ARM: shmobile: r8a7794: add GPIO clocks
[deliverable/linux.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <trace/events/power.h>
26
27 #include "smpboot.h"
28
29 #ifdef CONFIG_SMP
30 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
31 static DEFINE_MUTEX(cpu_add_remove_lock);
32
33 /*
34 * The following two APIs (cpu_maps_update_begin/done) must be used when
35 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
36 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
37 * hotplug callback (un)registration performed using __register_cpu_notifier()
38 * or __unregister_cpu_notifier().
39 */
40 void cpu_maps_update_begin(void)
41 {
42 mutex_lock(&cpu_add_remove_lock);
43 }
44 EXPORT_SYMBOL(cpu_notifier_register_begin);
45
46 void cpu_maps_update_done(void)
47 {
48 mutex_unlock(&cpu_add_remove_lock);
49 }
50 EXPORT_SYMBOL(cpu_notifier_register_done);
51
52 static RAW_NOTIFIER_HEAD(cpu_chain);
53
54 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
55 * Should always be manipulated under cpu_add_remove_lock
56 */
57 static int cpu_hotplug_disabled;
58
59 #ifdef CONFIG_HOTPLUG_CPU
60
61 static struct {
62 struct task_struct *active_writer;
63 /* wait queue to wake up the active_writer */
64 wait_queue_head_t wq;
65 /* verifies that no writer will get active while readers are active */
66 struct mutex lock;
67 /*
68 * Also blocks the new readers during
69 * an ongoing cpu hotplug operation.
70 */
71 atomic_t refcount;
72
73 #ifdef CONFIG_DEBUG_LOCK_ALLOC
74 struct lockdep_map dep_map;
75 #endif
76 } cpu_hotplug = {
77 .active_writer = NULL,
78 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
79 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 .dep_map = {.name = "cpu_hotplug.lock" },
82 #endif
83 };
84
85 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
86 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
87 #define cpuhp_lock_acquire_tryread() \
88 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
89 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
90 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
91
92
93 void get_online_cpus(void)
94 {
95 might_sleep();
96 if (cpu_hotplug.active_writer == current)
97 return;
98 cpuhp_lock_acquire_read();
99 mutex_lock(&cpu_hotplug.lock);
100 atomic_inc(&cpu_hotplug.refcount);
101 mutex_unlock(&cpu_hotplug.lock);
102 }
103 EXPORT_SYMBOL_GPL(get_online_cpus);
104
105 bool try_get_online_cpus(void)
106 {
107 if (cpu_hotplug.active_writer == current)
108 return true;
109 if (!mutex_trylock(&cpu_hotplug.lock))
110 return false;
111 cpuhp_lock_acquire_tryread();
112 atomic_inc(&cpu_hotplug.refcount);
113 mutex_unlock(&cpu_hotplug.lock);
114 return true;
115 }
116 EXPORT_SYMBOL_GPL(try_get_online_cpus);
117
118 void put_online_cpus(void)
119 {
120 int refcount;
121
122 if (cpu_hotplug.active_writer == current)
123 return;
124
125 refcount = atomic_dec_return(&cpu_hotplug.refcount);
126 if (WARN_ON(refcount < 0)) /* try to fix things up */
127 atomic_inc(&cpu_hotplug.refcount);
128
129 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
130 wake_up(&cpu_hotplug.wq);
131
132 cpuhp_lock_release();
133
134 }
135 EXPORT_SYMBOL_GPL(put_online_cpus);
136
137 /*
138 * This ensures that the hotplug operation can begin only when the
139 * refcount goes to zero.
140 *
141 * Note that during a cpu-hotplug operation, the new readers, if any,
142 * will be blocked by the cpu_hotplug.lock
143 *
144 * Since cpu_hotplug_begin() is always called after invoking
145 * cpu_maps_update_begin(), we can be sure that only one writer is active.
146 *
147 * Note that theoretically, there is a possibility of a livelock:
148 * - Refcount goes to zero, last reader wakes up the sleeping
149 * writer.
150 * - Last reader unlocks the cpu_hotplug.lock.
151 * - A new reader arrives at this moment, bumps up the refcount.
152 * - The writer acquires the cpu_hotplug.lock finds the refcount
153 * non zero and goes to sleep again.
154 *
155 * However, this is very difficult to achieve in practice since
156 * get_online_cpus() not an api which is called all that often.
157 *
158 */
159 void cpu_hotplug_begin(void)
160 {
161 DEFINE_WAIT(wait);
162
163 cpu_hotplug.active_writer = current;
164 cpuhp_lock_acquire();
165
166 for (;;) {
167 mutex_lock(&cpu_hotplug.lock);
168 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
169 if (likely(!atomic_read(&cpu_hotplug.refcount)))
170 break;
171 mutex_unlock(&cpu_hotplug.lock);
172 schedule();
173 }
174 finish_wait(&cpu_hotplug.wq, &wait);
175 }
176
177 void cpu_hotplug_done(void)
178 {
179 cpu_hotplug.active_writer = NULL;
180 mutex_unlock(&cpu_hotplug.lock);
181 cpuhp_lock_release();
182 }
183
184 /*
185 * Wait for currently running CPU hotplug operations to complete (if any) and
186 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
187 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
188 * hotplug path before performing hotplug operations. So acquiring that lock
189 * guarantees mutual exclusion from any currently running hotplug operations.
190 */
191 void cpu_hotplug_disable(void)
192 {
193 cpu_maps_update_begin();
194 cpu_hotplug_disabled++;
195 cpu_maps_update_done();
196 }
197 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
198
199 void cpu_hotplug_enable(void)
200 {
201 cpu_maps_update_begin();
202 WARN_ON(--cpu_hotplug_disabled < 0);
203 cpu_maps_update_done();
204 }
205 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
206 #endif /* CONFIG_HOTPLUG_CPU */
207
208 /* Need to know about CPUs going up/down? */
209 int register_cpu_notifier(struct notifier_block *nb)
210 {
211 int ret;
212 cpu_maps_update_begin();
213 ret = raw_notifier_chain_register(&cpu_chain, nb);
214 cpu_maps_update_done();
215 return ret;
216 }
217
218 int __register_cpu_notifier(struct notifier_block *nb)
219 {
220 return raw_notifier_chain_register(&cpu_chain, nb);
221 }
222
223 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
224 int *nr_calls)
225 {
226 int ret;
227
228 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
229 nr_calls);
230
231 return notifier_to_errno(ret);
232 }
233
234 static int cpu_notify(unsigned long val, void *v)
235 {
236 return __cpu_notify(val, v, -1, NULL);
237 }
238
239 #ifdef CONFIG_HOTPLUG_CPU
240
241 static void cpu_notify_nofail(unsigned long val, void *v)
242 {
243 BUG_ON(cpu_notify(val, v));
244 }
245 EXPORT_SYMBOL(register_cpu_notifier);
246 EXPORT_SYMBOL(__register_cpu_notifier);
247
248 void unregister_cpu_notifier(struct notifier_block *nb)
249 {
250 cpu_maps_update_begin();
251 raw_notifier_chain_unregister(&cpu_chain, nb);
252 cpu_maps_update_done();
253 }
254 EXPORT_SYMBOL(unregister_cpu_notifier);
255
256 void __unregister_cpu_notifier(struct notifier_block *nb)
257 {
258 raw_notifier_chain_unregister(&cpu_chain, nb);
259 }
260 EXPORT_SYMBOL(__unregister_cpu_notifier);
261
262 /**
263 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
264 * @cpu: a CPU id
265 *
266 * This function walks all processes, finds a valid mm struct for each one and
267 * then clears a corresponding bit in mm's cpumask. While this all sounds
268 * trivial, there are various non-obvious corner cases, which this function
269 * tries to solve in a safe manner.
270 *
271 * Also note that the function uses a somewhat relaxed locking scheme, so it may
272 * be called only for an already offlined CPU.
273 */
274 void clear_tasks_mm_cpumask(int cpu)
275 {
276 struct task_struct *p;
277
278 /*
279 * This function is called after the cpu is taken down and marked
280 * offline, so its not like new tasks will ever get this cpu set in
281 * their mm mask. -- Peter Zijlstra
282 * Thus, we may use rcu_read_lock() here, instead of grabbing
283 * full-fledged tasklist_lock.
284 */
285 WARN_ON(cpu_online(cpu));
286 rcu_read_lock();
287 for_each_process(p) {
288 struct task_struct *t;
289
290 /*
291 * Main thread might exit, but other threads may still have
292 * a valid mm. Find one.
293 */
294 t = find_lock_task_mm(p);
295 if (!t)
296 continue;
297 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
298 task_unlock(t);
299 }
300 rcu_read_unlock();
301 }
302
303 static inline void check_for_tasks(int dead_cpu)
304 {
305 struct task_struct *g, *p;
306
307 read_lock_irq(&tasklist_lock);
308 do_each_thread(g, p) {
309 if (!p->on_rq)
310 continue;
311 /*
312 * We do the check with unlocked task_rq(p)->lock.
313 * Order the reading to do not warn about a task,
314 * which was running on this cpu in the past, and
315 * it's just been woken on another cpu.
316 */
317 rmb();
318 if (task_cpu(p) != dead_cpu)
319 continue;
320
321 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
322 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
323 } while_each_thread(g, p);
324 read_unlock_irq(&tasklist_lock);
325 }
326
327 struct take_cpu_down_param {
328 unsigned long mod;
329 void *hcpu;
330 };
331
332 /* Take this CPU down. */
333 static int take_cpu_down(void *_param)
334 {
335 struct take_cpu_down_param *param = _param;
336 int err;
337
338 /* Ensure this CPU doesn't handle any more interrupts. */
339 err = __cpu_disable();
340 if (err < 0)
341 return err;
342
343 cpu_notify(CPU_DYING | param->mod, param->hcpu);
344 /* Give up timekeeping duties */
345 tick_handover_do_timer();
346 /* Park the stopper thread */
347 kthread_park(current);
348 return 0;
349 }
350
351 /* Requires cpu_add_remove_lock to be held */
352 static int _cpu_down(unsigned int cpu, int tasks_frozen)
353 {
354 int err, nr_calls = 0;
355 void *hcpu = (void *)(long)cpu;
356 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
357 struct take_cpu_down_param tcd_param = {
358 .mod = mod,
359 .hcpu = hcpu,
360 };
361
362 if (num_online_cpus() == 1)
363 return -EBUSY;
364
365 if (!cpu_online(cpu))
366 return -EINVAL;
367
368 cpu_hotplug_begin();
369
370 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
371 if (err) {
372 nr_calls--;
373 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
374 pr_warn("%s: attempt to take down CPU %u failed\n",
375 __func__, cpu);
376 goto out_release;
377 }
378
379 /*
380 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
381 * and RCU users of this state to go away such that all new such users
382 * will observe it.
383 *
384 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
385 * not imply sync_sched(), so wait for both.
386 *
387 * Do sync before park smpboot threads to take care the rcu boost case.
388 */
389 if (IS_ENABLED(CONFIG_PREEMPT))
390 synchronize_rcu_mult(call_rcu, call_rcu_sched);
391 else
392 synchronize_rcu();
393
394 smpboot_park_threads(cpu);
395
396 /*
397 * Prevent irq alloc/free while the dying cpu reorganizes the
398 * interrupt affinities.
399 */
400 irq_lock_sparse();
401
402 /*
403 * So now all preempt/rcu users must observe !cpu_active().
404 */
405 err = stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
406 if (err) {
407 /* CPU didn't die: tell everyone. Can't complain. */
408 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
409 irq_unlock_sparse();
410 goto out_release;
411 }
412 BUG_ON(cpu_online(cpu));
413
414 /*
415 * The migration_call() CPU_DYING callback will have removed all
416 * runnable tasks from the cpu, there's only the idle task left now
417 * that the migration thread is done doing the stop_machine thing.
418 *
419 * Wait for the stop thread to go away.
420 */
421 while (!per_cpu(cpu_dead_idle, cpu))
422 cpu_relax();
423 smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
424 per_cpu(cpu_dead_idle, cpu) = false;
425
426 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
427 irq_unlock_sparse();
428
429 hotplug_cpu__broadcast_tick_pull(cpu);
430 /* This actually kills the CPU. */
431 __cpu_die(cpu);
432
433 /* CPU is completely dead: tell everyone. Too late to complain. */
434 tick_cleanup_dead_cpu(cpu);
435 cpu_notify_nofail(CPU_DEAD | mod, hcpu);
436
437 check_for_tasks(cpu);
438
439 out_release:
440 cpu_hotplug_done();
441 if (!err)
442 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
443 return err;
444 }
445
446 int cpu_down(unsigned int cpu)
447 {
448 int err;
449
450 cpu_maps_update_begin();
451
452 if (cpu_hotplug_disabled) {
453 err = -EBUSY;
454 goto out;
455 }
456
457 err = _cpu_down(cpu, 0);
458
459 out:
460 cpu_maps_update_done();
461 return err;
462 }
463 EXPORT_SYMBOL(cpu_down);
464 #endif /*CONFIG_HOTPLUG_CPU*/
465
466 /*
467 * Unpark per-CPU smpboot kthreads at CPU-online time.
468 */
469 static int smpboot_thread_call(struct notifier_block *nfb,
470 unsigned long action, void *hcpu)
471 {
472 int cpu = (long)hcpu;
473
474 switch (action & ~CPU_TASKS_FROZEN) {
475
476 case CPU_DOWN_FAILED:
477 case CPU_ONLINE:
478 smpboot_unpark_threads(cpu);
479 break;
480
481 default:
482 break;
483 }
484
485 return NOTIFY_OK;
486 }
487
488 static struct notifier_block smpboot_thread_notifier = {
489 .notifier_call = smpboot_thread_call,
490 .priority = CPU_PRI_SMPBOOT,
491 };
492
493 void smpboot_thread_init(void)
494 {
495 register_cpu_notifier(&smpboot_thread_notifier);
496 }
497
498 /* Requires cpu_add_remove_lock to be held */
499 static int _cpu_up(unsigned int cpu, int tasks_frozen)
500 {
501 int ret, nr_calls = 0;
502 void *hcpu = (void *)(long)cpu;
503 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
504 struct task_struct *idle;
505
506 cpu_hotplug_begin();
507
508 if (cpu_online(cpu) || !cpu_present(cpu)) {
509 ret = -EINVAL;
510 goto out;
511 }
512
513 idle = idle_thread_get(cpu);
514 if (IS_ERR(idle)) {
515 ret = PTR_ERR(idle);
516 goto out;
517 }
518
519 ret = smpboot_create_threads(cpu);
520 if (ret)
521 goto out;
522
523 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
524 if (ret) {
525 nr_calls--;
526 pr_warn("%s: attempt to bring up CPU %u failed\n",
527 __func__, cpu);
528 goto out_notify;
529 }
530
531 /* Arch-specific enabling code. */
532 ret = __cpu_up(cpu, idle);
533
534 if (ret != 0)
535 goto out_notify;
536 BUG_ON(!cpu_online(cpu));
537
538 /* Now call notifier in preparation. */
539 cpu_notify(CPU_ONLINE | mod, hcpu);
540
541 out_notify:
542 if (ret != 0)
543 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
544 out:
545 cpu_hotplug_done();
546
547 return ret;
548 }
549
550 int cpu_up(unsigned int cpu)
551 {
552 int err = 0;
553
554 if (!cpu_possible(cpu)) {
555 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
556 cpu);
557 #if defined(CONFIG_IA64)
558 pr_err("please check additional_cpus= boot parameter\n");
559 #endif
560 return -EINVAL;
561 }
562
563 err = try_online_node(cpu_to_node(cpu));
564 if (err)
565 return err;
566
567 cpu_maps_update_begin();
568
569 if (cpu_hotplug_disabled) {
570 err = -EBUSY;
571 goto out;
572 }
573
574 err = _cpu_up(cpu, 0);
575
576 out:
577 cpu_maps_update_done();
578 return err;
579 }
580 EXPORT_SYMBOL_GPL(cpu_up);
581
582 #ifdef CONFIG_PM_SLEEP_SMP
583 static cpumask_var_t frozen_cpus;
584
585 int disable_nonboot_cpus(void)
586 {
587 int cpu, first_cpu, error = 0;
588
589 cpu_maps_update_begin();
590 first_cpu = cpumask_first(cpu_online_mask);
591 /*
592 * We take down all of the non-boot CPUs in one shot to avoid races
593 * with the userspace trying to use the CPU hotplug at the same time
594 */
595 cpumask_clear(frozen_cpus);
596
597 pr_info("Disabling non-boot CPUs ...\n");
598 for_each_online_cpu(cpu) {
599 if (cpu == first_cpu)
600 continue;
601 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
602 error = _cpu_down(cpu, 1);
603 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
604 if (!error)
605 cpumask_set_cpu(cpu, frozen_cpus);
606 else {
607 pr_err("Error taking CPU%d down: %d\n", cpu, error);
608 break;
609 }
610 }
611
612 if (!error)
613 BUG_ON(num_online_cpus() > 1);
614 else
615 pr_err("Non-boot CPUs are not disabled\n");
616
617 /*
618 * Make sure the CPUs won't be enabled by someone else. We need to do
619 * this even in case of failure as all disable_nonboot_cpus() users are
620 * supposed to do enable_nonboot_cpus() on the failure path.
621 */
622 cpu_hotplug_disabled++;
623
624 cpu_maps_update_done();
625 return error;
626 }
627
628 void __weak arch_enable_nonboot_cpus_begin(void)
629 {
630 }
631
632 void __weak arch_enable_nonboot_cpus_end(void)
633 {
634 }
635
636 void enable_nonboot_cpus(void)
637 {
638 int cpu, error;
639
640 /* Allow everyone to use the CPU hotplug again */
641 cpu_maps_update_begin();
642 WARN_ON(--cpu_hotplug_disabled < 0);
643 if (cpumask_empty(frozen_cpus))
644 goto out;
645
646 pr_info("Enabling non-boot CPUs ...\n");
647
648 arch_enable_nonboot_cpus_begin();
649
650 for_each_cpu(cpu, frozen_cpus) {
651 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
652 error = _cpu_up(cpu, 1);
653 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
654 if (!error) {
655 pr_info("CPU%d is up\n", cpu);
656 continue;
657 }
658 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
659 }
660
661 arch_enable_nonboot_cpus_end();
662
663 cpumask_clear(frozen_cpus);
664 out:
665 cpu_maps_update_done();
666 }
667
668 static int __init alloc_frozen_cpus(void)
669 {
670 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
671 return -ENOMEM;
672 return 0;
673 }
674 core_initcall(alloc_frozen_cpus);
675
676 /*
677 * When callbacks for CPU hotplug notifications are being executed, we must
678 * ensure that the state of the system with respect to the tasks being frozen
679 * or not, as reported by the notification, remains unchanged *throughout the
680 * duration* of the execution of the callbacks.
681 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
682 *
683 * This synchronization is implemented by mutually excluding regular CPU
684 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
685 * Hibernate notifications.
686 */
687 static int
688 cpu_hotplug_pm_callback(struct notifier_block *nb,
689 unsigned long action, void *ptr)
690 {
691 switch (action) {
692
693 case PM_SUSPEND_PREPARE:
694 case PM_HIBERNATION_PREPARE:
695 cpu_hotplug_disable();
696 break;
697
698 case PM_POST_SUSPEND:
699 case PM_POST_HIBERNATION:
700 cpu_hotplug_enable();
701 break;
702
703 default:
704 return NOTIFY_DONE;
705 }
706
707 return NOTIFY_OK;
708 }
709
710
711 static int __init cpu_hotplug_pm_sync_init(void)
712 {
713 /*
714 * cpu_hotplug_pm_callback has higher priority than x86
715 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
716 * to disable cpu hotplug to avoid cpu hotplug race.
717 */
718 pm_notifier(cpu_hotplug_pm_callback, 0);
719 return 0;
720 }
721 core_initcall(cpu_hotplug_pm_sync_init);
722
723 #endif /* CONFIG_PM_SLEEP_SMP */
724
725 /**
726 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
727 * @cpu: cpu that just started
728 *
729 * This function calls the cpu_chain notifiers with CPU_STARTING.
730 * It must be called by the arch code on the new cpu, before the new cpu
731 * enables interrupts and before the "boot" cpu returns from __cpu_up().
732 */
733 void notify_cpu_starting(unsigned int cpu)
734 {
735 unsigned long val = CPU_STARTING;
736
737 #ifdef CONFIG_PM_SLEEP_SMP
738 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
739 val = CPU_STARTING_FROZEN;
740 #endif /* CONFIG_PM_SLEEP_SMP */
741 cpu_notify(val, (void *)(long)cpu);
742 }
743
744 #endif /* CONFIG_SMP */
745
746 /*
747 * cpu_bit_bitmap[] is a special, "compressed" data structure that
748 * represents all NR_CPUS bits binary values of 1<<nr.
749 *
750 * It is used by cpumask_of() to get a constant address to a CPU
751 * mask value that has a single bit set only.
752 */
753
754 /* cpu_bit_bitmap[0] is empty - so we can back into it */
755 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
756 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
757 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
758 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
759
760 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
761
762 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
763 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
764 #if BITS_PER_LONG > 32
765 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
766 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
767 #endif
768 };
769 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
770
771 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
772 EXPORT_SYMBOL(cpu_all_bits);
773
774 #ifdef CONFIG_INIT_ALL_POSSIBLE
775 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
776 = CPU_BITS_ALL;
777 #else
778 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
779 #endif
780 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
781 EXPORT_SYMBOL(cpu_possible_mask);
782
783 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
784 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
785 EXPORT_SYMBOL(cpu_online_mask);
786
787 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
788 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
789 EXPORT_SYMBOL(cpu_present_mask);
790
791 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
792 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
793 EXPORT_SYMBOL(cpu_active_mask);
794
795 void set_cpu_possible(unsigned int cpu, bool possible)
796 {
797 if (possible)
798 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
799 else
800 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
801 }
802
803 void set_cpu_present(unsigned int cpu, bool present)
804 {
805 if (present)
806 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
807 else
808 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
809 }
810
811 void set_cpu_online(unsigned int cpu, bool online)
812 {
813 if (online) {
814 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
815 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
816 } else {
817 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
818 }
819 }
820
821 void set_cpu_active(unsigned int cpu, bool active)
822 {
823 if (active)
824 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
825 else
826 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
827 }
828
829 void init_cpu_present(const struct cpumask *src)
830 {
831 cpumask_copy(to_cpumask(cpu_present_bits), src);
832 }
833
834 void init_cpu_possible(const struct cpumask *src)
835 {
836 cpumask_copy(to_cpumask(cpu_possible_bits), src);
837 }
838
839 void init_cpu_online(const struct cpumask *src)
840 {
841 cpumask_copy(to_cpumask(cpu_online_bits), src);
842 }
This page took 0.053365 seconds and 5 git commands to generate.