IB: remove in-kernel support for memory windows
[deliverable/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56
57 #include <linux/atomic.h>
58 #include <linux/mmu_notifier.h>
59 #include <asm/uaccess.h>
60
61 extern struct workqueue_struct *ib_wq;
62 extern struct workqueue_struct *ib_comp_wq;
63
64 union ib_gid {
65 u8 raw[16];
66 struct {
67 __be64 subnet_prefix;
68 __be64 interface_id;
69 } global;
70 };
71
72 extern union ib_gid zgid;
73
74 enum ib_gid_type {
75 /* If link layer is Ethernet, this is RoCE V1 */
76 IB_GID_TYPE_IB = 0,
77 IB_GID_TYPE_ROCE = 0,
78 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
79 IB_GID_TYPE_SIZE
80 };
81
82 struct ib_gid_attr {
83 enum ib_gid_type gid_type;
84 struct net_device *ndev;
85 };
86
87 enum rdma_node_type {
88 /* IB values map to NodeInfo:NodeType. */
89 RDMA_NODE_IB_CA = 1,
90 RDMA_NODE_IB_SWITCH,
91 RDMA_NODE_IB_ROUTER,
92 RDMA_NODE_RNIC,
93 RDMA_NODE_USNIC,
94 RDMA_NODE_USNIC_UDP,
95 };
96
97 enum rdma_transport_type {
98 RDMA_TRANSPORT_IB,
99 RDMA_TRANSPORT_IWARP,
100 RDMA_TRANSPORT_USNIC,
101 RDMA_TRANSPORT_USNIC_UDP
102 };
103
104 enum rdma_protocol_type {
105 RDMA_PROTOCOL_IB,
106 RDMA_PROTOCOL_IBOE,
107 RDMA_PROTOCOL_IWARP,
108 RDMA_PROTOCOL_USNIC_UDP
109 };
110
111 __attribute_const__ enum rdma_transport_type
112 rdma_node_get_transport(enum rdma_node_type node_type);
113
114 enum rdma_network_type {
115 RDMA_NETWORK_IB,
116 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
117 RDMA_NETWORK_IPV4,
118 RDMA_NETWORK_IPV6
119 };
120
121 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
122 {
123 if (network_type == RDMA_NETWORK_IPV4 ||
124 network_type == RDMA_NETWORK_IPV6)
125 return IB_GID_TYPE_ROCE_UDP_ENCAP;
126
127 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
128 return IB_GID_TYPE_IB;
129 }
130
131 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
132 union ib_gid *gid)
133 {
134 if (gid_type == IB_GID_TYPE_IB)
135 return RDMA_NETWORK_IB;
136
137 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
138 return RDMA_NETWORK_IPV4;
139 else
140 return RDMA_NETWORK_IPV6;
141 }
142
143 enum rdma_link_layer {
144 IB_LINK_LAYER_UNSPECIFIED,
145 IB_LINK_LAYER_INFINIBAND,
146 IB_LINK_LAYER_ETHERNET,
147 };
148
149 enum ib_device_cap_flags {
150 IB_DEVICE_RESIZE_MAX_WR = 1,
151 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
152 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
153 IB_DEVICE_RAW_MULTI = (1<<3),
154 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
155 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
156 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
157 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
158 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
159 IB_DEVICE_INIT_TYPE = (1<<9),
160 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
161 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
162 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
163 IB_DEVICE_SRQ_RESIZE = (1<<13),
164 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
165
166 /*
167 * This device supports a per-device lkey or stag that can be
168 * used without performing a memory registration for the local
169 * memory. Note that ULPs should never check this flag, but
170 * instead of use the local_dma_lkey flag in the ib_pd structure,
171 * which will always contain a usable lkey.
172 */
173 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
174 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
175 IB_DEVICE_MEM_WINDOW = (1<<17),
176 /*
177 * Devices should set IB_DEVICE_UD_IP_SUM if they support
178 * insertion of UDP and TCP checksum on outgoing UD IPoIB
179 * messages and can verify the validity of checksum for
180 * incoming messages. Setting this flag implies that the
181 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
182 */
183 IB_DEVICE_UD_IP_CSUM = (1<<18),
184 IB_DEVICE_UD_TSO = (1<<19),
185 IB_DEVICE_XRC = (1<<20),
186
187 /*
188 * This device supports the IB "base memory management extension",
189 * which includes support for fast registrations (IB_WR_REG_MR,
190 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
191 * also be set by any iWarp device which must support FRs to comply
192 * to the iWarp verbs spec. iWarp devices also support the
193 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
194 * stag.
195 */
196 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
197 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
198 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
199 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
200 IB_DEVICE_RC_IP_CSUM = (1<<25),
201 IB_DEVICE_RAW_IP_CSUM = (1<<26),
202 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
203 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
204 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
205 };
206
207 enum ib_signature_prot_cap {
208 IB_PROT_T10DIF_TYPE_1 = 1,
209 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
210 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
211 };
212
213 enum ib_signature_guard_cap {
214 IB_GUARD_T10DIF_CRC = 1,
215 IB_GUARD_T10DIF_CSUM = 1 << 1,
216 };
217
218 enum ib_atomic_cap {
219 IB_ATOMIC_NONE,
220 IB_ATOMIC_HCA,
221 IB_ATOMIC_GLOB
222 };
223
224 enum ib_odp_general_cap_bits {
225 IB_ODP_SUPPORT = 1 << 0,
226 };
227
228 enum ib_odp_transport_cap_bits {
229 IB_ODP_SUPPORT_SEND = 1 << 0,
230 IB_ODP_SUPPORT_RECV = 1 << 1,
231 IB_ODP_SUPPORT_WRITE = 1 << 2,
232 IB_ODP_SUPPORT_READ = 1 << 3,
233 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
234 };
235
236 struct ib_odp_caps {
237 uint64_t general_caps;
238 struct {
239 uint32_t rc_odp_caps;
240 uint32_t uc_odp_caps;
241 uint32_t ud_odp_caps;
242 } per_transport_caps;
243 };
244
245 enum ib_cq_creation_flags {
246 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
247 };
248
249 struct ib_cq_init_attr {
250 unsigned int cqe;
251 int comp_vector;
252 u32 flags;
253 };
254
255 struct ib_device_attr {
256 u64 fw_ver;
257 __be64 sys_image_guid;
258 u64 max_mr_size;
259 u64 page_size_cap;
260 u32 vendor_id;
261 u32 vendor_part_id;
262 u32 hw_ver;
263 int max_qp;
264 int max_qp_wr;
265 int device_cap_flags;
266 int max_sge;
267 int max_sge_rd;
268 int max_cq;
269 int max_cqe;
270 int max_mr;
271 int max_pd;
272 int max_qp_rd_atom;
273 int max_ee_rd_atom;
274 int max_res_rd_atom;
275 int max_qp_init_rd_atom;
276 int max_ee_init_rd_atom;
277 enum ib_atomic_cap atomic_cap;
278 enum ib_atomic_cap masked_atomic_cap;
279 int max_ee;
280 int max_rdd;
281 int max_mw;
282 int max_raw_ipv6_qp;
283 int max_raw_ethy_qp;
284 int max_mcast_grp;
285 int max_mcast_qp_attach;
286 int max_total_mcast_qp_attach;
287 int max_ah;
288 int max_fmr;
289 int max_map_per_fmr;
290 int max_srq;
291 int max_srq_wr;
292 int max_srq_sge;
293 unsigned int max_fast_reg_page_list_len;
294 u16 max_pkeys;
295 u8 local_ca_ack_delay;
296 int sig_prot_cap;
297 int sig_guard_cap;
298 struct ib_odp_caps odp_caps;
299 uint64_t timestamp_mask;
300 uint64_t hca_core_clock; /* in KHZ */
301 };
302
303 enum ib_mtu {
304 IB_MTU_256 = 1,
305 IB_MTU_512 = 2,
306 IB_MTU_1024 = 3,
307 IB_MTU_2048 = 4,
308 IB_MTU_4096 = 5
309 };
310
311 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
312 {
313 switch (mtu) {
314 case IB_MTU_256: return 256;
315 case IB_MTU_512: return 512;
316 case IB_MTU_1024: return 1024;
317 case IB_MTU_2048: return 2048;
318 case IB_MTU_4096: return 4096;
319 default: return -1;
320 }
321 }
322
323 enum ib_port_state {
324 IB_PORT_NOP = 0,
325 IB_PORT_DOWN = 1,
326 IB_PORT_INIT = 2,
327 IB_PORT_ARMED = 3,
328 IB_PORT_ACTIVE = 4,
329 IB_PORT_ACTIVE_DEFER = 5
330 };
331
332 enum ib_port_cap_flags {
333 IB_PORT_SM = 1 << 1,
334 IB_PORT_NOTICE_SUP = 1 << 2,
335 IB_PORT_TRAP_SUP = 1 << 3,
336 IB_PORT_OPT_IPD_SUP = 1 << 4,
337 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
338 IB_PORT_SL_MAP_SUP = 1 << 6,
339 IB_PORT_MKEY_NVRAM = 1 << 7,
340 IB_PORT_PKEY_NVRAM = 1 << 8,
341 IB_PORT_LED_INFO_SUP = 1 << 9,
342 IB_PORT_SM_DISABLED = 1 << 10,
343 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
344 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
345 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
346 IB_PORT_CM_SUP = 1 << 16,
347 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
348 IB_PORT_REINIT_SUP = 1 << 18,
349 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
350 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
351 IB_PORT_DR_NOTICE_SUP = 1 << 21,
352 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
353 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
354 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
355 IB_PORT_CLIENT_REG_SUP = 1 << 25,
356 IB_PORT_IP_BASED_GIDS = 1 << 26,
357 };
358
359 enum ib_port_width {
360 IB_WIDTH_1X = 1,
361 IB_WIDTH_4X = 2,
362 IB_WIDTH_8X = 4,
363 IB_WIDTH_12X = 8
364 };
365
366 static inline int ib_width_enum_to_int(enum ib_port_width width)
367 {
368 switch (width) {
369 case IB_WIDTH_1X: return 1;
370 case IB_WIDTH_4X: return 4;
371 case IB_WIDTH_8X: return 8;
372 case IB_WIDTH_12X: return 12;
373 default: return -1;
374 }
375 }
376
377 enum ib_port_speed {
378 IB_SPEED_SDR = 1,
379 IB_SPEED_DDR = 2,
380 IB_SPEED_QDR = 4,
381 IB_SPEED_FDR10 = 8,
382 IB_SPEED_FDR = 16,
383 IB_SPEED_EDR = 32
384 };
385
386 struct ib_protocol_stats {
387 /* TBD... */
388 };
389
390 struct iw_protocol_stats {
391 u64 ipInReceives;
392 u64 ipInHdrErrors;
393 u64 ipInTooBigErrors;
394 u64 ipInNoRoutes;
395 u64 ipInAddrErrors;
396 u64 ipInUnknownProtos;
397 u64 ipInTruncatedPkts;
398 u64 ipInDiscards;
399 u64 ipInDelivers;
400 u64 ipOutForwDatagrams;
401 u64 ipOutRequests;
402 u64 ipOutDiscards;
403 u64 ipOutNoRoutes;
404 u64 ipReasmTimeout;
405 u64 ipReasmReqds;
406 u64 ipReasmOKs;
407 u64 ipReasmFails;
408 u64 ipFragOKs;
409 u64 ipFragFails;
410 u64 ipFragCreates;
411 u64 ipInMcastPkts;
412 u64 ipOutMcastPkts;
413 u64 ipInBcastPkts;
414 u64 ipOutBcastPkts;
415
416 u64 tcpRtoAlgorithm;
417 u64 tcpRtoMin;
418 u64 tcpRtoMax;
419 u64 tcpMaxConn;
420 u64 tcpActiveOpens;
421 u64 tcpPassiveOpens;
422 u64 tcpAttemptFails;
423 u64 tcpEstabResets;
424 u64 tcpCurrEstab;
425 u64 tcpInSegs;
426 u64 tcpOutSegs;
427 u64 tcpRetransSegs;
428 u64 tcpInErrs;
429 u64 tcpOutRsts;
430 };
431
432 union rdma_protocol_stats {
433 struct ib_protocol_stats ib;
434 struct iw_protocol_stats iw;
435 };
436
437 /* Define bits for the various functionality this port needs to be supported by
438 * the core.
439 */
440 /* Management 0x00000FFF */
441 #define RDMA_CORE_CAP_IB_MAD 0x00000001
442 #define RDMA_CORE_CAP_IB_SMI 0x00000002
443 #define RDMA_CORE_CAP_IB_CM 0x00000004
444 #define RDMA_CORE_CAP_IW_CM 0x00000008
445 #define RDMA_CORE_CAP_IB_SA 0x00000010
446 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
447
448 /* Address format 0x000FF000 */
449 #define RDMA_CORE_CAP_AF_IB 0x00001000
450 #define RDMA_CORE_CAP_ETH_AH 0x00002000
451
452 /* Protocol 0xFFF00000 */
453 #define RDMA_CORE_CAP_PROT_IB 0x00100000
454 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
455 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
456 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
457
458 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
459 | RDMA_CORE_CAP_IB_MAD \
460 | RDMA_CORE_CAP_IB_SMI \
461 | RDMA_CORE_CAP_IB_CM \
462 | RDMA_CORE_CAP_IB_SA \
463 | RDMA_CORE_CAP_AF_IB)
464 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
465 | RDMA_CORE_CAP_IB_MAD \
466 | RDMA_CORE_CAP_IB_CM \
467 | RDMA_CORE_CAP_AF_IB \
468 | RDMA_CORE_CAP_ETH_AH)
469 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
470 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
471 | RDMA_CORE_CAP_IB_MAD \
472 | RDMA_CORE_CAP_IB_CM \
473 | RDMA_CORE_CAP_AF_IB \
474 | RDMA_CORE_CAP_ETH_AH)
475 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
476 | RDMA_CORE_CAP_IW_CM)
477 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
478 | RDMA_CORE_CAP_OPA_MAD)
479
480 struct ib_port_attr {
481 enum ib_port_state state;
482 enum ib_mtu max_mtu;
483 enum ib_mtu active_mtu;
484 int gid_tbl_len;
485 u32 port_cap_flags;
486 u32 max_msg_sz;
487 u32 bad_pkey_cntr;
488 u32 qkey_viol_cntr;
489 u16 pkey_tbl_len;
490 u16 lid;
491 u16 sm_lid;
492 u8 lmc;
493 u8 max_vl_num;
494 u8 sm_sl;
495 u8 subnet_timeout;
496 u8 init_type_reply;
497 u8 active_width;
498 u8 active_speed;
499 u8 phys_state;
500 };
501
502 enum ib_device_modify_flags {
503 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
504 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
505 };
506
507 struct ib_device_modify {
508 u64 sys_image_guid;
509 char node_desc[64];
510 };
511
512 enum ib_port_modify_flags {
513 IB_PORT_SHUTDOWN = 1,
514 IB_PORT_INIT_TYPE = (1<<2),
515 IB_PORT_RESET_QKEY_CNTR = (1<<3)
516 };
517
518 struct ib_port_modify {
519 u32 set_port_cap_mask;
520 u32 clr_port_cap_mask;
521 u8 init_type;
522 };
523
524 enum ib_event_type {
525 IB_EVENT_CQ_ERR,
526 IB_EVENT_QP_FATAL,
527 IB_EVENT_QP_REQ_ERR,
528 IB_EVENT_QP_ACCESS_ERR,
529 IB_EVENT_COMM_EST,
530 IB_EVENT_SQ_DRAINED,
531 IB_EVENT_PATH_MIG,
532 IB_EVENT_PATH_MIG_ERR,
533 IB_EVENT_DEVICE_FATAL,
534 IB_EVENT_PORT_ACTIVE,
535 IB_EVENT_PORT_ERR,
536 IB_EVENT_LID_CHANGE,
537 IB_EVENT_PKEY_CHANGE,
538 IB_EVENT_SM_CHANGE,
539 IB_EVENT_SRQ_ERR,
540 IB_EVENT_SRQ_LIMIT_REACHED,
541 IB_EVENT_QP_LAST_WQE_REACHED,
542 IB_EVENT_CLIENT_REREGISTER,
543 IB_EVENT_GID_CHANGE,
544 };
545
546 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
547
548 struct ib_event {
549 struct ib_device *device;
550 union {
551 struct ib_cq *cq;
552 struct ib_qp *qp;
553 struct ib_srq *srq;
554 u8 port_num;
555 } element;
556 enum ib_event_type event;
557 };
558
559 struct ib_event_handler {
560 struct ib_device *device;
561 void (*handler)(struct ib_event_handler *, struct ib_event *);
562 struct list_head list;
563 };
564
565 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
566 do { \
567 (_ptr)->device = _device; \
568 (_ptr)->handler = _handler; \
569 INIT_LIST_HEAD(&(_ptr)->list); \
570 } while (0)
571
572 struct ib_global_route {
573 union ib_gid dgid;
574 u32 flow_label;
575 u8 sgid_index;
576 u8 hop_limit;
577 u8 traffic_class;
578 };
579
580 struct ib_grh {
581 __be32 version_tclass_flow;
582 __be16 paylen;
583 u8 next_hdr;
584 u8 hop_limit;
585 union ib_gid sgid;
586 union ib_gid dgid;
587 };
588
589 union rdma_network_hdr {
590 struct ib_grh ibgrh;
591 struct {
592 /* The IB spec states that if it's IPv4, the header
593 * is located in the last 20 bytes of the header.
594 */
595 u8 reserved[20];
596 struct iphdr roce4grh;
597 };
598 };
599
600 enum {
601 IB_MULTICAST_QPN = 0xffffff
602 };
603
604 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
605
606 enum ib_ah_flags {
607 IB_AH_GRH = 1
608 };
609
610 enum ib_rate {
611 IB_RATE_PORT_CURRENT = 0,
612 IB_RATE_2_5_GBPS = 2,
613 IB_RATE_5_GBPS = 5,
614 IB_RATE_10_GBPS = 3,
615 IB_RATE_20_GBPS = 6,
616 IB_RATE_30_GBPS = 4,
617 IB_RATE_40_GBPS = 7,
618 IB_RATE_60_GBPS = 8,
619 IB_RATE_80_GBPS = 9,
620 IB_RATE_120_GBPS = 10,
621 IB_RATE_14_GBPS = 11,
622 IB_RATE_56_GBPS = 12,
623 IB_RATE_112_GBPS = 13,
624 IB_RATE_168_GBPS = 14,
625 IB_RATE_25_GBPS = 15,
626 IB_RATE_100_GBPS = 16,
627 IB_RATE_200_GBPS = 17,
628 IB_RATE_300_GBPS = 18
629 };
630
631 /**
632 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
633 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
634 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
635 * @rate: rate to convert.
636 */
637 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
638
639 /**
640 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
641 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
642 * @rate: rate to convert.
643 */
644 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
645
646
647 /**
648 * enum ib_mr_type - memory region type
649 * @IB_MR_TYPE_MEM_REG: memory region that is used for
650 * normal registration
651 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
652 * signature operations (data-integrity
653 * capable regions)
654 */
655 enum ib_mr_type {
656 IB_MR_TYPE_MEM_REG,
657 IB_MR_TYPE_SIGNATURE,
658 };
659
660 /**
661 * Signature types
662 * IB_SIG_TYPE_NONE: Unprotected.
663 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
664 */
665 enum ib_signature_type {
666 IB_SIG_TYPE_NONE,
667 IB_SIG_TYPE_T10_DIF,
668 };
669
670 /**
671 * Signature T10-DIF block-guard types
672 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
673 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
674 */
675 enum ib_t10_dif_bg_type {
676 IB_T10DIF_CRC,
677 IB_T10DIF_CSUM
678 };
679
680 /**
681 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
682 * domain.
683 * @bg_type: T10-DIF block guard type (CRC|CSUM)
684 * @pi_interval: protection information interval.
685 * @bg: seed of guard computation.
686 * @app_tag: application tag of guard block
687 * @ref_tag: initial guard block reference tag.
688 * @ref_remap: Indicate wethear the reftag increments each block
689 * @app_escape: Indicate to skip block check if apptag=0xffff
690 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
691 * @apptag_check_mask: check bitmask of application tag.
692 */
693 struct ib_t10_dif_domain {
694 enum ib_t10_dif_bg_type bg_type;
695 u16 pi_interval;
696 u16 bg;
697 u16 app_tag;
698 u32 ref_tag;
699 bool ref_remap;
700 bool app_escape;
701 bool ref_escape;
702 u16 apptag_check_mask;
703 };
704
705 /**
706 * struct ib_sig_domain - Parameters for signature domain
707 * @sig_type: specific signauture type
708 * @sig: union of all signature domain attributes that may
709 * be used to set domain layout.
710 */
711 struct ib_sig_domain {
712 enum ib_signature_type sig_type;
713 union {
714 struct ib_t10_dif_domain dif;
715 } sig;
716 };
717
718 /**
719 * struct ib_sig_attrs - Parameters for signature handover operation
720 * @check_mask: bitmask for signature byte check (8 bytes)
721 * @mem: memory domain layout desciptor.
722 * @wire: wire domain layout desciptor.
723 */
724 struct ib_sig_attrs {
725 u8 check_mask;
726 struct ib_sig_domain mem;
727 struct ib_sig_domain wire;
728 };
729
730 enum ib_sig_err_type {
731 IB_SIG_BAD_GUARD,
732 IB_SIG_BAD_REFTAG,
733 IB_SIG_BAD_APPTAG,
734 };
735
736 /**
737 * struct ib_sig_err - signature error descriptor
738 */
739 struct ib_sig_err {
740 enum ib_sig_err_type err_type;
741 u32 expected;
742 u32 actual;
743 u64 sig_err_offset;
744 u32 key;
745 };
746
747 enum ib_mr_status_check {
748 IB_MR_CHECK_SIG_STATUS = 1,
749 };
750
751 /**
752 * struct ib_mr_status - Memory region status container
753 *
754 * @fail_status: Bitmask of MR checks status. For each
755 * failed check a corresponding status bit is set.
756 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
757 * failure.
758 */
759 struct ib_mr_status {
760 u32 fail_status;
761 struct ib_sig_err sig_err;
762 };
763
764 /**
765 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
766 * enum.
767 * @mult: multiple to convert.
768 */
769 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
770
771 struct ib_ah_attr {
772 struct ib_global_route grh;
773 u16 dlid;
774 u8 sl;
775 u8 src_path_bits;
776 u8 static_rate;
777 u8 ah_flags;
778 u8 port_num;
779 u8 dmac[ETH_ALEN];
780 };
781
782 enum ib_wc_status {
783 IB_WC_SUCCESS,
784 IB_WC_LOC_LEN_ERR,
785 IB_WC_LOC_QP_OP_ERR,
786 IB_WC_LOC_EEC_OP_ERR,
787 IB_WC_LOC_PROT_ERR,
788 IB_WC_WR_FLUSH_ERR,
789 IB_WC_MW_BIND_ERR,
790 IB_WC_BAD_RESP_ERR,
791 IB_WC_LOC_ACCESS_ERR,
792 IB_WC_REM_INV_REQ_ERR,
793 IB_WC_REM_ACCESS_ERR,
794 IB_WC_REM_OP_ERR,
795 IB_WC_RETRY_EXC_ERR,
796 IB_WC_RNR_RETRY_EXC_ERR,
797 IB_WC_LOC_RDD_VIOL_ERR,
798 IB_WC_REM_INV_RD_REQ_ERR,
799 IB_WC_REM_ABORT_ERR,
800 IB_WC_INV_EECN_ERR,
801 IB_WC_INV_EEC_STATE_ERR,
802 IB_WC_FATAL_ERR,
803 IB_WC_RESP_TIMEOUT_ERR,
804 IB_WC_GENERAL_ERR
805 };
806
807 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
808
809 enum ib_wc_opcode {
810 IB_WC_SEND,
811 IB_WC_RDMA_WRITE,
812 IB_WC_RDMA_READ,
813 IB_WC_COMP_SWAP,
814 IB_WC_FETCH_ADD,
815 IB_WC_LSO,
816 IB_WC_LOCAL_INV,
817 IB_WC_REG_MR,
818 IB_WC_MASKED_COMP_SWAP,
819 IB_WC_MASKED_FETCH_ADD,
820 /*
821 * Set value of IB_WC_RECV so consumers can test if a completion is a
822 * receive by testing (opcode & IB_WC_RECV).
823 */
824 IB_WC_RECV = 1 << 7,
825 IB_WC_RECV_RDMA_WITH_IMM
826 };
827
828 enum ib_wc_flags {
829 IB_WC_GRH = 1,
830 IB_WC_WITH_IMM = (1<<1),
831 IB_WC_WITH_INVALIDATE = (1<<2),
832 IB_WC_IP_CSUM_OK = (1<<3),
833 IB_WC_WITH_SMAC = (1<<4),
834 IB_WC_WITH_VLAN = (1<<5),
835 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
836 };
837
838 struct ib_wc {
839 union {
840 u64 wr_id;
841 struct ib_cqe *wr_cqe;
842 };
843 enum ib_wc_status status;
844 enum ib_wc_opcode opcode;
845 u32 vendor_err;
846 u32 byte_len;
847 struct ib_qp *qp;
848 union {
849 __be32 imm_data;
850 u32 invalidate_rkey;
851 } ex;
852 u32 src_qp;
853 int wc_flags;
854 u16 pkey_index;
855 u16 slid;
856 u8 sl;
857 u8 dlid_path_bits;
858 u8 port_num; /* valid only for DR SMPs on switches */
859 u8 smac[ETH_ALEN];
860 u16 vlan_id;
861 u8 network_hdr_type;
862 };
863
864 enum ib_cq_notify_flags {
865 IB_CQ_SOLICITED = 1 << 0,
866 IB_CQ_NEXT_COMP = 1 << 1,
867 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
868 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
869 };
870
871 enum ib_srq_type {
872 IB_SRQT_BASIC,
873 IB_SRQT_XRC
874 };
875
876 enum ib_srq_attr_mask {
877 IB_SRQ_MAX_WR = 1 << 0,
878 IB_SRQ_LIMIT = 1 << 1,
879 };
880
881 struct ib_srq_attr {
882 u32 max_wr;
883 u32 max_sge;
884 u32 srq_limit;
885 };
886
887 struct ib_srq_init_attr {
888 void (*event_handler)(struct ib_event *, void *);
889 void *srq_context;
890 struct ib_srq_attr attr;
891 enum ib_srq_type srq_type;
892
893 union {
894 struct {
895 struct ib_xrcd *xrcd;
896 struct ib_cq *cq;
897 } xrc;
898 } ext;
899 };
900
901 struct ib_qp_cap {
902 u32 max_send_wr;
903 u32 max_recv_wr;
904 u32 max_send_sge;
905 u32 max_recv_sge;
906 u32 max_inline_data;
907 };
908
909 enum ib_sig_type {
910 IB_SIGNAL_ALL_WR,
911 IB_SIGNAL_REQ_WR
912 };
913
914 enum ib_qp_type {
915 /*
916 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
917 * here (and in that order) since the MAD layer uses them as
918 * indices into a 2-entry table.
919 */
920 IB_QPT_SMI,
921 IB_QPT_GSI,
922
923 IB_QPT_RC,
924 IB_QPT_UC,
925 IB_QPT_UD,
926 IB_QPT_RAW_IPV6,
927 IB_QPT_RAW_ETHERTYPE,
928 IB_QPT_RAW_PACKET = 8,
929 IB_QPT_XRC_INI = 9,
930 IB_QPT_XRC_TGT,
931 IB_QPT_MAX,
932 /* Reserve a range for qp types internal to the low level driver.
933 * These qp types will not be visible at the IB core layer, so the
934 * IB_QPT_MAX usages should not be affected in the core layer
935 */
936 IB_QPT_RESERVED1 = 0x1000,
937 IB_QPT_RESERVED2,
938 IB_QPT_RESERVED3,
939 IB_QPT_RESERVED4,
940 IB_QPT_RESERVED5,
941 IB_QPT_RESERVED6,
942 IB_QPT_RESERVED7,
943 IB_QPT_RESERVED8,
944 IB_QPT_RESERVED9,
945 IB_QPT_RESERVED10,
946 };
947
948 enum ib_qp_create_flags {
949 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
950 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
951 IB_QP_CREATE_NETIF_QP = 1 << 5,
952 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
953 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
954 /* reserve bits 26-31 for low level drivers' internal use */
955 IB_QP_CREATE_RESERVED_START = 1 << 26,
956 IB_QP_CREATE_RESERVED_END = 1 << 31,
957 };
958
959 /*
960 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
961 * callback to destroy the passed in QP.
962 */
963
964 struct ib_qp_init_attr {
965 void (*event_handler)(struct ib_event *, void *);
966 void *qp_context;
967 struct ib_cq *send_cq;
968 struct ib_cq *recv_cq;
969 struct ib_srq *srq;
970 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
971 struct ib_qp_cap cap;
972 enum ib_sig_type sq_sig_type;
973 enum ib_qp_type qp_type;
974 enum ib_qp_create_flags create_flags;
975 u8 port_num; /* special QP types only */
976 };
977
978 struct ib_qp_open_attr {
979 void (*event_handler)(struct ib_event *, void *);
980 void *qp_context;
981 u32 qp_num;
982 enum ib_qp_type qp_type;
983 };
984
985 enum ib_rnr_timeout {
986 IB_RNR_TIMER_655_36 = 0,
987 IB_RNR_TIMER_000_01 = 1,
988 IB_RNR_TIMER_000_02 = 2,
989 IB_RNR_TIMER_000_03 = 3,
990 IB_RNR_TIMER_000_04 = 4,
991 IB_RNR_TIMER_000_06 = 5,
992 IB_RNR_TIMER_000_08 = 6,
993 IB_RNR_TIMER_000_12 = 7,
994 IB_RNR_TIMER_000_16 = 8,
995 IB_RNR_TIMER_000_24 = 9,
996 IB_RNR_TIMER_000_32 = 10,
997 IB_RNR_TIMER_000_48 = 11,
998 IB_RNR_TIMER_000_64 = 12,
999 IB_RNR_TIMER_000_96 = 13,
1000 IB_RNR_TIMER_001_28 = 14,
1001 IB_RNR_TIMER_001_92 = 15,
1002 IB_RNR_TIMER_002_56 = 16,
1003 IB_RNR_TIMER_003_84 = 17,
1004 IB_RNR_TIMER_005_12 = 18,
1005 IB_RNR_TIMER_007_68 = 19,
1006 IB_RNR_TIMER_010_24 = 20,
1007 IB_RNR_TIMER_015_36 = 21,
1008 IB_RNR_TIMER_020_48 = 22,
1009 IB_RNR_TIMER_030_72 = 23,
1010 IB_RNR_TIMER_040_96 = 24,
1011 IB_RNR_TIMER_061_44 = 25,
1012 IB_RNR_TIMER_081_92 = 26,
1013 IB_RNR_TIMER_122_88 = 27,
1014 IB_RNR_TIMER_163_84 = 28,
1015 IB_RNR_TIMER_245_76 = 29,
1016 IB_RNR_TIMER_327_68 = 30,
1017 IB_RNR_TIMER_491_52 = 31
1018 };
1019
1020 enum ib_qp_attr_mask {
1021 IB_QP_STATE = 1,
1022 IB_QP_CUR_STATE = (1<<1),
1023 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1024 IB_QP_ACCESS_FLAGS = (1<<3),
1025 IB_QP_PKEY_INDEX = (1<<4),
1026 IB_QP_PORT = (1<<5),
1027 IB_QP_QKEY = (1<<6),
1028 IB_QP_AV = (1<<7),
1029 IB_QP_PATH_MTU = (1<<8),
1030 IB_QP_TIMEOUT = (1<<9),
1031 IB_QP_RETRY_CNT = (1<<10),
1032 IB_QP_RNR_RETRY = (1<<11),
1033 IB_QP_RQ_PSN = (1<<12),
1034 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1035 IB_QP_ALT_PATH = (1<<14),
1036 IB_QP_MIN_RNR_TIMER = (1<<15),
1037 IB_QP_SQ_PSN = (1<<16),
1038 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1039 IB_QP_PATH_MIG_STATE = (1<<18),
1040 IB_QP_CAP = (1<<19),
1041 IB_QP_DEST_QPN = (1<<20),
1042 IB_QP_RESERVED1 = (1<<21),
1043 IB_QP_RESERVED2 = (1<<22),
1044 IB_QP_RESERVED3 = (1<<23),
1045 IB_QP_RESERVED4 = (1<<24),
1046 };
1047
1048 enum ib_qp_state {
1049 IB_QPS_RESET,
1050 IB_QPS_INIT,
1051 IB_QPS_RTR,
1052 IB_QPS_RTS,
1053 IB_QPS_SQD,
1054 IB_QPS_SQE,
1055 IB_QPS_ERR
1056 };
1057
1058 enum ib_mig_state {
1059 IB_MIG_MIGRATED,
1060 IB_MIG_REARM,
1061 IB_MIG_ARMED
1062 };
1063
1064 enum ib_mw_type {
1065 IB_MW_TYPE_1 = 1,
1066 IB_MW_TYPE_2 = 2
1067 };
1068
1069 struct ib_qp_attr {
1070 enum ib_qp_state qp_state;
1071 enum ib_qp_state cur_qp_state;
1072 enum ib_mtu path_mtu;
1073 enum ib_mig_state path_mig_state;
1074 u32 qkey;
1075 u32 rq_psn;
1076 u32 sq_psn;
1077 u32 dest_qp_num;
1078 int qp_access_flags;
1079 struct ib_qp_cap cap;
1080 struct ib_ah_attr ah_attr;
1081 struct ib_ah_attr alt_ah_attr;
1082 u16 pkey_index;
1083 u16 alt_pkey_index;
1084 u8 en_sqd_async_notify;
1085 u8 sq_draining;
1086 u8 max_rd_atomic;
1087 u8 max_dest_rd_atomic;
1088 u8 min_rnr_timer;
1089 u8 port_num;
1090 u8 timeout;
1091 u8 retry_cnt;
1092 u8 rnr_retry;
1093 u8 alt_port_num;
1094 u8 alt_timeout;
1095 };
1096
1097 enum ib_wr_opcode {
1098 IB_WR_RDMA_WRITE,
1099 IB_WR_RDMA_WRITE_WITH_IMM,
1100 IB_WR_SEND,
1101 IB_WR_SEND_WITH_IMM,
1102 IB_WR_RDMA_READ,
1103 IB_WR_ATOMIC_CMP_AND_SWP,
1104 IB_WR_ATOMIC_FETCH_AND_ADD,
1105 IB_WR_LSO,
1106 IB_WR_SEND_WITH_INV,
1107 IB_WR_RDMA_READ_WITH_INV,
1108 IB_WR_LOCAL_INV,
1109 IB_WR_REG_MR,
1110 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1111 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1112 IB_WR_REG_SIG_MR,
1113 /* reserve values for low level drivers' internal use.
1114 * These values will not be used at all in the ib core layer.
1115 */
1116 IB_WR_RESERVED1 = 0xf0,
1117 IB_WR_RESERVED2,
1118 IB_WR_RESERVED3,
1119 IB_WR_RESERVED4,
1120 IB_WR_RESERVED5,
1121 IB_WR_RESERVED6,
1122 IB_WR_RESERVED7,
1123 IB_WR_RESERVED8,
1124 IB_WR_RESERVED9,
1125 IB_WR_RESERVED10,
1126 };
1127
1128 enum ib_send_flags {
1129 IB_SEND_FENCE = 1,
1130 IB_SEND_SIGNALED = (1<<1),
1131 IB_SEND_SOLICITED = (1<<2),
1132 IB_SEND_INLINE = (1<<3),
1133 IB_SEND_IP_CSUM = (1<<4),
1134
1135 /* reserve bits 26-31 for low level drivers' internal use */
1136 IB_SEND_RESERVED_START = (1 << 26),
1137 IB_SEND_RESERVED_END = (1 << 31),
1138 };
1139
1140 struct ib_sge {
1141 u64 addr;
1142 u32 length;
1143 u32 lkey;
1144 };
1145
1146 struct ib_cqe {
1147 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1148 };
1149
1150 struct ib_send_wr {
1151 struct ib_send_wr *next;
1152 union {
1153 u64 wr_id;
1154 struct ib_cqe *wr_cqe;
1155 };
1156 struct ib_sge *sg_list;
1157 int num_sge;
1158 enum ib_wr_opcode opcode;
1159 int send_flags;
1160 union {
1161 __be32 imm_data;
1162 u32 invalidate_rkey;
1163 } ex;
1164 };
1165
1166 struct ib_rdma_wr {
1167 struct ib_send_wr wr;
1168 u64 remote_addr;
1169 u32 rkey;
1170 };
1171
1172 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1173 {
1174 return container_of(wr, struct ib_rdma_wr, wr);
1175 }
1176
1177 struct ib_atomic_wr {
1178 struct ib_send_wr wr;
1179 u64 remote_addr;
1180 u64 compare_add;
1181 u64 swap;
1182 u64 compare_add_mask;
1183 u64 swap_mask;
1184 u32 rkey;
1185 };
1186
1187 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1188 {
1189 return container_of(wr, struct ib_atomic_wr, wr);
1190 }
1191
1192 struct ib_ud_wr {
1193 struct ib_send_wr wr;
1194 struct ib_ah *ah;
1195 void *header;
1196 int hlen;
1197 int mss;
1198 u32 remote_qpn;
1199 u32 remote_qkey;
1200 u16 pkey_index; /* valid for GSI only */
1201 u8 port_num; /* valid for DR SMPs on switch only */
1202 };
1203
1204 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1205 {
1206 return container_of(wr, struct ib_ud_wr, wr);
1207 }
1208
1209 struct ib_reg_wr {
1210 struct ib_send_wr wr;
1211 struct ib_mr *mr;
1212 u32 key;
1213 int access;
1214 };
1215
1216 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1217 {
1218 return container_of(wr, struct ib_reg_wr, wr);
1219 }
1220
1221 struct ib_sig_handover_wr {
1222 struct ib_send_wr wr;
1223 struct ib_sig_attrs *sig_attrs;
1224 struct ib_mr *sig_mr;
1225 int access_flags;
1226 struct ib_sge *prot;
1227 };
1228
1229 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1230 {
1231 return container_of(wr, struct ib_sig_handover_wr, wr);
1232 }
1233
1234 struct ib_recv_wr {
1235 struct ib_recv_wr *next;
1236 union {
1237 u64 wr_id;
1238 struct ib_cqe *wr_cqe;
1239 };
1240 struct ib_sge *sg_list;
1241 int num_sge;
1242 };
1243
1244 enum ib_access_flags {
1245 IB_ACCESS_LOCAL_WRITE = 1,
1246 IB_ACCESS_REMOTE_WRITE = (1<<1),
1247 IB_ACCESS_REMOTE_READ = (1<<2),
1248 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1249 IB_ACCESS_MW_BIND = (1<<4),
1250 IB_ZERO_BASED = (1<<5),
1251 IB_ACCESS_ON_DEMAND = (1<<6),
1252 };
1253
1254 struct ib_phys_buf {
1255 u64 addr;
1256 u64 size;
1257 };
1258
1259 /*
1260 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1261 * are hidden here instead of a uapi header!
1262 */
1263 enum ib_mr_rereg_flags {
1264 IB_MR_REREG_TRANS = 1,
1265 IB_MR_REREG_PD = (1<<1),
1266 IB_MR_REREG_ACCESS = (1<<2),
1267 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1268 };
1269
1270 struct ib_fmr_attr {
1271 int max_pages;
1272 int max_maps;
1273 u8 page_shift;
1274 };
1275
1276 struct ib_umem;
1277
1278 struct ib_ucontext {
1279 struct ib_device *device;
1280 struct list_head pd_list;
1281 struct list_head mr_list;
1282 struct list_head mw_list;
1283 struct list_head cq_list;
1284 struct list_head qp_list;
1285 struct list_head srq_list;
1286 struct list_head ah_list;
1287 struct list_head xrcd_list;
1288 struct list_head rule_list;
1289 int closing;
1290
1291 struct pid *tgid;
1292 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1293 struct rb_root umem_tree;
1294 /*
1295 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1296 * mmu notifiers registration.
1297 */
1298 struct rw_semaphore umem_rwsem;
1299 void (*invalidate_range)(struct ib_umem *umem,
1300 unsigned long start, unsigned long end);
1301
1302 struct mmu_notifier mn;
1303 atomic_t notifier_count;
1304 /* A list of umems that don't have private mmu notifier counters yet. */
1305 struct list_head no_private_counters;
1306 int odp_mrs_count;
1307 #endif
1308 };
1309
1310 struct ib_uobject {
1311 u64 user_handle; /* handle given to us by userspace */
1312 struct ib_ucontext *context; /* associated user context */
1313 void *object; /* containing object */
1314 struct list_head list; /* link to context's list */
1315 int id; /* index into kernel idr */
1316 struct kref ref;
1317 struct rw_semaphore mutex; /* protects .live */
1318 struct rcu_head rcu; /* kfree_rcu() overhead */
1319 int live;
1320 };
1321
1322 struct ib_udata {
1323 const void __user *inbuf;
1324 void __user *outbuf;
1325 size_t inlen;
1326 size_t outlen;
1327 };
1328
1329 struct ib_pd {
1330 u32 local_dma_lkey;
1331 struct ib_device *device;
1332 struct ib_uobject *uobject;
1333 atomic_t usecnt; /* count all resources */
1334 struct ib_mr *local_mr;
1335 };
1336
1337 struct ib_xrcd {
1338 struct ib_device *device;
1339 atomic_t usecnt; /* count all exposed resources */
1340 struct inode *inode;
1341
1342 struct mutex tgt_qp_mutex;
1343 struct list_head tgt_qp_list;
1344 };
1345
1346 struct ib_ah {
1347 struct ib_device *device;
1348 struct ib_pd *pd;
1349 struct ib_uobject *uobject;
1350 };
1351
1352 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1353
1354 enum ib_poll_context {
1355 IB_POLL_DIRECT, /* caller context, no hw completions */
1356 IB_POLL_SOFTIRQ, /* poll from softirq context */
1357 IB_POLL_WORKQUEUE, /* poll from workqueue */
1358 };
1359
1360 struct ib_cq {
1361 struct ib_device *device;
1362 struct ib_uobject *uobject;
1363 ib_comp_handler comp_handler;
1364 void (*event_handler)(struct ib_event *, void *);
1365 void *cq_context;
1366 int cqe;
1367 atomic_t usecnt; /* count number of work queues */
1368 enum ib_poll_context poll_ctx;
1369 struct ib_wc *wc;
1370 union {
1371 struct irq_poll iop;
1372 struct work_struct work;
1373 };
1374 };
1375
1376 struct ib_srq {
1377 struct ib_device *device;
1378 struct ib_pd *pd;
1379 struct ib_uobject *uobject;
1380 void (*event_handler)(struct ib_event *, void *);
1381 void *srq_context;
1382 enum ib_srq_type srq_type;
1383 atomic_t usecnt;
1384
1385 union {
1386 struct {
1387 struct ib_xrcd *xrcd;
1388 struct ib_cq *cq;
1389 u32 srq_num;
1390 } xrc;
1391 } ext;
1392 };
1393
1394 struct ib_qp {
1395 struct ib_device *device;
1396 struct ib_pd *pd;
1397 struct ib_cq *send_cq;
1398 struct ib_cq *recv_cq;
1399 struct ib_srq *srq;
1400 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1401 struct list_head xrcd_list;
1402 /* count times opened, mcast attaches, flow attaches */
1403 atomic_t usecnt;
1404 struct list_head open_list;
1405 struct ib_qp *real_qp;
1406 struct ib_uobject *uobject;
1407 void (*event_handler)(struct ib_event *, void *);
1408 void *qp_context;
1409 u32 qp_num;
1410 enum ib_qp_type qp_type;
1411 };
1412
1413 struct ib_mr {
1414 struct ib_device *device;
1415 struct ib_pd *pd;
1416 struct ib_uobject *uobject;
1417 u32 lkey;
1418 u32 rkey;
1419 u64 iova;
1420 u32 length;
1421 unsigned int page_size;
1422 atomic_t usecnt; /* count number of MWs */
1423 };
1424
1425 struct ib_mw {
1426 struct ib_device *device;
1427 struct ib_pd *pd;
1428 struct ib_uobject *uobject;
1429 u32 rkey;
1430 enum ib_mw_type type;
1431 };
1432
1433 struct ib_fmr {
1434 struct ib_device *device;
1435 struct ib_pd *pd;
1436 struct list_head list;
1437 u32 lkey;
1438 u32 rkey;
1439 };
1440
1441 /* Supported steering options */
1442 enum ib_flow_attr_type {
1443 /* steering according to rule specifications */
1444 IB_FLOW_ATTR_NORMAL = 0x0,
1445 /* default unicast and multicast rule -
1446 * receive all Eth traffic which isn't steered to any QP
1447 */
1448 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1449 /* default multicast rule -
1450 * receive all Eth multicast traffic which isn't steered to any QP
1451 */
1452 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1453 /* sniffer rule - receive all port traffic */
1454 IB_FLOW_ATTR_SNIFFER = 0x3
1455 };
1456
1457 /* Supported steering header types */
1458 enum ib_flow_spec_type {
1459 /* L2 headers*/
1460 IB_FLOW_SPEC_ETH = 0x20,
1461 IB_FLOW_SPEC_IB = 0x22,
1462 /* L3 header*/
1463 IB_FLOW_SPEC_IPV4 = 0x30,
1464 /* L4 headers*/
1465 IB_FLOW_SPEC_TCP = 0x40,
1466 IB_FLOW_SPEC_UDP = 0x41
1467 };
1468 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1469 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1470
1471 /* Flow steering rule priority is set according to it's domain.
1472 * Lower domain value means higher priority.
1473 */
1474 enum ib_flow_domain {
1475 IB_FLOW_DOMAIN_USER,
1476 IB_FLOW_DOMAIN_ETHTOOL,
1477 IB_FLOW_DOMAIN_RFS,
1478 IB_FLOW_DOMAIN_NIC,
1479 IB_FLOW_DOMAIN_NUM /* Must be last */
1480 };
1481
1482 struct ib_flow_eth_filter {
1483 u8 dst_mac[6];
1484 u8 src_mac[6];
1485 __be16 ether_type;
1486 __be16 vlan_tag;
1487 };
1488
1489 struct ib_flow_spec_eth {
1490 enum ib_flow_spec_type type;
1491 u16 size;
1492 struct ib_flow_eth_filter val;
1493 struct ib_flow_eth_filter mask;
1494 };
1495
1496 struct ib_flow_ib_filter {
1497 __be16 dlid;
1498 __u8 sl;
1499 };
1500
1501 struct ib_flow_spec_ib {
1502 enum ib_flow_spec_type type;
1503 u16 size;
1504 struct ib_flow_ib_filter val;
1505 struct ib_flow_ib_filter mask;
1506 };
1507
1508 struct ib_flow_ipv4_filter {
1509 __be32 src_ip;
1510 __be32 dst_ip;
1511 };
1512
1513 struct ib_flow_spec_ipv4 {
1514 enum ib_flow_spec_type type;
1515 u16 size;
1516 struct ib_flow_ipv4_filter val;
1517 struct ib_flow_ipv4_filter mask;
1518 };
1519
1520 struct ib_flow_tcp_udp_filter {
1521 __be16 dst_port;
1522 __be16 src_port;
1523 };
1524
1525 struct ib_flow_spec_tcp_udp {
1526 enum ib_flow_spec_type type;
1527 u16 size;
1528 struct ib_flow_tcp_udp_filter val;
1529 struct ib_flow_tcp_udp_filter mask;
1530 };
1531
1532 union ib_flow_spec {
1533 struct {
1534 enum ib_flow_spec_type type;
1535 u16 size;
1536 };
1537 struct ib_flow_spec_eth eth;
1538 struct ib_flow_spec_ib ib;
1539 struct ib_flow_spec_ipv4 ipv4;
1540 struct ib_flow_spec_tcp_udp tcp_udp;
1541 };
1542
1543 struct ib_flow_attr {
1544 enum ib_flow_attr_type type;
1545 u16 size;
1546 u16 priority;
1547 u32 flags;
1548 u8 num_of_specs;
1549 u8 port;
1550 /* Following are the optional layers according to user request
1551 * struct ib_flow_spec_xxx
1552 * struct ib_flow_spec_yyy
1553 */
1554 };
1555
1556 struct ib_flow {
1557 struct ib_qp *qp;
1558 struct ib_uobject *uobject;
1559 };
1560
1561 struct ib_mad_hdr;
1562 struct ib_grh;
1563
1564 enum ib_process_mad_flags {
1565 IB_MAD_IGNORE_MKEY = 1,
1566 IB_MAD_IGNORE_BKEY = 2,
1567 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1568 };
1569
1570 enum ib_mad_result {
1571 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1572 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1573 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1574 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1575 };
1576
1577 #define IB_DEVICE_NAME_MAX 64
1578
1579 struct ib_cache {
1580 rwlock_t lock;
1581 struct ib_event_handler event_handler;
1582 struct ib_pkey_cache **pkey_cache;
1583 struct ib_gid_table **gid_cache;
1584 u8 *lmc_cache;
1585 };
1586
1587 struct ib_dma_mapping_ops {
1588 int (*mapping_error)(struct ib_device *dev,
1589 u64 dma_addr);
1590 u64 (*map_single)(struct ib_device *dev,
1591 void *ptr, size_t size,
1592 enum dma_data_direction direction);
1593 void (*unmap_single)(struct ib_device *dev,
1594 u64 addr, size_t size,
1595 enum dma_data_direction direction);
1596 u64 (*map_page)(struct ib_device *dev,
1597 struct page *page, unsigned long offset,
1598 size_t size,
1599 enum dma_data_direction direction);
1600 void (*unmap_page)(struct ib_device *dev,
1601 u64 addr, size_t size,
1602 enum dma_data_direction direction);
1603 int (*map_sg)(struct ib_device *dev,
1604 struct scatterlist *sg, int nents,
1605 enum dma_data_direction direction);
1606 void (*unmap_sg)(struct ib_device *dev,
1607 struct scatterlist *sg, int nents,
1608 enum dma_data_direction direction);
1609 void (*sync_single_for_cpu)(struct ib_device *dev,
1610 u64 dma_handle,
1611 size_t size,
1612 enum dma_data_direction dir);
1613 void (*sync_single_for_device)(struct ib_device *dev,
1614 u64 dma_handle,
1615 size_t size,
1616 enum dma_data_direction dir);
1617 void *(*alloc_coherent)(struct ib_device *dev,
1618 size_t size,
1619 u64 *dma_handle,
1620 gfp_t flag);
1621 void (*free_coherent)(struct ib_device *dev,
1622 size_t size, void *cpu_addr,
1623 u64 dma_handle);
1624 };
1625
1626 struct iw_cm_verbs;
1627
1628 struct ib_port_immutable {
1629 int pkey_tbl_len;
1630 int gid_tbl_len;
1631 u32 core_cap_flags;
1632 u32 max_mad_size;
1633 };
1634
1635 struct ib_device {
1636 struct device *dma_device;
1637
1638 char name[IB_DEVICE_NAME_MAX];
1639
1640 struct list_head event_handler_list;
1641 spinlock_t event_handler_lock;
1642
1643 spinlock_t client_data_lock;
1644 struct list_head core_list;
1645 /* Access to the client_data_list is protected by the client_data_lock
1646 * spinlock and the lists_rwsem read-write semaphore */
1647 struct list_head client_data_list;
1648
1649 struct ib_cache cache;
1650 /**
1651 * port_immutable is indexed by port number
1652 */
1653 struct ib_port_immutable *port_immutable;
1654
1655 int num_comp_vectors;
1656
1657 struct iw_cm_verbs *iwcm;
1658
1659 int (*get_protocol_stats)(struct ib_device *device,
1660 union rdma_protocol_stats *stats);
1661 int (*query_device)(struct ib_device *device,
1662 struct ib_device_attr *device_attr,
1663 struct ib_udata *udata);
1664 int (*query_port)(struct ib_device *device,
1665 u8 port_num,
1666 struct ib_port_attr *port_attr);
1667 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1668 u8 port_num);
1669 /* When calling get_netdev, the HW vendor's driver should return the
1670 * net device of device @device at port @port_num or NULL if such
1671 * a net device doesn't exist. The vendor driver should call dev_hold
1672 * on this net device. The HW vendor's device driver must guarantee
1673 * that this function returns NULL before the net device reaches
1674 * NETDEV_UNREGISTER_FINAL state.
1675 */
1676 struct net_device *(*get_netdev)(struct ib_device *device,
1677 u8 port_num);
1678 int (*query_gid)(struct ib_device *device,
1679 u8 port_num, int index,
1680 union ib_gid *gid);
1681 /* When calling add_gid, the HW vendor's driver should
1682 * add the gid of device @device at gid index @index of
1683 * port @port_num to be @gid. Meta-info of that gid (for example,
1684 * the network device related to this gid is available
1685 * at @attr. @context allows the HW vendor driver to store extra
1686 * information together with a GID entry. The HW vendor may allocate
1687 * memory to contain this information and store it in @context when a
1688 * new GID entry is written to. Params are consistent until the next
1689 * call of add_gid or delete_gid. The function should return 0 on
1690 * success or error otherwise. The function could be called
1691 * concurrently for different ports. This function is only called
1692 * when roce_gid_table is used.
1693 */
1694 int (*add_gid)(struct ib_device *device,
1695 u8 port_num,
1696 unsigned int index,
1697 const union ib_gid *gid,
1698 const struct ib_gid_attr *attr,
1699 void **context);
1700 /* When calling del_gid, the HW vendor's driver should delete the
1701 * gid of device @device at gid index @index of port @port_num.
1702 * Upon the deletion of a GID entry, the HW vendor must free any
1703 * allocated memory. The caller will clear @context afterwards.
1704 * This function is only called when roce_gid_table is used.
1705 */
1706 int (*del_gid)(struct ib_device *device,
1707 u8 port_num,
1708 unsigned int index,
1709 void **context);
1710 int (*query_pkey)(struct ib_device *device,
1711 u8 port_num, u16 index, u16 *pkey);
1712 int (*modify_device)(struct ib_device *device,
1713 int device_modify_mask,
1714 struct ib_device_modify *device_modify);
1715 int (*modify_port)(struct ib_device *device,
1716 u8 port_num, int port_modify_mask,
1717 struct ib_port_modify *port_modify);
1718 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1719 struct ib_udata *udata);
1720 int (*dealloc_ucontext)(struct ib_ucontext *context);
1721 int (*mmap)(struct ib_ucontext *context,
1722 struct vm_area_struct *vma);
1723 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1724 struct ib_ucontext *context,
1725 struct ib_udata *udata);
1726 int (*dealloc_pd)(struct ib_pd *pd);
1727 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1728 struct ib_ah_attr *ah_attr);
1729 int (*modify_ah)(struct ib_ah *ah,
1730 struct ib_ah_attr *ah_attr);
1731 int (*query_ah)(struct ib_ah *ah,
1732 struct ib_ah_attr *ah_attr);
1733 int (*destroy_ah)(struct ib_ah *ah);
1734 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1735 struct ib_srq_init_attr *srq_init_attr,
1736 struct ib_udata *udata);
1737 int (*modify_srq)(struct ib_srq *srq,
1738 struct ib_srq_attr *srq_attr,
1739 enum ib_srq_attr_mask srq_attr_mask,
1740 struct ib_udata *udata);
1741 int (*query_srq)(struct ib_srq *srq,
1742 struct ib_srq_attr *srq_attr);
1743 int (*destroy_srq)(struct ib_srq *srq);
1744 int (*post_srq_recv)(struct ib_srq *srq,
1745 struct ib_recv_wr *recv_wr,
1746 struct ib_recv_wr **bad_recv_wr);
1747 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1748 struct ib_qp_init_attr *qp_init_attr,
1749 struct ib_udata *udata);
1750 int (*modify_qp)(struct ib_qp *qp,
1751 struct ib_qp_attr *qp_attr,
1752 int qp_attr_mask,
1753 struct ib_udata *udata);
1754 int (*query_qp)(struct ib_qp *qp,
1755 struct ib_qp_attr *qp_attr,
1756 int qp_attr_mask,
1757 struct ib_qp_init_attr *qp_init_attr);
1758 int (*destroy_qp)(struct ib_qp *qp);
1759 int (*post_send)(struct ib_qp *qp,
1760 struct ib_send_wr *send_wr,
1761 struct ib_send_wr **bad_send_wr);
1762 int (*post_recv)(struct ib_qp *qp,
1763 struct ib_recv_wr *recv_wr,
1764 struct ib_recv_wr **bad_recv_wr);
1765 struct ib_cq * (*create_cq)(struct ib_device *device,
1766 const struct ib_cq_init_attr *attr,
1767 struct ib_ucontext *context,
1768 struct ib_udata *udata);
1769 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1770 u16 cq_period);
1771 int (*destroy_cq)(struct ib_cq *cq);
1772 int (*resize_cq)(struct ib_cq *cq, int cqe,
1773 struct ib_udata *udata);
1774 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1775 struct ib_wc *wc);
1776 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1777 int (*req_notify_cq)(struct ib_cq *cq,
1778 enum ib_cq_notify_flags flags);
1779 int (*req_ncomp_notif)(struct ib_cq *cq,
1780 int wc_cnt);
1781 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1782 int mr_access_flags);
1783 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1784 u64 start, u64 length,
1785 u64 virt_addr,
1786 int mr_access_flags,
1787 struct ib_udata *udata);
1788 int (*rereg_user_mr)(struct ib_mr *mr,
1789 int flags,
1790 u64 start, u64 length,
1791 u64 virt_addr,
1792 int mr_access_flags,
1793 struct ib_pd *pd,
1794 struct ib_udata *udata);
1795 int (*dereg_mr)(struct ib_mr *mr);
1796 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1797 enum ib_mr_type mr_type,
1798 u32 max_num_sg);
1799 int (*map_mr_sg)(struct ib_mr *mr,
1800 struct scatterlist *sg,
1801 int sg_nents);
1802 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1803 enum ib_mw_type type);
1804 int (*dealloc_mw)(struct ib_mw *mw);
1805 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1806 int mr_access_flags,
1807 struct ib_fmr_attr *fmr_attr);
1808 int (*map_phys_fmr)(struct ib_fmr *fmr,
1809 u64 *page_list, int list_len,
1810 u64 iova);
1811 int (*unmap_fmr)(struct list_head *fmr_list);
1812 int (*dealloc_fmr)(struct ib_fmr *fmr);
1813 int (*attach_mcast)(struct ib_qp *qp,
1814 union ib_gid *gid,
1815 u16 lid);
1816 int (*detach_mcast)(struct ib_qp *qp,
1817 union ib_gid *gid,
1818 u16 lid);
1819 int (*process_mad)(struct ib_device *device,
1820 int process_mad_flags,
1821 u8 port_num,
1822 const struct ib_wc *in_wc,
1823 const struct ib_grh *in_grh,
1824 const struct ib_mad_hdr *in_mad,
1825 size_t in_mad_size,
1826 struct ib_mad_hdr *out_mad,
1827 size_t *out_mad_size,
1828 u16 *out_mad_pkey_index);
1829 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1830 struct ib_ucontext *ucontext,
1831 struct ib_udata *udata);
1832 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1833 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1834 struct ib_flow_attr
1835 *flow_attr,
1836 int domain);
1837 int (*destroy_flow)(struct ib_flow *flow_id);
1838 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1839 struct ib_mr_status *mr_status);
1840 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1841
1842 struct ib_dma_mapping_ops *dma_ops;
1843
1844 struct module *owner;
1845 struct device dev;
1846 struct kobject *ports_parent;
1847 struct list_head port_list;
1848
1849 enum {
1850 IB_DEV_UNINITIALIZED,
1851 IB_DEV_REGISTERED,
1852 IB_DEV_UNREGISTERED
1853 } reg_state;
1854
1855 int uverbs_abi_ver;
1856 u64 uverbs_cmd_mask;
1857 u64 uverbs_ex_cmd_mask;
1858
1859 char node_desc[64];
1860 __be64 node_guid;
1861 u32 local_dma_lkey;
1862 u16 is_switch:1;
1863 u8 node_type;
1864 u8 phys_port_cnt;
1865 struct ib_device_attr attrs;
1866
1867 /**
1868 * The following mandatory functions are used only at device
1869 * registration. Keep functions such as these at the end of this
1870 * structure to avoid cache line misses when accessing struct ib_device
1871 * in fast paths.
1872 */
1873 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1874 };
1875
1876 struct ib_client {
1877 char *name;
1878 void (*add) (struct ib_device *);
1879 void (*remove)(struct ib_device *, void *client_data);
1880
1881 /* Returns the net_dev belonging to this ib_client and matching the
1882 * given parameters.
1883 * @dev: An RDMA device that the net_dev use for communication.
1884 * @port: A physical port number on the RDMA device.
1885 * @pkey: P_Key that the net_dev uses if applicable.
1886 * @gid: A GID that the net_dev uses to communicate.
1887 * @addr: An IP address the net_dev is configured with.
1888 * @client_data: The device's client data set by ib_set_client_data().
1889 *
1890 * An ib_client that implements a net_dev on top of RDMA devices
1891 * (such as IP over IB) should implement this callback, allowing the
1892 * rdma_cm module to find the right net_dev for a given request.
1893 *
1894 * The caller is responsible for calling dev_put on the returned
1895 * netdev. */
1896 struct net_device *(*get_net_dev_by_params)(
1897 struct ib_device *dev,
1898 u8 port,
1899 u16 pkey,
1900 const union ib_gid *gid,
1901 const struct sockaddr *addr,
1902 void *client_data);
1903 struct list_head list;
1904 };
1905
1906 struct ib_device *ib_alloc_device(size_t size);
1907 void ib_dealloc_device(struct ib_device *device);
1908
1909 int ib_register_device(struct ib_device *device,
1910 int (*port_callback)(struct ib_device *,
1911 u8, struct kobject *));
1912 void ib_unregister_device(struct ib_device *device);
1913
1914 int ib_register_client (struct ib_client *client);
1915 void ib_unregister_client(struct ib_client *client);
1916
1917 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1918 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1919 void *data);
1920
1921 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1922 {
1923 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1924 }
1925
1926 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1927 {
1928 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1929 }
1930
1931 /**
1932 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1933 * contains all required attributes and no attributes not allowed for
1934 * the given QP state transition.
1935 * @cur_state: Current QP state
1936 * @next_state: Next QP state
1937 * @type: QP type
1938 * @mask: Mask of supplied QP attributes
1939 * @ll : link layer of port
1940 *
1941 * This function is a helper function that a low-level driver's
1942 * modify_qp method can use to validate the consumer's input. It
1943 * checks that cur_state and next_state are valid QP states, that a
1944 * transition from cur_state to next_state is allowed by the IB spec,
1945 * and that the attribute mask supplied is allowed for the transition.
1946 */
1947 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1948 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1949 enum rdma_link_layer ll);
1950
1951 int ib_register_event_handler (struct ib_event_handler *event_handler);
1952 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1953 void ib_dispatch_event(struct ib_event *event);
1954
1955 int ib_query_port(struct ib_device *device,
1956 u8 port_num, struct ib_port_attr *port_attr);
1957
1958 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1959 u8 port_num);
1960
1961 /**
1962 * rdma_cap_ib_switch - Check if the device is IB switch
1963 * @device: Device to check
1964 *
1965 * Device driver is responsible for setting is_switch bit on
1966 * in ib_device structure at init time.
1967 *
1968 * Return: true if the device is IB switch.
1969 */
1970 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1971 {
1972 return device->is_switch;
1973 }
1974
1975 /**
1976 * rdma_start_port - Return the first valid port number for the device
1977 * specified
1978 *
1979 * @device: Device to be checked
1980 *
1981 * Return start port number
1982 */
1983 static inline u8 rdma_start_port(const struct ib_device *device)
1984 {
1985 return rdma_cap_ib_switch(device) ? 0 : 1;
1986 }
1987
1988 /**
1989 * rdma_end_port - Return the last valid port number for the device
1990 * specified
1991 *
1992 * @device: Device to be checked
1993 *
1994 * Return last port number
1995 */
1996 static inline u8 rdma_end_port(const struct ib_device *device)
1997 {
1998 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
1999 }
2000
2001 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2002 {
2003 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2004 }
2005
2006 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2007 {
2008 return device->port_immutable[port_num].core_cap_flags &
2009 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2010 }
2011
2012 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2013 {
2014 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2015 }
2016
2017 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2018 {
2019 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2020 }
2021
2022 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2023 {
2024 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2025 }
2026
2027 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2028 {
2029 return rdma_protocol_ib(device, port_num) ||
2030 rdma_protocol_roce(device, port_num);
2031 }
2032
2033 /**
2034 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2035 * Management Datagrams.
2036 * @device: Device to check
2037 * @port_num: Port number to check
2038 *
2039 * Management Datagrams (MAD) are a required part of the InfiniBand
2040 * specification and are supported on all InfiniBand devices. A slightly
2041 * extended version are also supported on OPA interfaces.
2042 *
2043 * Return: true if the port supports sending/receiving of MAD packets.
2044 */
2045 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2046 {
2047 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2048 }
2049
2050 /**
2051 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2052 * Management Datagrams.
2053 * @device: Device to check
2054 * @port_num: Port number to check
2055 *
2056 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2057 * datagrams with their own versions. These OPA MADs share many but not all of
2058 * the characteristics of InfiniBand MADs.
2059 *
2060 * OPA MADs differ in the following ways:
2061 *
2062 * 1) MADs are variable size up to 2K
2063 * IBTA defined MADs remain fixed at 256 bytes
2064 * 2) OPA SMPs must carry valid PKeys
2065 * 3) OPA SMP packets are a different format
2066 *
2067 * Return: true if the port supports OPA MAD packet formats.
2068 */
2069 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2070 {
2071 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2072 == RDMA_CORE_CAP_OPA_MAD;
2073 }
2074
2075 /**
2076 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2077 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2078 * @device: Device to check
2079 * @port_num: Port number to check
2080 *
2081 * Each InfiniBand node is required to provide a Subnet Management Agent
2082 * that the subnet manager can access. Prior to the fabric being fully
2083 * configured by the subnet manager, the SMA is accessed via a well known
2084 * interface called the Subnet Management Interface (SMI). This interface
2085 * uses directed route packets to communicate with the SM to get around the
2086 * chicken and egg problem of the SM needing to know what's on the fabric
2087 * in order to configure the fabric, and needing to configure the fabric in
2088 * order to send packets to the devices on the fabric. These directed
2089 * route packets do not need the fabric fully configured in order to reach
2090 * their destination. The SMI is the only method allowed to send
2091 * directed route packets on an InfiniBand fabric.
2092 *
2093 * Return: true if the port provides an SMI.
2094 */
2095 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2096 {
2097 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2098 }
2099
2100 /**
2101 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2102 * Communication Manager.
2103 * @device: Device to check
2104 * @port_num: Port number to check
2105 *
2106 * The InfiniBand Communication Manager is one of many pre-defined General
2107 * Service Agents (GSA) that are accessed via the General Service
2108 * Interface (GSI). It's role is to facilitate establishment of connections
2109 * between nodes as well as other management related tasks for established
2110 * connections.
2111 *
2112 * Return: true if the port supports an IB CM (this does not guarantee that
2113 * a CM is actually running however).
2114 */
2115 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2116 {
2117 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2118 }
2119
2120 /**
2121 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2122 * Communication Manager.
2123 * @device: Device to check
2124 * @port_num: Port number to check
2125 *
2126 * Similar to above, but specific to iWARP connections which have a different
2127 * managment protocol than InfiniBand.
2128 *
2129 * Return: true if the port supports an iWARP CM (this does not guarantee that
2130 * a CM is actually running however).
2131 */
2132 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2133 {
2134 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2135 }
2136
2137 /**
2138 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2139 * Subnet Administration.
2140 * @device: Device to check
2141 * @port_num: Port number to check
2142 *
2143 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2144 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2145 * fabrics, devices should resolve routes to other hosts by contacting the
2146 * SA to query the proper route.
2147 *
2148 * Return: true if the port should act as a client to the fabric Subnet
2149 * Administration interface. This does not imply that the SA service is
2150 * running locally.
2151 */
2152 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2153 {
2154 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2155 }
2156
2157 /**
2158 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2159 * Multicast.
2160 * @device: Device to check
2161 * @port_num: Port number to check
2162 *
2163 * InfiniBand multicast registration is more complex than normal IPv4 or
2164 * IPv6 multicast registration. Each Host Channel Adapter must register
2165 * with the Subnet Manager when it wishes to join a multicast group. It
2166 * should do so only once regardless of how many queue pairs it subscribes
2167 * to this group. And it should leave the group only after all queue pairs
2168 * attached to the group have been detached.
2169 *
2170 * Return: true if the port must undertake the additional adminstrative
2171 * overhead of registering/unregistering with the SM and tracking of the
2172 * total number of queue pairs attached to the multicast group.
2173 */
2174 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2175 {
2176 return rdma_cap_ib_sa(device, port_num);
2177 }
2178
2179 /**
2180 * rdma_cap_af_ib - Check if the port of device has the capability
2181 * Native Infiniband Address.
2182 * @device: Device to check
2183 * @port_num: Port number to check
2184 *
2185 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2186 * GID. RoCE uses a different mechanism, but still generates a GID via
2187 * a prescribed mechanism and port specific data.
2188 *
2189 * Return: true if the port uses a GID address to identify devices on the
2190 * network.
2191 */
2192 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2193 {
2194 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2195 }
2196
2197 /**
2198 * rdma_cap_eth_ah - Check if the port of device has the capability
2199 * Ethernet Address Handle.
2200 * @device: Device to check
2201 * @port_num: Port number to check
2202 *
2203 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2204 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2205 * port. Normally, packet headers are generated by the sending host
2206 * adapter, but when sending connectionless datagrams, we must manually
2207 * inject the proper headers for the fabric we are communicating over.
2208 *
2209 * Return: true if we are running as a RoCE port and must force the
2210 * addition of a Global Route Header built from our Ethernet Address
2211 * Handle into our header list for connectionless packets.
2212 */
2213 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2214 {
2215 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2216 }
2217
2218 /**
2219 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2220 *
2221 * @device: Device
2222 * @port_num: Port number
2223 *
2224 * This MAD size includes the MAD headers and MAD payload. No other headers
2225 * are included.
2226 *
2227 * Return the max MAD size required by the Port. Will return 0 if the port
2228 * does not support MADs
2229 */
2230 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2231 {
2232 return device->port_immutable[port_num].max_mad_size;
2233 }
2234
2235 /**
2236 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2237 * @device: Device to check
2238 * @port_num: Port number to check
2239 *
2240 * RoCE GID table mechanism manages the various GIDs for a device.
2241 *
2242 * NOTE: if allocating the port's GID table has failed, this call will still
2243 * return true, but any RoCE GID table API will fail.
2244 *
2245 * Return: true if the port uses RoCE GID table mechanism in order to manage
2246 * its GIDs.
2247 */
2248 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2249 u8 port_num)
2250 {
2251 return rdma_protocol_roce(device, port_num) &&
2252 device->add_gid && device->del_gid;
2253 }
2254
2255 int ib_query_gid(struct ib_device *device,
2256 u8 port_num, int index, union ib_gid *gid,
2257 struct ib_gid_attr *attr);
2258
2259 int ib_query_pkey(struct ib_device *device,
2260 u8 port_num, u16 index, u16 *pkey);
2261
2262 int ib_modify_device(struct ib_device *device,
2263 int device_modify_mask,
2264 struct ib_device_modify *device_modify);
2265
2266 int ib_modify_port(struct ib_device *device,
2267 u8 port_num, int port_modify_mask,
2268 struct ib_port_modify *port_modify);
2269
2270 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2271 enum ib_gid_type gid_type, struct net_device *ndev,
2272 u8 *port_num, u16 *index);
2273
2274 int ib_find_pkey(struct ib_device *device,
2275 u8 port_num, u16 pkey, u16 *index);
2276
2277 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2278
2279 void ib_dealloc_pd(struct ib_pd *pd);
2280
2281 /**
2282 * ib_create_ah - Creates an address handle for the given address vector.
2283 * @pd: The protection domain associated with the address handle.
2284 * @ah_attr: The attributes of the address vector.
2285 *
2286 * The address handle is used to reference a local or global destination
2287 * in all UD QP post sends.
2288 */
2289 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2290
2291 /**
2292 * ib_init_ah_from_wc - Initializes address handle attributes from a
2293 * work completion.
2294 * @device: Device on which the received message arrived.
2295 * @port_num: Port on which the received message arrived.
2296 * @wc: Work completion associated with the received message.
2297 * @grh: References the received global route header. This parameter is
2298 * ignored unless the work completion indicates that the GRH is valid.
2299 * @ah_attr: Returned attributes that can be used when creating an address
2300 * handle for replying to the message.
2301 */
2302 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2303 const struct ib_wc *wc, const struct ib_grh *grh,
2304 struct ib_ah_attr *ah_attr);
2305
2306 /**
2307 * ib_create_ah_from_wc - Creates an address handle associated with the
2308 * sender of the specified work completion.
2309 * @pd: The protection domain associated with the address handle.
2310 * @wc: Work completion information associated with a received message.
2311 * @grh: References the received global route header. This parameter is
2312 * ignored unless the work completion indicates that the GRH is valid.
2313 * @port_num: The outbound port number to associate with the address.
2314 *
2315 * The address handle is used to reference a local or global destination
2316 * in all UD QP post sends.
2317 */
2318 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2319 const struct ib_grh *grh, u8 port_num);
2320
2321 /**
2322 * ib_modify_ah - Modifies the address vector associated with an address
2323 * handle.
2324 * @ah: The address handle to modify.
2325 * @ah_attr: The new address vector attributes to associate with the
2326 * address handle.
2327 */
2328 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2329
2330 /**
2331 * ib_query_ah - Queries the address vector associated with an address
2332 * handle.
2333 * @ah: The address handle to query.
2334 * @ah_attr: The address vector attributes associated with the address
2335 * handle.
2336 */
2337 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2338
2339 /**
2340 * ib_destroy_ah - Destroys an address handle.
2341 * @ah: The address handle to destroy.
2342 */
2343 int ib_destroy_ah(struct ib_ah *ah);
2344
2345 /**
2346 * ib_create_srq - Creates a SRQ associated with the specified protection
2347 * domain.
2348 * @pd: The protection domain associated with the SRQ.
2349 * @srq_init_attr: A list of initial attributes required to create the
2350 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2351 * the actual capabilities of the created SRQ.
2352 *
2353 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2354 * requested size of the SRQ, and set to the actual values allocated
2355 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2356 * will always be at least as large as the requested values.
2357 */
2358 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2359 struct ib_srq_init_attr *srq_init_attr);
2360
2361 /**
2362 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2363 * @srq: The SRQ to modify.
2364 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2365 * the current values of selected SRQ attributes are returned.
2366 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2367 * are being modified.
2368 *
2369 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2370 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2371 * the number of receives queued drops below the limit.
2372 */
2373 int ib_modify_srq(struct ib_srq *srq,
2374 struct ib_srq_attr *srq_attr,
2375 enum ib_srq_attr_mask srq_attr_mask);
2376
2377 /**
2378 * ib_query_srq - Returns the attribute list and current values for the
2379 * specified SRQ.
2380 * @srq: The SRQ to query.
2381 * @srq_attr: The attributes of the specified SRQ.
2382 */
2383 int ib_query_srq(struct ib_srq *srq,
2384 struct ib_srq_attr *srq_attr);
2385
2386 /**
2387 * ib_destroy_srq - Destroys the specified SRQ.
2388 * @srq: The SRQ to destroy.
2389 */
2390 int ib_destroy_srq(struct ib_srq *srq);
2391
2392 /**
2393 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2394 * @srq: The SRQ to post the work request on.
2395 * @recv_wr: A list of work requests to post on the receive queue.
2396 * @bad_recv_wr: On an immediate failure, this parameter will reference
2397 * the work request that failed to be posted on the QP.
2398 */
2399 static inline int ib_post_srq_recv(struct ib_srq *srq,
2400 struct ib_recv_wr *recv_wr,
2401 struct ib_recv_wr **bad_recv_wr)
2402 {
2403 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2404 }
2405
2406 /**
2407 * ib_create_qp - Creates a QP associated with the specified protection
2408 * domain.
2409 * @pd: The protection domain associated with the QP.
2410 * @qp_init_attr: A list of initial attributes required to create the
2411 * QP. If QP creation succeeds, then the attributes are updated to
2412 * the actual capabilities of the created QP.
2413 */
2414 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2415 struct ib_qp_init_attr *qp_init_attr);
2416
2417 /**
2418 * ib_modify_qp - Modifies the attributes for the specified QP and then
2419 * transitions the QP to the given state.
2420 * @qp: The QP to modify.
2421 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2422 * the current values of selected QP attributes are returned.
2423 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2424 * are being modified.
2425 */
2426 int ib_modify_qp(struct ib_qp *qp,
2427 struct ib_qp_attr *qp_attr,
2428 int qp_attr_mask);
2429
2430 /**
2431 * ib_query_qp - Returns the attribute list and current values for the
2432 * specified QP.
2433 * @qp: The QP to query.
2434 * @qp_attr: The attributes of the specified QP.
2435 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2436 * @qp_init_attr: Additional attributes of the selected QP.
2437 *
2438 * The qp_attr_mask may be used to limit the query to gathering only the
2439 * selected attributes.
2440 */
2441 int ib_query_qp(struct ib_qp *qp,
2442 struct ib_qp_attr *qp_attr,
2443 int qp_attr_mask,
2444 struct ib_qp_init_attr *qp_init_attr);
2445
2446 /**
2447 * ib_destroy_qp - Destroys the specified QP.
2448 * @qp: The QP to destroy.
2449 */
2450 int ib_destroy_qp(struct ib_qp *qp);
2451
2452 /**
2453 * ib_open_qp - Obtain a reference to an existing sharable QP.
2454 * @xrcd - XRC domain
2455 * @qp_open_attr: Attributes identifying the QP to open.
2456 *
2457 * Returns a reference to a sharable QP.
2458 */
2459 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2460 struct ib_qp_open_attr *qp_open_attr);
2461
2462 /**
2463 * ib_close_qp - Release an external reference to a QP.
2464 * @qp: The QP handle to release
2465 *
2466 * The opened QP handle is released by the caller. The underlying
2467 * shared QP is not destroyed until all internal references are released.
2468 */
2469 int ib_close_qp(struct ib_qp *qp);
2470
2471 /**
2472 * ib_post_send - Posts a list of work requests to the send queue of
2473 * the specified QP.
2474 * @qp: The QP to post the work request on.
2475 * @send_wr: A list of work requests to post on the send queue.
2476 * @bad_send_wr: On an immediate failure, this parameter will reference
2477 * the work request that failed to be posted on the QP.
2478 *
2479 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2480 * error is returned, the QP state shall not be affected,
2481 * ib_post_send() will return an immediate error after queueing any
2482 * earlier work requests in the list.
2483 */
2484 static inline int ib_post_send(struct ib_qp *qp,
2485 struct ib_send_wr *send_wr,
2486 struct ib_send_wr **bad_send_wr)
2487 {
2488 return qp->device->post_send(qp, send_wr, bad_send_wr);
2489 }
2490
2491 /**
2492 * ib_post_recv - Posts a list of work requests to the receive queue of
2493 * the specified QP.
2494 * @qp: The QP to post the work request on.
2495 * @recv_wr: A list of work requests to post on the receive queue.
2496 * @bad_recv_wr: On an immediate failure, this parameter will reference
2497 * the work request that failed to be posted on the QP.
2498 */
2499 static inline int ib_post_recv(struct ib_qp *qp,
2500 struct ib_recv_wr *recv_wr,
2501 struct ib_recv_wr **bad_recv_wr)
2502 {
2503 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2504 }
2505
2506 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2507 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2508 void ib_free_cq(struct ib_cq *cq);
2509 int ib_process_cq_direct(struct ib_cq *cq, int budget);
2510
2511 /**
2512 * ib_create_cq - Creates a CQ on the specified device.
2513 * @device: The device on which to create the CQ.
2514 * @comp_handler: A user-specified callback that is invoked when a
2515 * completion event occurs on the CQ.
2516 * @event_handler: A user-specified callback that is invoked when an
2517 * asynchronous event not associated with a completion occurs on the CQ.
2518 * @cq_context: Context associated with the CQ returned to the user via
2519 * the associated completion and event handlers.
2520 * @cq_attr: The attributes the CQ should be created upon.
2521 *
2522 * Users can examine the cq structure to determine the actual CQ size.
2523 */
2524 struct ib_cq *ib_create_cq(struct ib_device *device,
2525 ib_comp_handler comp_handler,
2526 void (*event_handler)(struct ib_event *, void *),
2527 void *cq_context,
2528 const struct ib_cq_init_attr *cq_attr);
2529
2530 /**
2531 * ib_resize_cq - Modifies the capacity of the CQ.
2532 * @cq: The CQ to resize.
2533 * @cqe: The minimum size of the CQ.
2534 *
2535 * Users can examine the cq structure to determine the actual CQ size.
2536 */
2537 int ib_resize_cq(struct ib_cq *cq, int cqe);
2538
2539 /**
2540 * ib_modify_cq - Modifies moderation params of the CQ
2541 * @cq: The CQ to modify.
2542 * @cq_count: number of CQEs that will trigger an event
2543 * @cq_period: max period of time in usec before triggering an event
2544 *
2545 */
2546 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2547
2548 /**
2549 * ib_destroy_cq - Destroys the specified CQ.
2550 * @cq: The CQ to destroy.
2551 */
2552 int ib_destroy_cq(struct ib_cq *cq);
2553
2554 /**
2555 * ib_poll_cq - poll a CQ for completion(s)
2556 * @cq:the CQ being polled
2557 * @num_entries:maximum number of completions to return
2558 * @wc:array of at least @num_entries &struct ib_wc where completions
2559 * will be returned
2560 *
2561 * Poll a CQ for (possibly multiple) completions. If the return value
2562 * is < 0, an error occurred. If the return value is >= 0, it is the
2563 * number of completions returned. If the return value is
2564 * non-negative and < num_entries, then the CQ was emptied.
2565 */
2566 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2567 struct ib_wc *wc)
2568 {
2569 return cq->device->poll_cq(cq, num_entries, wc);
2570 }
2571
2572 /**
2573 * ib_peek_cq - Returns the number of unreaped completions currently
2574 * on the specified CQ.
2575 * @cq: The CQ to peek.
2576 * @wc_cnt: A minimum number of unreaped completions to check for.
2577 *
2578 * If the number of unreaped completions is greater than or equal to wc_cnt,
2579 * this function returns wc_cnt, otherwise, it returns the actual number of
2580 * unreaped completions.
2581 */
2582 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2583
2584 /**
2585 * ib_req_notify_cq - Request completion notification on a CQ.
2586 * @cq: The CQ to generate an event for.
2587 * @flags:
2588 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2589 * to request an event on the next solicited event or next work
2590 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2591 * may also be |ed in to request a hint about missed events, as
2592 * described below.
2593 *
2594 * Return Value:
2595 * < 0 means an error occurred while requesting notification
2596 * == 0 means notification was requested successfully, and if
2597 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2598 * were missed and it is safe to wait for another event. In
2599 * this case is it guaranteed that any work completions added
2600 * to the CQ since the last CQ poll will trigger a completion
2601 * notification event.
2602 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2603 * in. It means that the consumer must poll the CQ again to
2604 * make sure it is empty to avoid missing an event because of a
2605 * race between requesting notification and an entry being
2606 * added to the CQ. This return value means it is possible
2607 * (but not guaranteed) that a work completion has been added
2608 * to the CQ since the last poll without triggering a
2609 * completion notification event.
2610 */
2611 static inline int ib_req_notify_cq(struct ib_cq *cq,
2612 enum ib_cq_notify_flags flags)
2613 {
2614 return cq->device->req_notify_cq(cq, flags);
2615 }
2616
2617 /**
2618 * ib_req_ncomp_notif - Request completion notification when there are
2619 * at least the specified number of unreaped completions on the CQ.
2620 * @cq: The CQ to generate an event for.
2621 * @wc_cnt: The number of unreaped completions that should be on the
2622 * CQ before an event is generated.
2623 */
2624 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2625 {
2626 return cq->device->req_ncomp_notif ?
2627 cq->device->req_ncomp_notif(cq, wc_cnt) :
2628 -ENOSYS;
2629 }
2630
2631 /**
2632 * ib_get_dma_mr - Returns a memory region for system memory that is
2633 * usable for DMA.
2634 * @pd: The protection domain associated with the memory region.
2635 * @mr_access_flags: Specifies the memory access rights.
2636 *
2637 * Note that the ib_dma_*() functions defined below must be used
2638 * to create/destroy addresses used with the Lkey or Rkey returned
2639 * by ib_get_dma_mr().
2640 */
2641 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2642
2643 /**
2644 * ib_dma_mapping_error - check a DMA addr for error
2645 * @dev: The device for which the dma_addr was created
2646 * @dma_addr: The DMA address to check
2647 */
2648 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2649 {
2650 if (dev->dma_ops)
2651 return dev->dma_ops->mapping_error(dev, dma_addr);
2652 return dma_mapping_error(dev->dma_device, dma_addr);
2653 }
2654
2655 /**
2656 * ib_dma_map_single - Map a kernel virtual address to DMA address
2657 * @dev: The device for which the dma_addr is to be created
2658 * @cpu_addr: The kernel virtual address
2659 * @size: The size of the region in bytes
2660 * @direction: The direction of the DMA
2661 */
2662 static inline u64 ib_dma_map_single(struct ib_device *dev,
2663 void *cpu_addr, size_t size,
2664 enum dma_data_direction direction)
2665 {
2666 if (dev->dma_ops)
2667 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2668 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2669 }
2670
2671 /**
2672 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2673 * @dev: The device for which the DMA address was created
2674 * @addr: The DMA address
2675 * @size: The size of the region in bytes
2676 * @direction: The direction of the DMA
2677 */
2678 static inline void ib_dma_unmap_single(struct ib_device *dev,
2679 u64 addr, size_t size,
2680 enum dma_data_direction direction)
2681 {
2682 if (dev->dma_ops)
2683 dev->dma_ops->unmap_single(dev, addr, size, direction);
2684 else
2685 dma_unmap_single(dev->dma_device, addr, size, direction);
2686 }
2687
2688 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2689 void *cpu_addr, size_t size,
2690 enum dma_data_direction direction,
2691 struct dma_attrs *attrs)
2692 {
2693 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2694 direction, attrs);
2695 }
2696
2697 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2698 u64 addr, size_t size,
2699 enum dma_data_direction direction,
2700 struct dma_attrs *attrs)
2701 {
2702 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2703 direction, attrs);
2704 }
2705
2706 /**
2707 * ib_dma_map_page - Map a physical page to DMA address
2708 * @dev: The device for which the dma_addr is to be created
2709 * @page: The page to be mapped
2710 * @offset: The offset within the page
2711 * @size: The size of the region in bytes
2712 * @direction: The direction of the DMA
2713 */
2714 static inline u64 ib_dma_map_page(struct ib_device *dev,
2715 struct page *page,
2716 unsigned long offset,
2717 size_t size,
2718 enum dma_data_direction direction)
2719 {
2720 if (dev->dma_ops)
2721 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2722 return dma_map_page(dev->dma_device, page, offset, size, direction);
2723 }
2724
2725 /**
2726 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2727 * @dev: The device for which the DMA address was created
2728 * @addr: The DMA address
2729 * @size: The size of the region in bytes
2730 * @direction: The direction of the DMA
2731 */
2732 static inline void ib_dma_unmap_page(struct ib_device *dev,
2733 u64 addr, size_t size,
2734 enum dma_data_direction direction)
2735 {
2736 if (dev->dma_ops)
2737 dev->dma_ops->unmap_page(dev, addr, size, direction);
2738 else
2739 dma_unmap_page(dev->dma_device, addr, size, direction);
2740 }
2741
2742 /**
2743 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2744 * @dev: The device for which the DMA addresses are to be created
2745 * @sg: The array of scatter/gather entries
2746 * @nents: The number of scatter/gather entries
2747 * @direction: The direction of the DMA
2748 */
2749 static inline int ib_dma_map_sg(struct ib_device *dev,
2750 struct scatterlist *sg, int nents,
2751 enum dma_data_direction direction)
2752 {
2753 if (dev->dma_ops)
2754 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2755 return dma_map_sg(dev->dma_device, sg, nents, direction);
2756 }
2757
2758 /**
2759 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2760 * @dev: The device for which the DMA addresses were created
2761 * @sg: The array of scatter/gather entries
2762 * @nents: The number of scatter/gather entries
2763 * @direction: The direction of the DMA
2764 */
2765 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2766 struct scatterlist *sg, int nents,
2767 enum dma_data_direction direction)
2768 {
2769 if (dev->dma_ops)
2770 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2771 else
2772 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2773 }
2774
2775 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2776 struct scatterlist *sg, int nents,
2777 enum dma_data_direction direction,
2778 struct dma_attrs *attrs)
2779 {
2780 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2781 }
2782
2783 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2784 struct scatterlist *sg, int nents,
2785 enum dma_data_direction direction,
2786 struct dma_attrs *attrs)
2787 {
2788 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2789 }
2790 /**
2791 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2792 * @dev: The device for which the DMA addresses were created
2793 * @sg: The scatter/gather entry
2794 *
2795 * Note: this function is obsolete. To do: change all occurrences of
2796 * ib_sg_dma_address() into sg_dma_address().
2797 */
2798 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2799 struct scatterlist *sg)
2800 {
2801 return sg_dma_address(sg);
2802 }
2803
2804 /**
2805 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2806 * @dev: The device for which the DMA addresses were created
2807 * @sg: The scatter/gather entry
2808 *
2809 * Note: this function is obsolete. To do: change all occurrences of
2810 * ib_sg_dma_len() into sg_dma_len().
2811 */
2812 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2813 struct scatterlist *sg)
2814 {
2815 return sg_dma_len(sg);
2816 }
2817
2818 /**
2819 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2820 * @dev: The device for which the DMA address was created
2821 * @addr: The DMA address
2822 * @size: The size of the region in bytes
2823 * @dir: The direction of the DMA
2824 */
2825 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2826 u64 addr,
2827 size_t size,
2828 enum dma_data_direction dir)
2829 {
2830 if (dev->dma_ops)
2831 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2832 else
2833 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2834 }
2835
2836 /**
2837 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2838 * @dev: The device for which the DMA address was created
2839 * @addr: The DMA address
2840 * @size: The size of the region in bytes
2841 * @dir: The direction of the DMA
2842 */
2843 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2844 u64 addr,
2845 size_t size,
2846 enum dma_data_direction dir)
2847 {
2848 if (dev->dma_ops)
2849 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2850 else
2851 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2852 }
2853
2854 /**
2855 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2856 * @dev: The device for which the DMA address is requested
2857 * @size: The size of the region to allocate in bytes
2858 * @dma_handle: A pointer for returning the DMA address of the region
2859 * @flag: memory allocator flags
2860 */
2861 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2862 size_t size,
2863 u64 *dma_handle,
2864 gfp_t flag)
2865 {
2866 if (dev->dma_ops)
2867 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2868 else {
2869 dma_addr_t handle;
2870 void *ret;
2871
2872 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2873 *dma_handle = handle;
2874 return ret;
2875 }
2876 }
2877
2878 /**
2879 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2880 * @dev: The device for which the DMA addresses were allocated
2881 * @size: The size of the region
2882 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2883 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2884 */
2885 static inline void ib_dma_free_coherent(struct ib_device *dev,
2886 size_t size, void *cpu_addr,
2887 u64 dma_handle)
2888 {
2889 if (dev->dma_ops)
2890 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2891 else
2892 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2893 }
2894
2895 /**
2896 * ib_dereg_mr - Deregisters a memory region and removes it from the
2897 * HCA translation table.
2898 * @mr: The memory region to deregister.
2899 *
2900 * This function can fail, if the memory region has memory windows bound to it.
2901 */
2902 int ib_dereg_mr(struct ib_mr *mr);
2903
2904 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2905 enum ib_mr_type mr_type,
2906 u32 max_num_sg);
2907
2908 /**
2909 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2910 * R_Key and L_Key.
2911 * @mr - struct ib_mr pointer to be updated.
2912 * @newkey - new key to be used.
2913 */
2914 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2915 {
2916 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2917 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2918 }
2919
2920 /**
2921 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2922 * for calculating a new rkey for type 2 memory windows.
2923 * @rkey - the rkey to increment.
2924 */
2925 static inline u32 ib_inc_rkey(u32 rkey)
2926 {
2927 const u32 mask = 0x000000ff;
2928 return ((rkey + 1) & mask) | (rkey & ~mask);
2929 }
2930
2931 /**
2932 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2933 * @pd: The protection domain associated with the unmapped region.
2934 * @mr_access_flags: Specifies the memory access rights.
2935 * @fmr_attr: Attributes of the unmapped region.
2936 *
2937 * A fast memory region must be mapped before it can be used as part of
2938 * a work request.
2939 */
2940 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2941 int mr_access_flags,
2942 struct ib_fmr_attr *fmr_attr);
2943
2944 /**
2945 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2946 * @fmr: The fast memory region to associate with the pages.
2947 * @page_list: An array of physical pages to map to the fast memory region.
2948 * @list_len: The number of pages in page_list.
2949 * @iova: The I/O virtual address to use with the mapped region.
2950 */
2951 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2952 u64 *page_list, int list_len,
2953 u64 iova)
2954 {
2955 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2956 }
2957
2958 /**
2959 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2960 * @fmr_list: A linked list of fast memory regions to unmap.
2961 */
2962 int ib_unmap_fmr(struct list_head *fmr_list);
2963
2964 /**
2965 * ib_dealloc_fmr - Deallocates a fast memory region.
2966 * @fmr: The fast memory region to deallocate.
2967 */
2968 int ib_dealloc_fmr(struct ib_fmr *fmr);
2969
2970 /**
2971 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2972 * @qp: QP to attach to the multicast group. The QP must be type
2973 * IB_QPT_UD.
2974 * @gid: Multicast group GID.
2975 * @lid: Multicast group LID in host byte order.
2976 *
2977 * In order to send and receive multicast packets, subnet
2978 * administration must have created the multicast group and configured
2979 * the fabric appropriately. The port associated with the specified
2980 * QP must also be a member of the multicast group.
2981 */
2982 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2983
2984 /**
2985 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2986 * @qp: QP to detach from the multicast group.
2987 * @gid: Multicast group GID.
2988 * @lid: Multicast group LID in host byte order.
2989 */
2990 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2991
2992 /**
2993 * ib_alloc_xrcd - Allocates an XRC domain.
2994 * @device: The device on which to allocate the XRC domain.
2995 */
2996 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2997
2998 /**
2999 * ib_dealloc_xrcd - Deallocates an XRC domain.
3000 * @xrcd: The XRC domain to deallocate.
3001 */
3002 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3003
3004 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3005 struct ib_flow_attr *flow_attr, int domain);
3006 int ib_destroy_flow(struct ib_flow *flow_id);
3007
3008 static inline int ib_check_mr_access(int flags)
3009 {
3010 /*
3011 * Local write permission is required if remote write or
3012 * remote atomic permission is also requested.
3013 */
3014 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3015 !(flags & IB_ACCESS_LOCAL_WRITE))
3016 return -EINVAL;
3017
3018 return 0;
3019 }
3020
3021 /**
3022 * ib_check_mr_status: lightweight check of MR status.
3023 * This routine may provide status checks on a selected
3024 * ib_mr. first use is for signature status check.
3025 *
3026 * @mr: A memory region.
3027 * @check_mask: Bitmask of which checks to perform from
3028 * ib_mr_status_check enumeration.
3029 * @mr_status: The container of relevant status checks.
3030 * failed checks will be indicated in the status bitmask
3031 * and the relevant info shall be in the error item.
3032 */
3033 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3034 struct ib_mr_status *mr_status);
3035
3036 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3037 u16 pkey, const union ib_gid *gid,
3038 const struct sockaddr *addr);
3039
3040 int ib_map_mr_sg(struct ib_mr *mr,
3041 struct scatterlist *sg,
3042 int sg_nents,
3043 unsigned int page_size);
3044
3045 static inline int
3046 ib_map_mr_sg_zbva(struct ib_mr *mr,
3047 struct scatterlist *sg,
3048 int sg_nents,
3049 unsigned int page_size)
3050 {
3051 int n;
3052
3053 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3054 mr->iova = 0;
3055
3056 return n;
3057 }
3058
3059 int ib_sg_to_pages(struct ib_mr *mr,
3060 struct scatterlist *sgl,
3061 int sg_nents,
3062 int (*set_page)(struct ib_mr *, u64));
3063
3064 #endif /* IB_VERBS_H */
This page took 0.089238 seconds and 6 git commands to generate.