RESERVED9,
972 IB_QPT_RESERVED10,
973 };
974
975 enum ib_qp_create_flags {
976 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
977 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
978 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
979 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
980 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
981 IB_QP_CREATE_NETIF_QP = 1 << 5,
982 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
983 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
984 /* reserve bits 26-31 for low level drivers' internal use */
985 IB_QP_CREATE_RESERVED_START = 1 << 26,
986 IB_QP_CREATE_RESERVED_END = 1 << 31,
987 };
988
989 /*
990 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
991 * callback to destroy the passed in QP.
992 */
993
994 struct ib_qp_init_attr {
995 void (*event_handler)(struct ib_event *, void *);
996 void *qp_context;
997 struct ib_cq *send_cq;
998 struct ib_cq *recv_cq;
999 struct ib_srq *srq;
1000 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1001 struct ib_qp_cap cap;
1002 enum ib_sig_type sq_sig_type;
1003 enum ib_qp_type qp_type;
1004 enum ib_qp_create_flags create_flags;
1005 u8 port_num; /* special QP types only */
1006 };
1007
1008 struct ib_qp_open_attr {
1009 void (*event_handler)(struct ib_event *, void *);
1010 void *qp_context;
1011 u32 qp_num;
1012 enum ib_qp_type qp_type;
1013 };
1014
1015 enum ib_rnr_timeout {
1016 IB_RNR_TIMER_655_36 = 0,
1017 IB_RNR_TIMER_000_01 = 1,
1018 IB_RNR_TIMER_000_02 = 2,
1019 IB_RNR_TIMER_000_03 = 3,
1020 IB_RNR_TIMER_000_04 = 4,
1021 IB_RNR_TIMER_000_06 = 5,
1022 IB_RNR_TIMER_000_08 = 6,
1023 IB_RNR_TIMER_000_12 = 7,
1024 IB_RNR_TIMER_000_16 = 8,
1025 IB_RNR_TIMER_000_24 = 9,
1026 IB_RNR_TIMER_000_32 = 10,
1027 IB_RNR_TIMER_000_48 = 11,
1028 IB_RNR_TIMER_000_64 = 12,
1029 IB_RNR_TIMER_000_96 = 13,
1030 IB_RNR_TIMER_001_28 = 14,
1031 IB_RNR_TIMER_001_92 = 15,
1032 IB_RNR_TIMER_002_56 = 16,
1033 IB_RNR_TIMER_003_84 = 17,
1034 IB_RNR_TIMER_005_12 = 18,
1035 IB_RNR_TIMER_007_68 = 19,
1036 IB_RNR_TIMER_010_24 = 20,
1037 IB_RNR_TIMER_015_36 = 21,
1038 IB_RNR_TIMER_020_48 = 22,
1039 IB_RNR_TIMER_030_72 = 23,
1040 IB_RNR_TIMER_040_96 = 24,
1041 IB_RNR_TIMER_061_44 = 25,
1042 IB_RNR_TIMER_081_92 = 26,
1043 IB_RNR_TIMER_122_88 = 27,
1044 IB_RNR_TIMER_163_84 = 28,
1045 IB_RNR_TIMER_245_76 = 29,
1046 IB_RNR_TIMER_327_68 = 30,
1047 IB_RNR_TIMER_491_52 = 31
1048 };
1049
1050 enum ib_qp_attr_mask {
1051 IB_QP_STATE = 1,
1052 IB_QP_CUR_STATE = (1<<1),
1053 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1054 IB_QP_ACCESS_FLAGS = (1<<3),
1055 IB_QP_PKEY_INDEX = (1<<4),
1056 IB_QP_PORT = (1<<5),
1057 IB_QP_QKEY = (1<<6),
1058 IB_QP_AV = (1<<7),
1059 IB_QP_PATH_MTU = (1<<8),
1060 IB_QP_TIMEOUT = (1<<9),
1061 IB_QP_RETRY_CNT = (1<<10),
1062 IB_QP_RNR_RETRY = (1<<11),
1063 IB_QP_RQ_PSN = (1<<12),
1064 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1065 IB_QP_ALT_PATH = (1<<14),
1066 IB_QP_MIN_RNR_TIMER = (1<<15),
1067 IB_QP_SQ_PSN = (1<<16),
1068 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1069 IB_QP_PATH_MIG_STATE = (1<<18),
1070 IB_QP_CAP = (1<<19),
1071 IB_QP_DEST_QPN = (1<<20),
1072 IB_QP_RESERVED1 = (1<<21),
1073 IB_QP_RESERVED2 = (1<<22),
1074 IB_QP_RESERVED3 = (1<<23),
1075 IB_QP_RESERVED4 = (1<<24),
1076 };
1077
1078 enum ib_qp_state {
1079 IB_QPS_RESET,
1080 IB_QPS_INIT,
1081 IB_QPS_RTR,
1082 IB_QPS_RTS,
1083 IB_QPS_SQD,
1084 IB_QPS_SQE,
1085 IB_QPS_ERR
1086 };
1087
1088 enum ib_mig_state {
1089 IB_MIG_MIGRATED,
1090 IB_MIG_REARM,
1091 IB_MIG_ARMED
1092 };
1093
1094 enum ib_mw_type {
1095 IB_MW_TYPE_1 = 1,
1096 IB_MW_TYPE_2 = 2
1097 };
1098
1099 struct ib_qp_attr {
1100 enum ib_qp_state qp_state;
1101 enum ib_qp_state cur_qp_state;
1102 enum ib_mtu path_mtu;
1103 enum ib_mig_state path_mig_state;
1104 u32 qkey;
1105 u32 rq_psn;
1106 u32 sq_psn;
1107 u32 dest_qp_num;
1108 int qp_access_flags;
1109 struct ib_qp_cap cap;
1110 struct ib_ah_attr ah_attr;
1111 struct ib_ah_attr alt_ah_attr;
1112 u16 pkey_index;
1113 u16 alt_pkey_index;
1114 u8 en_sqd_async_notify;
1115 u8 sq_draining;
1116 u8 max_rd_atomic;
1117 u8 max_dest_rd_atomic;
1118 u8 min_rnr_timer;
1119 u8 port_num;
1120 u8 timeout;
1121 u8 retry_cnt;
1122 u8 rnr_retry;
1123 u8 alt_port_num;
1124 u8 alt_timeout;
1125 };
1126
1127 enum ib_wr_opcode {
1128 IB_WR_RDMA_WRITE,
1129 IB_WR_RDMA_WRITE_WITH_IMM,
1130 IB_WR_SEND,
1131 IB_WR_SEND_WITH_IMM,
1132 IB_WR_RDMA_READ,
1133 IB_WR_ATOMIC_CMP_AND_SWP,
1134 IB_WR_ATOMIC_FETCH_AND_ADD,
1135 IB_WR_LSO,
1136 IB_WR_SEND_WITH_INV,
1137 IB_WR_RDMA_READ_WITH_INV,
1138 IB_WR_LOCAL_INV,
1139 IB_WR_REG_MR,
1140 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1141 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1142 IB_WR_REG_SIG_MR,
1143 /* reserve values for low level drivers' internal use.
1144 * These values will not be used at all in the ib core layer.
1145 */
1146 IB_WR_RESERVED1 = 0xf0,
1147 IB_WR_RESERVED2,
1148 IB_WR_RESERVED3,
1149 IB_WR_RESERVED4,
1150 IB_WR_RESERVED5,
1151 IB_WR_RESERVED6,
1152 IB_WR_RESERVED7,
1153 IB_WR_RESERVED8,
1154 IB_WR_RESERVED9,
1155 IB_WR_RESERVED10,
1156 };
1157
1158 enum ib_send_flags {
1159 IB_SEND_FENCE = 1,
1160 IB_SEND_SIGNALED = (1<<1),
1161 IB_SEND_SOLICITED = (1<<2),
1162 IB_SEND_INLINE = (1<<3),
1163 IB_SEND_IP_CSUM = (1<<4),
1164
1165 /* reserve bits 26-31 for low level drivers' internal use */
1166 IB_SEND_RESERVED_START = (1 << 26),
1167 IB_SEND_RESERVED_END = (1 << 31),
1168 };
1169
1170 struct ib_sge {
1171 u64 addr;
1172 u32 length;
1173 u32 lkey;
1174 };
1175
1176 struct ib_cqe {
1177 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1178 };
1179
1180 struct ib_send_wr {
1181 struct ib_send_wr *next;
1182 union {
1183 u64 wr_id;
1184 struct ib_cqe *wr_cqe;
1185 };
1186 struct ib_sge *sg_list;
1187 int num_sge;
1188 enum ib_wr_opcode opcode;
1189 int send_flags;
1190 union {
1191 __be32 imm_data;
1192 u32 invalidate_rkey;
1193 } ex;
1194 };
1195
1196 struct ib_rdma_wr {
1197 struct ib_send_wr wr;
1198 u64 remote_addr;
1199 u32 rkey;
1200 };
1201
1202 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1203 {
1204 return container_of(wr, struct ib_rdma_wr, wr);
1205 }
1206
1207 struct ib_atomic_wr {
1208 struct ib_send_wr wr;
1209 u64 remote_addr;
1210 u64 compare_add;
1211 u64 swap;
1212 u64 compare_add_mask;
1213 u64 swap_mask;
1214 u32 rkey;
1215 };
1216
1217 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1218 {
1219 return container_of(wr, struct ib_atomic_wr, wr);
1220 }
1221
1222 struct ib_ud_wr {
1223 struct ib_send_wr wr;
1224 struct ib_ah *ah;
1225 void *header;
1226 int hlen;
1227 int mss;
1228 u32 remote_qpn;
1229 u32 remote_qkey;
1230 u16 pkey_index; /* valid for GSI only */
1231 u8 port_num; /* valid for DR SMPs on switch only */
1232 };
1233
1234 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1235 {
1236 return container_of(wr, struct ib_ud_wr, wr);
1237 }
1238
1239 struct ib_reg_wr {
1240 struct ib_send_wr wr;
1241 struct ib_mr *mr;
1242 u32 key;
1243 int access;
1244 };
1245
1246 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1247 {
1248 return container_of(wr, struct ib_reg_wr, wr);
1249 }
1250
1251 struct ib_sig_handover_wr {
1252 struct ib_send_wr wr;
1253 struct ib_sig_attrs *sig_attrs;
1254 struct ib_mr *sig_mr;
1255 int access_flags;
1256 struct ib_sge *prot;
1257 };
1258
1259 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1260 {
1261 return container_of(wr, struct ib_sig_handover_wr, wr);
1262 }
1263
1264 struct ib_recv_wr {
1265 struct ib_recv_wr *next;
1266 union {
1267 u64 wr_id;
1268 struct ib_cqe *wr_cqe;
1269 };
1270 struct ib_sge *sg_list;
1271 int num_sge;
1272 };
1273
1274 enum ib_access_flags {
1275 IB_ACCESS_LOCAL_WRITE = 1,
1276 IB_ACCESS_REMOTE_WRITE = (1<<1),
1277 IB_ACCESS_REMOTE_READ = (1<<2),
1278 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1279 IB_ACCESS_MW_BIND = (1<<4),
1280 IB_ZERO_BASED = (1<<5),
1281 IB_ACCESS_ON_DEMAND = (1<<6),
1282 };
1283
1284 /*
1285 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1286 * are hidden here instead of a uapi header!
1287 */
1288 enum ib_mr_rereg_flags {
1289 IB_MR_REREG_TRANS = 1,
1290 IB_MR_REREG_PD = (1<<1),
1291 IB_MR_REREG_ACCESS = (1<<2),
1292 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1293 };
1294
1295 struct ib_fmr_attr {
1296 int max_pages;
1297 int max_maps;
1298 u8 page_shift;
1299 };
1300
1301 struct ib_umem;
1302
1303 struct ib_ucontext {
1304 struct ib_device *device;
1305 struct list_head pd_list;
1306 struct list_head mr_list;
1307 struct list_head mw_list;
1308 struct list_head cq_list;
1309 struct list_head qp_list;
1310 struct list_head srq_list;
1311 struct list_head ah_list;
1312 struct list_head xrcd_list;
1313 struct list_head rule_list;
1314 int closing;
1315
1316 struct pid *tgid;
1317 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1318 struct rb_root umem_tree;
1319 /*
1320 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1321 * mmu notifiers registration.
1322 */
1323 struct rw_semaphore umem_rwsem;
1324 void (*invalidate_range)(struct ib_umem *umem,
1325 unsigned long start, unsigned long end);
1326
1327 struct mmu_notifier mn;
1328 atomic_t notifier_count;
1329 /* A list of umems that don't have private mmu notifier counters yet. */
1330 struct list_head no_private_counters;
1331 int odp_mrs_count;
1332 #endif
1333 };
1334
1335 struct ib_uobject {
1336 u64 user_handle; /* handle given to us by userspace */
1337 struct ib_ucontext *context; /* associated user context */
1338 void *object; /* containing object */
1339 struct list_head list; /* link to context's list */
1340 int id; /* index into kernel idr */
1341 struct kref ref;
1342 struct rw_semaphore mutex; /* protects .live */
1343 struct rcu_head rcu; /* kfree_rcu() overhead */
1344 int live;
1345 };
1346
1347 struct ib_udata {
1348 const void __user *inbuf;
1349 void __user *outbuf;
1350 size_t inlen;
1351 size_t outlen;
1352 };
1353
1354 struct ib_pd {
1355 u32 local_dma_lkey;
1356 struct ib_device *device;
1357 struct ib_uobject *uobject;
1358 atomic_t usecnt; /* count all resources */
1359 struct ib_mr *local_mr;
1360 };
1361
1362 struct ib_xrcd {
1363 struct ib_device *device;
1364 atomic_t usecnt; /* count all exposed resources */
1365 struct inode *inode;
1366
1367 struct mutex tgt_qp_mutex;
1368 struct list_head tgt_qp_list;
1369 };
1370
1371 struct ib_ah {
1372 struct ib_device *device;
1373 struct ib_pd *pd;
1374 struct ib_uobject *uobject;
1375 };
1376
1377 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1378
1379 enum ib_poll_context {
1380 IB_POLL_DIRECT, /* caller context, no hw completions */
1381 IB_POLL_SOFTIRQ, /* poll from softirq context */
1382 IB_POLL_WORKQUEUE, /* poll from workqueue */
1383 };
1384
1385 struct ib_cq {
1386 struct ib_device *device;
1387 struct ib_uobject *uobject;
1388 ib_comp_handler comp_handler;
1389 void (*event_handler)(struct ib_event *, void *);
1390 void *cq_context;
1391 int cqe;
1392 atomic_t usecnt; /* count number of work queues */
1393 enum ib_poll_context poll_ctx;
1394 struct ib_wc *wc;
1395 union {
1396 struct irq_poll iop;
1397 struct work_struct work;
1398 };
1399 };
1400
1401 struct ib_srq {
1402 struct ib_device *device;
1403 struct ib_pd *pd;
1404 struct ib_uobject *uobject;
1405 void (*event_handler)(struct ib_event *, void *);
1406 void *srq_context;
1407 enum ib_srq_type srq_type;
1408 atomic_t usecnt;
1409
1410 union {
1411 struct {
1412 struct ib_xrcd *xrcd;
1413 struct ib_cq *cq;
1414 u32 srq_num;
1415 } xrc;
1416 } ext;
1417 };
1418
1419 struct ib_qp {
1420 struct ib_device *device;
1421 struct ib_pd *pd;
1422 struct ib_cq *send_cq;
1423 struct ib_cq *recv_cq;
1424 struct ib_srq *srq;
1425 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1426 struct list_head xrcd_list;
1427 /* count times opened, mcast attaches, flow attaches */
1428 atomic_t usecnt;
1429 struct list_head open_list;
1430 struct ib_qp *real_qp;
1431 struct ib_uobject *uobject;
1432 void (*event_handler)(struct ib_event *, void *);
1433 void *qp_context;
1434 u32 qp_num;
1435 enum ib_qp_type qp_type;
1436 };
1437
1438 struct ib_mr {
1439 struct ib_device *device;
1440 struct ib_pd *pd;
1441 struct ib_uobject *uobject;
1442 u32 lkey;
1443 u32 rkey;
1444 u64 iova;
1445 u32 length;
1446 unsigned int page_size;
1447 };
1448
1449 struct ib_mw {
1450 struct ib_device *device;
1451 struct ib_pd *pd;
1452 struct ib_uobject *uobject;
1453 u32 rkey;
1454 enum ib_mw_type type;
1455 };
1456
1457 struct ib_fmr {
1458 struct ib_device *device;
1459 struct ib_pd *pd;
1460 struct list_head list;
1461 u32 lkey;
1462 u32 rkey;
1463 };
1464
1465 /* Supported steering options */
1466 enum ib_flow_attr_type {
1467 /* steering according to rule specifications */
1468 IB_FLOW_ATTR_NORMAL = 0x0,
1469 /* default unicast and multicast rule -
1470 * receive all Eth traffic which isn't steered to any QP
1471 */
1472 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1473 /* default multicast rule -
1474 * receive all Eth multicast traffic which isn't steered to any QP
1475 */
1476 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1477 /* sniffer rule - receive all port traffic */
1478 IB_FLOW_ATTR_SNIFFER = 0x3
1479 };
1480
1481 /* Supported steering header types */
1482 enum ib_flow_spec_type {
1483 /* L2 headers*/
1484 IB_FLOW_SPEC_ETH = 0x20,
1485 IB_FLOW_SPEC_IB = 0x22,
1486 /* L3 header*/
1487 IB_FLOW_SPEC_IPV4 = 0x30,
1488 /* L4 headers*/
1489 IB_FLOW_SPEC_TCP = 0x40,
1490 IB_FLOW_SPEC_UDP = 0x41
1491 };
1492 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1493 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1494
1495 /* Flow steering rule priority is set according to it's domain.
1496 * Lower domain value means higher priority.
1497 */
1498 enum ib_flow_domain {
1499 IB_FLOW_DOMAIN_USER,
1500 IB_FLOW_DOMAIN_ETHTOOL,
1501 IB_FLOW_DOMAIN_RFS,
1502 IB_FLOW_DOMAIN_NIC,
1503 IB_FLOW_DOMAIN_NUM /* Must be last */
1504 };
1505
1506 enum ib_flow_flags {
1507 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1508 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1509 };
1510
1511 struct ib_flow_eth_filter {
1512 u8 dst_mac[6];
1513 u8 src_mac[6];
1514 __be16 ether_type;
1515 __be16 vlan_tag;
1516 };
1517
1518 struct ib_flow_spec_eth {
1519 enum ib_flow_spec_type type;
1520 u16 size;
1521 struct ib_flow_eth_filter val;
1522 struct ib_flow_eth_filter mask;
1523 };
1524
1525 struct ib_flow_ib_filter {
1526 __be16 dlid;
1527 __u8 sl;
1528 };
1529
1530 struct ib_flow_spec_ib {
1531 enum ib_flow_spec_type type;
1532 u16 size;
1533 struct ib_flow_ib_filter val;
1534 struct ib_flow_ib_filter mask;
1535 };
1536
1537 struct ib_flow_ipv4_filter {
1538 __be32 src_ip;
1539 __be32 dst_ip;
1540 };
1541
1542 struct ib_flow_spec_ipv4 {
1543 enum ib_flow_spec_type type;
1544 u16 size;
1545 struct ib_flow_ipv4_filter val;
1546 struct ib_flow_ipv4_filter mask;
1547 };
1548
1549 struct ib_flow_tcp_udp_filter {
1550 __be16 dst_port;
1551 __be16 src_port;
1552 };
1553
1554 struct ib_flow_spec_tcp_udp {
1555 enum ib_flow_spec_type type;
1556 u16 size;
1557 struct ib_flow_tcp_udp_filter val;
1558 struct ib_flow_tcp_udp_filter mask;
1559 };
1560
1561 union ib_flow_spec {
1562 struct {
1563 enum ib_flow_spec_type type;
1564 u16 size;
1565 };
1566 struct ib_flow_spec_eth eth;
1567 struct ib_flow_spec_ib ib;
1568 struct ib_flow_spec_ipv4 ipv4;
1569 struct ib_flow_spec_tcp_udp tcp_udp;
1570 };
1571
1572 struct ib_flow_attr {
1573 enum ib_flow_attr_type type;
1574 u16 size;
1575 u16 priority;
1576 u32 flags;
1577 u8 num_of_specs;
1578 u8 port;
1579 /* Following are the optional layers according to user request
1580 * struct ib_flow_spec_xxx
1581 * struct ib_flow_spec_yyy
1582 */
1583 };
1584
1585 struct ib_flow {
1586 struct ib_qp *qp;
1587 struct ib_uobject *uobject;
1588 };
1589
1590 struct ib_mad_hdr;
1591 struct ib_grh;
1592
1593 enum ib_process_mad_flags {
1594 IB_MAD_IGNORE_MKEY = 1,
1595 IB_MAD_IGNORE_BKEY = 2,
1596 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1597 };
1598
1599 enum ib_mad_result {
1600 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1601 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1602 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1603 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1604 };
1605
1606 #define IB_DEVICE_NAME_MAX 64
1607
1608 struct ib_cache {
1609 rwlock_t lock;
1610 struct ib_event_handler event_handler;
1611 struct ib_pkey_cache **pkey_cache;
1612 struct ib_gid_table **gid_cache;
1613 u8 *lmc_cache;
1614 };
1615
1616 struct ib_dma_mapping_ops {
1617 int (*mapping_error)(struct ib_device *dev,
1618 u64 dma_addr);
1619 u64 (*map_single)(struct ib_device *dev,
1620 void *ptr, size_t size,
1621 enum dma_data_direction direction);
1622 void (*unmap_single)(struct ib_device *dev,
1623 u64 addr, size_t size,
1624 enum dma_data_direction direction);
1625 u64 (*map_page)(struct ib_device *dev,
1626 struct page *page, unsigned long offset,
1627 size_t size,
1628 enum dma_data_direction direction);
1629 void (*unmap_page)(struct ib_device *dev,
1630 u64 addr, size_t size,
1631 enum dma_data_direction direction);
1632 int (*map_sg)(struct ib_device *dev,
1633 struct scatterlist *sg, int nents,
1634 enum dma_data_direction direction);
1635 void (*unmap_sg)(struct ib_device *dev,
1636 struct scatterlist *sg, int nents,
1637 enum dma_data_direction direction);
1638 void (*sync_single_for_cpu)(struct ib_device *dev,
1639 u64 dma_handle,
1640 size_t size,
1641 enum dma_data_direction dir);
1642 void (*sync_single_for_device)(struct ib_device *dev,
1643 u64 dma_handle,
1644 size_t size,
1645 enum dma_data_direction dir);
1646 void *(*alloc_coherent)(struct ib_device *dev,
1647 size_t size,
1648 u64 *dma_handle,
1649 gfp_t flag);
1650 void (*free_coherent)(struct ib_device *dev,
1651 size_t size, void *cpu_addr,
1652 u64 dma_handle);
1653 };
1654
1655 struct iw_cm_verbs;
1656
1657 struct ib_port_immutable {
1658 int pkey_tbl_len;
1659 int gid_tbl_len;
1660 u32 core_cap_flags;
1661 u32 max_mad_size;
1662 };
1663
1664 struct ib_device {
1665 struct device *dma_device;
1666
1667 char name[IB_DEVICE_NAME_MAX];
1668
1669 struct list_head event_handler_list;
1670 spinlock_t event_handler_lock;
1671
1672 spinlock_t client_data_lock;
1673 struct list_head core_list;
1674 /* Access to the client_data_list is protected by the client_data_lock
1675 * spinlock and the lists_rwsem read-write semaphore */
1676 struct list_head client_data_list;
1677
1678 struct ib_cache cache;
1679 /**
1680 * port_immutable is indexed by port number
1681 */
1682 struct ib_port_immutable *port_immutable;
1683
1684 int num_comp_vectors;
1685
1686 struct iw_cm_verbs *iwcm;
1687
1688 int (*get_protocol_stats)(struct ib_device *device,
1689 union rdma_protocol_stats *stats);
1690 int (*query_device)(struct ib_device *device,
1691 struct ib_device_attr *device_attr,
1692 struct ib_udata *udata);
1693 int (*query_port)(struct ib_device *device,
1694 u8 port_num,
1695 struct ib_port_attr *port_attr);
1696 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1697 u8 port_num);
1698 /* When calling get_netdev, the HW vendor's driver should return the
1699 * net device of device @device at port @port_num or NULL if such
1700 * a net device doesn't exist. The vendor driver should call dev_hold
1701 * on this net device. The HW vendor's device driver must guarantee
1702 * that this function returns NULL before the net device reaches
1703 * NETDEV_UNREGISTER_FINAL state.
1704 */
1705 struct net_device *(*get_netdev)(struct ib_device *device,
1706 u8 port_num);
1707 int (*query_gid)(struct ib_device *device,
1708 u8 port_num, int index,
1709 union ib_gid *gid);
1710 /* When calling add_gid, the HW vendor's driver should
1711 * add the gid of device @device at gid index @index of
1712 * port @port_num to be @gid. Meta-info of that gid (for example,
1713 * the network device related to this gid is available
1714 * at @attr. @context allows the HW vendor driver to store extra
1715 * information together with a GID entry. The HW vendor may allocate
1716 * memory to contain this information and store it in @context when a
1717 * new GID entry is written to. Params are consistent until the next
1718 * call of add_gid or delete_gid. The function should return 0 on
1719 * success or error otherwise. The function could be called
1720 * concurrently for different ports. This function is only called
1721 * when roce_gid_table is used.
1722 */
1723 int (*add_gid)(struct ib_device *device,
1724 u8 port_num,
1725 unsigned int index,
1726 const union ib_gid *gid,
1727 const struct ib_gid_attr *attr,
1728 void **context);
1729 /* When calling del_gid, the HW vendor's driver should delete the
1730 * gid of device @device at gid index @index of port @port_num.
1731 * Upon the deletion of a GID entry, the HW vendor must free any
1732 * allocated memory. The caller will clear @context afterwards.
1733 * This function is only called when roce_gid_table is used.
1734 */
1735 int (*del_gid)(struct ib_device *device,
1736 u8 port_num,
1737 unsigned int index,
1738 void **context);
1739 int (*query_pkey)(struct ib_device *device,
1740 u8 port_num, u16 index, u16 *pkey);
1741 int (*modify_device)(struct ib_device *device,
1742 int device_modify_mask,
1743 struct ib_device_modify *device_modify);
1744 int (*modify_port)(struct ib_device *device,
1745 u8 port_num, int port_modify_mask,
1746 struct ib_port_modify *port_modify);
1747 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1748 struct ib_udata *udata);
1749 int (*dealloc_ucontext)(struct ib_ucontext *context);
1750 int (*mmap)(struct ib_ucontext *context,
1751 struct vm_area_struct *vma);
1752 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1753 struct ib_ucontext *context,
1754 struct ib_udata *udata);
1755 int (*dealloc_pd)(struct ib_pd *pd);
1756 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1757 struct ib_ah_attr *ah_attr);
1758 int (*modify_ah)(struct ib_ah *ah,
1759 struct ib_ah_attr *ah_attr);
1760 int (*query_ah)(struct ib_ah *ah,
1761 struct ib_ah_attr *ah_attr);
1762 int (*destroy_ah)(struct ib_ah *ah);
1763 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1764 struct ib_srq_init_attr *srq_init_attr,
1765 struct ib_udata *udata);
1766 int (*modify_srq)(struct ib_srq *srq,
1767 struct ib_srq_attr *srq_attr,
1768 enum ib_srq_attr_mask srq_attr_mask,
1769 struct ib_udata *udata);
1770 int (*query_srq)(struct ib_srq *srq,
1771 struct ib_srq_attr *srq_attr);
1772 int (*destroy_srq)(struct ib_srq *srq);
1773 int (*post_srq_recv)(struct ib_srq *srq,
1774 struct ib_recv_wr *recv_wr,
1775 struct ib_recv_wr **bad_recv_wr);
1776 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1777 struct ib_qp_init_attr *qp_init_attr,
1778 struct ib_udata *udata);
1779 int (*modify_qp)(struct ib_qp *qp,
1780 struct ib_qp_attr *qp_attr,
1781 int qp_attr_mask,
1782 struct ib_udata *udata);
1783 int (*query_qp)(struct ib_qp *qp,
1784 struct ib_qp_attr *qp_attr,
1785 int qp_attr_mask,
1786 struct ib_qp_init_attr *qp_init_attr);
1787 int (*destroy_qp)(struct ib_qp *qp);
1788 int (*post_send)(struct ib_qp *qp,
1789 struct ib_send_wr *send_wr,
1790 struct ib_send_wr **bad_send_wr);
1791 int (*post_recv)(struct ib_qp *qp,
1792 struct ib_recv_wr *recv_wr,
1793 struct ib_recv_wr **bad_recv_wr);
1794 struct ib_cq * (*create_cq)(struct ib_device *device,
1795 const struct ib_cq_init_attr *attr,
1796 struct ib_ucontext *context,
1797 struct ib_udata *udata);
1798 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1799 u16 cq_period);
1800 int (*destroy_cq)(struct ib_cq *cq);
1801 int (*resize_cq)(struct ib_cq *cq, int cqe,
1802 struct ib_udata *udata);
1803 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1804 struct ib_wc *wc);
1805 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1806 int (*req_notify_cq)(struct ib_cq *cq,
1807 enum ib_cq_notify_flags flags);
1808 int (*req_ncomp_notif)(struct ib_cq *cq,
1809 int wc_cnt);
1810 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1811 int mr_access_flags);
1812 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1813 u64 start, u64 length,
1814 u64 virt_addr,
1815 int mr_access_flags,
1816 struct ib_udata *udata);
1817 int (*rereg_user_mr)(struct ib_mr *mr,
1818 int flags,
1819 u64 start, u64 length,
1820 u64 virt_addr,
1821 int mr_access_flags,
1822 struct ib_pd *pd,
1823 struct ib_udata *udata);
1824 int (*dereg_mr)(struct ib_mr *mr);
1825 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1826 enum ib_mr_type mr_type,
1827 u32 max_num_sg);
1828 int (*map_mr_sg)(struct ib_mr *mr,
1829 struct scatterlist *sg,
1830 int sg_nents);
1831 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1832 enum ib_mw_type type,
1833 struct ib_udata *udata);
1834 int (*dealloc_mw)(struct ib_mw *mw);
1835 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1836 int mr_access_flags,
1837 struct ib_fmr_attr *fmr_attr);
1838 int (*map_phys_fmr)(struct ib_fmr *fmr,
1839 u64 *page_list, int list_len,
1840 u64 iova);
1841 int (*unmap_fmr)(struct list_head *fmr_list);
1842 int (*dealloc_fmr)(struct ib_fmr *fmr);
1843 int (*attach_mcast)(struct ib_qp *qp,
1844 union ib_gid *gid,
1845 u16 lid);
1846 int (*detach_mcast)(struct ib_qp *qp,
1847 union ib_gid *gid,
1848 u16 lid);
1849 int (*process_mad)(struct ib_device *device,
1850 int process_mad_flags,
1851 u8 port_num,
1852 const struct ib_wc *in_wc,
1853 const struct ib_grh *in_grh,
1854 const struct ib_mad_hdr *in_mad,
1855 size_t in_mad_size,
1856 struct ib_mad_hdr *out_mad,
1857 size_t *out_mad_size,
1858 u16 *out_mad_pkey_index);
1859 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1860 struct ib_ucontext *ucontext,
1861 struct ib_udata *udata);
1862 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1863 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1864 struct ib_flow_attr
1865 *flow_attr,
1866 int domain);
1867 int (*destroy_flow)(struct ib_flow *flow_id);
1868 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1869 struct ib_mr_status *mr_status);
1870 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1871 void (*drain_rq)(struct ib_qp *qp);
1872 void (*drain_sq)(struct ib_qp *qp);
1873 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
1874 int state);
1875 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
1876 struct ifla_vf_info *ivf);
1877 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
1878 struct ifla_vf_stats *stats);
1879 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
1880 int type);
1881
1882 struct ib_dma_mapping_ops *dma_ops;
1883
1884 struct module *owner;
1885 struct device dev;
1886 struct kobject *ports_parent;
1887 struct list_head port_list;
1888
1889 enum {
1890 IB_DEV_UNINITIALIZED,
1891 IB_DEV_REGISTERED,
1892 IB_DEV_UNREGISTERED
1893 } reg_state;
1894
1895 int uverbs_abi_ver;
1896 u64 uverbs_cmd_mask;
1897 u64 uverbs_ex_cmd_mask;
1898
1899 char node_desc[64];
1900 __be64 node_guid;
1901 u32 local_dma_lkey;
1902 u16 is_switch:1;
1903 u8 node_type;
1904 u8 phys_port_cnt;
1905 struct ib_device_attr attrs;
1906
1907 /**
1908 * The following mandatory functions are used only at device
1909 * registration. Keep functions such as these at the end of this
1910 * structure to avoid cache line misses when accessing struct ib_device
1911 * in fast paths.
1912 */
1913 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1914 };
1915
1916 struct ib_client {
1917 char *name;
1918 void (*add) (struct ib_device *);
1919 void (*remove)(struct ib_device *, void *client_data);
1920
1921 /* Returns the net_dev belonging to this ib_client and matching the
1922 * given parameters.
1923 * @dev: An RDMA device that the net_dev use for communication.
1924 * @port: A physical port number on the RDMA device.
1925 * @pkey: P_Key that the net_dev uses if applicable.
1926 * @gid: A GID that the net_dev uses to communicate.
1927 * @addr: An IP address the net_dev is configured with.
1928 * @client_data: The device's client data set by ib_set_client_data().
1929 *
1930 * An ib_client that implements a net_dev on top of RDMA devices
1931 * (such as IP over IB) should implement this callback, allowing the
1932 * rdma_cm module to find the right net_dev for a given request.
1933 *
1934 * The caller is responsible for calling dev_put on the returned
1935 * netdev. */
1936 struct net_device *(*get_net_dev_by_params)(
1937 struct ib_device *dev,
1938 u8 port,
1939 u16 pkey,
1940 const union ib_gid *gid,
1941 const struct sockaddr *addr,
1942 void *client_data);
1943 struct list_head list;
1944 };
1945
1946 struct ib_device *ib_alloc_device(size_t size);
1947 void ib_dealloc_device(struct ib_device *device);
1948
1949 int ib_register_device(struct ib_device *device,
1950 int (*port_callback)(struct ib_device *,
1951 u8, struct kobject *));
1952 void ib_unregister_device(struct ib_device *device);
1953
1954 int ib_register_client (struct ib_client *client);
1955 void ib_unregister_client(struct ib_client *client);
1956
1957 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1958 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1959 void *data);
1960
1961 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1962 {
1963 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1964 }
1965
1966 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1967 {
1968 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1969 }
1970
1971 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
1972 size_t offset,
1973 size_t len)
1974 {
1975 const void __user *p = udata->inbuf + offset;
1976 bool ret = false;
1977 u8 *buf;
1978
1979 if (len > USHRT_MAX)
1980 return false;
1981
1982 buf = kmalloc(len, GFP_KERNEL);
1983 if (!buf)
1984 return false;
1985
1986 if (copy_from_user(buf, p, len))
1987 goto free;
1988
1989 ret = !memchr_inv(buf, 0, len);
1990
1991 free:
1992 kfree(buf);
1993 return ret;
1994 }
1995
1996 /**
1997 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1998 * contains all required attributes and no attributes not allowed for
1999 * the given QP state transition.
2000 * @cur_state: Current QP state
2001 * @next_state: Next QP state
2002 * @type: QP type
2003 * @mask: Mask of supplied QP attributes
2004 * @ll : link layer of port
2005 *
2006 * This function is a helper function that a low-level driver's
2007 * modify_qp method can use to validate the consumer's input. It
2008 * checks that cur_state and next_state are valid QP states, that a
2009 * transition from cur_state to next_state is allowed by the IB spec,
2010 * and that the attribute mask supplied is allowed for the transition.
2011 */
2012 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2013 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2014 enum rdma_link_layer ll);
2015
2016 int ib_register_event_handler (struct ib_event_handler *event_handler);
2017 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2018 void ib_dispatch_event(struct ib_event *event);
2019
2020 int ib_query_port(struct ib_device *device,
2021 u8 port_num, struct ib_port_attr *port_attr);
2022
2023 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2024 u8 port_num);
2025
2026 /**
2027 * rdma_cap_ib_switch - Check if the device is IB switch
2028 * @device: Device to check
2029 *
2030 * Device driver is responsible for setting is_switch bit on
2031 * in ib_device structure at init time.
2032 *
2033 * Return: true if the device is IB switch.
2034 */
2035 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2036 {
2037 return device->is_switch;
2038 }
2039
2040 /**
2041 * rdma_start_port - Return the first valid port number for the device
2042 * specified
2043 *
2044 * @device: Device to be checked
2045 *
2046 * Return start port number
2047 */
2048 static inline u8 rdma_start_port(const struct ib_device *device)
2049 {
2050 return rdma_cap_ib_switch(device) ? 0 : 1;
2051 }
2052
2053 /**
2054 * rdma_end_port - Return the last valid port number for the device
2055 * specified
2056 *
2057 * @device: Device to be checked
2058 *
2059 * Return last port number
2060 */
2061 static inline u8 rdma_end_port(const struct ib_device *device)
2062 {
2063 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2064 }
2065
2066 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2067 {
2068 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2069 }
2070
2071 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2072 {
2073 return device->port_immutable[port_num].core_cap_flags &
2074 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2075 }
2076
2077 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2078 {
2079 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2080 }
2081
2082 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2083 {
2084 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2085 }
2086
2087 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2088 {
2089 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2090 }
2091
2092 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2093 {
2094 return rdma_protocol_ib(device, port_num) ||
2095 rdma_protocol_roce(device, port_num);
2096 }
2097
2098 /**
2099 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2100 * Management Datagrams.
2101 * @device: Device to check
2102 * @port_num: Port number to check
2103 *
2104 * Management Datagrams (MAD) are a required part of the InfiniBand
2105 * specification and are supported on all InfiniBand devices. A slightly
2106 * extended version are also supported on OPA interfaces.
2107 *
2108 * Return: true if the port supports sending/receiving of MAD packets.
2109 */
2110 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2111 {
2112 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2113 }
2114
2115 /**
2116 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2117 * Management Datagrams.
2118 * @device: Device to check
2119 * @port_num: Port number to check
2120 *
2121 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2122 * datagrams with their own versions. These OPA MADs share many but not all of
2123 * the characteristics of InfiniBand MADs.
2124 *
2125 * OPA MADs differ in the following ways:
2126 *
2127 * 1) MADs are variable size up to 2K
2128 * IBTA defined MADs remain fixed at 256 bytes
2129 * 2) OPA SMPs must carry valid PKeys
2130 * 3) OPA SMP packets are a different format
2131 *
2132 * Return: true if the port supports OPA MAD packet formats.
2133 */
2134 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2135 {
2136 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2137 == RDMA_CORE_CAP_OPA_MAD;
2138 }
2139
2140 /**
2141 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2142 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2143 * @device: Device to check
2144 * @port_num: Port number to check
2145 *
2146 * Each InfiniBand node is required to provide a Subnet Management Agent
2147 * that the subnet manager can access. Prior to the fabric being fully
2148 * configured by the subnet manager, the SMA is accessed via a well known
2149 * interface called the Subnet Management Interface (SMI). This interface
2150 * uses directed route packets to communicate with the SM to get around the
2151 * chicken and egg problem of the SM needing to know what's on the fabric
2152 * in order to configure the fabric, and needing to configure the fabric in
2153 * order to send packets to the devices on the fabric. These directed
2154 * route packets do not need the fabric fully configured in order to reach
2155 * their destination. The SMI is the only method allowed to send
2156 * directed route packets on an InfiniBand fabric.
2157 *
2158 * Return: true if the port provides an SMI.
2159 */
2160 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2161 {
2162 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2163 }
2164
2165 /**
2166 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2167 * Communication Manager.
2168 * @device: Device to check
2169 * @port_num: Port number to check
2170 *
2171 * The InfiniBand Communication Manager is one of many pre-defined General
2172 * Service Agents (GSA) that are accessed via the General Service
2173 * Interface (GSI). It's role is to facilitate establishment of connections
2174 * between nodes as well as other management related tasks for established
2175 * connections.
2176 *
2177 * Return: true if the port supports an IB CM (this does not guarantee that
2178 * a CM is actually running however).
2179 */
2180 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2181 {
2182 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2183 }
2184
2185 /**
2186 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2187 * Communication Manager.
2188 * @device: Device to check
2189 * @port_num: Port number to check
2190 *
2191 * Similar to above, but specific to iWARP connections which have a different
2192 * managment protocol than InfiniBand.
2193 *
2194 * Return: true if the port supports an iWARP CM (this does not guarantee that
2195 * a CM is actually running however).
2196 */
2197 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2198 {
2199 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2200 }
2201
2202 /**
2203 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2204 * Subnet Administration.
2205 * @device: Device to check
2206 * @port_num: Port number to check
2207 *
2208 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2209 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2210 * fabrics, devices should resolve routes to other hosts by contacting the
2211 * SA to query the proper route.
2212 *
2213 * Return: true if the port should act as a client to the fabric Subnet
2214 * Administration interface. This does not imply that the SA service is
2215 * running locally.
2216 */
2217 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2218 {
2219 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2220 }
2221
2222 /**
2223 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2224 * Multicast.
2225 * @device: Device to check
2226 * @port_num: Port number to check
2227 *
2228 * InfiniBand multicast registration is more complex than normal IPv4 or
2229 * IPv6 multicast registration. Each Host Channel Adapter must register
2230 * with the Subnet Manager when it wishes to join a multicast group. It
2231 * should do so only once regardless of how many queue pairs it subscribes
2232 * to this group. And it should leave the group only after all queue pairs
2233 * attached to the group have been detached.
2234 *
2235 * Return: true if the port must undertake the additional adminstrative
2236 * overhead of registering/unregistering with the SM and tracking of the
2237 * total number of queue pairs attached to the multicast group.
2238 */
2239 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2240 {
2241 return rdma_cap_ib_sa(device, port_num);
2242 }
2243
2244 /**
2245 * rdma_cap_af_ib - Check if the port of device has the capability
2246 * Native Infiniband Address.
2247 * @device: Device to check
2248 * @port_num: Port number to check
2249 *
2250 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2251 * GID. RoCE uses a different mechanism, but still generates a GID via
2252 * a prescribed mechanism and port specific data.
2253 *
2254 * Return: true if the port uses a GID address to identify devices on the
2255 * network.
2256 */
2257 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2258 {
2259 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2260 }
2261
2262 /**
2263 * rdma_cap_eth_ah - Check if the port of device has the capability
2264 * Ethernet Address Handle.
2265 * @device: Device to check
2266 * @port_num: Port number to check
2267 *
2268 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2269 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2270 * port. Normally, packet headers are generated by the sending host
2271 * adapter, but when sending connectionless datagrams, we must manually
2272 * inject the proper headers for the fabric we are communicating over.
2273 *
2274 * Return: true if we are running as a RoCE port and must force the
2275 * addition of a Global Route Header built from our Ethernet Address
2276 * Handle into our header list for connectionless packets.
2277 */
2278 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2279 {
2280 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2281 }
2282
2283 /**
2284 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2285 *
2286 * @device: Device
2287 * @port_num: Port number
2288 *
2289 * This MAD size includes the MAD headers and MAD payload. No other headers
2290 * are included.
2291 *
2292 * Return the max MAD size required by the Port. Will return 0 if the port
2293 * does not support MADs
2294 */
2295 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2296 {
2297 return device->port_immutable[port_num].max_mad_size;
2298 }
2299
2300 /**
2301 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2302 * @device: Device to check
2303 * @port_num: Port number to check
2304 *
2305 * RoCE GID table mechanism manages the various GIDs for a device.
2306 *
2307 * NOTE: if allocating the port's GID table has failed, this call will still
2308 * return true, but any RoCE GID table API will fail.
2309 *
2310 * Return: true if the port uses RoCE GID table mechanism in order to manage
2311 * its GIDs.
2312 */
2313 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2314 u8 port_num)
2315 {
2316 return rdma_protocol_roce(device, port_num) &&
2317 device->add_gid && device->del_gid;
2318 }
2319
2320 int ib_query_gid(struct ib_device *device,
2321 u8 port_num, int index, union ib_gid *gid,
2322 struct ib_gid_attr *attr);
2323
2324 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2325 int state);
2326 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2327 struct ifla_vf_info *info);
2328 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2329 struct ifla_vf_stats *stats);
2330 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2331 int type);
2332
2333 int ib_query_pkey(struct ib_device *device,
2334 u8 port_num, u16 index, u16 *pkey);
2335
2336 int ib_modify_device(struct ib_device *device,
2337 int device_modify_mask,
2338 struct ib_device_modify *device_modify);
2339
2340 int ib_modify_port(struct ib_device *device,
2341 u8 port_num, int port_modify_mask,
2342 struct ib_port_modify *port_modify);
2343
2344 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2345 enum ib_gid_type gid_type, struct net_device *ndev,
2346 u8 *port_num, u16 *index);
2347
2348 int ib_find_pkey(struct ib_device *device,
2349 u8 port_num, u16 pkey, u16 *index);
2350
2351 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2352
2353 void ib_dealloc_pd(struct ib_pd *pd);
2354
2355 /**
2356 * ib_create_ah - Creates an address handle for the given address vector.
2357 * @pd: The protection domain associated with the address handle.
2358 * @ah_attr: The attributes of the address vector.
2359 *
2360 * The address handle is used to reference a local or global destination
2361 * in all UD QP post sends.
2362 */
2363 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2364
2365 /**
2366 * ib_init_ah_from_wc - Initializes address handle attributes from a
2367 * work completion.
2368 * @device: Device on which the received message arrived.
2369 * @port_num: Port on which the received message arrived.
2370 * @wc: Work completion associated with the received message.
2371 * @grh: References the received global route header. This parameter is
2372 * ignored unless the work completion indicates that the GRH is valid.
2373 * @ah_attr: Returned attributes that can be used when creating an address
2374 * handle for replying to the message.
2375 */
2376 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2377 const struct ib_wc *wc, const struct ib_grh *grh,
2378 struct ib_ah_attr *ah_attr);
2379
2380 /**
2381 * ib_create_ah_from_wc - Creates an address handle associated with the
2382 * sender of the specified work completion.
2383 * @pd: The protection domain associated with the address handle.
2384 * @wc: Work completion information associated with a received message.
2385 * @grh: References the received global route header. This parameter is
2386 * ignored unless the work completion indicates that the GRH is valid.
2387 * @port_num: The outbound port number to associate with the address.
2388 *
2389 * The address handle is used to reference a local or global destination
2390 * in all UD QP post sends.
2391 */
2392 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2393 const struct ib_grh *grh, u8 port_num);
2394
2395 /**
2396 * ib_modify_ah - Modifies the address vector associated with an address
2397 * handle.
2398 * @ah: The address handle to modify.
2399 * @ah_attr: The new address vector attributes to associate with the
2400 * address handle.
2401 */
2402 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2403
2404 /**
2405 * ib_query_ah - Queries the address vector associated with an address
2406 * handle.
2407 * @ah: The address handle to query.
2408 * @ah_attr: The address vector attributes associated with the address
2409 * handle.
2410 */
2411 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2412
2413 /**
2414 * ib_destroy_ah - Destroys an address handle.
2415 * @ah: The address handle to destroy.
2416 */
2417 int ib_destroy_ah(struct ib_ah *ah);
2418
2419 /**
2420 * ib_create_srq - Creates a SRQ associated with the specified protection
2421 * domain.
2422 * @pd: The protection domain associated with the SRQ.
2423 * @srq_init_attr: A list of initial attributes required to create the
2424 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2425 * the actual capabilities of the created SRQ.
2426 *
2427 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2428 * requested size of the SRQ, and set to the actual values allocated
2429 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2430 * will always be at least as large as the requested values.
2431 */
2432 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2433 struct ib_srq_init_attr *srq_init_attr);
2434
2435 /**
2436 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2437 * @srq: The SRQ to modify.
2438 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2439 * the current values of selected SRQ attributes are returned.
2440 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2441 * are being modified.
2442 *
2443 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2444 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2445 * the number of receives queued drops below the limit.
2446 */
2447 int ib_modify_srq(struct ib_srq *srq,
2448 struct ib_srq_attr *srq_attr,
2449 enum ib_srq_attr_mask srq_attr_mask);
2450
2451 /**
2452 * ib_query_srq - Returns the attribute list and current values for the
2453 * specified SRQ.
2454 * @srq: The SRQ to query.
2455 * @srq_attr: The attributes of the specified SRQ.
2456 */
2457 int ib_query_srq(struct ib_srq *srq,
2458 struct ib_srq_attr *srq_attr);
2459
2460 /**
2461 * ib_destroy_srq - Destroys the specified SRQ.
2462 * @srq: The SRQ to destroy.
2463 */
2464 int ib_destroy_srq(struct ib_srq *srq);
2465
2466 /**
2467 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2468 * @srq: The SRQ to post the work request on.
2469 * @recv_wr: A list of work requests to post on the receive queue.
2470 * @bad_recv_wr: On an immediate failure, this parameter will reference
2471 * the work request that failed to be posted on the QP.
2472 */
2473 static inline int ib_post_srq_recv(struct ib_srq *srq,
2474 struct ib_recv_wr *recv_wr,
2475 struct ib_recv_wr **bad_recv_wr)
2476 {
2477 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2478 }
2479
2480 /**
2481 * ib_create_qp - Creates a QP associated with the specified protection
2482 * domain.
2483 * @pd: The protection domain associated with the QP.
2484 * @qp_init_attr: A list of initial attributes required to create the
2485 * QP. If QP creation succeeds, then the attributes are updated to
2486 * the actual capabilities of the created QP.
2487 */
2488 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2489 struct ib_qp_init_attr *qp_init_attr);
2490
2491 /**
2492 * ib_modify_qp - Modifies the attributes for the specified QP and then
2493 * transitions the QP to the given state.
2494 * @qp: The QP to modify.
2495 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2496 * the current values of selected QP attributes are returned.
2497 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2498 * are being modified.
2499 */
2500 int ib_modify_qp(struct ib_qp *qp,
2501 struct ib_qp_attr *qp_attr,
2502 int qp_attr_mask);
2503
2504 /**
2505 * ib_query_qp - Returns the attribute list and current values for the
2506 * specified QP.
2507 * @qp: The QP to query.
2508 * @qp_attr: The attributes of the specified QP.
2509 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2510 * @qp_init_attr: Additional attributes of the selected QP.
2511 *
2512 * The qp_attr_mask may be used to limit the query to gathering only the
2513 * selected attributes.
2514 */
2515 int ib_query_qp(struct ib_qp *qp,
2516 struct ib_qp_attr *qp_attr,
2517 int qp_attr_mask,
2518 struct ib_qp_init_attr *qp_init_attr);
2519
2520 /**
2521 * ib_destroy_qp - Destroys the specified QP.
2522 * @qp: The QP to destroy.
2523 */
2524 int ib_destroy_qp(struct ib_qp *qp);
2525
2526 /**
2527 * ib_open_qp - Obtain a reference to an existing sharable QP.
2528 * @xrcd - XRC domain
2529 * @qp_open_attr: Attributes identifying the QP to open.
2530 *
2531 * Returns a reference to a sharable QP.
2532 */
2533 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2534 struct ib_qp_open_attr *qp_open_attr);
2535
2536 /**
2537 * ib_close_qp - Release an external reference to a QP.
2538 * @qp: The QP handle to release
2539 *
2540 * The opened QP handle is released by the caller. The underlying
2541 * shared QP is not destroyed until all internal references are released.
2542 */
2543 int ib_close_qp(struct ib_qp *qp);
2544
2545 /**
2546 * ib_post_send - Posts a list of work requests to the send queue of
2547 * the specified QP.
2548 * @qp: The QP to post the work request on.
2549 * @send_wr: A list of work requests to post on the send queue.
2550 * @bad_send_wr: On an immediate failure, this parameter will reference
2551 * the work request that failed to be posted on the QP.
2552 *
2553 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2554 * error is returned, the QP state shall not be affected,
2555 * ib_post_send() will return an immediate error after queueing any
2556 * earlier work requests in the list.
2557 */
2558 static inline int ib_post_send(struct ib_qp *qp,
2559 struct ib_send_wr *send_wr,
2560 struct ib_send_wr **bad_send_wr)
2561 {
2562 return qp->device->post_send(qp, send_wr, bad_send_wr);
2563 }
2564
2565 /**
2566 * ib_post_recv - Posts a list of work requests to the receive queue of
2567 * the specified QP.
2568 * @qp: The QP to post the work request on.
2569 * @recv_wr: A list of work requests to post on the receive queue.
2570 * @bad_recv_wr: On an immediate failure, this parameter will reference
2571 * the work request that failed to be posted on the QP.
2572 */
2573 static inline int ib_post_recv(struct ib_qp *qp,
2574 struct ib_recv_wr *recv_wr,
2575 struct ib_recv_wr **bad_recv_wr)
2576 {
2577 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2578 }
2579
2580 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2581 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2582 void ib_free_cq(struct ib_cq *cq);
2583 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2584
2585 /**
2586 * ib_create_cq - Creates a CQ on the specified device.
2587 * @device: The device on which to create the CQ.
2588 * @comp_handler: A user-specified callback that is invoked when a
2589 * completion event occurs on the CQ.
2590 * @event_handler: A user-specified callback that is invoked when an
2591 * asynchronous event not associated with a completion occurs on the CQ.
2592 * @cq_context: Context associated with the CQ returned to the user via
2593 * the associated completion and event handlers.
2594 * @cq_attr: The attributes the CQ should be created upon.
2595 *
2596 * Users can examine the cq structure to determine the actual CQ size.
2597 */
2598 struct ib_cq *ib_create_cq(struct ib_device *device,
2599 ib_comp_handler comp_handler,
2600 void (*event_handler)(struct ib_event *, void *),
2601 void *cq_context,
2602 const struct ib_cq_init_attr *cq_attr);
2603
2604 /**
2605 * ib_resize_cq - Modifies the capacity of the CQ.
2606 * @cq: The CQ to resize.
2607 * @cqe: The minimum size of the CQ.
2608 *
2609 * Users can examine the cq structure to determine the actual CQ size.
2610 */
2611 int ib_resize_cq(struct ib_cq *cq, int cqe);
2612
2613 /**
2614 * ib_modify_cq - Modifies moderation params of the CQ
2615 * @cq: The CQ to modify.
2616 * @cq_count: number of CQEs that will trigger an event
2617 * @cq_period: max period of time in usec before triggering an event
2618 *
2619 */
2620 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2621
2622 /**
2623 * ib_destroy_cq - Destroys the specified CQ.
2624 * @cq: The CQ to destroy.
2625 */
2626 int ib_destroy_cq(struct ib_cq *cq);
2627
2628 /**
2629 * ib_poll_cq - poll a CQ for completion(s)
2630 * @cq:the CQ being polled
2631 * @num_entries:maximum number of completions to return
2632 * @wc:array of at least @num_entries &struct ib_wc where completions
2633 * will be returned
2634 *
2635 * Poll a CQ for (possibly multiple) completions. If the return value
2636 * is < 0, an error occurred. If the return value is >= 0, it is the
2637 * number of completions returned. If the return value is
2638 * non-negative and < num_entries, then the CQ was emptied.
2639 */
2640 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2641 struct ib_wc *wc)
2642 {
2643 return cq->device->poll_cq(cq, num_entries, wc);
2644 }
2645
2646 /**
2647 * ib_peek_cq - Returns the number of unreaped completions currently
2648 * on the specified CQ.
2649 * @cq: The CQ to peek.
2650 * @wc_cnt: A minimum number of unreaped completions to check for.
2651 *
2652 * If the number of unreaped completions is greater than or equal to wc_cnt,
2653 * this function returns wc_cnt, otherwise, it returns the actual number of
2654 * unreaped completions.
2655 */
2656 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2657
2658 /**
2659 * ib_req_notify_cq - Request completion notification on a CQ.
2660 * @cq: The CQ to generate an event for.
2661 * @flags:
2662 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2663 * to request an event on the next solicited event or next work
2664 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2665 * may also be |ed in to request a hint about missed events, as
2666 * described below.
2667 *
2668 * Return Value:
2669 * < 0 means an error occurred while requesting notification
2670 * == 0 means notification was requested successfully, and if
2671 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2672 * were missed and it is safe to wait for another event. In
2673 * this case is it guaranteed that any work completions added
2674 * to the CQ since the last CQ poll will trigger a completion
2675 * notification event.
2676 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2677 * in. It means that the consumer must poll the CQ again to
2678 * make sure it is empty to avoid missing an event because of a
2679 * race between requesting notification and an entry being
2680 * added to the CQ. This return value means it is possible
2681 * (but not guaranteed) that a work completion has been added
2682 * to the CQ since the last poll without triggering a
2683 * completion notification event.
2684 */
2685 static inline int ib_req_notify_cq(struct ib_cq *cq,
2686 enum ib_cq_notify_flags flags)
2687 {
2688 return cq->device->req_notify_cq(cq, flags);
2689 }
2690
2691 /**
2692 * ib_req_ncomp_notif - Request completion notification when there are
2693 * at least the specified number of unreaped completions on the CQ.
2694 * @cq: The CQ to generate an event for.
2695 * @wc_cnt: The number of unreaped completions that should be on the
2696 * CQ before an event is generated.
2697 */
2698 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2699 {
2700 return cq->device->req_ncomp_notif ?
2701 cq->device->req_ncomp_notif(cq, wc_cnt) :
2702 -ENOSYS;
2703 }
2704
2705 /**
2706 * ib_get_dma_mr - Returns a memory region for system memory that is
2707 * usable for DMA.
2708 * @pd: The protection domain associated with the memory region.
2709 * @mr_access_flags: Specifies the memory access rights.
2710 *
2711 * Note that the ib_dma_*() functions defined below must be used
2712 * to create/destroy addresses used with the Lkey or Rkey returned
2713 * by ib_get_dma_mr().
2714 */
2715 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2716
2717 /**
2718 * ib_dma_mapping_error - check a DMA addr for error
2719 * @dev: The device for which the dma_addr was created
2720 * @dma_addr: The DMA address to check
2721 */
2722 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2723 {
2724 if (dev->dma_ops)
2725 return dev->dma_ops->mapping_error(dev, dma_addr);
2726 return dma_mapping_error(dev->dma_device, dma_addr);
2727 }
2728
2729 /**
2730 * ib_dma_map_single - Map a kernel virtual address to DMA address
2731 * @dev: The device for which the dma_addr is to be created
2732 * @cpu_addr: The kernel virtual address
2733 * @size: The size of the region in bytes
2734 * @direction: The direction of the DMA
2735 */
2736 static inline u64 ib_dma_map_single(struct ib_device *dev,
2737 void *cpu_addr, size_t size,
2738 enum dma_data_direction direction)
2739 {
2740 if (dev->dma_ops)
2741 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2742 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2743 }
2744
2745 /**
2746 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2747 * @dev: The device for which the DMA address was created
2748 * @addr: The DMA address
2749 * @size: The size of the region in bytes
2750 * @direction: The direction of the DMA
2751 */
2752 static inline void ib_dma_unmap_single(struct ib_device *dev,
2753 u64 addr, size_t size,
2754 enum dma_data_direction direction)
2755 {
2756 if (dev->dma_ops)
2757 dev->dma_ops->unmap_single(dev, addr, size, direction);
2758 else
2759 dma_unmap_single(dev->dma_device, addr, size, direction);
2760 }
2761
2762 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2763 void *cpu_addr, size_t size,
2764 enum dma_data_direction direction,
2765 struct dma_attrs *attrs)
2766 {
2767 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2768 direction, attrs);
2769 }
2770
2771 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2772 u64 addr, size_t size,
2773 enum dma_data_direction direction,
2774 struct dma_attrs *attrs)
2775 {
2776 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2777 direction, attrs);
2778 }
2779
2780 /**
2781 * ib_dma_map_page - Map a physical page to DMA address
2782 * @dev: The device for which the dma_addr is to be created
2783 * @page: The page to be mapped
2784 * @offset: The offset within the page
2785 * @size: The size of the region in bytes
2786 * @direction: The direction of the DMA
2787 */
2788 static inline u64 ib_dma_map_page(struct ib_device *dev,
2789 struct page *page,
2790 unsigned long offset,
2791 size_t size,
2792 enum dma_data_direction direction)
2793 {
2794 if (dev->dma_ops)
2795 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2796 return dma_map_page(dev->dma_device, page, offset, size, direction);
2797 }
2798
2799 /**
2800 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2801 * @dev: The device for which the DMA address was created
2802 * @addr: The DMA address
2803 * @size: The size of the region in bytes
2804 * @direction: The direction of the DMA
2805 */
2806 static inline void ib_dma_unmap_page(struct ib_device *dev,
2807 u64 addr, size_t size,
2808 enum dma_data_direction direction)
2809 {
2810 if (dev->dma_ops)
2811 dev->dma_ops->unmap_page(dev, addr, size, direction);
2812 else
2813 dma_unmap_page(dev->dma_device, addr, size, direction);
2814 }
2815
2816 /**
2817 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2818 * @dev: The device for which the DMA addresses are to be created
2819 * @sg: The array of scatter/gather entries
2820 * @nents: The number of scatter/gather entries
2821 * @direction: The direction of the DMA
2822 */
2823 static inline int ib_dma_map_sg(struct ib_device *dev,
2824 struct scatterlist *sg, int nents,
2825 enum dma_data_direction direction)
2826 {
2827 if (dev->dma_ops)
2828 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2829 return dma_map_sg(dev->dma_device, sg, nents, direction);
2830 }
2831
2832 /**
2833 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2834 * @dev: The device for which the DMA addresses were created
2835 * @sg: The array of scatter/gather entries
2836 * @nents: The number of scatter/gather entries
2837 * @direction: The direction of the DMA
2838 */
2839 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2840 struct scatterlist *sg, int nents,
2841 enum dma_data_direction direction)
2842 {
2843 if (dev->dma_ops)
2844 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2845 else
2846 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2847 }
2848
2849 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2850 struct scatterlist *sg, int nents,
2851 enum dma_data_direction direction,
2852 struct dma_attrs *attrs)
2853 {
2854 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2855 }
2856
2857 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2858 struct scatterlist *sg, int nents,
2859 enum dma_data_direction direction,
2860 struct dma_attrs *attrs)
2861 {
2862 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2863 }
2864 /**
2865 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2866 * @dev: The device for which the DMA addresses were created
2867 * @sg: The scatter/gather entry
2868 *
2869 * Note: this function is obsolete. To do: change all occurrences of
2870 * ib_sg_dma_address() into sg_dma_address().
2871 */
2872 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2873 struct scatterlist *sg)
2874 {
2875 return sg_dma_address(sg);
2876 }
2877
2878 /**
2879 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2880 * @dev: The device for which the DMA addresses were created
2881 * @sg: The scatter/gather entry
2882 *
2883 * Note: this function is obsolete. To do: change all occurrences of
2884 * ib_sg_dma_len() into sg_dma_len().
2885 */
2886 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2887 struct scatterlist *sg)
2888 {
2889 return sg_dma_len(sg);
2890 }
2891
2892 /**
2893 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2894 * @dev: The device for which the DMA address was created
2895 * @addr: The DMA address
2896 * @size: The size of the region in bytes
2897 * @dir: The direction of the DMA
2898 */
2899 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2900 u64 addr,
2901 size_t size,
2902 enum dma_data_direction dir)
2903 {
2904 if (dev->dma_ops)
2905 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2906 else
2907 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2908 }
2909
2910 /**
2911 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2912 * @dev: The device for which the DMA address was created
2913 * @addr: The DMA address
2914 * @size: The size of the region in bytes
2915 * @dir: The direction of the DMA
2916 */
2917 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2918 u64 addr,
2919 size_t size,
2920 enum dma_data_direction dir)
2921 {
2922 if (dev->dma_ops)
2923 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2924 else
2925 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2926 }
2927
2928 /**
2929 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2930 * @dev: The device for which the DMA address is requested
2931 * @size: The size of the region to allocate in bytes
2932 * @dma_handle: A pointer for returning the DMA address of the region
2933 * @flag: memory allocator flags
2934 */
2935 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2936 size_t size,
2937 u64 *dma_handle,
2938 gfp_t flag)
2939 {
2940 if (dev->dma_ops)
2941 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2942 else {
2943 dma_addr_t handle;
2944 void *ret;
2945
2946 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2947 *dma_handle = handle;
2948 return ret;
2949 }
2950 }
2951
2952 /**
2953 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2954 * @dev: The device for which the DMA addresses were allocated
2955 * @size: The size of the region
2956 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2957 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2958 */
2959 static inline void ib_dma_free_coherent(struct ib_device *dev,
2960 size_t size, void *cpu_addr,
2961 u64 dma_handle)
2962 {
2963 if (dev->dma_ops)
2964 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2965 else
2966 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2967 }
2968
2969 /**
2970 * ib_dereg_mr - Deregisters a memory region and removes it from the
2971 * HCA translation table.
2972 * @mr: The memory region to deregister.
2973 *
2974 * This function can fail, if the memory region has memory windows bound to it.
2975 */
2976 int ib_dereg_mr(struct ib_mr *mr);
2977
2978 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2979 enum ib_mr_type mr_type,
2980 u32 max_num_sg);
2981
2982 /**
2983 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2984 * R_Key and L_Key.
2985 * @mr - struct ib_mr pointer to be updated.
2986 * @newkey - new key to be used.
2987 */
2988 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2989 {
2990 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2991 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2992 }
2993
2994 /**
2995 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2996 * for calculating a new rkey for type 2 memory windows.
2997 * @rkey - the rkey to increment.
2998 */
2999 static inline u32 ib_inc_rkey(u32 rkey)
3000 {
3001 const u32 mask = 0x000000ff;
3002 return ((rkey + 1) & mask) | (rkey & ~mask);
3003 }
3004
3005 /**
3006 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3007 * @pd: The protection domain associated with the unmapped region.
3008 * @mr_access_flags: Specifies the memory access rights.
3009 * @fmr_attr: Attributes of the unmapped region.
3010 *
3011 * A fast memory region must be mapped before it can be used as part of
3012 * a work request.
3013 */
3014 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3015 int mr_access_flags,
3016 struct ib_fmr_attr *fmr_attr);
3017
3018 /**
3019 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3020 * @fmr: The fast memory region to associate with the pages.
3021 * @page_list: An array of physical pages to map to the fast memory region.
3022 * @list_len: The number of pages in page_list.
3023 * @iova: The I/O virtual address to use with the mapped region.
3024 */
3025 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3026 u64 *page_list, int list_len,
3027 u64 iova)
3028 {
3029 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3030 }
3031
3032 /**
3033 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3034 * @fmr_list: A linked list of fast memory regions to unmap.
3035 */
3036 int ib_unmap_fmr(struct list_head *fmr_list);
3037
3038 /**
3039 * ib_dealloc_fmr - Deallocates a fast memory region.
3040 * @fmr: The fast memory region to deallocate.
3041 */
3042 int ib_dealloc_fmr(struct ib_fmr *fmr);
3043
3044 /**
3045 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3046 * @qp: QP to attach to the multicast group. The QP must be type
3047 * IB_QPT_UD.
3048 * @gid: Multicast group GID.
3049 * @lid: Multicast group LID in host byte order.
3050 *
3051 * In order to send and receive multicast packets, subnet
3052 * administration must have created the multicast group and configured
3053 * the fabric appropriately. The port associated with the specified
3054 * QP must also be a member of the multicast group.
3055 */
3056 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3057
3058 /**
3059 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3060 * @qp: QP to detach from the multicast group.
3061 * @gid: Multicast group GID.
3062 * @lid: Multicast group LID in host byte order.
3063 */
3064 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3065
3066 /**
3067 * ib_alloc_xrcd - Allocates an XRC domain.
3068 * @device: The device on which to allocate the XRC domain.
3069 */
3070 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3071
3072 /**
3073 * ib_dealloc_xrcd - Deallocates an XRC domain.
3074 * @xrcd: The XRC domain to deallocate.
3075 */
3076 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3077
3078 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3079 struct ib_flow_attr *flow_attr, int domain);
3080 int ib_destroy_flow(struct ib_flow *flow_id);
3081
3082 static inline int ib_check_mr_access(int flags)
3083 {
3084 /*
3085 * Local write permission is required if remote write or
3086 * remote atomic permission is also requested.
3087 */
3088 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3089 !(flags & IB_ACCESS_LOCAL_WRITE))
3090 return -EINVAL;
3091
3092 return 0;
3093 }
3094
3095 /**
3096 * ib_check_mr_status: lightweight check of MR status.
3097 * This routine may provide status checks on a selected
3098 * ib_mr. first use is for signature status check.
3099 *
3100 * @mr: A memory region.
3101 * @check_mask: Bitmask of which checks to perform from
3102 * ib_mr_status_check enumeration.
3103 * @mr_status: The container of relevant status checks.
3104 * failed checks will be indicated in the status bitmask
3105 * and the relevant info shall be in the error item.
3106 */
3107 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3108 struct ib_mr_status *mr_status);
3109
3110 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3111 u16 pkey, const union ib_gid *gid,
3112 const struct sockaddr *addr);
3113
3114 int ib_map_mr_sg(struct ib_mr *mr,
3115 struct scatterlist *sg,
3116 int sg_nents,
3117 unsigned int page_size);
3118
3119 static inline int
3120 ib_map_mr_sg_zbva(struct ib_mr *mr,
3121 struct scatterlist *sg,
3122 int sg_nents,
3123 unsigned int page_size)
3124 {
3125 int n;
3126
3127 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3128 mr->iova = 0;
3129
3130 return n;
3131 }
3132
3133 int ib_sg_to_pages(struct ib_mr *mr,
3134 struct scatterlist *sgl,
3135 int sg_nents,
3136 int (*set_page)(struct ib_mr *, u64));
3137
3138 void ib_drain_rq(struct ib_qp *qp);
3139 void ib_drain_sq(struct ib_qp *qp);
3140 void ib_drain_qp(struct ib_qp *qp);
3141 #endif /* IB_VERBS_H */
This page took 0.093684 seconds and 5 git commands to generate.