megaraid_sas: add missing curly braces in ioctl handler
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/time64.h>
55 #include <linux/backing-dev.h>
56 #include <linux/sort.h>
57
58 #include <asm/uaccess.h>
59 #include <linux/atomic.h>
60 #include <linux/mutex.h>
61 #include <linux/workqueue.h>
62 #include <linux/cgroup.h>
63 #include <linux/wait.h>
64
65 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
66
67 /* See "Frequency meter" comments, below. */
68
69 struct fmeter {
70 int cnt; /* unprocessed events count */
71 int val; /* most recent output value */
72 time64_t time; /* clock (secs) when val computed */
73 spinlock_t lock; /* guards read or write of above */
74 };
75
76 struct cpuset {
77 struct cgroup_subsys_state css;
78
79 unsigned long flags; /* "unsigned long" so bitops work */
80
81 /*
82 * On default hierarchy:
83 *
84 * The user-configured masks can only be changed by writing to
85 * cpuset.cpus and cpuset.mems, and won't be limited by the
86 * parent masks.
87 *
88 * The effective masks is the real masks that apply to the tasks
89 * in the cpuset. They may be changed if the configured masks are
90 * changed or hotplug happens.
91 *
92 * effective_mask == configured_mask & parent's effective_mask,
93 * and if it ends up empty, it will inherit the parent's mask.
94 *
95 *
96 * On legacy hierachy:
97 *
98 * The user-configured masks are always the same with effective masks.
99 */
100
101 /* user-configured CPUs and Memory Nodes allow to tasks */
102 cpumask_var_t cpus_allowed;
103 nodemask_t mems_allowed;
104
105 /* effective CPUs and Memory Nodes allow to tasks */
106 cpumask_var_t effective_cpus;
107 nodemask_t effective_mems;
108
109 /*
110 * This is old Memory Nodes tasks took on.
111 *
112 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
113 * - A new cpuset's old_mems_allowed is initialized when some
114 * task is moved into it.
115 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
116 * cpuset.mems_allowed and have tasks' nodemask updated, and
117 * then old_mems_allowed is updated to mems_allowed.
118 */
119 nodemask_t old_mems_allowed;
120
121 struct fmeter fmeter; /* memory_pressure filter */
122
123 /*
124 * Tasks are being attached to this cpuset. Used to prevent
125 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
126 */
127 int attach_in_progress;
128
129 /* partition number for rebuild_sched_domains() */
130 int pn;
131
132 /* for custom sched domain */
133 int relax_domain_level;
134 };
135
136 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
137 {
138 return css ? container_of(css, struct cpuset, css) : NULL;
139 }
140
141 /* Retrieve the cpuset for a task */
142 static inline struct cpuset *task_cs(struct task_struct *task)
143 {
144 return css_cs(task_css(task, cpuset_cgrp_id));
145 }
146
147 static inline struct cpuset *parent_cs(struct cpuset *cs)
148 {
149 return css_cs(cs->css.parent);
150 }
151
152 #ifdef CONFIG_NUMA
153 static inline bool task_has_mempolicy(struct task_struct *task)
154 {
155 return task->mempolicy;
156 }
157 #else
158 static inline bool task_has_mempolicy(struct task_struct *task)
159 {
160 return false;
161 }
162 #endif
163
164
165 /* bits in struct cpuset flags field */
166 typedef enum {
167 CS_ONLINE,
168 CS_CPU_EXCLUSIVE,
169 CS_MEM_EXCLUSIVE,
170 CS_MEM_HARDWALL,
171 CS_MEMORY_MIGRATE,
172 CS_SCHED_LOAD_BALANCE,
173 CS_SPREAD_PAGE,
174 CS_SPREAD_SLAB,
175 } cpuset_flagbits_t;
176
177 /* convenient tests for these bits */
178 static inline bool is_cpuset_online(const struct cpuset *cs)
179 {
180 return test_bit(CS_ONLINE, &cs->flags);
181 }
182
183 static inline int is_cpu_exclusive(const struct cpuset *cs)
184 {
185 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
186 }
187
188 static inline int is_mem_exclusive(const struct cpuset *cs)
189 {
190 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
191 }
192
193 static inline int is_mem_hardwall(const struct cpuset *cs)
194 {
195 return test_bit(CS_MEM_HARDWALL, &cs->flags);
196 }
197
198 static inline int is_sched_load_balance(const struct cpuset *cs)
199 {
200 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
201 }
202
203 static inline int is_memory_migrate(const struct cpuset *cs)
204 {
205 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
206 }
207
208 static inline int is_spread_page(const struct cpuset *cs)
209 {
210 return test_bit(CS_SPREAD_PAGE, &cs->flags);
211 }
212
213 static inline int is_spread_slab(const struct cpuset *cs)
214 {
215 return test_bit(CS_SPREAD_SLAB, &cs->flags);
216 }
217
218 static struct cpuset top_cpuset = {
219 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
220 (1 << CS_MEM_EXCLUSIVE)),
221 };
222
223 /**
224 * cpuset_for_each_child - traverse online children of a cpuset
225 * @child_cs: loop cursor pointing to the current child
226 * @pos_css: used for iteration
227 * @parent_cs: target cpuset to walk children of
228 *
229 * Walk @child_cs through the online children of @parent_cs. Must be used
230 * with RCU read locked.
231 */
232 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
233 css_for_each_child((pos_css), &(parent_cs)->css) \
234 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
235
236 /**
237 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
238 * @des_cs: loop cursor pointing to the current descendant
239 * @pos_css: used for iteration
240 * @root_cs: target cpuset to walk ancestor of
241 *
242 * Walk @des_cs through the online descendants of @root_cs. Must be used
243 * with RCU read locked. The caller may modify @pos_css by calling
244 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
245 * iteration and the first node to be visited.
246 */
247 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
248 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
249 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
250
251 /*
252 * There are two global locks guarding cpuset structures - cpuset_mutex and
253 * callback_lock. We also require taking task_lock() when dereferencing a
254 * task's cpuset pointer. See "The task_lock() exception", at the end of this
255 * comment.
256 *
257 * A task must hold both locks to modify cpusets. If a task holds
258 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
259 * is the only task able to also acquire callback_lock and be able to
260 * modify cpusets. It can perform various checks on the cpuset structure
261 * first, knowing nothing will change. It can also allocate memory while
262 * just holding cpuset_mutex. While it is performing these checks, various
263 * callback routines can briefly acquire callback_lock to query cpusets.
264 * Once it is ready to make the changes, it takes callback_lock, blocking
265 * everyone else.
266 *
267 * Calls to the kernel memory allocator can not be made while holding
268 * callback_lock, as that would risk double tripping on callback_lock
269 * from one of the callbacks into the cpuset code from within
270 * __alloc_pages().
271 *
272 * If a task is only holding callback_lock, then it has read-only
273 * access to cpusets.
274 *
275 * Now, the task_struct fields mems_allowed and mempolicy may be changed
276 * by other task, we use alloc_lock in the task_struct fields to protect
277 * them.
278 *
279 * The cpuset_common_file_read() handlers only hold callback_lock across
280 * small pieces of code, such as when reading out possibly multi-word
281 * cpumasks and nodemasks.
282 *
283 * Accessing a task's cpuset should be done in accordance with the
284 * guidelines for accessing subsystem state in kernel/cgroup.c
285 */
286
287 static DEFINE_MUTEX(cpuset_mutex);
288 static DEFINE_SPINLOCK(callback_lock);
289
290 static struct workqueue_struct *cpuset_migrate_mm_wq;
291
292 /*
293 * CPU / memory hotplug is handled asynchronously.
294 */
295 static void cpuset_hotplug_workfn(struct work_struct *work);
296 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
297
298 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
299
300 /*
301 * This is ugly, but preserves the userspace API for existing cpuset
302 * users. If someone tries to mount the "cpuset" filesystem, we
303 * silently switch it to mount "cgroup" instead
304 */
305 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
306 int flags, const char *unused_dev_name, void *data)
307 {
308 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
309 struct dentry *ret = ERR_PTR(-ENODEV);
310 if (cgroup_fs) {
311 char mountopts[] =
312 "cpuset,noprefix,"
313 "release_agent=/sbin/cpuset_release_agent";
314 ret = cgroup_fs->mount(cgroup_fs, flags,
315 unused_dev_name, mountopts);
316 put_filesystem(cgroup_fs);
317 }
318 return ret;
319 }
320
321 static struct file_system_type cpuset_fs_type = {
322 .name = "cpuset",
323 .mount = cpuset_mount,
324 };
325
326 /*
327 * Return in pmask the portion of a cpusets's cpus_allowed that
328 * are online. If none are online, walk up the cpuset hierarchy
329 * until we find one that does have some online cpus. The top
330 * cpuset always has some cpus online.
331 *
332 * One way or another, we guarantee to return some non-empty subset
333 * of cpu_online_mask.
334 *
335 * Call with callback_lock or cpuset_mutex held.
336 */
337 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
338 {
339 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
340 cs = parent_cs(cs);
341 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
342 }
343
344 /*
345 * Return in *pmask the portion of a cpusets's mems_allowed that
346 * are online, with memory. If none are online with memory, walk
347 * up the cpuset hierarchy until we find one that does have some
348 * online mems. The top cpuset always has some mems online.
349 *
350 * One way or another, we guarantee to return some non-empty subset
351 * of node_states[N_MEMORY].
352 *
353 * Call with callback_lock or cpuset_mutex held.
354 */
355 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
356 {
357 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
358 cs = parent_cs(cs);
359 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
360 }
361
362 /*
363 * update task's spread flag if cpuset's page/slab spread flag is set
364 *
365 * Call with callback_lock or cpuset_mutex held.
366 */
367 static void cpuset_update_task_spread_flag(struct cpuset *cs,
368 struct task_struct *tsk)
369 {
370 if (is_spread_page(cs))
371 task_set_spread_page(tsk);
372 else
373 task_clear_spread_page(tsk);
374
375 if (is_spread_slab(cs))
376 task_set_spread_slab(tsk);
377 else
378 task_clear_spread_slab(tsk);
379 }
380
381 /*
382 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
383 *
384 * One cpuset is a subset of another if all its allowed CPUs and
385 * Memory Nodes are a subset of the other, and its exclusive flags
386 * are only set if the other's are set. Call holding cpuset_mutex.
387 */
388
389 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
390 {
391 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
392 nodes_subset(p->mems_allowed, q->mems_allowed) &&
393 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
394 is_mem_exclusive(p) <= is_mem_exclusive(q);
395 }
396
397 /**
398 * alloc_trial_cpuset - allocate a trial cpuset
399 * @cs: the cpuset that the trial cpuset duplicates
400 */
401 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
402 {
403 struct cpuset *trial;
404
405 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
406 if (!trial)
407 return NULL;
408
409 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
410 goto free_cs;
411 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
412 goto free_cpus;
413
414 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
415 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
416 return trial;
417
418 free_cpus:
419 free_cpumask_var(trial->cpus_allowed);
420 free_cs:
421 kfree(trial);
422 return NULL;
423 }
424
425 /**
426 * free_trial_cpuset - free the trial cpuset
427 * @trial: the trial cpuset to be freed
428 */
429 static void free_trial_cpuset(struct cpuset *trial)
430 {
431 free_cpumask_var(trial->effective_cpus);
432 free_cpumask_var(trial->cpus_allowed);
433 kfree(trial);
434 }
435
436 /*
437 * validate_change() - Used to validate that any proposed cpuset change
438 * follows the structural rules for cpusets.
439 *
440 * If we replaced the flag and mask values of the current cpuset
441 * (cur) with those values in the trial cpuset (trial), would
442 * our various subset and exclusive rules still be valid? Presumes
443 * cpuset_mutex held.
444 *
445 * 'cur' is the address of an actual, in-use cpuset. Operations
446 * such as list traversal that depend on the actual address of the
447 * cpuset in the list must use cur below, not trial.
448 *
449 * 'trial' is the address of bulk structure copy of cur, with
450 * perhaps one or more of the fields cpus_allowed, mems_allowed,
451 * or flags changed to new, trial values.
452 *
453 * Return 0 if valid, -errno if not.
454 */
455
456 static int validate_change(struct cpuset *cur, struct cpuset *trial)
457 {
458 struct cgroup_subsys_state *css;
459 struct cpuset *c, *par;
460 int ret;
461
462 rcu_read_lock();
463
464 /* Each of our child cpusets must be a subset of us */
465 ret = -EBUSY;
466 cpuset_for_each_child(c, css, cur)
467 if (!is_cpuset_subset(c, trial))
468 goto out;
469
470 /* Remaining checks don't apply to root cpuset */
471 ret = 0;
472 if (cur == &top_cpuset)
473 goto out;
474
475 par = parent_cs(cur);
476
477 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
478 ret = -EACCES;
479 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
480 !is_cpuset_subset(trial, par))
481 goto out;
482
483 /*
484 * If either I or some sibling (!= me) is exclusive, we can't
485 * overlap
486 */
487 ret = -EINVAL;
488 cpuset_for_each_child(c, css, par) {
489 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
490 c != cur &&
491 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
492 goto out;
493 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
494 c != cur &&
495 nodes_intersects(trial->mems_allowed, c->mems_allowed))
496 goto out;
497 }
498
499 /*
500 * Cpusets with tasks - existing or newly being attached - can't
501 * be changed to have empty cpus_allowed or mems_allowed.
502 */
503 ret = -ENOSPC;
504 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
505 if (!cpumask_empty(cur->cpus_allowed) &&
506 cpumask_empty(trial->cpus_allowed))
507 goto out;
508 if (!nodes_empty(cur->mems_allowed) &&
509 nodes_empty(trial->mems_allowed))
510 goto out;
511 }
512
513 /*
514 * We can't shrink if we won't have enough room for SCHED_DEADLINE
515 * tasks.
516 */
517 ret = -EBUSY;
518 if (is_cpu_exclusive(cur) &&
519 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
520 trial->cpus_allowed))
521 goto out;
522
523 ret = 0;
524 out:
525 rcu_read_unlock();
526 return ret;
527 }
528
529 #ifdef CONFIG_SMP
530 /*
531 * Helper routine for generate_sched_domains().
532 * Do cpusets a, b have overlapping effective cpus_allowed masks?
533 */
534 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
535 {
536 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
537 }
538
539 static void
540 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
541 {
542 if (dattr->relax_domain_level < c->relax_domain_level)
543 dattr->relax_domain_level = c->relax_domain_level;
544 return;
545 }
546
547 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
548 struct cpuset *root_cs)
549 {
550 struct cpuset *cp;
551 struct cgroup_subsys_state *pos_css;
552
553 rcu_read_lock();
554 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
555 /* skip the whole subtree if @cp doesn't have any CPU */
556 if (cpumask_empty(cp->cpus_allowed)) {
557 pos_css = css_rightmost_descendant(pos_css);
558 continue;
559 }
560
561 if (is_sched_load_balance(cp))
562 update_domain_attr(dattr, cp);
563 }
564 rcu_read_unlock();
565 }
566
567 /*
568 * generate_sched_domains()
569 *
570 * This function builds a partial partition of the systems CPUs
571 * A 'partial partition' is a set of non-overlapping subsets whose
572 * union is a subset of that set.
573 * The output of this function needs to be passed to kernel/sched/core.c
574 * partition_sched_domains() routine, which will rebuild the scheduler's
575 * load balancing domains (sched domains) as specified by that partial
576 * partition.
577 *
578 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
579 * for a background explanation of this.
580 *
581 * Does not return errors, on the theory that the callers of this
582 * routine would rather not worry about failures to rebuild sched
583 * domains when operating in the severe memory shortage situations
584 * that could cause allocation failures below.
585 *
586 * Must be called with cpuset_mutex held.
587 *
588 * The three key local variables below are:
589 * q - a linked-list queue of cpuset pointers, used to implement a
590 * top-down scan of all cpusets. This scan loads a pointer
591 * to each cpuset marked is_sched_load_balance into the
592 * array 'csa'. For our purposes, rebuilding the schedulers
593 * sched domains, we can ignore !is_sched_load_balance cpusets.
594 * csa - (for CpuSet Array) Array of pointers to all the cpusets
595 * that need to be load balanced, for convenient iterative
596 * access by the subsequent code that finds the best partition,
597 * i.e the set of domains (subsets) of CPUs such that the
598 * cpus_allowed of every cpuset marked is_sched_load_balance
599 * is a subset of one of these domains, while there are as
600 * many such domains as possible, each as small as possible.
601 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
602 * the kernel/sched/core.c routine partition_sched_domains() in a
603 * convenient format, that can be easily compared to the prior
604 * value to determine what partition elements (sched domains)
605 * were changed (added or removed.)
606 *
607 * Finding the best partition (set of domains):
608 * The triple nested loops below over i, j, k scan over the
609 * load balanced cpusets (using the array of cpuset pointers in
610 * csa[]) looking for pairs of cpusets that have overlapping
611 * cpus_allowed, but which don't have the same 'pn' partition
612 * number and gives them in the same partition number. It keeps
613 * looping on the 'restart' label until it can no longer find
614 * any such pairs.
615 *
616 * The union of the cpus_allowed masks from the set of
617 * all cpusets having the same 'pn' value then form the one
618 * element of the partition (one sched domain) to be passed to
619 * partition_sched_domains().
620 */
621 static int generate_sched_domains(cpumask_var_t **domains,
622 struct sched_domain_attr **attributes)
623 {
624 struct cpuset *cp; /* scans q */
625 struct cpuset **csa; /* array of all cpuset ptrs */
626 int csn; /* how many cpuset ptrs in csa so far */
627 int i, j, k; /* indices for partition finding loops */
628 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
629 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
630 struct sched_domain_attr *dattr; /* attributes for custom domains */
631 int ndoms = 0; /* number of sched domains in result */
632 int nslot; /* next empty doms[] struct cpumask slot */
633 struct cgroup_subsys_state *pos_css;
634
635 doms = NULL;
636 dattr = NULL;
637 csa = NULL;
638
639 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
640 goto done;
641 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
642
643 /* Special case for the 99% of systems with one, full, sched domain */
644 if (is_sched_load_balance(&top_cpuset)) {
645 ndoms = 1;
646 doms = alloc_sched_domains(ndoms);
647 if (!doms)
648 goto done;
649
650 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
651 if (dattr) {
652 *dattr = SD_ATTR_INIT;
653 update_domain_attr_tree(dattr, &top_cpuset);
654 }
655 cpumask_and(doms[0], top_cpuset.effective_cpus,
656 non_isolated_cpus);
657
658 goto done;
659 }
660
661 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
662 if (!csa)
663 goto done;
664 csn = 0;
665
666 rcu_read_lock();
667 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
668 if (cp == &top_cpuset)
669 continue;
670 /*
671 * Continue traversing beyond @cp iff @cp has some CPUs and
672 * isn't load balancing. The former is obvious. The
673 * latter: All child cpusets contain a subset of the
674 * parent's cpus, so just skip them, and then we call
675 * update_domain_attr_tree() to calc relax_domain_level of
676 * the corresponding sched domain.
677 */
678 if (!cpumask_empty(cp->cpus_allowed) &&
679 !(is_sched_load_balance(cp) &&
680 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
681 continue;
682
683 if (is_sched_load_balance(cp))
684 csa[csn++] = cp;
685
686 /* skip @cp's subtree */
687 pos_css = css_rightmost_descendant(pos_css);
688 }
689 rcu_read_unlock();
690
691 for (i = 0; i < csn; i++)
692 csa[i]->pn = i;
693 ndoms = csn;
694
695 restart:
696 /* Find the best partition (set of sched domains) */
697 for (i = 0; i < csn; i++) {
698 struct cpuset *a = csa[i];
699 int apn = a->pn;
700
701 for (j = 0; j < csn; j++) {
702 struct cpuset *b = csa[j];
703 int bpn = b->pn;
704
705 if (apn != bpn && cpusets_overlap(a, b)) {
706 for (k = 0; k < csn; k++) {
707 struct cpuset *c = csa[k];
708
709 if (c->pn == bpn)
710 c->pn = apn;
711 }
712 ndoms--; /* one less element */
713 goto restart;
714 }
715 }
716 }
717
718 /*
719 * Now we know how many domains to create.
720 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
721 */
722 doms = alloc_sched_domains(ndoms);
723 if (!doms)
724 goto done;
725
726 /*
727 * The rest of the code, including the scheduler, can deal with
728 * dattr==NULL case. No need to abort if alloc fails.
729 */
730 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
731
732 for (nslot = 0, i = 0; i < csn; i++) {
733 struct cpuset *a = csa[i];
734 struct cpumask *dp;
735 int apn = a->pn;
736
737 if (apn < 0) {
738 /* Skip completed partitions */
739 continue;
740 }
741
742 dp = doms[nslot];
743
744 if (nslot == ndoms) {
745 static int warnings = 10;
746 if (warnings) {
747 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
748 nslot, ndoms, csn, i, apn);
749 warnings--;
750 }
751 continue;
752 }
753
754 cpumask_clear(dp);
755 if (dattr)
756 *(dattr + nslot) = SD_ATTR_INIT;
757 for (j = i; j < csn; j++) {
758 struct cpuset *b = csa[j];
759
760 if (apn == b->pn) {
761 cpumask_or(dp, dp, b->effective_cpus);
762 cpumask_and(dp, dp, non_isolated_cpus);
763 if (dattr)
764 update_domain_attr_tree(dattr + nslot, b);
765
766 /* Done with this partition */
767 b->pn = -1;
768 }
769 }
770 nslot++;
771 }
772 BUG_ON(nslot != ndoms);
773
774 done:
775 free_cpumask_var(non_isolated_cpus);
776 kfree(csa);
777
778 /*
779 * Fallback to the default domain if kmalloc() failed.
780 * See comments in partition_sched_domains().
781 */
782 if (doms == NULL)
783 ndoms = 1;
784
785 *domains = doms;
786 *attributes = dattr;
787 return ndoms;
788 }
789
790 /*
791 * Rebuild scheduler domains.
792 *
793 * If the flag 'sched_load_balance' of any cpuset with non-empty
794 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
795 * which has that flag enabled, or if any cpuset with a non-empty
796 * 'cpus' is removed, then call this routine to rebuild the
797 * scheduler's dynamic sched domains.
798 *
799 * Call with cpuset_mutex held. Takes get_online_cpus().
800 */
801 static void rebuild_sched_domains_locked(void)
802 {
803 struct sched_domain_attr *attr;
804 cpumask_var_t *doms;
805 int ndoms;
806
807 lockdep_assert_held(&cpuset_mutex);
808 get_online_cpus();
809
810 /*
811 * We have raced with CPU hotplug. Don't do anything to avoid
812 * passing doms with offlined cpu to partition_sched_domains().
813 * Anyways, hotplug work item will rebuild sched domains.
814 */
815 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
816 goto out;
817
818 /* Generate domain masks and attrs */
819 ndoms = generate_sched_domains(&doms, &attr);
820
821 /* Have scheduler rebuild the domains */
822 partition_sched_domains(ndoms, doms, attr);
823 out:
824 put_online_cpus();
825 }
826 #else /* !CONFIG_SMP */
827 static void rebuild_sched_domains_locked(void)
828 {
829 }
830 #endif /* CONFIG_SMP */
831
832 void rebuild_sched_domains(void)
833 {
834 mutex_lock(&cpuset_mutex);
835 rebuild_sched_domains_locked();
836 mutex_unlock(&cpuset_mutex);
837 }
838
839 /**
840 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
841 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
842 *
843 * Iterate through each task of @cs updating its cpus_allowed to the
844 * effective cpuset's. As this function is called with cpuset_mutex held,
845 * cpuset membership stays stable.
846 */
847 static void update_tasks_cpumask(struct cpuset *cs)
848 {
849 struct css_task_iter it;
850 struct task_struct *task;
851
852 css_task_iter_start(&cs->css, &it);
853 while ((task = css_task_iter_next(&it)))
854 set_cpus_allowed_ptr(task, cs->effective_cpus);
855 css_task_iter_end(&it);
856 }
857
858 /*
859 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
860 * @cs: the cpuset to consider
861 * @new_cpus: temp variable for calculating new effective_cpus
862 *
863 * When congifured cpumask is changed, the effective cpumasks of this cpuset
864 * and all its descendants need to be updated.
865 *
866 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
867 *
868 * Called with cpuset_mutex held
869 */
870 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
871 {
872 struct cpuset *cp;
873 struct cgroup_subsys_state *pos_css;
874 bool need_rebuild_sched_domains = false;
875
876 rcu_read_lock();
877 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
878 struct cpuset *parent = parent_cs(cp);
879
880 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
881
882 /*
883 * If it becomes empty, inherit the effective mask of the
884 * parent, which is guaranteed to have some CPUs.
885 */
886 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
887 cpumask_empty(new_cpus))
888 cpumask_copy(new_cpus, parent->effective_cpus);
889
890 /* Skip the whole subtree if the cpumask remains the same. */
891 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
892 pos_css = css_rightmost_descendant(pos_css);
893 continue;
894 }
895
896 if (!css_tryget_online(&cp->css))
897 continue;
898 rcu_read_unlock();
899
900 spin_lock_irq(&callback_lock);
901 cpumask_copy(cp->effective_cpus, new_cpus);
902 spin_unlock_irq(&callback_lock);
903
904 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
905 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
906
907 update_tasks_cpumask(cp);
908
909 /*
910 * If the effective cpumask of any non-empty cpuset is changed,
911 * we need to rebuild sched domains.
912 */
913 if (!cpumask_empty(cp->cpus_allowed) &&
914 is_sched_load_balance(cp))
915 need_rebuild_sched_domains = true;
916
917 rcu_read_lock();
918 css_put(&cp->css);
919 }
920 rcu_read_unlock();
921
922 if (need_rebuild_sched_domains)
923 rebuild_sched_domains_locked();
924 }
925
926 /**
927 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
928 * @cs: the cpuset to consider
929 * @trialcs: trial cpuset
930 * @buf: buffer of cpu numbers written to this cpuset
931 */
932 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
933 const char *buf)
934 {
935 int retval;
936
937 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
938 if (cs == &top_cpuset)
939 return -EACCES;
940
941 /*
942 * An empty cpus_allowed is ok only if the cpuset has no tasks.
943 * Since cpulist_parse() fails on an empty mask, we special case
944 * that parsing. The validate_change() call ensures that cpusets
945 * with tasks have cpus.
946 */
947 if (!*buf) {
948 cpumask_clear(trialcs->cpus_allowed);
949 } else {
950 retval = cpulist_parse(buf, trialcs->cpus_allowed);
951 if (retval < 0)
952 return retval;
953
954 if (!cpumask_subset(trialcs->cpus_allowed,
955 top_cpuset.cpus_allowed))
956 return -EINVAL;
957 }
958
959 /* Nothing to do if the cpus didn't change */
960 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
961 return 0;
962
963 retval = validate_change(cs, trialcs);
964 if (retval < 0)
965 return retval;
966
967 spin_lock_irq(&callback_lock);
968 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
969 spin_unlock_irq(&callback_lock);
970
971 /* use trialcs->cpus_allowed as a temp variable */
972 update_cpumasks_hier(cs, trialcs->cpus_allowed);
973 return 0;
974 }
975
976 /*
977 * Migrate memory region from one set of nodes to another. This is
978 * performed asynchronously as it can be called from process migration path
979 * holding locks involved in process management. All mm migrations are
980 * performed in the queued order and can be waited for by flushing
981 * cpuset_migrate_mm_wq.
982 */
983
984 struct cpuset_migrate_mm_work {
985 struct work_struct work;
986 struct mm_struct *mm;
987 nodemask_t from;
988 nodemask_t to;
989 };
990
991 static void cpuset_migrate_mm_workfn(struct work_struct *work)
992 {
993 struct cpuset_migrate_mm_work *mwork =
994 container_of(work, struct cpuset_migrate_mm_work, work);
995
996 /* on a wq worker, no need to worry about %current's mems_allowed */
997 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
998 mmput(mwork->mm);
999 kfree(mwork);
1000 }
1001
1002 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1003 const nodemask_t *to)
1004 {
1005 struct cpuset_migrate_mm_work *mwork;
1006
1007 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1008 if (mwork) {
1009 mwork->mm = mm;
1010 mwork->from = *from;
1011 mwork->to = *to;
1012 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1013 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1014 } else {
1015 mmput(mm);
1016 }
1017 }
1018
1019 void cpuset_post_attach_flush(void)
1020 {
1021 flush_workqueue(cpuset_migrate_mm_wq);
1022 }
1023
1024 /*
1025 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1026 * @tsk: the task to change
1027 * @newmems: new nodes that the task will be set
1028 *
1029 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1030 * we structure updates as setting all new allowed nodes, then clearing newly
1031 * disallowed ones.
1032 */
1033 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1034 nodemask_t *newmems)
1035 {
1036 bool need_loop;
1037
1038 /*
1039 * Allow tasks that have access to memory reserves because they have
1040 * been OOM killed to get memory anywhere.
1041 */
1042 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1043 return;
1044 if (current->flags & PF_EXITING) /* Let dying task have memory */
1045 return;
1046
1047 task_lock(tsk);
1048 /*
1049 * Determine if a loop is necessary if another thread is doing
1050 * read_mems_allowed_begin(). If at least one node remains unchanged and
1051 * tsk does not have a mempolicy, then an empty nodemask will not be
1052 * possible when mems_allowed is larger than a word.
1053 */
1054 need_loop = task_has_mempolicy(tsk) ||
1055 !nodes_intersects(*newmems, tsk->mems_allowed);
1056
1057 if (need_loop) {
1058 local_irq_disable();
1059 write_seqcount_begin(&tsk->mems_allowed_seq);
1060 }
1061
1062 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1063 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1064
1065 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1066 tsk->mems_allowed = *newmems;
1067
1068 if (need_loop) {
1069 write_seqcount_end(&tsk->mems_allowed_seq);
1070 local_irq_enable();
1071 }
1072
1073 task_unlock(tsk);
1074 }
1075
1076 static void *cpuset_being_rebound;
1077
1078 /**
1079 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1080 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1081 *
1082 * Iterate through each task of @cs updating its mems_allowed to the
1083 * effective cpuset's. As this function is called with cpuset_mutex held,
1084 * cpuset membership stays stable.
1085 */
1086 static void update_tasks_nodemask(struct cpuset *cs)
1087 {
1088 static nodemask_t newmems; /* protected by cpuset_mutex */
1089 struct css_task_iter it;
1090 struct task_struct *task;
1091
1092 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1093
1094 guarantee_online_mems(cs, &newmems);
1095
1096 /*
1097 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1098 * take while holding tasklist_lock. Forks can happen - the
1099 * mpol_dup() cpuset_being_rebound check will catch such forks,
1100 * and rebind their vma mempolicies too. Because we still hold
1101 * the global cpuset_mutex, we know that no other rebind effort
1102 * will be contending for the global variable cpuset_being_rebound.
1103 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1104 * is idempotent. Also migrate pages in each mm to new nodes.
1105 */
1106 css_task_iter_start(&cs->css, &it);
1107 while ((task = css_task_iter_next(&it))) {
1108 struct mm_struct *mm;
1109 bool migrate;
1110
1111 cpuset_change_task_nodemask(task, &newmems);
1112
1113 mm = get_task_mm(task);
1114 if (!mm)
1115 continue;
1116
1117 migrate = is_memory_migrate(cs);
1118
1119 mpol_rebind_mm(mm, &cs->mems_allowed);
1120 if (migrate)
1121 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1122 else
1123 mmput(mm);
1124 }
1125 css_task_iter_end(&it);
1126
1127 /*
1128 * All the tasks' nodemasks have been updated, update
1129 * cs->old_mems_allowed.
1130 */
1131 cs->old_mems_allowed = newmems;
1132
1133 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1134 cpuset_being_rebound = NULL;
1135 }
1136
1137 /*
1138 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1139 * @cs: the cpuset to consider
1140 * @new_mems: a temp variable for calculating new effective_mems
1141 *
1142 * When configured nodemask is changed, the effective nodemasks of this cpuset
1143 * and all its descendants need to be updated.
1144 *
1145 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1146 *
1147 * Called with cpuset_mutex held
1148 */
1149 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1150 {
1151 struct cpuset *cp;
1152 struct cgroup_subsys_state *pos_css;
1153
1154 rcu_read_lock();
1155 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1156 struct cpuset *parent = parent_cs(cp);
1157
1158 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1159
1160 /*
1161 * If it becomes empty, inherit the effective mask of the
1162 * parent, which is guaranteed to have some MEMs.
1163 */
1164 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1165 nodes_empty(*new_mems))
1166 *new_mems = parent->effective_mems;
1167
1168 /* Skip the whole subtree if the nodemask remains the same. */
1169 if (nodes_equal(*new_mems, cp->effective_mems)) {
1170 pos_css = css_rightmost_descendant(pos_css);
1171 continue;
1172 }
1173
1174 if (!css_tryget_online(&cp->css))
1175 continue;
1176 rcu_read_unlock();
1177
1178 spin_lock_irq(&callback_lock);
1179 cp->effective_mems = *new_mems;
1180 spin_unlock_irq(&callback_lock);
1181
1182 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1183 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1184
1185 update_tasks_nodemask(cp);
1186
1187 rcu_read_lock();
1188 css_put(&cp->css);
1189 }
1190 rcu_read_unlock();
1191 }
1192
1193 /*
1194 * Handle user request to change the 'mems' memory placement
1195 * of a cpuset. Needs to validate the request, update the
1196 * cpusets mems_allowed, and for each task in the cpuset,
1197 * update mems_allowed and rebind task's mempolicy and any vma
1198 * mempolicies and if the cpuset is marked 'memory_migrate',
1199 * migrate the tasks pages to the new memory.
1200 *
1201 * Call with cpuset_mutex held. May take callback_lock during call.
1202 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1203 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1204 * their mempolicies to the cpusets new mems_allowed.
1205 */
1206 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1207 const char *buf)
1208 {
1209 int retval;
1210
1211 /*
1212 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1213 * it's read-only
1214 */
1215 if (cs == &top_cpuset) {
1216 retval = -EACCES;
1217 goto done;
1218 }
1219
1220 /*
1221 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1222 * Since nodelist_parse() fails on an empty mask, we special case
1223 * that parsing. The validate_change() call ensures that cpusets
1224 * with tasks have memory.
1225 */
1226 if (!*buf) {
1227 nodes_clear(trialcs->mems_allowed);
1228 } else {
1229 retval = nodelist_parse(buf, trialcs->mems_allowed);
1230 if (retval < 0)
1231 goto done;
1232
1233 if (!nodes_subset(trialcs->mems_allowed,
1234 top_cpuset.mems_allowed)) {
1235 retval = -EINVAL;
1236 goto done;
1237 }
1238 }
1239
1240 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1241 retval = 0; /* Too easy - nothing to do */
1242 goto done;
1243 }
1244 retval = validate_change(cs, trialcs);
1245 if (retval < 0)
1246 goto done;
1247
1248 spin_lock_irq(&callback_lock);
1249 cs->mems_allowed = trialcs->mems_allowed;
1250 spin_unlock_irq(&callback_lock);
1251
1252 /* use trialcs->mems_allowed as a temp variable */
1253 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1254 done:
1255 return retval;
1256 }
1257
1258 int current_cpuset_is_being_rebound(void)
1259 {
1260 int ret;
1261
1262 rcu_read_lock();
1263 ret = task_cs(current) == cpuset_being_rebound;
1264 rcu_read_unlock();
1265
1266 return ret;
1267 }
1268
1269 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1270 {
1271 #ifdef CONFIG_SMP
1272 if (val < -1 || val >= sched_domain_level_max)
1273 return -EINVAL;
1274 #endif
1275
1276 if (val != cs->relax_domain_level) {
1277 cs->relax_domain_level = val;
1278 if (!cpumask_empty(cs->cpus_allowed) &&
1279 is_sched_load_balance(cs))
1280 rebuild_sched_domains_locked();
1281 }
1282
1283 return 0;
1284 }
1285
1286 /**
1287 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1288 * @cs: the cpuset in which each task's spread flags needs to be changed
1289 *
1290 * Iterate through each task of @cs updating its spread flags. As this
1291 * function is called with cpuset_mutex held, cpuset membership stays
1292 * stable.
1293 */
1294 static void update_tasks_flags(struct cpuset *cs)
1295 {
1296 struct css_task_iter it;
1297 struct task_struct *task;
1298
1299 css_task_iter_start(&cs->css, &it);
1300 while ((task = css_task_iter_next(&it)))
1301 cpuset_update_task_spread_flag(cs, task);
1302 css_task_iter_end(&it);
1303 }
1304
1305 /*
1306 * update_flag - read a 0 or a 1 in a file and update associated flag
1307 * bit: the bit to update (see cpuset_flagbits_t)
1308 * cs: the cpuset to update
1309 * turning_on: whether the flag is being set or cleared
1310 *
1311 * Call with cpuset_mutex held.
1312 */
1313
1314 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1315 int turning_on)
1316 {
1317 struct cpuset *trialcs;
1318 int balance_flag_changed;
1319 int spread_flag_changed;
1320 int err;
1321
1322 trialcs = alloc_trial_cpuset(cs);
1323 if (!trialcs)
1324 return -ENOMEM;
1325
1326 if (turning_on)
1327 set_bit(bit, &trialcs->flags);
1328 else
1329 clear_bit(bit, &trialcs->flags);
1330
1331 err = validate_change(cs, trialcs);
1332 if (err < 0)
1333 goto out;
1334
1335 balance_flag_changed = (is_sched_load_balance(cs) !=
1336 is_sched_load_balance(trialcs));
1337
1338 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1339 || (is_spread_page(cs) != is_spread_page(trialcs)));
1340
1341 spin_lock_irq(&callback_lock);
1342 cs->flags = trialcs->flags;
1343 spin_unlock_irq(&callback_lock);
1344
1345 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1346 rebuild_sched_domains_locked();
1347
1348 if (spread_flag_changed)
1349 update_tasks_flags(cs);
1350 out:
1351 free_trial_cpuset(trialcs);
1352 return err;
1353 }
1354
1355 /*
1356 * Frequency meter - How fast is some event occurring?
1357 *
1358 * These routines manage a digitally filtered, constant time based,
1359 * event frequency meter. There are four routines:
1360 * fmeter_init() - initialize a frequency meter.
1361 * fmeter_markevent() - called each time the event happens.
1362 * fmeter_getrate() - returns the recent rate of such events.
1363 * fmeter_update() - internal routine used to update fmeter.
1364 *
1365 * A common data structure is passed to each of these routines,
1366 * which is used to keep track of the state required to manage the
1367 * frequency meter and its digital filter.
1368 *
1369 * The filter works on the number of events marked per unit time.
1370 * The filter is single-pole low-pass recursive (IIR). The time unit
1371 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1372 * simulate 3 decimal digits of precision (multiplied by 1000).
1373 *
1374 * With an FM_COEF of 933, and a time base of 1 second, the filter
1375 * has a half-life of 10 seconds, meaning that if the events quit
1376 * happening, then the rate returned from the fmeter_getrate()
1377 * will be cut in half each 10 seconds, until it converges to zero.
1378 *
1379 * It is not worth doing a real infinitely recursive filter. If more
1380 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1381 * just compute FM_MAXTICKS ticks worth, by which point the level
1382 * will be stable.
1383 *
1384 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1385 * arithmetic overflow in the fmeter_update() routine.
1386 *
1387 * Given the simple 32 bit integer arithmetic used, this meter works
1388 * best for reporting rates between one per millisecond (msec) and
1389 * one per 32 (approx) seconds. At constant rates faster than one
1390 * per msec it maxes out at values just under 1,000,000. At constant
1391 * rates between one per msec, and one per second it will stabilize
1392 * to a value N*1000, where N is the rate of events per second.
1393 * At constant rates between one per second and one per 32 seconds,
1394 * it will be choppy, moving up on the seconds that have an event,
1395 * and then decaying until the next event. At rates slower than
1396 * about one in 32 seconds, it decays all the way back to zero between
1397 * each event.
1398 */
1399
1400 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1401 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1402 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1403 #define FM_SCALE 1000 /* faux fixed point scale */
1404
1405 /* Initialize a frequency meter */
1406 static void fmeter_init(struct fmeter *fmp)
1407 {
1408 fmp->cnt = 0;
1409 fmp->val = 0;
1410 fmp->time = 0;
1411 spin_lock_init(&fmp->lock);
1412 }
1413
1414 /* Internal meter update - process cnt events and update value */
1415 static void fmeter_update(struct fmeter *fmp)
1416 {
1417 time64_t now;
1418 u32 ticks;
1419
1420 now = ktime_get_seconds();
1421 ticks = now - fmp->time;
1422
1423 if (ticks == 0)
1424 return;
1425
1426 ticks = min(FM_MAXTICKS, ticks);
1427 while (ticks-- > 0)
1428 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1429 fmp->time = now;
1430
1431 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1432 fmp->cnt = 0;
1433 }
1434
1435 /* Process any previous ticks, then bump cnt by one (times scale). */
1436 static void fmeter_markevent(struct fmeter *fmp)
1437 {
1438 spin_lock(&fmp->lock);
1439 fmeter_update(fmp);
1440 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1441 spin_unlock(&fmp->lock);
1442 }
1443
1444 /* Process any previous ticks, then return current value. */
1445 static int fmeter_getrate(struct fmeter *fmp)
1446 {
1447 int val;
1448
1449 spin_lock(&fmp->lock);
1450 fmeter_update(fmp);
1451 val = fmp->val;
1452 spin_unlock(&fmp->lock);
1453 return val;
1454 }
1455
1456 static struct cpuset *cpuset_attach_old_cs;
1457
1458 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1459 static int cpuset_can_attach(struct cgroup_taskset *tset)
1460 {
1461 struct cgroup_subsys_state *css;
1462 struct cpuset *cs;
1463 struct task_struct *task;
1464 int ret;
1465
1466 /* used later by cpuset_attach() */
1467 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1468 cs = css_cs(css);
1469
1470 mutex_lock(&cpuset_mutex);
1471
1472 /* allow moving tasks into an empty cpuset if on default hierarchy */
1473 ret = -ENOSPC;
1474 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1475 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1476 goto out_unlock;
1477
1478 cgroup_taskset_for_each(task, css, tset) {
1479 ret = task_can_attach(task, cs->cpus_allowed);
1480 if (ret)
1481 goto out_unlock;
1482 ret = security_task_setscheduler(task);
1483 if (ret)
1484 goto out_unlock;
1485 }
1486
1487 /*
1488 * Mark attach is in progress. This makes validate_change() fail
1489 * changes which zero cpus/mems_allowed.
1490 */
1491 cs->attach_in_progress++;
1492 ret = 0;
1493 out_unlock:
1494 mutex_unlock(&cpuset_mutex);
1495 return ret;
1496 }
1497
1498 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1499 {
1500 struct cgroup_subsys_state *css;
1501 struct cpuset *cs;
1502
1503 cgroup_taskset_first(tset, &css);
1504 cs = css_cs(css);
1505
1506 mutex_lock(&cpuset_mutex);
1507 css_cs(css)->attach_in_progress--;
1508 mutex_unlock(&cpuset_mutex);
1509 }
1510
1511 /*
1512 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1513 * but we can't allocate it dynamically there. Define it global and
1514 * allocate from cpuset_init().
1515 */
1516 static cpumask_var_t cpus_attach;
1517
1518 static void cpuset_attach(struct cgroup_taskset *tset)
1519 {
1520 /* static buf protected by cpuset_mutex */
1521 static nodemask_t cpuset_attach_nodemask_to;
1522 struct task_struct *task;
1523 struct task_struct *leader;
1524 struct cgroup_subsys_state *css;
1525 struct cpuset *cs;
1526 struct cpuset *oldcs = cpuset_attach_old_cs;
1527
1528 cgroup_taskset_first(tset, &css);
1529 cs = css_cs(css);
1530
1531 mutex_lock(&cpuset_mutex);
1532
1533 /* prepare for attach */
1534 if (cs == &top_cpuset)
1535 cpumask_copy(cpus_attach, cpu_possible_mask);
1536 else
1537 guarantee_online_cpus(cs, cpus_attach);
1538
1539 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1540
1541 cgroup_taskset_for_each(task, css, tset) {
1542 /*
1543 * can_attach beforehand should guarantee that this doesn't
1544 * fail. TODO: have a better way to handle failure here
1545 */
1546 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1547
1548 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1549 cpuset_update_task_spread_flag(cs, task);
1550 }
1551
1552 /*
1553 * Change mm for all threadgroup leaders. This is expensive and may
1554 * sleep and should be moved outside migration path proper.
1555 */
1556 cpuset_attach_nodemask_to = cs->effective_mems;
1557 cgroup_taskset_for_each_leader(leader, css, tset) {
1558 struct mm_struct *mm = get_task_mm(leader);
1559
1560 if (mm) {
1561 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1562
1563 /*
1564 * old_mems_allowed is the same with mems_allowed
1565 * here, except if this task is being moved
1566 * automatically due to hotplug. In that case
1567 * @mems_allowed has been updated and is empty, so
1568 * @old_mems_allowed is the right nodesets that we
1569 * migrate mm from.
1570 */
1571 if (is_memory_migrate(cs))
1572 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1573 &cpuset_attach_nodemask_to);
1574 else
1575 mmput(mm);
1576 }
1577 }
1578
1579 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1580
1581 cs->attach_in_progress--;
1582 if (!cs->attach_in_progress)
1583 wake_up(&cpuset_attach_wq);
1584
1585 mutex_unlock(&cpuset_mutex);
1586 }
1587
1588 /* The various types of files and directories in a cpuset file system */
1589
1590 typedef enum {
1591 FILE_MEMORY_MIGRATE,
1592 FILE_CPULIST,
1593 FILE_MEMLIST,
1594 FILE_EFFECTIVE_CPULIST,
1595 FILE_EFFECTIVE_MEMLIST,
1596 FILE_CPU_EXCLUSIVE,
1597 FILE_MEM_EXCLUSIVE,
1598 FILE_MEM_HARDWALL,
1599 FILE_SCHED_LOAD_BALANCE,
1600 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1601 FILE_MEMORY_PRESSURE_ENABLED,
1602 FILE_MEMORY_PRESSURE,
1603 FILE_SPREAD_PAGE,
1604 FILE_SPREAD_SLAB,
1605 } cpuset_filetype_t;
1606
1607 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1608 u64 val)
1609 {
1610 struct cpuset *cs = css_cs(css);
1611 cpuset_filetype_t type = cft->private;
1612 int retval = 0;
1613
1614 mutex_lock(&cpuset_mutex);
1615 if (!is_cpuset_online(cs)) {
1616 retval = -ENODEV;
1617 goto out_unlock;
1618 }
1619
1620 switch (type) {
1621 case FILE_CPU_EXCLUSIVE:
1622 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1623 break;
1624 case FILE_MEM_EXCLUSIVE:
1625 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1626 break;
1627 case FILE_MEM_HARDWALL:
1628 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1629 break;
1630 case FILE_SCHED_LOAD_BALANCE:
1631 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1632 break;
1633 case FILE_MEMORY_MIGRATE:
1634 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1635 break;
1636 case FILE_MEMORY_PRESSURE_ENABLED:
1637 cpuset_memory_pressure_enabled = !!val;
1638 break;
1639 case FILE_SPREAD_PAGE:
1640 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1641 break;
1642 case FILE_SPREAD_SLAB:
1643 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1644 break;
1645 default:
1646 retval = -EINVAL;
1647 break;
1648 }
1649 out_unlock:
1650 mutex_unlock(&cpuset_mutex);
1651 return retval;
1652 }
1653
1654 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1655 s64 val)
1656 {
1657 struct cpuset *cs = css_cs(css);
1658 cpuset_filetype_t type = cft->private;
1659 int retval = -ENODEV;
1660
1661 mutex_lock(&cpuset_mutex);
1662 if (!is_cpuset_online(cs))
1663 goto out_unlock;
1664
1665 switch (type) {
1666 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1667 retval = update_relax_domain_level(cs, val);
1668 break;
1669 default:
1670 retval = -EINVAL;
1671 break;
1672 }
1673 out_unlock:
1674 mutex_unlock(&cpuset_mutex);
1675 return retval;
1676 }
1677
1678 /*
1679 * Common handling for a write to a "cpus" or "mems" file.
1680 */
1681 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1682 char *buf, size_t nbytes, loff_t off)
1683 {
1684 struct cpuset *cs = css_cs(of_css(of));
1685 struct cpuset *trialcs;
1686 int retval = -ENODEV;
1687
1688 buf = strstrip(buf);
1689
1690 /*
1691 * CPU or memory hotunplug may leave @cs w/o any execution
1692 * resources, in which case the hotplug code asynchronously updates
1693 * configuration and transfers all tasks to the nearest ancestor
1694 * which can execute.
1695 *
1696 * As writes to "cpus" or "mems" may restore @cs's execution
1697 * resources, wait for the previously scheduled operations before
1698 * proceeding, so that we don't end up keep removing tasks added
1699 * after execution capability is restored.
1700 *
1701 * cpuset_hotplug_work calls back into cgroup core via
1702 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1703 * operation like this one can lead to a deadlock through kernfs
1704 * active_ref protection. Let's break the protection. Losing the
1705 * protection is okay as we check whether @cs is online after
1706 * grabbing cpuset_mutex anyway. This only happens on the legacy
1707 * hierarchies.
1708 */
1709 css_get(&cs->css);
1710 kernfs_break_active_protection(of->kn);
1711 flush_work(&cpuset_hotplug_work);
1712
1713 mutex_lock(&cpuset_mutex);
1714 if (!is_cpuset_online(cs))
1715 goto out_unlock;
1716
1717 trialcs = alloc_trial_cpuset(cs);
1718 if (!trialcs) {
1719 retval = -ENOMEM;
1720 goto out_unlock;
1721 }
1722
1723 switch (of_cft(of)->private) {
1724 case FILE_CPULIST:
1725 retval = update_cpumask(cs, trialcs, buf);
1726 break;
1727 case FILE_MEMLIST:
1728 retval = update_nodemask(cs, trialcs, buf);
1729 break;
1730 default:
1731 retval = -EINVAL;
1732 break;
1733 }
1734
1735 free_trial_cpuset(trialcs);
1736 out_unlock:
1737 mutex_unlock(&cpuset_mutex);
1738 kernfs_unbreak_active_protection(of->kn);
1739 css_put(&cs->css);
1740 flush_workqueue(cpuset_migrate_mm_wq);
1741 return retval ?: nbytes;
1742 }
1743
1744 /*
1745 * These ascii lists should be read in a single call, by using a user
1746 * buffer large enough to hold the entire map. If read in smaller
1747 * chunks, there is no guarantee of atomicity. Since the display format
1748 * used, list of ranges of sequential numbers, is variable length,
1749 * and since these maps can change value dynamically, one could read
1750 * gibberish by doing partial reads while a list was changing.
1751 */
1752 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1753 {
1754 struct cpuset *cs = css_cs(seq_css(sf));
1755 cpuset_filetype_t type = seq_cft(sf)->private;
1756 int ret = 0;
1757
1758 spin_lock_irq(&callback_lock);
1759
1760 switch (type) {
1761 case FILE_CPULIST:
1762 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1763 break;
1764 case FILE_MEMLIST:
1765 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1766 break;
1767 case FILE_EFFECTIVE_CPULIST:
1768 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1769 break;
1770 case FILE_EFFECTIVE_MEMLIST:
1771 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1772 break;
1773 default:
1774 ret = -EINVAL;
1775 }
1776
1777 spin_unlock_irq(&callback_lock);
1778 return ret;
1779 }
1780
1781 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1782 {
1783 struct cpuset *cs = css_cs(css);
1784 cpuset_filetype_t type = cft->private;
1785 switch (type) {
1786 case FILE_CPU_EXCLUSIVE:
1787 return is_cpu_exclusive(cs);
1788 case FILE_MEM_EXCLUSIVE:
1789 return is_mem_exclusive(cs);
1790 case FILE_MEM_HARDWALL:
1791 return is_mem_hardwall(cs);
1792 case FILE_SCHED_LOAD_BALANCE:
1793 return is_sched_load_balance(cs);
1794 case FILE_MEMORY_MIGRATE:
1795 return is_memory_migrate(cs);
1796 case FILE_MEMORY_PRESSURE_ENABLED:
1797 return cpuset_memory_pressure_enabled;
1798 case FILE_MEMORY_PRESSURE:
1799 return fmeter_getrate(&cs->fmeter);
1800 case FILE_SPREAD_PAGE:
1801 return is_spread_page(cs);
1802 case FILE_SPREAD_SLAB:
1803 return is_spread_slab(cs);
1804 default:
1805 BUG();
1806 }
1807
1808 /* Unreachable but makes gcc happy */
1809 return 0;
1810 }
1811
1812 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1813 {
1814 struct cpuset *cs = css_cs(css);
1815 cpuset_filetype_t type = cft->private;
1816 switch (type) {
1817 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1818 return cs->relax_domain_level;
1819 default:
1820 BUG();
1821 }
1822
1823 /* Unrechable but makes gcc happy */
1824 return 0;
1825 }
1826
1827
1828 /*
1829 * for the common functions, 'private' gives the type of file
1830 */
1831
1832 static struct cftype files[] = {
1833 {
1834 .name = "cpus",
1835 .seq_show = cpuset_common_seq_show,
1836 .write = cpuset_write_resmask,
1837 .max_write_len = (100U + 6 * NR_CPUS),
1838 .private = FILE_CPULIST,
1839 },
1840
1841 {
1842 .name = "mems",
1843 .seq_show = cpuset_common_seq_show,
1844 .write = cpuset_write_resmask,
1845 .max_write_len = (100U + 6 * MAX_NUMNODES),
1846 .private = FILE_MEMLIST,
1847 },
1848
1849 {
1850 .name = "effective_cpus",
1851 .seq_show = cpuset_common_seq_show,
1852 .private = FILE_EFFECTIVE_CPULIST,
1853 },
1854
1855 {
1856 .name = "effective_mems",
1857 .seq_show = cpuset_common_seq_show,
1858 .private = FILE_EFFECTIVE_MEMLIST,
1859 },
1860
1861 {
1862 .name = "cpu_exclusive",
1863 .read_u64 = cpuset_read_u64,
1864 .write_u64 = cpuset_write_u64,
1865 .private = FILE_CPU_EXCLUSIVE,
1866 },
1867
1868 {
1869 .name = "mem_exclusive",
1870 .read_u64 = cpuset_read_u64,
1871 .write_u64 = cpuset_write_u64,
1872 .private = FILE_MEM_EXCLUSIVE,
1873 },
1874
1875 {
1876 .name = "mem_hardwall",
1877 .read_u64 = cpuset_read_u64,
1878 .write_u64 = cpuset_write_u64,
1879 .private = FILE_MEM_HARDWALL,
1880 },
1881
1882 {
1883 .name = "sched_load_balance",
1884 .read_u64 = cpuset_read_u64,
1885 .write_u64 = cpuset_write_u64,
1886 .private = FILE_SCHED_LOAD_BALANCE,
1887 },
1888
1889 {
1890 .name = "sched_relax_domain_level",
1891 .read_s64 = cpuset_read_s64,
1892 .write_s64 = cpuset_write_s64,
1893 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1894 },
1895
1896 {
1897 .name = "memory_migrate",
1898 .read_u64 = cpuset_read_u64,
1899 .write_u64 = cpuset_write_u64,
1900 .private = FILE_MEMORY_MIGRATE,
1901 },
1902
1903 {
1904 .name = "memory_pressure",
1905 .read_u64 = cpuset_read_u64,
1906 },
1907
1908 {
1909 .name = "memory_spread_page",
1910 .read_u64 = cpuset_read_u64,
1911 .write_u64 = cpuset_write_u64,
1912 .private = FILE_SPREAD_PAGE,
1913 },
1914
1915 {
1916 .name = "memory_spread_slab",
1917 .read_u64 = cpuset_read_u64,
1918 .write_u64 = cpuset_write_u64,
1919 .private = FILE_SPREAD_SLAB,
1920 },
1921
1922 {
1923 .name = "memory_pressure_enabled",
1924 .flags = CFTYPE_ONLY_ON_ROOT,
1925 .read_u64 = cpuset_read_u64,
1926 .write_u64 = cpuset_write_u64,
1927 .private = FILE_MEMORY_PRESSURE_ENABLED,
1928 },
1929
1930 { } /* terminate */
1931 };
1932
1933 /*
1934 * cpuset_css_alloc - allocate a cpuset css
1935 * cgrp: control group that the new cpuset will be part of
1936 */
1937
1938 static struct cgroup_subsys_state *
1939 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1940 {
1941 struct cpuset *cs;
1942
1943 if (!parent_css)
1944 return &top_cpuset.css;
1945
1946 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1947 if (!cs)
1948 return ERR_PTR(-ENOMEM);
1949 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1950 goto free_cs;
1951 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1952 goto free_cpus;
1953
1954 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1955 cpumask_clear(cs->cpus_allowed);
1956 nodes_clear(cs->mems_allowed);
1957 cpumask_clear(cs->effective_cpus);
1958 nodes_clear(cs->effective_mems);
1959 fmeter_init(&cs->fmeter);
1960 cs->relax_domain_level = -1;
1961
1962 return &cs->css;
1963
1964 free_cpus:
1965 free_cpumask_var(cs->cpus_allowed);
1966 free_cs:
1967 kfree(cs);
1968 return ERR_PTR(-ENOMEM);
1969 }
1970
1971 static int cpuset_css_online(struct cgroup_subsys_state *css)
1972 {
1973 struct cpuset *cs = css_cs(css);
1974 struct cpuset *parent = parent_cs(cs);
1975 struct cpuset *tmp_cs;
1976 struct cgroup_subsys_state *pos_css;
1977
1978 if (!parent)
1979 return 0;
1980
1981 mutex_lock(&cpuset_mutex);
1982
1983 set_bit(CS_ONLINE, &cs->flags);
1984 if (is_spread_page(parent))
1985 set_bit(CS_SPREAD_PAGE, &cs->flags);
1986 if (is_spread_slab(parent))
1987 set_bit(CS_SPREAD_SLAB, &cs->flags);
1988
1989 cpuset_inc();
1990
1991 spin_lock_irq(&callback_lock);
1992 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1993 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1994 cs->effective_mems = parent->effective_mems;
1995 }
1996 spin_unlock_irq(&callback_lock);
1997
1998 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1999 goto out_unlock;
2000
2001 /*
2002 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2003 * set. This flag handling is implemented in cgroup core for
2004 * histrical reasons - the flag may be specified during mount.
2005 *
2006 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2007 * refuse to clone the configuration - thereby refusing the task to
2008 * be entered, and as a result refusing the sys_unshare() or
2009 * clone() which initiated it. If this becomes a problem for some
2010 * users who wish to allow that scenario, then this could be
2011 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2012 * (and likewise for mems) to the new cgroup.
2013 */
2014 rcu_read_lock();
2015 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2016 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2017 rcu_read_unlock();
2018 goto out_unlock;
2019 }
2020 }
2021 rcu_read_unlock();
2022
2023 spin_lock_irq(&callback_lock);
2024 cs->mems_allowed = parent->mems_allowed;
2025 cs->effective_mems = parent->mems_allowed;
2026 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2027 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2028 spin_unlock_irq(&callback_lock);
2029 out_unlock:
2030 mutex_unlock(&cpuset_mutex);
2031 return 0;
2032 }
2033
2034 /*
2035 * If the cpuset being removed has its flag 'sched_load_balance'
2036 * enabled, then simulate turning sched_load_balance off, which
2037 * will call rebuild_sched_domains_locked().
2038 */
2039
2040 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2041 {
2042 struct cpuset *cs = css_cs(css);
2043
2044 mutex_lock(&cpuset_mutex);
2045
2046 if (is_sched_load_balance(cs))
2047 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2048
2049 cpuset_dec();
2050 clear_bit(CS_ONLINE, &cs->flags);
2051
2052 mutex_unlock(&cpuset_mutex);
2053 }
2054
2055 static void cpuset_css_free(struct cgroup_subsys_state *css)
2056 {
2057 struct cpuset *cs = css_cs(css);
2058
2059 free_cpumask_var(cs->effective_cpus);
2060 free_cpumask_var(cs->cpus_allowed);
2061 kfree(cs);
2062 }
2063
2064 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2065 {
2066 mutex_lock(&cpuset_mutex);
2067 spin_lock_irq(&callback_lock);
2068
2069 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2070 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2071 top_cpuset.mems_allowed = node_possible_map;
2072 } else {
2073 cpumask_copy(top_cpuset.cpus_allowed,
2074 top_cpuset.effective_cpus);
2075 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2076 }
2077
2078 spin_unlock_irq(&callback_lock);
2079 mutex_unlock(&cpuset_mutex);
2080 }
2081
2082 struct cgroup_subsys cpuset_cgrp_subsys = {
2083 .css_alloc = cpuset_css_alloc,
2084 .css_online = cpuset_css_online,
2085 .css_offline = cpuset_css_offline,
2086 .css_free = cpuset_css_free,
2087 .can_attach = cpuset_can_attach,
2088 .cancel_attach = cpuset_cancel_attach,
2089 .attach = cpuset_attach,
2090 .bind = cpuset_bind,
2091 .legacy_cftypes = files,
2092 .early_init = 1,
2093 };
2094
2095 /**
2096 * cpuset_init - initialize cpusets at system boot
2097 *
2098 * Description: Initialize top_cpuset and the cpuset internal file system,
2099 **/
2100
2101 int __init cpuset_init(void)
2102 {
2103 int err = 0;
2104
2105 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2106 BUG();
2107 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2108 BUG();
2109
2110 cpumask_setall(top_cpuset.cpus_allowed);
2111 nodes_setall(top_cpuset.mems_allowed);
2112 cpumask_setall(top_cpuset.effective_cpus);
2113 nodes_setall(top_cpuset.effective_mems);
2114
2115 fmeter_init(&top_cpuset.fmeter);
2116 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2117 top_cpuset.relax_domain_level = -1;
2118
2119 err = register_filesystem(&cpuset_fs_type);
2120 if (err < 0)
2121 return err;
2122
2123 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2124 BUG();
2125
2126 return 0;
2127 }
2128
2129 /*
2130 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2131 * or memory nodes, we need to walk over the cpuset hierarchy,
2132 * removing that CPU or node from all cpusets. If this removes the
2133 * last CPU or node from a cpuset, then move the tasks in the empty
2134 * cpuset to its next-highest non-empty parent.
2135 */
2136 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2137 {
2138 struct cpuset *parent;
2139
2140 /*
2141 * Find its next-highest non-empty parent, (top cpuset
2142 * has online cpus, so can't be empty).
2143 */
2144 parent = parent_cs(cs);
2145 while (cpumask_empty(parent->cpus_allowed) ||
2146 nodes_empty(parent->mems_allowed))
2147 parent = parent_cs(parent);
2148
2149 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2150 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2151 pr_cont_cgroup_name(cs->css.cgroup);
2152 pr_cont("\n");
2153 }
2154 }
2155
2156 static void
2157 hotplug_update_tasks_legacy(struct cpuset *cs,
2158 struct cpumask *new_cpus, nodemask_t *new_mems,
2159 bool cpus_updated, bool mems_updated)
2160 {
2161 bool is_empty;
2162
2163 spin_lock_irq(&callback_lock);
2164 cpumask_copy(cs->cpus_allowed, new_cpus);
2165 cpumask_copy(cs->effective_cpus, new_cpus);
2166 cs->mems_allowed = *new_mems;
2167 cs->effective_mems = *new_mems;
2168 spin_unlock_irq(&callback_lock);
2169
2170 /*
2171 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2172 * as the tasks will be migratecd to an ancestor.
2173 */
2174 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2175 update_tasks_cpumask(cs);
2176 if (mems_updated && !nodes_empty(cs->mems_allowed))
2177 update_tasks_nodemask(cs);
2178
2179 is_empty = cpumask_empty(cs->cpus_allowed) ||
2180 nodes_empty(cs->mems_allowed);
2181
2182 mutex_unlock(&cpuset_mutex);
2183
2184 /*
2185 * Move tasks to the nearest ancestor with execution resources,
2186 * This is full cgroup operation which will also call back into
2187 * cpuset. Should be done outside any lock.
2188 */
2189 if (is_empty)
2190 remove_tasks_in_empty_cpuset(cs);
2191
2192 mutex_lock(&cpuset_mutex);
2193 }
2194
2195 static void
2196 hotplug_update_tasks(struct cpuset *cs,
2197 struct cpumask *new_cpus, nodemask_t *new_mems,
2198 bool cpus_updated, bool mems_updated)
2199 {
2200 if (cpumask_empty(new_cpus))
2201 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2202 if (nodes_empty(*new_mems))
2203 *new_mems = parent_cs(cs)->effective_mems;
2204
2205 spin_lock_irq(&callback_lock);
2206 cpumask_copy(cs->effective_cpus, new_cpus);
2207 cs->effective_mems = *new_mems;
2208 spin_unlock_irq(&callback_lock);
2209
2210 if (cpus_updated)
2211 update_tasks_cpumask(cs);
2212 if (mems_updated)
2213 update_tasks_nodemask(cs);
2214 }
2215
2216 /**
2217 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2218 * @cs: cpuset in interest
2219 *
2220 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2221 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2222 * all its tasks are moved to the nearest ancestor with both resources.
2223 */
2224 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2225 {
2226 static cpumask_t new_cpus;
2227 static nodemask_t new_mems;
2228 bool cpus_updated;
2229 bool mems_updated;
2230 retry:
2231 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2232
2233 mutex_lock(&cpuset_mutex);
2234
2235 /*
2236 * We have raced with task attaching. We wait until attaching
2237 * is finished, so we won't attach a task to an empty cpuset.
2238 */
2239 if (cs->attach_in_progress) {
2240 mutex_unlock(&cpuset_mutex);
2241 goto retry;
2242 }
2243
2244 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2245 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2246
2247 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2248 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2249
2250 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2251 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2252 cpus_updated, mems_updated);
2253 else
2254 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2255 cpus_updated, mems_updated);
2256
2257 mutex_unlock(&cpuset_mutex);
2258 }
2259
2260 /**
2261 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2262 *
2263 * This function is called after either CPU or memory configuration has
2264 * changed and updates cpuset accordingly. The top_cpuset is always
2265 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2266 * order to make cpusets transparent (of no affect) on systems that are
2267 * actively using CPU hotplug but making no active use of cpusets.
2268 *
2269 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2270 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2271 * all descendants.
2272 *
2273 * Note that CPU offlining during suspend is ignored. We don't modify
2274 * cpusets across suspend/resume cycles at all.
2275 */
2276 static void cpuset_hotplug_workfn(struct work_struct *work)
2277 {
2278 static cpumask_t new_cpus;
2279 static nodemask_t new_mems;
2280 bool cpus_updated, mems_updated;
2281 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2282
2283 mutex_lock(&cpuset_mutex);
2284
2285 /* fetch the available cpus/mems and find out which changed how */
2286 cpumask_copy(&new_cpus, cpu_active_mask);
2287 new_mems = node_states[N_MEMORY];
2288
2289 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2290 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2291
2292 /* synchronize cpus_allowed to cpu_active_mask */
2293 if (cpus_updated) {
2294 spin_lock_irq(&callback_lock);
2295 if (!on_dfl)
2296 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2297 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2298 spin_unlock_irq(&callback_lock);
2299 /* we don't mess with cpumasks of tasks in top_cpuset */
2300 }
2301
2302 /* synchronize mems_allowed to N_MEMORY */
2303 if (mems_updated) {
2304 spin_lock_irq(&callback_lock);
2305 if (!on_dfl)
2306 top_cpuset.mems_allowed = new_mems;
2307 top_cpuset.effective_mems = new_mems;
2308 spin_unlock_irq(&callback_lock);
2309 update_tasks_nodemask(&top_cpuset);
2310 }
2311
2312 mutex_unlock(&cpuset_mutex);
2313
2314 /* if cpus or mems changed, we need to propagate to descendants */
2315 if (cpus_updated || mems_updated) {
2316 struct cpuset *cs;
2317 struct cgroup_subsys_state *pos_css;
2318
2319 rcu_read_lock();
2320 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2321 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2322 continue;
2323 rcu_read_unlock();
2324
2325 cpuset_hotplug_update_tasks(cs);
2326
2327 rcu_read_lock();
2328 css_put(&cs->css);
2329 }
2330 rcu_read_unlock();
2331 }
2332
2333 /* rebuild sched domains if cpus_allowed has changed */
2334 if (cpus_updated)
2335 rebuild_sched_domains();
2336 }
2337
2338 void cpuset_update_active_cpus(bool cpu_online)
2339 {
2340 /*
2341 * We're inside cpu hotplug critical region which usually nests
2342 * inside cgroup synchronization. Bounce actual hotplug processing
2343 * to a work item to avoid reverse locking order.
2344 *
2345 * We still need to do partition_sched_domains() synchronously;
2346 * otherwise, the scheduler will get confused and put tasks to the
2347 * dead CPU. Fall back to the default single domain.
2348 * cpuset_hotplug_workfn() will rebuild it as necessary.
2349 */
2350 partition_sched_domains(1, NULL, NULL);
2351 schedule_work(&cpuset_hotplug_work);
2352 }
2353
2354 /*
2355 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2356 * Call this routine anytime after node_states[N_MEMORY] changes.
2357 * See cpuset_update_active_cpus() for CPU hotplug handling.
2358 */
2359 static int cpuset_track_online_nodes(struct notifier_block *self,
2360 unsigned long action, void *arg)
2361 {
2362 schedule_work(&cpuset_hotplug_work);
2363 return NOTIFY_OK;
2364 }
2365
2366 static struct notifier_block cpuset_track_online_nodes_nb = {
2367 .notifier_call = cpuset_track_online_nodes,
2368 .priority = 10, /* ??! */
2369 };
2370
2371 /**
2372 * cpuset_init_smp - initialize cpus_allowed
2373 *
2374 * Description: Finish top cpuset after cpu, node maps are initialized
2375 */
2376 void __init cpuset_init_smp(void)
2377 {
2378 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2379 top_cpuset.mems_allowed = node_states[N_MEMORY];
2380 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2381
2382 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2383 top_cpuset.effective_mems = node_states[N_MEMORY];
2384
2385 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2386
2387 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2388 BUG_ON(!cpuset_migrate_mm_wq);
2389 }
2390
2391 /**
2392 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2393 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2394 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2395 *
2396 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2397 * attached to the specified @tsk. Guaranteed to return some non-empty
2398 * subset of cpu_online_mask, even if this means going outside the
2399 * tasks cpuset.
2400 **/
2401
2402 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2403 {
2404 unsigned long flags;
2405
2406 spin_lock_irqsave(&callback_lock, flags);
2407 rcu_read_lock();
2408 guarantee_online_cpus(task_cs(tsk), pmask);
2409 rcu_read_unlock();
2410 spin_unlock_irqrestore(&callback_lock, flags);
2411 }
2412
2413 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2414 {
2415 rcu_read_lock();
2416 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2417 rcu_read_unlock();
2418
2419 /*
2420 * We own tsk->cpus_allowed, nobody can change it under us.
2421 *
2422 * But we used cs && cs->cpus_allowed lockless and thus can
2423 * race with cgroup_attach_task() or update_cpumask() and get
2424 * the wrong tsk->cpus_allowed. However, both cases imply the
2425 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2426 * which takes task_rq_lock().
2427 *
2428 * If we are called after it dropped the lock we must see all
2429 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2430 * set any mask even if it is not right from task_cs() pov,
2431 * the pending set_cpus_allowed_ptr() will fix things.
2432 *
2433 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2434 * if required.
2435 */
2436 }
2437
2438 void __init cpuset_init_current_mems_allowed(void)
2439 {
2440 nodes_setall(current->mems_allowed);
2441 }
2442
2443 /**
2444 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2445 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2446 *
2447 * Description: Returns the nodemask_t mems_allowed of the cpuset
2448 * attached to the specified @tsk. Guaranteed to return some non-empty
2449 * subset of node_states[N_MEMORY], even if this means going outside the
2450 * tasks cpuset.
2451 **/
2452
2453 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2454 {
2455 nodemask_t mask;
2456 unsigned long flags;
2457
2458 spin_lock_irqsave(&callback_lock, flags);
2459 rcu_read_lock();
2460 guarantee_online_mems(task_cs(tsk), &mask);
2461 rcu_read_unlock();
2462 spin_unlock_irqrestore(&callback_lock, flags);
2463
2464 return mask;
2465 }
2466
2467 /**
2468 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2469 * @nodemask: the nodemask to be checked
2470 *
2471 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2472 */
2473 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2474 {
2475 return nodes_intersects(*nodemask, current->mems_allowed);
2476 }
2477
2478 /*
2479 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2480 * mem_hardwall ancestor to the specified cpuset. Call holding
2481 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2482 * (an unusual configuration), then returns the root cpuset.
2483 */
2484 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2485 {
2486 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2487 cs = parent_cs(cs);
2488 return cs;
2489 }
2490
2491 /**
2492 * cpuset_node_allowed - Can we allocate on a memory node?
2493 * @node: is this an allowed node?
2494 * @gfp_mask: memory allocation flags
2495 *
2496 * If we're in interrupt, yes, we can always allocate. If @node is set in
2497 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2498 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2499 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2500 * Otherwise, no.
2501 *
2502 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2503 * and do not allow allocations outside the current tasks cpuset
2504 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2505 * GFP_KERNEL allocations are not so marked, so can escape to the
2506 * nearest enclosing hardwalled ancestor cpuset.
2507 *
2508 * Scanning up parent cpusets requires callback_lock. The
2509 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2510 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2511 * current tasks mems_allowed came up empty on the first pass over
2512 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2513 * cpuset are short of memory, might require taking the callback_lock.
2514 *
2515 * The first call here from mm/page_alloc:get_page_from_freelist()
2516 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2517 * so no allocation on a node outside the cpuset is allowed (unless
2518 * in interrupt, of course).
2519 *
2520 * The second pass through get_page_from_freelist() doesn't even call
2521 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2522 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2523 * in alloc_flags. That logic and the checks below have the combined
2524 * affect that:
2525 * in_interrupt - any node ok (current task context irrelevant)
2526 * GFP_ATOMIC - any node ok
2527 * TIF_MEMDIE - any node ok
2528 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2529 * GFP_USER - only nodes in current tasks mems allowed ok.
2530 */
2531 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2532 {
2533 struct cpuset *cs; /* current cpuset ancestors */
2534 int allowed; /* is allocation in zone z allowed? */
2535 unsigned long flags;
2536
2537 if (in_interrupt())
2538 return 1;
2539 if (node_isset(node, current->mems_allowed))
2540 return 1;
2541 /*
2542 * Allow tasks that have access to memory reserves because they have
2543 * been OOM killed to get memory anywhere.
2544 */
2545 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2546 return 1;
2547 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2548 return 0;
2549
2550 if (current->flags & PF_EXITING) /* Let dying task have memory */
2551 return 1;
2552
2553 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2554 spin_lock_irqsave(&callback_lock, flags);
2555
2556 rcu_read_lock();
2557 cs = nearest_hardwall_ancestor(task_cs(current));
2558 allowed = node_isset(node, cs->mems_allowed);
2559 rcu_read_unlock();
2560
2561 spin_unlock_irqrestore(&callback_lock, flags);
2562 return allowed;
2563 }
2564
2565 /**
2566 * cpuset_mem_spread_node() - On which node to begin search for a file page
2567 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2568 *
2569 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2570 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2571 * and if the memory allocation used cpuset_mem_spread_node()
2572 * to determine on which node to start looking, as it will for
2573 * certain page cache or slab cache pages such as used for file
2574 * system buffers and inode caches, then instead of starting on the
2575 * local node to look for a free page, rather spread the starting
2576 * node around the tasks mems_allowed nodes.
2577 *
2578 * We don't have to worry about the returned node being offline
2579 * because "it can't happen", and even if it did, it would be ok.
2580 *
2581 * The routines calling guarantee_online_mems() are careful to
2582 * only set nodes in task->mems_allowed that are online. So it
2583 * should not be possible for the following code to return an
2584 * offline node. But if it did, that would be ok, as this routine
2585 * is not returning the node where the allocation must be, only
2586 * the node where the search should start. The zonelist passed to
2587 * __alloc_pages() will include all nodes. If the slab allocator
2588 * is passed an offline node, it will fall back to the local node.
2589 * See kmem_cache_alloc_node().
2590 */
2591
2592 static int cpuset_spread_node(int *rotor)
2593 {
2594 int node;
2595
2596 node = next_node(*rotor, current->mems_allowed);
2597 if (node == MAX_NUMNODES)
2598 node = first_node(current->mems_allowed);
2599 *rotor = node;
2600 return node;
2601 }
2602
2603 int cpuset_mem_spread_node(void)
2604 {
2605 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2606 current->cpuset_mem_spread_rotor =
2607 node_random(&current->mems_allowed);
2608
2609 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2610 }
2611
2612 int cpuset_slab_spread_node(void)
2613 {
2614 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2615 current->cpuset_slab_spread_rotor =
2616 node_random(&current->mems_allowed);
2617
2618 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2619 }
2620
2621 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2622
2623 /**
2624 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2625 * @tsk1: pointer to task_struct of some task.
2626 * @tsk2: pointer to task_struct of some other task.
2627 *
2628 * Description: Return true if @tsk1's mems_allowed intersects the
2629 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2630 * one of the task's memory usage might impact the memory available
2631 * to the other.
2632 **/
2633
2634 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2635 const struct task_struct *tsk2)
2636 {
2637 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2638 }
2639
2640 /**
2641 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2642 *
2643 * Description: Prints current's name, cpuset name, and cached copy of its
2644 * mems_allowed to the kernel log.
2645 */
2646 void cpuset_print_current_mems_allowed(void)
2647 {
2648 struct cgroup *cgrp;
2649
2650 rcu_read_lock();
2651
2652 cgrp = task_cs(current)->css.cgroup;
2653 pr_info("%s cpuset=", current->comm);
2654 pr_cont_cgroup_name(cgrp);
2655 pr_cont(" mems_allowed=%*pbl\n",
2656 nodemask_pr_args(&current->mems_allowed));
2657
2658 rcu_read_unlock();
2659 }
2660
2661 /*
2662 * Collection of memory_pressure is suppressed unless
2663 * this flag is enabled by writing "1" to the special
2664 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2665 */
2666
2667 int cpuset_memory_pressure_enabled __read_mostly;
2668
2669 /**
2670 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2671 *
2672 * Keep a running average of the rate of synchronous (direct)
2673 * page reclaim efforts initiated by tasks in each cpuset.
2674 *
2675 * This represents the rate at which some task in the cpuset
2676 * ran low on memory on all nodes it was allowed to use, and
2677 * had to enter the kernels page reclaim code in an effort to
2678 * create more free memory by tossing clean pages or swapping
2679 * or writing dirty pages.
2680 *
2681 * Display to user space in the per-cpuset read-only file
2682 * "memory_pressure". Value displayed is an integer
2683 * representing the recent rate of entry into the synchronous
2684 * (direct) page reclaim by any task attached to the cpuset.
2685 **/
2686
2687 void __cpuset_memory_pressure_bump(void)
2688 {
2689 rcu_read_lock();
2690 fmeter_markevent(&task_cs(current)->fmeter);
2691 rcu_read_unlock();
2692 }
2693
2694 #ifdef CONFIG_PROC_PID_CPUSET
2695 /*
2696 * proc_cpuset_show()
2697 * - Print tasks cpuset path into seq_file.
2698 * - Used for /proc/<pid>/cpuset.
2699 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2700 * doesn't really matter if tsk->cpuset changes after we read it,
2701 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2702 * anyway.
2703 */
2704 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2705 struct pid *pid, struct task_struct *tsk)
2706 {
2707 char *buf, *p;
2708 struct cgroup_subsys_state *css;
2709 int retval;
2710
2711 retval = -ENOMEM;
2712 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2713 if (!buf)
2714 goto out;
2715
2716 retval = -ENAMETOOLONG;
2717 rcu_read_lock();
2718 css = task_css(tsk, cpuset_cgrp_id);
2719 p = cgroup_path(css->cgroup, buf, PATH_MAX);
2720 rcu_read_unlock();
2721 if (!p)
2722 goto out_free;
2723 seq_puts(m, p);
2724 seq_putc(m, '\n');
2725 retval = 0;
2726 out_free:
2727 kfree(buf);
2728 out:
2729 return retval;
2730 }
2731 #endif /* CONFIG_PROC_PID_CPUSET */
2732
2733 /* Display task mems_allowed in /proc/<pid>/status file. */
2734 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2735 {
2736 seq_printf(m, "Mems_allowed:\t%*pb\n",
2737 nodemask_pr_args(&task->mems_allowed));
2738 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2739 nodemask_pr_args(&task->mems_allowed));
2740 }
This page took 0.114609 seconds and 5 git commands to generate.