Merge branches 'acpi-ec' and 'acpi-button'
[deliverable/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <uapi/linux/limits.h>
76
77 #include "audit.h"
78
79 /* flags stating the success for a syscall */
80 #define AUDITSC_INVALID 0
81 #define AUDITSC_SUCCESS 1
82 #define AUDITSC_FAILURE 2
83
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
86
87 /* max length to print of cmdline/proctitle value during audit */
88 #define MAX_PROCTITLE_AUDIT_LEN 128
89
90 /* number of audit rules */
91 int audit_n_rules;
92
93 /* determines whether we collect data for signals sent */
94 int audit_signals;
95
96 struct audit_aux_data {
97 struct audit_aux_data *next;
98 int type;
99 };
100
101 #define AUDIT_AUX_IPCPERM 0
102
103 /* Number of target pids per aux struct. */
104 #define AUDIT_AUX_PIDS 16
105
106 struct audit_aux_data_pids {
107 struct audit_aux_data d;
108 pid_t target_pid[AUDIT_AUX_PIDS];
109 kuid_t target_auid[AUDIT_AUX_PIDS];
110 kuid_t target_uid[AUDIT_AUX_PIDS];
111 unsigned int target_sessionid[AUDIT_AUX_PIDS];
112 u32 target_sid[AUDIT_AUX_PIDS];
113 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
114 int pid_count;
115 };
116
117 struct audit_aux_data_bprm_fcaps {
118 struct audit_aux_data d;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 struct audit_cap_data old_pcap;
122 struct audit_cap_data new_pcap;
123 };
124
125 struct audit_tree_refs {
126 struct audit_tree_refs *next;
127 struct audit_chunk *c[31];
128 };
129
130 static int audit_match_perm(struct audit_context *ctx, int mask)
131 {
132 unsigned n;
133 if (unlikely(!ctx))
134 return 0;
135 n = ctx->major;
136
137 switch (audit_classify_syscall(ctx->arch, n)) {
138 case 0: /* native */
139 if ((mask & AUDIT_PERM_WRITE) &&
140 audit_match_class(AUDIT_CLASS_WRITE, n))
141 return 1;
142 if ((mask & AUDIT_PERM_READ) &&
143 audit_match_class(AUDIT_CLASS_READ, n))
144 return 1;
145 if ((mask & AUDIT_PERM_ATTR) &&
146 audit_match_class(AUDIT_CLASS_CHATTR, n))
147 return 1;
148 return 0;
149 case 1: /* 32bit on biarch */
150 if ((mask & AUDIT_PERM_WRITE) &&
151 audit_match_class(AUDIT_CLASS_WRITE_32, n))
152 return 1;
153 if ((mask & AUDIT_PERM_READ) &&
154 audit_match_class(AUDIT_CLASS_READ_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_ATTR) &&
157 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
158 return 1;
159 return 0;
160 case 2: /* open */
161 return mask & ACC_MODE(ctx->argv[1]);
162 case 3: /* openat */
163 return mask & ACC_MODE(ctx->argv[2]);
164 case 4: /* socketcall */
165 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
166 case 5: /* execve */
167 return mask & AUDIT_PERM_EXEC;
168 default:
169 return 0;
170 }
171 }
172
173 static int audit_match_filetype(struct audit_context *ctx, int val)
174 {
175 struct audit_names *n;
176 umode_t mode = (umode_t)val;
177
178 if (unlikely(!ctx))
179 return 0;
180
181 list_for_each_entry(n, &ctx->names_list, list) {
182 if ((n->ino != AUDIT_INO_UNSET) &&
183 ((n->mode & S_IFMT) == mode))
184 return 1;
185 }
186
187 return 0;
188 }
189
190 /*
191 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
192 * ->first_trees points to its beginning, ->trees - to the current end of data.
193 * ->tree_count is the number of free entries in array pointed to by ->trees.
194 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
195 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
196 * it's going to remain 1-element for almost any setup) until we free context itself.
197 * References in it _are_ dropped - at the same time we free/drop aux stuff.
198 */
199
200 #ifdef CONFIG_AUDIT_TREE
201 static void audit_set_auditable(struct audit_context *ctx)
202 {
203 if (!ctx->prio) {
204 ctx->prio = 1;
205 ctx->current_state = AUDIT_RECORD_CONTEXT;
206 }
207 }
208
209 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
210 {
211 struct audit_tree_refs *p = ctx->trees;
212 int left = ctx->tree_count;
213 if (likely(left)) {
214 p->c[--left] = chunk;
215 ctx->tree_count = left;
216 return 1;
217 }
218 if (!p)
219 return 0;
220 p = p->next;
221 if (p) {
222 p->c[30] = chunk;
223 ctx->trees = p;
224 ctx->tree_count = 30;
225 return 1;
226 }
227 return 0;
228 }
229
230 static int grow_tree_refs(struct audit_context *ctx)
231 {
232 struct audit_tree_refs *p = ctx->trees;
233 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
234 if (!ctx->trees) {
235 ctx->trees = p;
236 return 0;
237 }
238 if (p)
239 p->next = ctx->trees;
240 else
241 ctx->first_trees = ctx->trees;
242 ctx->tree_count = 31;
243 return 1;
244 }
245 #endif
246
247 static void unroll_tree_refs(struct audit_context *ctx,
248 struct audit_tree_refs *p, int count)
249 {
250 #ifdef CONFIG_AUDIT_TREE
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
274 #endif
275 }
276
277 static void free_tree_refs(struct audit_context *ctx)
278 {
279 struct audit_tree_refs *p, *q;
280 for (p = ctx->first_trees; p; p = q) {
281 q = p->next;
282 kfree(p);
283 }
284 }
285
286 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
287 {
288 #ifdef CONFIG_AUDIT_TREE
289 struct audit_tree_refs *p;
290 int n;
291 if (!tree)
292 return 0;
293 /* full ones */
294 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
295 for (n = 0; n < 31; n++)
296 if (audit_tree_match(p->c[n], tree))
297 return 1;
298 }
299 /* partial */
300 if (p) {
301 for (n = ctx->tree_count; n < 31; n++)
302 if (audit_tree_match(p->c[n], tree))
303 return 1;
304 }
305 #endif
306 return 0;
307 }
308
309 static int audit_compare_uid(kuid_t uid,
310 struct audit_names *name,
311 struct audit_field *f,
312 struct audit_context *ctx)
313 {
314 struct audit_names *n;
315 int rc;
316
317 if (name) {
318 rc = audit_uid_comparator(uid, f->op, name->uid);
319 if (rc)
320 return rc;
321 }
322
323 if (ctx) {
324 list_for_each_entry(n, &ctx->names_list, list) {
325 rc = audit_uid_comparator(uid, f->op, n->uid);
326 if (rc)
327 return rc;
328 }
329 }
330 return 0;
331 }
332
333 static int audit_compare_gid(kgid_t gid,
334 struct audit_names *name,
335 struct audit_field *f,
336 struct audit_context *ctx)
337 {
338 struct audit_names *n;
339 int rc;
340
341 if (name) {
342 rc = audit_gid_comparator(gid, f->op, name->gid);
343 if (rc)
344 return rc;
345 }
346
347 if (ctx) {
348 list_for_each_entry(n, &ctx->names_list, list) {
349 rc = audit_gid_comparator(gid, f->op, n->gid);
350 if (rc)
351 return rc;
352 }
353 }
354 return 0;
355 }
356
357 static int audit_field_compare(struct task_struct *tsk,
358 const struct cred *cred,
359 struct audit_field *f,
360 struct audit_context *ctx,
361 struct audit_names *name)
362 {
363 switch (f->val) {
364 /* process to file object comparisons */
365 case AUDIT_COMPARE_UID_TO_OBJ_UID:
366 return audit_compare_uid(cred->uid, name, f, ctx);
367 case AUDIT_COMPARE_GID_TO_OBJ_GID:
368 return audit_compare_gid(cred->gid, name, f, ctx);
369 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
370 return audit_compare_uid(cred->euid, name, f, ctx);
371 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
372 return audit_compare_gid(cred->egid, name, f, ctx);
373 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
374 return audit_compare_uid(tsk->loginuid, name, f, ctx);
375 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
376 return audit_compare_uid(cred->suid, name, f, ctx);
377 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
378 return audit_compare_gid(cred->sgid, name, f, ctx);
379 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
380 return audit_compare_uid(cred->fsuid, name, f, ctx);
381 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
382 return audit_compare_gid(cred->fsgid, name, f, ctx);
383 /* uid comparisons */
384 case AUDIT_COMPARE_UID_TO_AUID:
385 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
386 case AUDIT_COMPARE_UID_TO_EUID:
387 return audit_uid_comparator(cred->uid, f->op, cred->euid);
388 case AUDIT_COMPARE_UID_TO_SUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->suid);
390 case AUDIT_COMPARE_UID_TO_FSUID:
391 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
392 /* auid comparisons */
393 case AUDIT_COMPARE_AUID_TO_EUID:
394 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
395 case AUDIT_COMPARE_AUID_TO_SUID:
396 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
397 case AUDIT_COMPARE_AUID_TO_FSUID:
398 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
399 /* euid comparisons */
400 case AUDIT_COMPARE_EUID_TO_SUID:
401 return audit_uid_comparator(cred->euid, f->op, cred->suid);
402 case AUDIT_COMPARE_EUID_TO_FSUID:
403 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
404 /* suid comparisons */
405 case AUDIT_COMPARE_SUID_TO_FSUID:
406 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
407 /* gid comparisons */
408 case AUDIT_COMPARE_GID_TO_EGID:
409 return audit_gid_comparator(cred->gid, f->op, cred->egid);
410 case AUDIT_COMPARE_GID_TO_SGID:
411 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
412 case AUDIT_COMPARE_GID_TO_FSGID:
413 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
414 /* egid comparisons */
415 case AUDIT_COMPARE_EGID_TO_SGID:
416 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
417 case AUDIT_COMPARE_EGID_TO_FSGID:
418 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
419 /* sgid comparison */
420 case AUDIT_COMPARE_SGID_TO_FSGID:
421 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
422 default:
423 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
424 return 0;
425 }
426 return 0;
427 }
428
429 /* Determine if any context name data matches a rule's watch data */
430 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
431 * otherwise.
432 *
433 * If task_creation is true, this is an explicit indication that we are
434 * filtering a task rule at task creation time. This and tsk == current are
435 * the only situations where tsk->cred may be accessed without an rcu read lock.
436 */
437 static int audit_filter_rules(struct task_struct *tsk,
438 struct audit_krule *rule,
439 struct audit_context *ctx,
440 struct audit_names *name,
441 enum audit_state *state,
442 bool task_creation)
443 {
444 const struct cred *cred;
445 int i, need_sid = 1;
446 u32 sid;
447
448 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
449
450 for (i = 0; i < rule->field_count; i++) {
451 struct audit_field *f = &rule->fields[i];
452 struct audit_names *n;
453 int result = 0;
454 pid_t pid;
455
456 switch (f->type) {
457 case AUDIT_PID:
458 pid = task_pid_nr(tsk);
459 result = audit_comparator(pid, f->op, f->val);
460 break;
461 case AUDIT_PPID:
462 if (ctx) {
463 if (!ctx->ppid)
464 ctx->ppid = task_ppid_nr(tsk);
465 result = audit_comparator(ctx->ppid, f->op, f->val);
466 }
467 break;
468 case AUDIT_EXE:
469 result = audit_exe_compare(tsk, rule->exe);
470 break;
471 case AUDIT_UID:
472 result = audit_uid_comparator(cred->uid, f->op, f->uid);
473 break;
474 case AUDIT_EUID:
475 result = audit_uid_comparator(cred->euid, f->op, f->uid);
476 break;
477 case AUDIT_SUID:
478 result = audit_uid_comparator(cred->suid, f->op, f->uid);
479 break;
480 case AUDIT_FSUID:
481 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
482 break;
483 case AUDIT_GID:
484 result = audit_gid_comparator(cred->gid, f->op, f->gid);
485 if (f->op == Audit_equal) {
486 if (!result)
487 result = in_group_p(f->gid);
488 } else if (f->op == Audit_not_equal) {
489 if (result)
490 result = !in_group_p(f->gid);
491 }
492 break;
493 case AUDIT_EGID:
494 result = audit_gid_comparator(cred->egid, f->op, f->gid);
495 if (f->op == Audit_equal) {
496 if (!result)
497 result = in_egroup_p(f->gid);
498 } else if (f->op == Audit_not_equal) {
499 if (result)
500 result = !in_egroup_p(f->gid);
501 }
502 break;
503 case AUDIT_SGID:
504 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
505 break;
506 case AUDIT_FSGID:
507 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
508 break;
509 case AUDIT_PERS:
510 result = audit_comparator(tsk->personality, f->op, f->val);
511 break;
512 case AUDIT_ARCH:
513 if (ctx)
514 result = audit_comparator(ctx->arch, f->op, f->val);
515 break;
516
517 case AUDIT_EXIT:
518 if (ctx && ctx->return_valid)
519 result = audit_comparator(ctx->return_code, f->op, f->val);
520 break;
521 case AUDIT_SUCCESS:
522 if (ctx && ctx->return_valid) {
523 if (f->val)
524 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
525 else
526 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
527 }
528 break;
529 case AUDIT_DEVMAJOR:
530 if (name) {
531 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
532 audit_comparator(MAJOR(name->rdev), f->op, f->val))
533 ++result;
534 } else if (ctx) {
535 list_for_each_entry(n, &ctx->names_list, list) {
536 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
537 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
538 ++result;
539 break;
540 }
541 }
542 }
543 break;
544 case AUDIT_DEVMINOR:
545 if (name) {
546 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
547 audit_comparator(MINOR(name->rdev), f->op, f->val))
548 ++result;
549 } else if (ctx) {
550 list_for_each_entry(n, &ctx->names_list, list) {
551 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
552 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
553 ++result;
554 break;
555 }
556 }
557 }
558 break;
559 case AUDIT_INODE:
560 if (name)
561 result = audit_comparator(name->ino, f->op, f->val);
562 else if (ctx) {
563 list_for_each_entry(n, &ctx->names_list, list) {
564 if (audit_comparator(n->ino, f->op, f->val)) {
565 ++result;
566 break;
567 }
568 }
569 }
570 break;
571 case AUDIT_OBJ_UID:
572 if (name) {
573 result = audit_uid_comparator(name->uid, f->op, f->uid);
574 } else if (ctx) {
575 list_for_each_entry(n, &ctx->names_list, list) {
576 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
577 ++result;
578 break;
579 }
580 }
581 }
582 break;
583 case AUDIT_OBJ_GID:
584 if (name) {
585 result = audit_gid_comparator(name->gid, f->op, f->gid);
586 } else if (ctx) {
587 list_for_each_entry(n, &ctx->names_list, list) {
588 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
589 ++result;
590 break;
591 }
592 }
593 }
594 break;
595 case AUDIT_WATCH:
596 if (name)
597 result = audit_watch_compare(rule->watch, name->ino, name->dev);
598 break;
599 case AUDIT_DIR:
600 if (ctx)
601 result = match_tree_refs(ctx, rule->tree);
602 break;
603 case AUDIT_LOGINUID:
604 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
605 break;
606 case AUDIT_LOGINUID_SET:
607 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
608 break;
609 case AUDIT_SUBJ_USER:
610 case AUDIT_SUBJ_ROLE:
611 case AUDIT_SUBJ_TYPE:
612 case AUDIT_SUBJ_SEN:
613 case AUDIT_SUBJ_CLR:
614 /* NOTE: this may return negative values indicating
615 a temporary error. We simply treat this as a
616 match for now to avoid losing information that
617 may be wanted. An error message will also be
618 logged upon error */
619 if (f->lsm_rule) {
620 if (need_sid) {
621 security_task_getsecid(tsk, &sid);
622 need_sid = 0;
623 }
624 result = security_audit_rule_match(sid, f->type,
625 f->op,
626 f->lsm_rule,
627 ctx);
628 }
629 break;
630 case AUDIT_OBJ_USER:
631 case AUDIT_OBJ_ROLE:
632 case AUDIT_OBJ_TYPE:
633 case AUDIT_OBJ_LEV_LOW:
634 case AUDIT_OBJ_LEV_HIGH:
635 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
636 also applies here */
637 if (f->lsm_rule) {
638 /* Find files that match */
639 if (name) {
640 result = security_audit_rule_match(
641 name->osid, f->type, f->op,
642 f->lsm_rule, ctx);
643 } else if (ctx) {
644 list_for_each_entry(n, &ctx->names_list, list) {
645 if (security_audit_rule_match(n->osid, f->type,
646 f->op, f->lsm_rule,
647 ctx)) {
648 ++result;
649 break;
650 }
651 }
652 }
653 /* Find ipc objects that match */
654 if (!ctx || ctx->type != AUDIT_IPC)
655 break;
656 if (security_audit_rule_match(ctx->ipc.osid,
657 f->type, f->op,
658 f->lsm_rule, ctx))
659 ++result;
660 }
661 break;
662 case AUDIT_ARG0:
663 case AUDIT_ARG1:
664 case AUDIT_ARG2:
665 case AUDIT_ARG3:
666 if (ctx)
667 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
668 break;
669 case AUDIT_FILTERKEY:
670 /* ignore this field for filtering */
671 result = 1;
672 break;
673 case AUDIT_PERM:
674 result = audit_match_perm(ctx, f->val);
675 break;
676 case AUDIT_FILETYPE:
677 result = audit_match_filetype(ctx, f->val);
678 break;
679 case AUDIT_FIELD_COMPARE:
680 result = audit_field_compare(tsk, cred, f, ctx, name);
681 break;
682 }
683 if (!result)
684 return 0;
685 }
686
687 if (ctx) {
688 if (rule->prio <= ctx->prio)
689 return 0;
690 if (rule->filterkey) {
691 kfree(ctx->filterkey);
692 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
693 }
694 ctx->prio = rule->prio;
695 }
696 switch (rule->action) {
697 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
698 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
699 }
700 return 1;
701 }
702
703 /* At process creation time, we can determine if system-call auditing is
704 * completely disabled for this task. Since we only have the task
705 * structure at this point, we can only check uid and gid.
706 */
707 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
708 {
709 struct audit_entry *e;
710 enum audit_state state;
711
712 rcu_read_lock();
713 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
714 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
715 &state, true)) {
716 if (state == AUDIT_RECORD_CONTEXT)
717 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
718 rcu_read_unlock();
719 return state;
720 }
721 }
722 rcu_read_unlock();
723 return AUDIT_BUILD_CONTEXT;
724 }
725
726 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
727 {
728 int word, bit;
729
730 if (val > 0xffffffff)
731 return false;
732
733 word = AUDIT_WORD(val);
734 if (word >= AUDIT_BITMASK_SIZE)
735 return false;
736
737 bit = AUDIT_BIT(val);
738
739 return rule->mask[word] & bit;
740 }
741
742 /* At syscall entry and exit time, this filter is called if the
743 * audit_state is not low enough that auditing cannot take place, but is
744 * also not high enough that we already know we have to write an audit
745 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
746 */
747 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
748 struct audit_context *ctx,
749 struct list_head *list)
750 {
751 struct audit_entry *e;
752 enum audit_state state;
753
754 if (audit_pid && tsk->tgid == audit_pid)
755 return AUDIT_DISABLED;
756
757 rcu_read_lock();
758 if (!list_empty(list)) {
759 list_for_each_entry_rcu(e, list, list) {
760 if (audit_in_mask(&e->rule, ctx->major) &&
761 audit_filter_rules(tsk, &e->rule, ctx, NULL,
762 &state, false)) {
763 rcu_read_unlock();
764 ctx->current_state = state;
765 return state;
766 }
767 }
768 }
769 rcu_read_unlock();
770 return AUDIT_BUILD_CONTEXT;
771 }
772
773 /*
774 * Given an audit_name check the inode hash table to see if they match.
775 * Called holding the rcu read lock to protect the use of audit_inode_hash
776 */
777 static int audit_filter_inode_name(struct task_struct *tsk,
778 struct audit_names *n,
779 struct audit_context *ctx) {
780 int h = audit_hash_ino((u32)n->ino);
781 struct list_head *list = &audit_inode_hash[h];
782 struct audit_entry *e;
783 enum audit_state state;
784
785 if (list_empty(list))
786 return 0;
787
788 list_for_each_entry_rcu(e, list, list) {
789 if (audit_in_mask(&e->rule, ctx->major) &&
790 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
791 ctx->current_state = state;
792 return 1;
793 }
794 }
795
796 return 0;
797 }
798
799 /* At syscall exit time, this filter is called if any audit_names have been
800 * collected during syscall processing. We only check rules in sublists at hash
801 * buckets applicable to the inode numbers in audit_names.
802 * Regarding audit_state, same rules apply as for audit_filter_syscall().
803 */
804 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
805 {
806 struct audit_names *n;
807
808 if (audit_pid && tsk->tgid == audit_pid)
809 return;
810
811 rcu_read_lock();
812
813 list_for_each_entry(n, &ctx->names_list, list) {
814 if (audit_filter_inode_name(tsk, n, ctx))
815 break;
816 }
817 rcu_read_unlock();
818 }
819
820 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
821 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
822 int return_valid,
823 long return_code)
824 {
825 struct audit_context *context = tsk->audit_context;
826
827 if (!context)
828 return NULL;
829 context->return_valid = return_valid;
830
831 /*
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
834 * signal handlers
835 *
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
839 *
840 * but is faster than a bunch of ||
841 */
842 if (unlikely(return_code <= -ERESTARTSYS) &&
843 (return_code >= -ERESTART_RESTARTBLOCK) &&
844 (return_code != -ENOIOCTLCMD))
845 context->return_code = -EINTR;
846 else
847 context->return_code = return_code;
848
849 if (context->in_syscall && !context->dummy) {
850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851 audit_filter_inodes(tsk, context);
852 }
853
854 tsk->audit_context = NULL;
855 return context;
856 }
857
858 static inline void audit_proctitle_free(struct audit_context *context)
859 {
860 kfree(context->proctitle.value);
861 context->proctitle.value = NULL;
862 context->proctitle.len = 0;
863 }
864
865 static inline void audit_free_names(struct audit_context *context)
866 {
867 struct audit_names *n, *next;
868
869 list_for_each_entry_safe(n, next, &context->names_list, list) {
870 list_del(&n->list);
871 if (n->name)
872 putname(n->name);
873 if (n->should_free)
874 kfree(n);
875 }
876 context->name_count = 0;
877 path_put(&context->pwd);
878 context->pwd.dentry = NULL;
879 context->pwd.mnt = NULL;
880 }
881
882 static inline void audit_free_aux(struct audit_context *context)
883 {
884 struct audit_aux_data *aux;
885
886 while ((aux = context->aux)) {
887 context->aux = aux->next;
888 kfree(aux);
889 }
890 while ((aux = context->aux_pids)) {
891 context->aux_pids = aux->next;
892 kfree(aux);
893 }
894 }
895
896 static inline struct audit_context *audit_alloc_context(enum audit_state state)
897 {
898 struct audit_context *context;
899
900 context = kzalloc(sizeof(*context), GFP_KERNEL);
901 if (!context)
902 return NULL;
903 context->state = state;
904 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
905 INIT_LIST_HEAD(&context->killed_trees);
906 INIT_LIST_HEAD(&context->names_list);
907 return context;
908 }
909
910 /**
911 * audit_alloc - allocate an audit context block for a task
912 * @tsk: task
913 *
914 * Filter on the task information and allocate a per-task audit context
915 * if necessary. Doing so turns on system call auditing for the
916 * specified task. This is called from copy_process, so no lock is
917 * needed.
918 */
919 int audit_alloc(struct task_struct *tsk)
920 {
921 struct audit_context *context;
922 enum audit_state state;
923 char *key = NULL;
924
925 if (likely(!audit_ever_enabled))
926 return 0; /* Return if not auditing. */
927
928 state = audit_filter_task(tsk, &key);
929 if (state == AUDIT_DISABLED) {
930 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
931 return 0;
932 }
933
934 if (!(context = audit_alloc_context(state))) {
935 kfree(key);
936 audit_log_lost("out of memory in audit_alloc");
937 return -ENOMEM;
938 }
939 context->filterkey = key;
940
941 tsk->audit_context = context;
942 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943 return 0;
944 }
945
946 static inline void audit_free_context(struct audit_context *context)
947 {
948 audit_free_names(context);
949 unroll_tree_refs(context, NULL, 0);
950 free_tree_refs(context);
951 audit_free_aux(context);
952 kfree(context->filterkey);
953 kfree(context->sockaddr);
954 audit_proctitle_free(context);
955 kfree(context);
956 }
957
958 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
959 kuid_t auid, kuid_t uid, unsigned int sessionid,
960 u32 sid, char *comm)
961 {
962 struct audit_buffer *ab;
963 char *ctx = NULL;
964 u32 len;
965 int rc = 0;
966
967 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
968 if (!ab)
969 return rc;
970
971 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
972 from_kuid(&init_user_ns, auid),
973 from_kuid(&init_user_ns, uid), sessionid);
974 if (sid) {
975 if (security_secid_to_secctx(sid, &ctx, &len)) {
976 audit_log_format(ab, " obj=(none)");
977 rc = 1;
978 } else {
979 audit_log_format(ab, " obj=%s", ctx);
980 security_release_secctx(ctx, len);
981 }
982 }
983 audit_log_format(ab, " ocomm=");
984 audit_log_untrustedstring(ab, comm);
985 audit_log_end(ab);
986
987 return rc;
988 }
989
990 /*
991 * to_send and len_sent accounting are very loose estimates. We aren't
992 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
993 * within about 500 bytes (next page boundary)
994 *
995 * why snprintf? an int is up to 12 digits long. if we just assumed when
996 * logging that a[%d]= was going to be 16 characters long we would be wasting
997 * space in every audit message. In one 7500 byte message we can log up to
998 * about 1000 min size arguments. That comes down to about 50% waste of space
999 * if we didn't do the snprintf to find out how long arg_num_len was.
1000 */
1001 static int audit_log_single_execve_arg(struct audit_context *context,
1002 struct audit_buffer **ab,
1003 int arg_num,
1004 size_t *len_sent,
1005 const char __user *p,
1006 char *buf)
1007 {
1008 char arg_num_len_buf[12];
1009 const char __user *tmp_p = p;
1010 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1011 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1012 size_t len, len_left, to_send;
1013 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1014 unsigned int i, has_cntl = 0, too_long = 0;
1015 int ret;
1016
1017 /* strnlen_user includes the null we don't want to send */
1018 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1019
1020 /*
1021 * We just created this mm, if we can't find the strings
1022 * we just copied into it something is _very_ wrong. Similar
1023 * for strings that are too long, we should not have created
1024 * any.
1025 */
1026 if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) {
1027 send_sig(SIGKILL, current, 0);
1028 return -1;
1029 }
1030
1031 /* walk the whole argument looking for non-ascii chars */
1032 do {
1033 if (len_left > MAX_EXECVE_AUDIT_LEN)
1034 to_send = MAX_EXECVE_AUDIT_LEN;
1035 else
1036 to_send = len_left;
1037 ret = copy_from_user(buf, tmp_p, to_send);
1038 /*
1039 * There is no reason for this copy to be short. We just
1040 * copied them here, and the mm hasn't been exposed to user-
1041 * space yet.
1042 */
1043 if (ret) {
1044 WARN_ON(1);
1045 send_sig(SIGKILL, current, 0);
1046 return -1;
1047 }
1048 buf[to_send] = '\0';
1049 has_cntl = audit_string_contains_control(buf, to_send);
1050 if (has_cntl) {
1051 /*
1052 * hex messages get logged as 2 bytes, so we can only
1053 * send half as much in each message
1054 */
1055 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1056 break;
1057 }
1058 len_left -= to_send;
1059 tmp_p += to_send;
1060 } while (len_left > 0);
1061
1062 len_left = len;
1063
1064 if (len > max_execve_audit_len)
1065 too_long = 1;
1066
1067 /* rewalk the argument actually logging the message */
1068 for (i = 0; len_left > 0; i++) {
1069 int room_left;
1070
1071 if (len_left > max_execve_audit_len)
1072 to_send = max_execve_audit_len;
1073 else
1074 to_send = len_left;
1075
1076 /* do we have space left to send this argument in this ab? */
1077 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1078 if (has_cntl)
1079 room_left -= (to_send * 2);
1080 else
1081 room_left -= to_send;
1082 if (room_left < 0) {
1083 *len_sent = 0;
1084 audit_log_end(*ab);
1085 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1086 if (!*ab)
1087 return 0;
1088 }
1089
1090 /*
1091 * first record needs to say how long the original string was
1092 * so we can be sure nothing was lost.
1093 */
1094 if ((i == 0) && (too_long))
1095 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1096 has_cntl ? 2*len : len);
1097
1098 /*
1099 * normally arguments are small enough to fit and we already
1100 * filled buf above when we checked for control characters
1101 * so don't bother with another copy_from_user
1102 */
1103 if (len >= max_execve_audit_len)
1104 ret = copy_from_user(buf, p, to_send);
1105 else
1106 ret = 0;
1107 if (ret) {
1108 WARN_ON(1);
1109 send_sig(SIGKILL, current, 0);
1110 return -1;
1111 }
1112 buf[to_send] = '\0';
1113
1114 /* actually log it */
1115 audit_log_format(*ab, " a%d", arg_num);
1116 if (too_long)
1117 audit_log_format(*ab, "[%d]", i);
1118 audit_log_format(*ab, "=");
1119 if (has_cntl)
1120 audit_log_n_hex(*ab, buf, to_send);
1121 else
1122 audit_log_string(*ab, buf);
1123
1124 p += to_send;
1125 len_left -= to_send;
1126 *len_sent += arg_num_len;
1127 if (has_cntl)
1128 *len_sent += to_send * 2;
1129 else
1130 *len_sent += to_send;
1131 }
1132 /* include the null we didn't log */
1133 return len + 1;
1134 }
1135
1136 static void audit_log_execve_info(struct audit_context *context,
1137 struct audit_buffer **ab)
1138 {
1139 int i, len;
1140 size_t len_sent = 0;
1141 const char __user *p;
1142 char *buf;
1143
1144 p = (const char __user *)current->mm->arg_start;
1145
1146 audit_log_format(*ab, "argc=%d", context->execve.argc);
1147
1148 /*
1149 * we need some kernel buffer to hold the userspace args. Just
1150 * allocate one big one rather than allocating one of the right size
1151 * for every single argument inside audit_log_single_execve_arg()
1152 * should be <8k allocation so should be pretty safe.
1153 */
1154 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1155 if (!buf) {
1156 audit_panic("out of memory for argv string");
1157 return;
1158 }
1159
1160 for (i = 0; i < context->execve.argc; i++) {
1161 len = audit_log_single_execve_arg(context, ab, i,
1162 &len_sent, p, buf);
1163 if (len <= 0)
1164 break;
1165 p += len;
1166 }
1167 kfree(buf);
1168 }
1169
1170 static void show_special(struct audit_context *context, int *call_panic)
1171 {
1172 struct audit_buffer *ab;
1173 int i;
1174
1175 ab = audit_log_start(context, GFP_KERNEL, context->type);
1176 if (!ab)
1177 return;
1178
1179 switch (context->type) {
1180 case AUDIT_SOCKETCALL: {
1181 int nargs = context->socketcall.nargs;
1182 audit_log_format(ab, "nargs=%d", nargs);
1183 for (i = 0; i < nargs; i++)
1184 audit_log_format(ab, " a%d=%lx", i,
1185 context->socketcall.args[i]);
1186 break; }
1187 case AUDIT_IPC: {
1188 u32 osid = context->ipc.osid;
1189
1190 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1191 from_kuid(&init_user_ns, context->ipc.uid),
1192 from_kgid(&init_user_ns, context->ipc.gid),
1193 context->ipc.mode);
1194 if (osid) {
1195 char *ctx = NULL;
1196 u32 len;
1197 if (security_secid_to_secctx(osid, &ctx, &len)) {
1198 audit_log_format(ab, " osid=%u", osid);
1199 *call_panic = 1;
1200 } else {
1201 audit_log_format(ab, " obj=%s", ctx);
1202 security_release_secctx(ctx, len);
1203 }
1204 }
1205 if (context->ipc.has_perm) {
1206 audit_log_end(ab);
1207 ab = audit_log_start(context, GFP_KERNEL,
1208 AUDIT_IPC_SET_PERM);
1209 if (unlikely(!ab))
1210 return;
1211 audit_log_format(ab,
1212 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1213 context->ipc.qbytes,
1214 context->ipc.perm_uid,
1215 context->ipc.perm_gid,
1216 context->ipc.perm_mode);
1217 }
1218 break; }
1219 case AUDIT_MQ_OPEN: {
1220 audit_log_format(ab,
1221 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1222 "mq_msgsize=%ld mq_curmsgs=%ld",
1223 context->mq_open.oflag, context->mq_open.mode,
1224 context->mq_open.attr.mq_flags,
1225 context->mq_open.attr.mq_maxmsg,
1226 context->mq_open.attr.mq_msgsize,
1227 context->mq_open.attr.mq_curmsgs);
1228 break; }
1229 case AUDIT_MQ_SENDRECV: {
1230 audit_log_format(ab,
1231 "mqdes=%d msg_len=%zd msg_prio=%u "
1232 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1233 context->mq_sendrecv.mqdes,
1234 context->mq_sendrecv.msg_len,
1235 context->mq_sendrecv.msg_prio,
1236 context->mq_sendrecv.abs_timeout.tv_sec,
1237 context->mq_sendrecv.abs_timeout.tv_nsec);
1238 break; }
1239 case AUDIT_MQ_NOTIFY: {
1240 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1241 context->mq_notify.mqdes,
1242 context->mq_notify.sigev_signo);
1243 break; }
1244 case AUDIT_MQ_GETSETATTR: {
1245 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1246 audit_log_format(ab,
1247 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1248 "mq_curmsgs=%ld ",
1249 context->mq_getsetattr.mqdes,
1250 attr->mq_flags, attr->mq_maxmsg,
1251 attr->mq_msgsize, attr->mq_curmsgs);
1252 break; }
1253 case AUDIT_CAPSET: {
1254 audit_log_format(ab, "pid=%d", context->capset.pid);
1255 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1256 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1257 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1258 break; }
1259 case AUDIT_MMAP: {
1260 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1261 context->mmap.flags);
1262 break; }
1263 case AUDIT_EXECVE: {
1264 audit_log_execve_info(context, &ab);
1265 break; }
1266 }
1267 audit_log_end(ab);
1268 }
1269
1270 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1271 {
1272 char *end = proctitle + len - 1;
1273 while (end > proctitle && !isprint(*end))
1274 end--;
1275
1276 /* catch the case where proctitle is only 1 non-print character */
1277 len = end - proctitle + 1;
1278 len -= isprint(proctitle[len-1]) == 0;
1279 return len;
1280 }
1281
1282 static void audit_log_proctitle(struct task_struct *tsk,
1283 struct audit_context *context)
1284 {
1285 int res;
1286 char *buf;
1287 char *msg = "(null)";
1288 int len = strlen(msg);
1289 struct audit_buffer *ab;
1290
1291 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1292 if (!ab)
1293 return; /* audit_panic or being filtered */
1294
1295 audit_log_format(ab, "proctitle=");
1296
1297 /* Not cached */
1298 if (!context->proctitle.value) {
1299 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1300 if (!buf)
1301 goto out;
1302 /* Historically called this from procfs naming */
1303 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1304 if (res == 0) {
1305 kfree(buf);
1306 goto out;
1307 }
1308 res = audit_proctitle_rtrim(buf, res);
1309 if (res == 0) {
1310 kfree(buf);
1311 goto out;
1312 }
1313 context->proctitle.value = buf;
1314 context->proctitle.len = res;
1315 }
1316 msg = context->proctitle.value;
1317 len = context->proctitle.len;
1318 out:
1319 audit_log_n_untrustedstring(ab, msg, len);
1320 audit_log_end(ab);
1321 }
1322
1323 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1324 {
1325 int i, call_panic = 0;
1326 struct audit_buffer *ab;
1327 struct audit_aux_data *aux;
1328 struct audit_names *n;
1329
1330 /* tsk == current */
1331 context->personality = tsk->personality;
1332
1333 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1334 if (!ab)
1335 return; /* audit_panic has been called */
1336 audit_log_format(ab, "arch=%x syscall=%d",
1337 context->arch, context->major);
1338 if (context->personality != PER_LINUX)
1339 audit_log_format(ab, " per=%lx", context->personality);
1340 if (context->return_valid)
1341 audit_log_format(ab, " success=%s exit=%ld",
1342 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1343 context->return_code);
1344
1345 audit_log_format(ab,
1346 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1347 context->argv[0],
1348 context->argv[1],
1349 context->argv[2],
1350 context->argv[3],
1351 context->name_count);
1352
1353 audit_log_task_info(ab, tsk);
1354 audit_log_key(ab, context->filterkey);
1355 audit_log_end(ab);
1356
1357 for (aux = context->aux; aux; aux = aux->next) {
1358
1359 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1360 if (!ab)
1361 continue; /* audit_panic has been called */
1362
1363 switch (aux->type) {
1364
1365 case AUDIT_BPRM_FCAPS: {
1366 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1367 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1368 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1369 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1370 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1371 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1372 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1373 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1374 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1375 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1376 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1377 break; }
1378
1379 }
1380 audit_log_end(ab);
1381 }
1382
1383 if (context->type)
1384 show_special(context, &call_panic);
1385
1386 if (context->fds[0] >= 0) {
1387 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1388 if (ab) {
1389 audit_log_format(ab, "fd0=%d fd1=%d",
1390 context->fds[0], context->fds[1]);
1391 audit_log_end(ab);
1392 }
1393 }
1394
1395 if (context->sockaddr_len) {
1396 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1397 if (ab) {
1398 audit_log_format(ab, "saddr=");
1399 audit_log_n_hex(ab, (void *)context->sockaddr,
1400 context->sockaddr_len);
1401 audit_log_end(ab);
1402 }
1403 }
1404
1405 for (aux = context->aux_pids; aux; aux = aux->next) {
1406 struct audit_aux_data_pids *axs = (void *)aux;
1407
1408 for (i = 0; i < axs->pid_count; i++)
1409 if (audit_log_pid_context(context, axs->target_pid[i],
1410 axs->target_auid[i],
1411 axs->target_uid[i],
1412 axs->target_sessionid[i],
1413 axs->target_sid[i],
1414 axs->target_comm[i]))
1415 call_panic = 1;
1416 }
1417
1418 if (context->target_pid &&
1419 audit_log_pid_context(context, context->target_pid,
1420 context->target_auid, context->target_uid,
1421 context->target_sessionid,
1422 context->target_sid, context->target_comm))
1423 call_panic = 1;
1424
1425 if (context->pwd.dentry && context->pwd.mnt) {
1426 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1427 if (ab) {
1428 audit_log_d_path(ab, " cwd=", &context->pwd);
1429 audit_log_end(ab);
1430 }
1431 }
1432
1433 i = 0;
1434 list_for_each_entry(n, &context->names_list, list) {
1435 if (n->hidden)
1436 continue;
1437 audit_log_name(context, n, NULL, i++, &call_panic);
1438 }
1439
1440 audit_log_proctitle(tsk, context);
1441
1442 /* Send end of event record to help user space know we are finished */
1443 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1444 if (ab)
1445 audit_log_end(ab);
1446 if (call_panic)
1447 audit_panic("error converting sid to string");
1448 }
1449
1450 /**
1451 * audit_free - free a per-task audit context
1452 * @tsk: task whose audit context block to free
1453 *
1454 * Called from copy_process and do_exit
1455 */
1456 void __audit_free(struct task_struct *tsk)
1457 {
1458 struct audit_context *context;
1459
1460 context = audit_take_context(tsk, 0, 0);
1461 if (!context)
1462 return;
1463
1464 /* Check for system calls that do not go through the exit
1465 * function (e.g., exit_group), then free context block.
1466 * We use GFP_ATOMIC here because we might be doing this
1467 * in the context of the idle thread */
1468 /* that can happen only if we are called from do_exit() */
1469 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1470 audit_log_exit(context, tsk);
1471 if (!list_empty(&context->killed_trees))
1472 audit_kill_trees(&context->killed_trees);
1473
1474 audit_free_context(context);
1475 }
1476
1477 /**
1478 * audit_syscall_entry - fill in an audit record at syscall entry
1479 * @major: major syscall type (function)
1480 * @a1: additional syscall register 1
1481 * @a2: additional syscall register 2
1482 * @a3: additional syscall register 3
1483 * @a4: additional syscall register 4
1484 *
1485 * Fill in audit context at syscall entry. This only happens if the
1486 * audit context was created when the task was created and the state or
1487 * filters demand the audit context be built. If the state from the
1488 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1489 * then the record will be written at syscall exit time (otherwise, it
1490 * will only be written if another part of the kernel requests that it
1491 * be written).
1492 */
1493 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1494 unsigned long a3, unsigned long a4)
1495 {
1496 struct task_struct *tsk = current;
1497 struct audit_context *context = tsk->audit_context;
1498 enum audit_state state;
1499
1500 if (!context)
1501 return;
1502
1503 BUG_ON(context->in_syscall || context->name_count);
1504
1505 if (!audit_enabled)
1506 return;
1507
1508 context->arch = syscall_get_arch();
1509 context->major = major;
1510 context->argv[0] = a1;
1511 context->argv[1] = a2;
1512 context->argv[2] = a3;
1513 context->argv[3] = a4;
1514
1515 state = context->state;
1516 context->dummy = !audit_n_rules;
1517 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1518 context->prio = 0;
1519 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1520 }
1521 if (state == AUDIT_DISABLED)
1522 return;
1523
1524 context->serial = 0;
1525 context->ctime = CURRENT_TIME;
1526 context->in_syscall = 1;
1527 context->current_state = state;
1528 context->ppid = 0;
1529 }
1530
1531 /**
1532 * audit_syscall_exit - deallocate audit context after a system call
1533 * @success: success value of the syscall
1534 * @return_code: return value of the syscall
1535 *
1536 * Tear down after system call. If the audit context has been marked as
1537 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1538 * filtering, or because some other part of the kernel wrote an audit
1539 * message), then write out the syscall information. In call cases,
1540 * free the names stored from getname().
1541 */
1542 void __audit_syscall_exit(int success, long return_code)
1543 {
1544 struct task_struct *tsk = current;
1545 struct audit_context *context;
1546
1547 if (success)
1548 success = AUDITSC_SUCCESS;
1549 else
1550 success = AUDITSC_FAILURE;
1551
1552 context = audit_take_context(tsk, success, return_code);
1553 if (!context)
1554 return;
1555
1556 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1557 audit_log_exit(context, tsk);
1558
1559 context->in_syscall = 0;
1560 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1561
1562 if (!list_empty(&context->killed_trees))
1563 audit_kill_trees(&context->killed_trees);
1564
1565 audit_free_names(context);
1566 unroll_tree_refs(context, NULL, 0);
1567 audit_free_aux(context);
1568 context->aux = NULL;
1569 context->aux_pids = NULL;
1570 context->target_pid = 0;
1571 context->target_sid = 0;
1572 context->sockaddr_len = 0;
1573 context->type = 0;
1574 context->fds[0] = -1;
1575 if (context->state != AUDIT_RECORD_CONTEXT) {
1576 kfree(context->filterkey);
1577 context->filterkey = NULL;
1578 }
1579 tsk->audit_context = context;
1580 }
1581
1582 static inline void handle_one(const struct inode *inode)
1583 {
1584 #ifdef CONFIG_AUDIT_TREE
1585 struct audit_context *context;
1586 struct audit_tree_refs *p;
1587 struct audit_chunk *chunk;
1588 int count;
1589 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1590 return;
1591 context = current->audit_context;
1592 p = context->trees;
1593 count = context->tree_count;
1594 rcu_read_lock();
1595 chunk = audit_tree_lookup(inode);
1596 rcu_read_unlock();
1597 if (!chunk)
1598 return;
1599 if (likely(put_tree_ref(context, chunk)))
1600 return;
1601 if (unlikely(!grow_tree_refs(context))) {
1602 pr_warn("out of memory, audit has lost a tree reference\n");
1603 audit_set_auditable(context);
1604 audit_put_chunk(chunk);
1605 unroll_tree_refs(context, p, count);
1606 return;
1607 }
1608 put_tree_ref(context, chunk);
1609 #endif
1610 }
1611
1612 static void handle_path(const struct dentry *dentry)
1613 {
1614 #ifdef CONFIG_AUDIT_TREE
1615 struct audit_context *context;
1616 struct audit_tree_refs *p;
1617 const struct dentry *d, *parent;
1618 struct audit_chunk *drop;
1619 unsigned long seq;
1620 int count;
1621
1622 context = current->audit_context;
1623 p = context->trees;
1624 count = context->tree_count;
1625 retry:
1626 drop = NULL;
1627 d = dentry;
1628 rcu_read_lock();
1629 seq = read_seqbegin(&rename_lock);
1630 for(;;) {
1631 struct inode *inode = d_backing_inode(d);
1632 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1633 struct audit_chunk *chunk;
1634 chunk = audit_tree_lookup(inode);
1635 if (chunk) {
1636 if (unlikely(!put_tree_ref(context, chunk))) {
1637 drop = chunk;
1638 break;
1639 }
1640 }
1641 }
1642 parent = d->d_parent;
1643 if (parent == d)
1644 break;
1645 d = parent;
1646 }
1647 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1648 rcu_read_unlock();
1649 if (!drop) {
1650 /* just a race with rename */
1651 unroll_tree_refs(context, p, count);
1652 goto retry;
1653 }
1654 audit_put_chunk(drop);
1655 if (grow_tree_refs(context)) {
1656 /* OK, got more space */
1657 unroll_tree_refs(context, p, count);
1658 goto retry;
1659 }
1660 /* too bad */
1661 pr_warn("out of memory, audit has lost a tree reference\n");
1662 unroll_tree_refs(context, p, count);
1663 audit_set_auditable(context);
1664 return;
1665 }
1666 rcu_read_unlock();
1667 #endif
1668 }
1669
1670 static struct audit_names *audit_alloc_name(struct audit_context *context,
1671 unsigned char type)
1672 {
1673 struct audit_names *aname;
1674
1675 if (context->name_count < AUDIT_NAMES) {
1676 aname = &context->preallocated_names[context->name_count];
1677 memset(aname, 0, sizeof(*aname));
1678 } else {
1679 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1680 if (!aname)
1681 return NULL;
1682 aname->should_free = true;
1683 }
1684
1685 aname->ino = AUDIT_INO_UNSET;
1686 aname->type = type;
1687 list_add_tail(&aname->list, &context->names_list);
1688
1689 context->name_count++;
1690 return aname;
1691 }
1692
1693 /**
1694 * audit_reusename - fill out filename with info from existing entry
1695 * @uptr: userland ptr to pathname
1696 *
1697 * Search the audit_names list for the current audit context. If there is an
1698 * existing entry with a matching "uptr" then return the filename
1699 * associated with that audit_name. If not, return NULL.
1700 */
1701 struct filename *
1702 __audit_reusename(const __user char *uptr)
1703 {
1704 struct audit_context *context = current->audit_context;
1705 struct audit_names *n;
1706
1707 list_for_each_entry(n, &context->names_list, list) {
1708 if (!n->name)
1709 continue;
1710 if (n->name->uptr == uptr) {
1711 n->name->refcnt++;
1712 return n->name;
1713 }
1714 }
1715 return NULL;
1716 }
1717
1718 /**
1719 * audit_getname - add a name to the list
1720 * @name: name to add
1721 *
1722 * Add a name to the list of audit names for this context.
1723 * Called from fs/namei.c:getname().
1724 */
1725 void __audit_getname(struct filename *name)
1726 {
1727 struct audit_context *context = current->audit_context;
1728 struct audit_names *n;
1729
1730 if (!context->in_syscall)
1731 return;
1732
1733 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1734 if (!n)
1735 return;
1736
1737 n->name = name;
1738 n->name_len = AUDIT_NAME_FULL;
1739 name->aname = n;
1740 name->refcnt++;
1741
1742 if (!context->pwd.dentry)
1743 get_fs_pwd(current->fs, &context->pwd);
1744 }
1745
1746 /**
1747 * __audit_inode - store the inode and device from a lookup
1748 * @name: name being audited
1749 * @dentry: dentry being audited
1750 * @flags: attributes for this particular entry
1751 */
1752 void __audit_inode(struct filename *name, const struct dentry *dentry,
1753 unsigned int flags)
1754 {
1755 struct audit_context *context = current->audit_context;
1756 struct inode *inode = d_backing_inode(dentry);
1757 struct audit_names *n;
1758 bool parent = flags & AUDIT_INODE_PARENT;
1759
1760 if (!context->in_syscall)
1761 return;
1762
1763 if (!name)
1764 goto out_alloc;
1765
1766 /*
1767 * If we have a pointer to an audit_names entry already, then we can
1768 * just use it directly if the type is correct.
1769 */
1770 n = name->aname;
1771 if (n) {
1772 if (parent) {
1773 if (n->type == AUDIT_TYPE_PARENT ||
1774 n->type == AUDIT_TYPE_UNKNOWN)
1775 goto out;
1776 } else {
1777 if (n->type != AUDIT_TYPE_PARENT)
1778 goto out;
1779 }
1780 }
1781
1782 list_for_each_entry_reverse(n, &context->names_list, list) {
1783 if (n->ino) {
1784 /* valid inode number, use that for the comparison */
1785 if (n->ino != inode->i_ino ||
1786 n->dev != inode->i_sb->s_dev)
1787 continue;
1788 } else if (n->name) {
1789 /* inode number has not been set, check the name */
1790 if (strcmp(n->name->name, name->name))
1791 continue;
1792 } else
1793 /* no inode and no name (?!) ... this is odd ... */
1794 continue;
1795
1796 /* match the correct record type */
1797 if (parent) {
1798 if (n->type == AUDIT_TYPE_PARENT ||
1799 n->type == AUDIT_TYPE_UNKNOWN)
1800 goto out;
1801 } else {
1802 if (n->type != AUDIT_TYPE_PARENT)
1803 goto out;
1804 }
1805 }
1806
1807 out_alloc:
1808 /* unable to find an entry with both a matching name and type */
1809 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1810 if (!n)
1811 return;
1812 if (name) {
1813 n->name = name;
1814 name->refcnt++;
1815 }
1816
1817 out:
1818 if (parent) {
1819 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1820 n->type = AUDIT_TYPE_PARENT;
1821 if (flags & AUDIT_INODE_HIDDEN)
1822 n->hidden = true;
1823 } else {
1824 n->name_len = AUDIT_NAME_FULL;
1825 n->type = AUDIT_TYPE_NORMAL;
1826 }
1827 handle_path(dentry);
1828 audit_copy_inode(n, dentry, inode);
1829 }
1830
1831 void __audit_file(const struct file *file)
1832 {
1833 __audit_inode(NULL, file->f_path.dentry, 0);
1834 }
1835
1836 /**
1837 * __audit_inode_child - collect inode info for created/removed objects
1838 * @parent: inode of dentry parent
1839 * @dentry: dentry being audited
1840 * @type: AUDIT_TYPE_* value that we're looking for
1841 *
1842 * For syscalls that create or remove filesystem objects, audit_inode
1843 * can only collect information for the filesystem object's parent.
1844 * This call updates the audit context with the child's information.
1845 * Syscalls that create a new filesystem object must be hooked after
1846 * the object is created. Syscalls that remove a filesystem object
1847 * must be hooked prior, in order to capture the target inode during
1848 * unsuccessful attempts.
1849 */
1850 void __audit_inode_child(struct inode *parent,
1851 const struct dentry *dentry,
1852 const unsigned char type)
1853 {
1854 struct audit_context *context = current->audit_context;
1855 struct inode *inode = d_backing_inode(dentry);
1856 const char *dname = dentry->d_name.name;
1857 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1858
1859 if (!context->in_syscall)
1860 return;
1861
1862 if (inode)
1863 handle_one(inode);
1864
1865 /* look for a parent entry first */
1866 list_for_each_entry(n, &context->names_list, list) {
1867 if (!n->name ||
1868 (n->type != AUDIT_TYPE_PARENT &&
1869 n->type != AUDIT_TYPE_UNKNOWN))
1870 continue;
1871
1872 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1873 !audit_compare_dname_path(dname,
1874 n->name->name, n->name_len)) {
1875 if (n->type == AUDIT_TYPE_UNKNOWN)
1876 n->type = AUDIT_TYPE_PARENT;
1877 found_parent = n;
1878 break;
1879 }
1880 }
1881
1882 /* is there a matching child entry? */
1883 list_for_each_entry(n, &context->names_list, list) {
1884 /* can only match entries that have a name */
1885 if (!n->name ||
1886 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1887 continue;
1888
1889 if (!strcmp(dname, n->name->name) ||
1890 !audit_compare_dname_path(dname, n->name->name,
1891 found_parent ?
1892 found_parent->name_len :
1893 AUDIT_NAME_FULL)) {
1894 if (n->type == AUDIT_TYPE_UNKNOWN)
1895 n->type = type;
1896 found_child = n;
1897 break;
1898 }
1899 }
1900
1901 if (!found_parent) {
1902 /* create a new, "anonymous" parent record */
1903 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1904 if (!n)
1905 return;
1906 audit_copy_inode(n, NULL, parent);
1907 }
1908
1909 if (!found_child) {
1910 found_child = audit_alloc_name(context, type);
1911 if (!found_child)
1912 return;
1913
1914 /* Re-use the name belonging to the slot for a matching parent
1915 * directory. All names for this context are relinquished in
1916 * audit_free_names() */
1917 if (found_parent) {
1918 found_child->name = found_parent->name;
1919 found_child->name_len = AUDIT_NAME_FULL;
1920 found_child->name->refcnt++;
1921 }
1922 }
1923
1924 if (inode)
1925 audit_copy_inode(found_child, dentry, inode);
1926 else
1927 found_child->ino = AUDIT_INO_UNSET;
1928 }
1929 EXPORT_SYMBOL_GPL(__audit_inode_child);
1930
1931 /**
1932 * auditsc_get_stamp - get local copies of audit_context values
1933 * @ctx: audit_context for the task
1934 * @t: timespec to store time recorded in the audit_context
1935 * @serial: serial value that is recorded in the audit_context
1936 *
1937 * Also sets the context as auditable.
1938 */
1939 int auditsc_get_stamp(struct audit_context *ctx,
1940 struct timespec *t, unsigned int *serial)
1941 {
1942 if (!ctx->in_syscall)
1943 return 0;
1944 if (!ctx->serial)
1945 ctx->serial = audit_serial();
1946 t->tv_sec = ctx->ctime.tv_sec;
1947 t->tv_nsec = ctx->ctime.tv_nsec;
1948 *serial = ctx->serial;
1949 if (!ctx->prio) {
1950 ctx->prio = 1;
1951 ctx->current_state = AUDIT_RECORD_CONTEXT;
1952 }
1953 return 1;
1954 }
1955
1956 /* global counter which is incremented every time something logs in */
1957 static atomic_t session_id = ATOMIC_INIT(0);
1958
1959 static int audit_set_loginuid_perm(kuid_t loginuid)
1960 {
1961 /* if we are unset, we don't need privs */
1962 if (!audit_loginuid_set(current))
1963 return 0;
1964 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1965 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1966 return -EPERM;
1967 /* it is set, you need permission */
1968 if (!capable(CAP_AUDIT_CONTROL))
1969 return -EPERM;
1970 /* reject if this is not an unset and we don't allow that */
1971 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1972 return -EPERM;
1973 return 0;
1974 }
1975
1976 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1977 unsigned int oldsessionid, unsigned int sessionid,
1978 int rc)
1979 {
1980 struct audit_buffer *ab;
1981 uid_t uid, oldloginuid, loginuid;
1982 struct tty_struct *tty;
1983
1984 if (!audit_enabled)
1985 return;
1986
1987 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1988 if (!ab)
1989 return;
1990
1991 uid = from_kuid(&init_user_ns, task_uid(current));
1992 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1993 loginuid = from_kuid(&init_user_ns, kloginuid),
1994 tty = audit_get_tty(current);
1995
1996 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1997 audit_log_task_context(ab);
1998 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
1999 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2000 oldsessionid, sessionid, !rc);
2001 audit_put_tty(tty);
2002 audit_log_end(ab);
2003 }
2004
2005 /**
2006 * audit_set_loginuid - set current task's audit_context loginuid
2007 * @loginuid: loginuid value
2008 *
2009 * Returns 0.
2010 *
2011 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2012 */
2013 int audit_set_loginuid(kuid_t loginuid)
2014 {
2015 struct task_struct *task = current;
2016 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2017 kuid_t oldloginuid;
2018 int rc;
2019
2020 oldloginuid = audit_get_loginuid(current);
2021 oldsessionid = audit_get_sessionid(current);
2022
2023 rc = audit_set_loginuid_perm(loginuid);
2024 if (rc)
2025 goto out;
2026
2027 /* are we setting or clearing? */
2028 if (uid_valid(loginuid))
2029 sessionid = (unsigned int)atomic_inc_return(&session_id);
2030
2031 task->sessionid = sessionid;
2032 task->loginuid = loginuid;
2033 out:
2034 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2035 return rc;
2036 }
2037
2038 /**
2039 * __audit_mq_open - record audit data for a POSIX MQ open
2040 * @oflag: open flag
2041 * @mode: mode bits
2042 * @attr: queue attributes
2043 *
2044 */
2045 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2046 {
2047 struct audit_context *context = current->audit_context;
2048
2049 if (attr)
2050 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2051 else
2052 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2053
2054 context->mq_open.oflag = oflag;
2055 context->mq_open.mode = mode;
2056
2057 context->type = AUDIT_MQ_OPEN;
2058 }
2059
2060 /**
2061 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2062 * @mqdes: MQ descriptor
2063 * @msg_len: Message length
2064 * @msg_prio: Message priority
2065 * @abs_timeout: Message timeout in absolute time
2066 *
2067 */
2068 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2069 const struct timespec *abs_timeout)
2070 {
2071 struct audit_context *context = current->audit_context;
2072 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2073
2074 if (abs_timeout)
2075 memcpy(p, abs_timeout, sizeof(struct timespec));
2076 else
2077 memset(p, 0, sizeof(struct timespec));
2078
2079 context->mq_sendrecv.mqdes = mqdes;
2080 context->mq_sendrecv.msg_len = msg_len;
2081 context->mq_sendrecv.msg_prio = msg_prio;
2082
2083 context->type = AUDIT_MQ_SENDRECV;
2084 }
2085
2086 /**
2087 * __audit_mq_notify - record audit data for a POSIX MQ notify
2088 * @mqdes: MQ descriptor
2089 * @notification: Notification event
2090 *
2091 */
2092
2093 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2094 {
2095 struct audit_context *context = current->audit_context;
2096
2097 if (notification)
2098 context->mq_notify.sigev_signo = notification->sigev_signo;
2099 else
2100 context->mq_notify.sigev_signo = 0;
2101
2102 context->mq_notify.mqdes = mqdes;
2103 context->type = AUDIT_MQ_NOTIFY;
2104 }
2105
2106 /**
2107 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2108 * @mqdes: MQ descriptor
2109 * @mqstat: MQ flags
2110 *
2111 */
2112 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2113 {
2114 struct audit_context *context = current->audit_context;
2115 context->mq_getsetattr.mqdes = mqdes;
2116 context->mq_getsetattr.mqstat = *mqstat;
2117 context->type = AUDIT_MQ_GETSETATTR;
2118 }
2119
2120 /**
2121 * audit_ipc_obj - record audit data for ipc object
2122 * @ipcp: ipc permissions
2123 *
2124 */
2125 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2126 {
2127 struct audit_context *context = current->audit_context;
2128 context->ipc.uid = ipcp->uid;
2129 context->ipc.gid = ipcp->gid;
2130 context->ipc.mode = ipcp->mode;
2131 context->ipc.has_perm = 0;
2132 security_ipc_getsecid(ipcp, &context->ipc.osid);
2133 context->type = AUDIT_IPC;
2134 }
2135
2136 /**
2137 * audit_ipc_set_perm - record audit data for new ipc permissions
2138 * @qbytes: msgq bytes
2139 * @uid: msgq user id
2140 * @gid: msgq group id
2141 * @mode: msgq mode (permissions)
2142 *
2143 * Called only after audit_ipc_obj().
2144 */
2145 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2146 {
2147 struct audit_context *context = current->audit_context;
2148
2149 context->ipc.qbytes = qbytes;
2150 context->ipc.perm_uid = uid;
2151 context->ipc.perm_gid = gid;
2152 context->ipc.perm_mode = mode;
2153 context->ipc.has_perm = 1;
2154 }
2155
2156 void __audit_bprm(struct linux_binprm *bprm)
2157 {
2158 struct audit_context *context = current->audit_context;
2159
2160 context->type = AUDIT_EXECVE;
2161 context->execve.argc = bprm->argc;
2162 }
2163
2164
2165 /**
2166 * audit_socketcall - record audit data for sys_socketcall
2167 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2168 * @args: args array
2169 *
2170 */
2171 int __audit_socketcall(int nargs, unsigned long *args)
2172 {
2173 struct audit_context *context = current->audit_context;
2174
2175 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2176 return -EINVAL;
2177 context->type = AUDIT_SOCKETCALL;
2178 context->socketcall.nargs = nargs;
2179 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2180 return 0;
2181 }
2182
2183 /**
2184 * __audit_fd_pair - record audit data for pipe and socketpair
2185 * @fd1: the first file descriptor
2186 * @fd2: the second file descriptor
2187 *
2188 */
2189 void __audit_fd_pair(int fd1, int fd2)
2190 {
2191 struct audit_context *context = current->audit_context;
2192 context->fds[0] = fd1;
2193 context->fds[1] = fd2;
2194 }
2195
2196 /**
2197 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2198 * @len: data length in user space
2199 * @a: data address in kernel space
2200 *
2201 * Returns 0 for success or NULL context or < 0 on error.
2202 */
2203 int __audit_sockaddr(int len, void *a)
2204 {
2205 struct audit_context *context = current->audit_context;
2206
2207 if (!context->sockaddr) {
2208 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2209 if (!p)
2210 return -ENOMEM;
2211 context->sockaddr = p;
2212 }
2213
2214 context->sockaddr_len = len;
2215 memcpy(context->sockaddr, a, len);
2216 return 0;
2217 }
2218
2219 void __audit_ptrace(struct task_struct *t)
2220 {
2221 struct audit_context *context = current->audit_context;
2222
2223 context->target_pid = task_pid_nr(t);
2224 context->target_auid = audit_get_loginuid(t);
2225 context->target_uid = task_uid(t);
2226 context->target_sessionid = audit_get_sessionid(t);
2227 security_task_getsecid(t, &context->target_sid);
2228 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2229 }
2230
2231 /**
2232 * audit_signal_info - record signal info for shutting down audit subsystem
2233 * @sig: signal value
2234 * @t: task being signaled
2235 *
2236 * If the audit subsystem is being terminated, record the task (pid)
2237 * and uid that is doing that.
2238 */
2239 int __audit_signal_info(int sig, struct task_struct *t)
2240 {
2241 struct audit_aux_data_pids *axp;
2242 struct task_struct *tsk = current;
2243 struct audit_context *ctx = tsk->audit_context;
2244 kuid_t uid = current_uid(), t_uid = task_uid(t);
2245
2246 if (audit_pid && t->tgid == audit_pid) {
2247 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2248 audit_sig_pid = task_pid_nr(tsk);
2249 if (uid_valid(tsk->loginuid))
2250 audit_sig_uid = tsk->loginuid;
2251 else
2252 audit_sig_uid = uid;
2253 security_task_getsecid(tsk, &audit_sig_sid);
2254 }
2255 if (!audit_signals || audit_dummy_context())
2256 return 0;
2257 }
2258
2259 /* optimize the common case by putting first signal recipient directly
2260 * in audit_context */
2261 if (!ctx->target_pid) {
2262 ctx->target_pid = task_tgid_nr(t);
2263 ctx->target_auid = audit_get_loginuid(t);
2264 ctx->target_uid = t_uid;
2265 ctx->target_sessionid = audit_get_sessionid(t);
2266 security_task_getsecid(t, &ctx->target_sid);
2267 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2268 return 0;
2269 }
2270
2271 axp = (void *)ctx->aux_pids;
2272 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2273 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2274 if (!axp)
2275 return -ENOMEM;
2276
2277 axp->d.type = AUDIT_OBJ_PID;
2278 axp->d.next = ctx->aux_pids;
2279 ctx->aux_pids = (void *)axp;
2280 }
2281 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2282
2283 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2284 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2285 axp->target_uid[axp->pid_count] = t_uid;
2286 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2287 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2288 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2289 axp->pid_count++;
2290
2291 return 0;
2292 }
2293
2294 /**
2295 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2296 * @bprm: pointer to the bprm being processed
2297 * @new: the proposed new credentials
2298 * @old: the old credentials
2299 *
2300 * Simply check if the proc already has the caps given by the file and if not
2301 * store the priv escalation info for later auditing at the end of the syscall
2302 *
2303 * -Eric
2304 */
2305 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2306 const struct cred *new, const struct cred *old)
2307 {
2308 struct audit_aux_data_bprm_fcaps *ax;
2309 struct audit_context *context = current->audit_context;
2310 struct cpu_vfs_cap_data vcaps;
2311
2312 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2313 if (!ax)
2314 return -ENOMEM;
2315
2316 ax->d.type = AUDIT_BPRM_FCAPS;
2317 ax->d.next = context->aux;
2318 context->aux = (void *)ax;
2319
2320 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2321
2322 ax->fcap.permitted = vcaps.permitted;
2323 ax->fcap.inheritable = vcaps.inheritable;
2324 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2325 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2326
2327 ax->old_pcap.permitted = old->cap_permitted;
2328 ax->old_pcap.inheritable = old->cap_inheritable;
2329 ax->old_pcap.effective = old->cap_effective;
2330
2331 ax->new_pcap.permitted = new->cap_permitted;
2332 ax->new_pcap.inheritable = new->cap_inheritable;
2333 ax->new_pcap.effective = new->cap_effective;
2334 return 0;
2335 }
2336
2337 /**
2338 * __audit_log_capset - store information about the arguments to the capset syscall
2339 * @new: the new credentials
2340 * @old: the old (current) credentials
2341 *
2342 * Record the arguments userspace sent to sys_capset for later printing by the
2343 * audit system if applicable
2344 */
2345 void __audit_log_capset(const struct cred *new, const struct cred *old)
2346 {
2347 struct audit_context *context = current->audit_context;
2348 context->capset.pid = task_pid_nr(current);
2349 context->capset.cap.effective = new->cap_effective;
2350 context->capset.cap.inheritable = new->cap_effective;
2351 context->capset.cap.permitted = new->cap_permitted;
2352 context->type = AUDIT_CAPSET;
2353 }
2354
2355 void __audit_mmap_fd(int fd, int flags)
2356 {
2357 struct audit_context *context = current->audit_context;
2358 context->mmap.fd = fd;
2359 context->mmap.flags = flags;
2360 context->type = AUDIT_MMAP;
2361 }
2362
2363 static void audit_log_task(struct audit_buffer *ab)
2364 {
2365 kuid_t auid, uid;
2366 kgid_t gid;
2367 unsigned int sessionid;
2368 char comm[sizeof(current->comm)];
2369
2370 auid = audit_get_loginuid(current);
2371 sessionid = audit_get_sessionid(current);
2372 current_uid_gid(&uid, &gid);
2373
2374 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2375 from_kuid(&init_user_ns, auid),
2376 from_kuid(&init_user_ns, uid),
2377 from_kgid(&init_user_ns, gid),
2378 sessionid);
2379 audit_log_task_context(ab);
2380 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2381 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2382 audit_log_d_path_exe(ab, current->mm);
2383 }
2384
2385 /**
2386 * audit_core_dumps - record information about processes that end abnormally
2387 * @signr: signal value
2388 *
2389 * If a process ends with a core dump, something fishy is going on and we
2390 * should record the event for investigation.
2391 */
2392 void audit_core_dumps(long signr)
2393 {
2394 struct audit_buffer *ab;
2395
2396 if (!audit_enabled)
2397 return;
2398
2399 if (signr == SIGQUIT) /* don't care for those */
2400 return;
2401
2402 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2403 if (unlikely(!ab))
2404 return;
2405 audit_log_task(ab);
2406 audit_log_format(ab, " sig=%ld", signr);
2407 audit_log_end(ab);
2408 }
2409
2410 void __audit_seccomp(unsigned long syscall, long signr, int code)
2411 {
2412 struct audit_buffer *ab;
2413
2414 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2415 if (unlikely(!ab))
2416 return;
2417 audit_log_task(ab);
2418 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2419 signr, syscall_get_arch(), syscall,
2420 in_compat_syscall(), KSTK_EIP(current), code);
2421 audit_log_end(ab);
2422 }
2423
2424 struct list_head *audit_killed_trees(void)
2425 {
2426 struct audit_context *ctx = current->audit_context;
2427 if (likely(!ctx || !ctx->in_syscall))
2428 return NULL;
2429 return &ctx->killed_trees;
2430 }
This page took 0.082498 seconds and 6 git commands to generate.