sctp: fix the issue sctp_diag uses lock_sock in rcu_read_lock
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/time64.h>
55 #include <linux/backing-dev.h>
56 #include <linux/sort.h>
57
58 #include <asm/uaccess.h>
59 #include <linux/atomic.h>
60 #include <linux/mutex.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time64_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
107
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
120 struct fmeter fmeter; /* memory_pressure filter */
121
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
128 /* partition number for rebuild_sched_domains() */
129 int pn;
130
131 /* for custom sched domain */
132 int relax_domain_level;
133 };
134
135 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136 {
137 return css ? container_of(css, struct cpuset, css) : NULL;
138 }
139
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset *task_cs(struct task_struct *task)
142 {
143 return css_cs(task_css(task, cpuset_cgrp_id));
144 }
145
146 static inline struct cpuset *parent_cs(struct cpuset *cs)
147 {
148 return css_cs(cs->css.parent);
149 }
150
151 #ifdef CONFIG_NUMA
152 static inline bool task_has_mempolicy(struct task_struct *task)
153 {
154 return task->mempolicy;
155 }
156 #else
157 static inline bool task_has_mempolicy(struct task_struct *task)
158 {
159 return false;
160 }
161 #endif
162
163
164 /* bits in struct cpuset flags field */
165 typedef enum {
166 CS_ONLINE,
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
169 CS_MEM_HARDWALL,
170 CS_MEMORY_MIGRATE,
171 CS_SCHED_LOAD_BALANCE,
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
174 } cpuset_flagbits_t;
175
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(const struct cpuset *cs)
178 {
179 return test_bit(CS_ONLINE, &cs->flags);
180 }
181
182 static inline int is_cpu_exclusive(const struct cpuset *cs)
183 {
184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
185 }
186
187 static inline int is_mem_exclusive(const struct cpuset *cs)
188 {
189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
190 }
191
192 static inline int is_mem_hardwall(const struct cpuset *cs)
193 {
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195 }
196
197 static inline int is_sched_load_balance(const struct cpuset *cs)
198 {
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200 }
201
202 static inline int is_memory_migrate(const struct cpuset *cs)
203 {
204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 }
206
207 static inline int is_spread_page(const struct cpuset *cs)
208 {
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210 }
211
212 static inline int is_spread_slab(const struct cpuset *cs)
213 {
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215 }
216
217 static struct cpuset top_cpuset = {
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
220 };
221
222 /**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234
235 /**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
245 */
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249
250 /*
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
254 * comment.
255 *
256 * A task must hold both locks to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_lock and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
264 * everyone else.
265 *
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_lock, as that would risk double tripping on callback_lock
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
271 * If a task is only holding callback_lock, then it has read-only
272 * access to cpusets.
273 *
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
277 *
278 * The cpuset_common_file_read() handlers only hold callback_lock across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
284 */
285
286 static DEFINE_MUTEX(cpuset_mutex);
287 static DEFINE_SPINLOCK(callback_lock);
288
289 static struct workqueue_struct *cpuset_migrate_mm_wq;
290
291 /*
292 * CPU / memory hotplug is handled asynchronously.
293 */
294 static void cpuset_hotplug_workfn(struct work_struct *work);
295 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
296
297 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
298
299 /*
300 * This is ugly, but preserves the userspace API for existing cpuset
301 * users. If someone tries to mount the "cpuset" filesystem, we
302 * silently switch it to mount "cgroup" instead
303 */
304 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
305 int flags, const char *unused_dev_name, void *data)
306 {
307 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
308 struct dentry *ret = ERR_PTR(-ENODEV);
309 if (cgroup_fs) {
310 char mountopts[] =
311 "cpuset,noprefix,"
312 "release_agent=/sbin/cpuset_release_agent";
313 ret = cgroup_fs->mount(cgroup_fs, flags,
314 unused_dev_name, mountopts);
315 put_filesystem(cgroup_fs);
316 }
317 return ret;
318 }
319
320 static struct file_system_type cpuset_fs_type = {
321 .name = "cpuset",
322 .mount = cpuset_mount,
323 };
324
325 /*
326 * Return in pmask the portion of a cpusets's cpus_allowed that
327 * are online. If none are online, walk up the cpuset hierarchy
328 * until we find one that does have some online cpus. The top
329 * cpuset always has some cpus online.
330 *
331 * One way or another, we guarantee to return some non-empty subset
332 * of cpu_online_mask.
333 *
334 * Call with callback_lock or cpuset_mutex held.
335 */
336 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
337 {
338 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
339 cs = parent_cs(cs);
340 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
341 }
342
343 /*
344 * Return in *pmask the portion of a cpusets's mems_allowed that
345 * are online, with memory. If none are online with memory, walk
346 * up the cpuset hierarchy until we find one that does have some
347 * online mems. The top cpuset always has some mems online.
348 *
349 * One way or another, we guarantee to return some non-empty subset
350 * of node_states[N_MEMORY].
351 *
352 * Call with callback_lock or cpuset_mutex held.
353 */
354 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
355 {
356 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
357 cs = parent_cs(cs);
358 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
359 }
360
361 /*
362 * update task's spread flag if cpuset's page/slab spread flag is set
363 *
364 * Call with callback_lock or cpuset_mutex held.
365 */
366 static void cpuset_update_task_spread_flag(struct cpuset *cs,
367 struct task_struct *tsk)
368 {
369 if (is_spread_page(cs))
370 task_set_spread_page(tsk);
371 else
372 task_clear_spread_page(tsk);
373
374 if (is_spread_slab(cs))
375 task_set_spread_slab(tsk);
376 else
377 task_clear_spread_slab(tsk);
378 }
379
380 /*
381 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
382 *
383 * One cpuset is a subset of another if all its allowed CPUs and
384 * Memory Nodes are a subset of the other, and its exclusive flags
385 * are only set if the other's are set. Call holding cpuset_mutex.
386 */
387
388 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
389 {
390 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
391 nodes_subset(p->mems_allowed, q->mems_allowed) &&
392 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
393 is_mem_exclusive(p) <= is_mem_exclusive(q);
394 }
395
396 /**
397 * alloc_trial_cpuset - allocate a trial cpuset
398 * @cs: the cpuset that the trial cpuset duplicates
399 */
400 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
401 {
402 struct cpuset *trial;
403
404 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
405 if (!trial)
406 return NULL;
407
408 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
409 goto free_cs;
410 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
411 goto free_cpus;
412
413 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
414 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
415 return trial;
416
417 free_cpus:
418 free_cpumask_var(trial->cpus_allowed);
419 free_cs:
420 kfree(trial);
421 return NULL;
422 }
423
424 /**
425 * free_trial_cpuset - free the trial cpuset
426 * @trial: the trial cpuset to be freed
427 */
428 static void free_trial_cpuset(struct cpuset *trial)
429 {
430 free_cpumask_var(trial->effective_cpus);
431 free_cpumask_var(trial->cpus_allowed);
432 kfree(trial);
433 }
434
435 /*
436 * validate_change() - Used to validate that any proposed cpuset change
437 * follows the structural rules for cpusets.
438 *
439 * If we replaced the flag and mask values of the current cpuset
440 * (cur) with those values in the trial cpuset (trial), would
441 * our various subset and exclusive rules still be valid? Presumes
442 * cpuset_mutex held.
443 *
444 * 'cur' is the address of an actual, in-use cpuset. Operations
445 * such as list traversal that depend on the actual address of the
446 * cpuset in the list must use cur below, not trial.
447 *
448 * 'trial' is the address of bulk structure copy of cur, with
449 * perhaps one or more of the fields cpus_allowed, mems_allowed,
450 * or flags changed to new, trial values.
451 *
452 * Return 0 if valid, -errno if not.
453 */
454
455 static int validate_change(struct cpuset *cur, struct cpuset *trial)
456 {
457 struct cgroup_subsys_state *css;
458 struct cpuset *c, *par;
459 int ret;
460
461 rcu_read_lock();
462
463 /* Each of our child cpusets must be a subset of us */
464 ret = -EBUSY;
465 cpuset_for_each_child(c, css, cur)
466 if (!is_cpuset_subset(c, trial))
467 goto out;
468
469 /* Remaining checks don't apply to root cpuset */
470 ret = 0;
471 if (cur == &top_cpuset)
472 goto out;
473
474 par = parent_cs(cur);
475
476 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
477 ret = -EACCES;
478 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
479 !is_cpuset_subset(trial, par))
480 goto out;
481
482 /*
483 * If either I or some sibling (!= me) is exclusive, we can't
484 * overlap
485 */
486 ret = -EINVAL;
487 cpuset_for_each_child(c, css, par) {
488 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
489 c != cur &&
490 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
491 goto out;
492 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
493 c != cur &&
494 nodes_intersects(trial->mems_allowed, c->mems_allowed))
495 goto out;
496 }
497
498 /*
499 * Cpusets with tasks - existing or newly being attached - can't
500 * be changed to have empty cpus_allowed or mems_allowed.
501 */
502 ret = -ENOSPC;
503 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
504 if (!cpumask_empty(cur->cpus_allowed) &&
505 cpumask_empty(trial->cpus_allowed))
506 goto out;
507 if (!nodes_empty(cur->mems_allowed) &&
508 nodes_empty(trial->mems_allowed))
509 goto out;
510 }
511
512 /*
513 * We can't shrink if we won't have enough room for SCHED_DEADLINE
514 * tasks.
515 */
516 ret = -EBUSY;
517 if (is_cpu_exclusive(cur) &&
518 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
519 trial->cpus_allowed))
520 goto out;
521
522 ret = 0;
523 out:
524 rcu_read_unlock();
525 return ret;
526 }
527
528 #ifdef CONFIG_SMP
529 /*
530 * Helper routine for generate_sched_domains().
531 * Do cpusets a, b have overlapping effective cpus_allowed masks?
532 */
533 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
534 {
535 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
536 }
537
538 static void
539 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
540 {
541 if (dattr->relax_domain_level < c->relax_domain_level)
542 dattr->relax_domain_level = c->relax_domain_level;
543 return;
544 }
545
546 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
547 struct cpuset *root_cs)
548 {
549 struct cpuset *cp;
550 struct cgroup_subsys_state *pos_css;
551
552 rcu_read_lock();
553 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
554 /* skip the whole subtree if @cp doesn't have any CPU */
555 if (cpumask_empty(cp->cpus_allowed)) {
556 pos_css = css_rightmost_descendant(pos_css);
557 continue;
558 }
559
560 if (is_sched_load_balance(cp))
561 update_domain_attr(dattr, cp);
562 }
563 rcu_read_unlock();
564 }
565
566 /*
567 * generate_sched_domains()
568 *
569 * This function builds a partial partition of the systems CPUs
570 * A 'partial partition' is a set of non-overlapping subsets whose
571 * union is a subset of that set.
572 * The output of this function needs to be passed to kernel/sched/core.c
573 * partition_sched_domains() routine, which will rebuild the scheduler's
574 * load balancing domains (sched domains) as specified by that partial
575 * partition.
576 *
577 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
578 * for a background explanation of this.
579 *
580 * Does not return errors, on the theory that the callers of this
581 * routine would rather not worry about failures to rebuild sched
582 * domains when operating in the severe memory shortage situations
583 * that could cause allocation failures below.
584 *
585 * Must be called with cpuset_mutex held.
586 *
587 * The three key local variables below are:
588 * q - a linked-list queue of cpuset pointers, used to implement a
589 * top-down scan of all cpusets. This scan loads a pointer
590 * to each cpuset marked is_sched_load_balance into the
591 * array 'csa'. For our purposes, rebuilding the schedulers
592 * sched domains, we can ignore !is_sched_load_balance cpusets.
593 * csa - (for CpuSet Array) Array of pointers to all the cpusets
594 * that need to be load balanced, for convenient iterative
595 * access by the subsequent code that finds the best partition,
596 * i.e the set of domains (subsets) of CPUs such that the
597 * cpus_allowed of every cpuset marked is_sched_load_balance
598 * is a subset of one of these domains, while there are as
599 * many such domains as possible, each as small as possible.
600 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
601 * the kernel/sched/core.c routine partition_sched_domains() in a
602 * convenient format, that can be easily compared to the prior
603 * value to determine what partition elements (sched domains)
604 * were changed (added or removed.)
605 *
606 * Finding the best partition (set of domains):
607 * The triple nested loops below over i, j, k scan over the
608 * load balanced cpusets (using the array of cpuset pointers in
609 * csa[]) looking for pairs of cpusets that have overlapping
610 * cpus_allowed, but which don't have the same 'pn' partition
611 * number and gives them in the same partition number. It keeps
612 * looping on the 'restart' label until it can no longer find
613 * any such pairs.
614 *
615 * The union of the cpus_allowed masks from the set of
616 * all cpusets having the same 'pn' value then form the one
617 * element of the partition (one sched domain) to be passed to
618 * partition_sched_domains().
619 */
620 static int generate_sched_domains(cpumask_var_t **domains,
621 struct sched_domain_attr **attributes)
622 {
623 struct cpuset *cp; /* scans q */
624 struct cpuset **csa; /* array of all cpuset ptrs */
625 int csn; /* how many cpuset ptrs in csa so far */
626 int i, j, k; /* indices for partition finding loops */
627 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
628 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
629 struct sched_domain_attr *dattr; /* attributes for custom domains */
630 int ndoms = 0; /* number of sched domains in result */
631 int nslot; /* next empty doms[] struct cpumask slot */
632 struct cgroup_subsys_state *pos_css;
633
634 doms = NULL;
635 dattr = NULL;
636 csa = NULL;
637
638 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
639 goto done;
640 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
641
642 /* Special case for the 99% of systems with one, full, sched domain */
643 if (is_sched_load_balance(&top_cpuset)) {
644 ndoms = 1;
645 doms = alloc_sched_domains(ndoms);
646 if (!doms)
647 goto done;
648
649 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
650 if (dattr) {
651 *dattr = SD_ATTR_INIT;
652 update_domain_attr_tree(dattr, &top_cpuset);
653 }
654 cpumask_and(doms[0], top_cpuset.effective_cpus,
655 non_isolated_cpus);
656
657 goto done;
658 }
659
660 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
661 if (!csa)
662 goto done;
663 csn = 0;
664
665 rcu_read_lock();
666 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
667 if (cp == &top_cpuset)
668 continue;
669 /*
670 * Continue traversing beyond @cp iff @cp has some CPUs and
671 * isn't load balancing. The former is obvious. The
672 * latter: All child cpusets contain a subset of the
673 * parent's cpus, so just skip them, and then we call
674 * update_domain_attr_tree() to calc relax_domain_level of
675 * the corresponding sched domain.
676 */
677 if (!cpumask_empty(cp->cpus_allowed) &&
678 !(is_sched_load_balance(cp) &&
679 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
680 continue;
681
682 if (is_sched_load_balance(cp))
683 csa[csn++] = cp;
684
685 /* skip @cp's subtree */
686 pos_css = css_rightmost_descendant(pos_css);
687 }
688 rcu_read_unlock();
689
690 for (i = 0; i < csn; i++)
691 csa[i]->pn = i;
692 ndoms = csn;
693
694 restart:
695 /* Find the best partition (set of sched domains) */
696 for (i = 0; i < csn; i++) {
697 struct cpuset *a = csa[i];
698 int apn = a->pn;
699
700 for (j = 0; j < csn; j++) {
701 struct cpuset *b = csa[j];
702 int bpn = b->pn;
703
704 if (apn != bpn && cpusets_overlap(a, b)) {
705 for (k = 0; k < csn; k++) {
706 struct cpuset *c = csa[k];
707
708 if (c->pn == bpn)
709 c->pn = apn;
710 }
711 ndoms--; /* one less element */
712 goto restart;
713 }
714 }
715 }
716
717 /*
718 * Now we know how many domains to create.
719 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
720 */
721 doms = alloc_sched_domains(ndoms);
722 if (!doms)
723 goto done;
724
725 /*
726 * The rest of the code, including the scheduler, can deal with
727 * dattr==NULL case. No need to abort if alloc fails.
728 */
729 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
730
731 for (nslot = 0, i = 0; i < csn; i++) {
732 struct cpuset *a = csa[i];
733 struct cpumask *dp;
734 int apn = a->pn;
735
736 if (apn < 0) {
737 /* Skip completed partitions */
738 continue;
739 }
740
741 dp = doms[nslot];
742
743 if (nslot == ndoms) {
744 static int warnings = 10;
745 if (warnings) {
746 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
747 nslot, ndoms, csn, i, apn);
748 warnings--;
749 }
750 continue;
751 }
752
753 cpumask_clear(dp);
754 if (dattr)
755 *(dattr + nslot) = SD_ATTR_INIT;
756 for (j = i; j < csn; j++) {
757 struct cpuset *b = csa[j];
758
759 if (apn == b->pn) {
760 cpumask_or(dp, dp, b->effective_cpus);
761 cpumask_and(dp, dp, non_isolated_cpus);
762 if (dattr)
763 update_domain_attr_tree(dattr + nslot, b);
764
765 /* Done with this partition */
766 b->pn = -1;
767 }
768 }
769 nslot++;
770 }
771 BUG_ON(nslot != ndoms);
772
773 done:
774 free_cpumask_var(non_isolated_cpus);
775 kfree(csa);
776
777 /*
778 * Fallback to the default domain if kmalloc() failed.
779 * See comments in partition_sched_domains().
780 */
781 if (doms == NULL)
782 ndoms = 1;
783
784 *domains = doms;
785 *attributes = dattr;
786 return ndoms;
787 }
788
789 /*
790 * Rebuild scheduler domains.
791 *
792 * If the flag 'sched_load_balance' of any cpuset with non-empty
793 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
794 * which has that flag enabled, or if any cpuset with a non-empty
795 * 'cpus' is removed, then call this routine to rebuild the
796 * scheduler's dynamic sched domains.
797 *
798 * Call with cpuset_mutex held. Takes get_online_cpus().
799 */
800 static void rebuild_sched_domains_locked(void)
801 {
802 struct sched_domain_attr *attr;
803 cpumask_var_t *doms;
804 int ndoms;
805
806 lockdep_assert_held(&cpuset_mutex);
807 get_online_cpus();
808
809 /*
810 * We have raced with CPU hotplug. Don't do anything to avoid
811 * passing doms with offlined cpu to partition_sched_domains().
812 * Anyways, hotplug work item will rebuild sched domains.
813 */
814 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
815 goto out;
816
817 /* Generate domain masks and attrs */
818 ndoms = generate_sched_domains(&doms, &attr);
819
820 /* Have scheduler rebuild the domains */
821 partition_sched_domains(ndoms, doms, attr);
822 out:
823 put_online_cpus();
824 }
825 #else /* !CONFIG_SMP */
826 static void rebuild_sched_domains_locked(void)
827 {
828 }
829 #endif /* CONFIG_SMP */
830
831 void rebuild_sched_domains(void)
832 {
833 mutex_lock(&cpuset_mutex);
834 rebuild_sched_domains_locked();
835 mutex_unlock(&cpuset_mutex);
836 }
837
838 /**
839 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
840 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
841 *
842 * Iterate through each task of @cs updating its cpus_allowed to the
843 * effective cpuset's. As this function is called with cpuset_mutex held,
844 * cpuset membership stays stable.
845 */
846 static void update_tasks_cpumask(struct cpuset *cs)
847 {
848 struct css_task_iter it;
849 struct task_struct *task;
850
851 css_task_iter_start(&cs->css, &it);
852 while ((task = css_task_iter_next(&it)))
853 set_cpus_allowed_ptr(task, cs->effective_cpus);
854 css_task_iter_end(&it);
855 }
856
857 /*
858 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
859 * @cs: the cpuset to consider
860 * @new_cpus: temp variable for calculating new effective_cpus
861 *
862 * When congifured cpumask is changed, the effective cpumasks of this cpuset
863 * and all its descendants need to be updated.
864 *
865 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
866 *
867 * Called with cpuset_mutex held
868 */
869 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
870 {
871 struct cpuset *cp;
872 struct cgroup_subsys_state *pos_css;
873 bool need_rebuild_sched_domains = false;
874
875 rcu_read_lock();
876 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
877 struct cpuset *parent = parent_cs(cp);
878
879 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
880
881 /*
882 * If it becomes empty, inherit the effective mask of the
883 * parent, which is guaranteed to have some CPUs.
884 */
885 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
886 cpumask_empty(new_cpus))
887 cpumask_copy(new_cpus, parent->effective_cpus);
888
889 /* Skip the whole subtree if the cpumask remains the same. */
890 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
891 pos_css = css_rightmost_descendant(pos_css);
892 continue;
893 }
894
895 if (!css_tryget_online(&cp->css))
896 continue;
897 rcu_read_unlock();
898
899 spin_lock_irq(&callback_lock);
900 cpumask_copy(cp->effective_cpus, new_cpus);
901 spin_unlock_irq(&callback_lock);
902
903 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
904 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
905
906 update_tasks_cpumask(cp);
907
908 /*
909 * If the effective cpumask of any non-empty cpuset is changed,
910 * we need to rebuild sched domains.
911 */
912 if (!cpumask_empty(cp->cpus_allowed) &&
913 is_sched_load_balance(cp))
914 need_rebuild_sched_domains = true;
915
916 rcu_read_lock();
917 css_put(&cp->css);
918 }
919 rcu_read_unlock();
920
921 if (need_rebuild_sched_domains)
922 rebuild_sched_domains_locked();
923 }
924
925 /**
926 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
927 * @cs: the cpuset to consider
928 * @trialcs: trial cpuset
929 * @buf: buffer of cpu numbers written to this cpuset
930 */
931 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
932 const char *buf)
933 {
934 int retval;
935
936 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
937 if (cs == &top_cpuset)
938 return -EACCES;
939
940 /*
941 * An empty cpus_allowed is ok only if the cpuset has no tasks.
942 * Since cpulist_parse() fails on an empty mask, we special case
943 * that parsing. The validate_change() call ensures that cpusets
944 * with tasks have cpus.
945 */
946 if (!*buf) {
947 cpumask_clear(trialcs->cpus_allowed);
948 } else {
949 retval = cpulist_parse(buf, trialcs->cpus_allowed);
950 if (retval < 0)
951 return retval;
952
953 if (!cpumask_subset(trialcs->cpus_allowed,
954 top_cpuset.cpus_allowed))
955 return -EINVAL;
956 }
957
958 /* Nothing to do if the cpus didn't change */
959 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
960 return 0;
961
962 retval = validate_change(cs, trialcs);
963 if (retval < 0)
964 return retval;
965
966 spin_lock_irq(&callback_lock);
967 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
968 spin_unlock_irq(&callback_lock);
969
970 /* use trialcs->cpus_allowed as a temp variable */
971 update_cpumasks_hier(cs, trialcs->cpus_allowed);
972 return 0;
973 }
974
975 /*
976 * Migrate memory region from one set of nodes to another. This is
977 * performed asynchronously as it can be called from process migration path
978 * holding locks involved in process management. All mm migrations are
979 * performed in the queued order and can be waited for by flushing
980 * cpuset_migrate_mm_wq.
981 */
982
983 struct cpuset_migrate_mm_work {
984 struct work_struct work;
985 struct mm_struct *mm;
986 nodemask_t from;
987 nodemask_t to;
988 };
989
990 static void cpuset_migrate_mm_workfn(struct work_struct *work)
991 {
992 struct cpuset_migrate_mm_work *mwork =
993 container_of(work, struct cpuset_migrate_mm_work, work);
994
995 /* on a wq worker, no need to worry about %current's mems_allowed */
996 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
997 mmput(mwork->mm);
998 kfree(mwork);
999 }
1000
1001 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1002 const nodemask_t *to)
1003 {
1004 struct cpuset_migrate_mm_work *mwork;
1005
1006 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1007 if (mwork) {
1008 mwork->mm = mm;
1009 mwork->from = *from;
1010 mwork->to = *to;
1011 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1012 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1013 } else {
1014 mmput(mm);
1015 }
1016 }
1017
1018 static void cpuset_post_attach(void)
1019 {
1020 flush_workqueue(cpuset_migrate_mm_wq);
1021 }
1022
1023 /*
1024 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1025 * @tsk: the task to change
1026 * @newmems: new nodes that the task will be set
1027 *
1028 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1029 * we structure updates as setting all new allowed nodes, then clearing newly
1030 * disallowed ones.
1031 */
1032 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1033 nodemask_t *newmems)
1034 {
1035 bool need_loop;
1036
1037 task_lock(tsk);
1038 /*
1039 * Determine if a loop is necessary if another thread is doing
1040 * read_mems_allowed_begin(). If at least one node remains unchanged and
1041 * tsk does not have a mempolicy, then an empty nodemask will not be
1042 * possible when mems_allowed is larger than a word.
1043 */
1044 need_loop = task_has_mempolicy(tsk) ||
1045 !nodes_intersects(*newmems, tsk->mems_allowed);
1046
1047 if (need_loop) {
1048 local_irq_disable();
1049 write_seqcount_begin(&tsk->mems_allowed_seq);
1050 }
1051
1052 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1053 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1054
1055 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1056 tsk->mems_allowed = *newmems;
1057
1058 if (need_loop) {
1059 write_seqcount_end(&tsk->mems_allowed_seq);
1060 local_irq_enable();
1061 }
1062
1063 task_unlock(tsk);
1064 }
1065
1066 static void *cpuset_being_rebound;
1067
1068 /**
1069 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1070 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1071 *
1072 * Iterate through each task of @cs updating its mems_allowed to the
1073 * effective cpuset's. As this function is called with cpuset_mutex held,
1074 * cpuset membership stays stable.
1075 */
1076 static void update_tasks_nodemask(struct cpuset *cs)
1077 {
1078 static nodemask_t newmems; /* protected by cpuset_mutex */
1079 struct css_task_iter it;
1080 struct task_struct *task;
1081
1082 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1083
1084 guarantee_online_mems(cs, &newmems);
1085
1086 /*
1087 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1088 * take while holding tasklist_lock. Forks can happen - the
1089 * mpol_dup() cpuset_being_rebound check will catch such forks,
1090 * and rebind their vma mempolicies too. Because we still hold
1091 * the global cpuset_mutex, we know that no other rebind effort
1092 * will be contending for the global variable cpuset_being_rebound.
1093 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1094 * is idempotent. Also migrate pages in each mm to new nodes.
1095 */
1096 css_task_iter_start(&cs->css, &it);
1097 while ((task = css_task_iter_next(&it))) {
1098 struct mm_struct *mm;
1099 bool migrate;
1100
1101 cpuset_change_task_nodemask(task, &newmems);
1102
1103 mm = get_task_mm(task);
1104 if (!mm)
1105 continue;
1106
1107 migrate = is_memory_migrate(cs);
1108
1109 mpol_rebind_mm(mm, &cs->mems_allowed);
1110 if (migrate)
1111 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1112 else
1113 mmput(mm);
1114 }
1115 css_task_iter_end(&it);
1116
1117 /*
1118 * All the tasks' nodemasks have been updated, update
1119 * cs->old_mems_allowed.
1120 */
1121 cs->old_mems_allowed = newmems;
1122
1123 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1124 cpuset_being_rebound = NULL;
1125 }
1126
1127 /*
1128 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1129 * @cs: the cpuset to consider
1130 * @new_mems: a temp variable for calculating new effective_mems
1131 *
1132 * When configured nodemask is changed, the effective nodemasks of this cpuset
1133 * and all its descendants need to be updated.
1134 *
1135 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1136 *
1137 * Called with cpuset_mutex held
1138 */
1139 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1140 {
1141 struct cpuset *cp;
1142 struct cgroup_subsys_state *pos_css;
1143
1144 rcu_read_lock();
1145 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1146 struct cpuset *parent = parent_cs(cp);
1147
1148 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1149
1150 /*
1151 * If it becomes empty, inherit the effective mask of the
1152 * parent, which is guaranteed to have some MEMs.
1153 */
1154 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1155 nodes_empty(*new_mems))
1156 *new_mems = parent->effective_mems;
1157
1158 /* Skip the whole subtree if the nodemask remains the same. */
1159 if (nodes_equal(*new_mems, cp->effective_mems)) {
1160 pos_css = css_rightmost_descendant(pos_css);
1161 continue;
1162 }
1163
1164 if (!css_tryget_online(&cp->css))
1165 continue;
1166 rcu_read_unlock();
1167
1168 spin_lock_irq(&callback_lock);
1169 cp->effective_mems = *new_mems;
1170 spin_unlock_irq(&callback_lock);
1171
1172 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1173 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1174
1175 update_tasks_nodemask(cp);
1176
1177 rcu_read_lock();
1178 css_put(&cp->css);
1179 }
1180 rcu_read_unlock();
1181 }
1182
1183 /*
1184 * Handle user request to change the 'mems' memory placement
1185 * of a cpuset. Needs to validate the request, update the
1186 * cpusets mems_allowed, and for each task in the cpuset,
1187 * update mems_allowed and rebind task's mempolicy and any vma
1188 * mempolicies and if the cpuset is marked 'memory_migrate',
1189 * migrate the tasks pages to the new memory.
1190 *
1191 * Call with cpuset_mutex held. May take callback_lock during call.
1192 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1193 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1194 * their mempolicies to the cpusets new mems_allowed.
1195 */
1196 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1197 const char *buf)
1198 {
1199 int retval;
1200
1201 /*
1202 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1203 * it's read-only
1204 */
1205 if (cs == &top_cpuset) {
1206 retval = -EACCES;
1207 goto done;
1208 }
1209
1210 /*
1211 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1212 * Since nodelist_parse() fails on an empty mask, we special case
1213 * that parsing. The validate_change() call ensures that cpusets
1214 * with tasks have memory.
1215 */
1216 if (!*buf) {
1217 nodes_clear(trialcs->mems_allowed);
1218 } else {
1219 retval = nodelist_parse(buf, trialcs->mems_allowed);
1220 if (retval < 0)
1221 goto done;
1222
1223 if (!nodes_subset(trialcs->mems_allowed,
1224 top_cpuset.mems_allowed)) {
1225 retval = -EINVAL;
1226 goto done;
1227 }
1228 }
1229
1230 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1231 retval = 0; /* Too easy - nothing to do */
1232 goto done;
1233 }
1234 retval = validate_change(cs, trialcs);
1235 if (retval < 0)
1236 goto done;
1237
1238 spin_lock_irq(&callback_lock);
1239 cs->mems_allowed = trialcs->mems_allowed;
1240 spin_unlock_irq(&callback_lock);
1241
1242 /* use trialcs->mems_allowed as a temp variable */
1243 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1244 done:
1245 return retval;
1246 }
1247
1248 int current_cpuset_is_being_rebound(void)
1249 {
1250 int ret;
1251
1252 rcu_read_lock();
1253 ret = task_cs(current) == cpuset_being_rebound;
1254 rcu_read_unlock();
1255
1256 return ret;
1257 }
1258
1259 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1260 {
1261 #ifdef CONFIG_SMP
1262 if (val < -1 || val >= sched_domain_level_max)
1263 return -EINVAL;
1264 #endif
1265
1266 if (val != cs->relax_domain_level) {
1267 cs->relax_domain_level = val;
1268 if (!cpumask_empty(cs->cpus_allowed) &&
1269 is_sched_load_balance(cs))
1270 rebuild_sched_domains_locked();
1271 }
1272
1273 return 0;
1274 }
1275
1276 /**
1277 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1278 * @cs: the cpuset in which each task's spread flags needs to be changed
1279 *
1280 * Iterate through each task of @cs updating its spread flags. As this
1281 * function is called with cpuset_mutex held, cpuset membership stays
1282 * stable.
1283 */
1284 static void update_tasks_flags(struct cpuset *cs)
1285 {
1286 struct css_task_iter it;
1287 struct task_struct *task;
1288
1289 css_task_iter_start(&cs->css, &it);
1290 while ((task = css_task_iter_next(&it)))
1291 cpuset_update_task_spread_flag(cs, task);
1292 css_task_iter_end(&it);
1293 }
1294
1295 /*
1296 * update_flag - read a 0 or a 1 in a file and update associated flag
1297 * bit: the bit to update (see cpuset_flagbits_t)
1298 * cs: the cpuset to update
1299 * turning_on: whether the flag is being set or cleared
1300 *
1301 * Call with cpuset_mutex held.
1302 */
1303
1304 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1305 int turning_on)
1306 {
1307 struct cpuset *trialcs;
1308 int balance_flag_changed;
1309 int spread_flag_changed;
1310 int err;
1311
1312 trialcs = alloc_trial_cpuset(cs);
1313 if (!trialcs)
1314 return -ENOMEM;
1315
1316 if (turning_on)
1317 set_bit(bit, &trialcs->flags);
1318 else
1319 clear_bit(bit, &trialcs->flags);
1320
1321 err = validate_change(cs, trialcs);
1322 if (err < 0)
1323 goto out;
1324
1325 balance_flag_changed = (is_sched_load_balance(cs) !=
1326 is_sched_load_balance(trialcs));
1327
1328 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1329 || (is_spread_page(cs) != is_spread_page(trialcs)));
1330
1331 spin_lock_irq(&callback_lock);
1332 cs->flags = trialcs->flags;
1333 spin_unlock_irq(&callback_lock);
1334
1335 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1336 rebuild_sched_domains_locked();
1337
1338 if (spread_flag_changed)
1339 update_tasks_flags(cs);
1340 out:
1341 free_trial_cpuset(trialcs);
1342 return err;
1343 }
1344
1345 /*
1346 * Frequency meter - How fast is some event occurring?
1347 *
1348 * These routines manage a digitally filtered, constant time based,
1349 * event frequency meter. There are four routines:
1350 * fmeter_init() - initialize a frequency meter.
1351 * fmeter_markevent() - called each time the event happens.
1352 * fmeter_getrate() - returns the recent rate of such events.
1353 * fmeter_update() - internal routine used to update fmeter.
1354 *
1355 * A common data structure is passed to each of these routines,
1356 * which is used to keep track of the state required to manage the
1357 * frequency meter and its digital filter.
1358 *
1359 * The filter works on the number of events marked per unit time.
1360 * The filter is single-pole low-pass recursive (IIR). The time unit
1361 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1362 * simulate 3 decimal digits of precision (multiplied by 1000).
1363 *
1364 * With an FM_COEF of 933, and a time base of 1 second, the filter
1365 * has a half-life of 10 seconds, meaning that if the events quit
1366 * happening, then the rate returned from the fmeter_getrate()
1367 * will be cut in half each 10 seconds, until it converges to zero.
1368 *
1369 * It is not worth doing a real infinitely recursive filter. If more
1370 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1371 * just compute FM_MAXTICKS ticks worth, by which point the level
1372 * will be stable.
1373 *
1374 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1375 * arithmetic overflow in the fmeter_update() routine.
1376 *
1377 * Given the simple 32 bit integer arithmetic used, this meter works
1378 * best for reporting rates between one per millisecond (msec) and
1379 * one per 32 (approx) seconds. At constant rates faster than one
1380 * per msec it maxes out at values just under 1,000,000. At constant
1381 * rates between one per msec, and one per second it will stabilize
1382 * to a value N*1000, where N is the rate of events per second.
1383 * At constant rates between one per second and one per 32 seconds,
1384 * it will be choppy, moving up on the seconds that have an event,
1385 * and then decaying until the next event. At rates slower than
1386 * about one in 32 seconds, it decays all the way back to zero between
1387 * each event.
1388 */
1389
1390 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1391 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1392 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1393 #define FM_SCALE 1000 /* faux fixed point scale */
1394
1395 /* Initialize a frequency meter */
1396 static void fmeter_init(struct fmeter *fmp)
1397 {
1398 fmp->cnt = 0;
1399 fmp->val = 0;
1400 fmp->time = 0;
1401 spin_lock_init(&fmp->lock);
1402 }
1403
1404 /* Internal meter update - process cnt events and update value */
1405 static void fmeter_update(struct fmeter *fmp)
1406 {
1407 time64_t now;
1408 u32 ticks;
1409
1410 now = ktime_get_seconds();
1411 ticks = now - fmp->time;
1412
1413 if (ticks == 0)
1414 return;
1415
1416 ticks = min(FM_MAXTICKS, ticks);
1417 while (ticks-- > 0)
1418 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1419 fmp->time = now;
1420
1421 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1422 fmp->cnt = 0;
1423 }
1424
1425 /* Process any previous ticks, then bump cnt by one (times scale). */
1426 static void fmeter_markevent(struct fmeter *fmp)
1427 {
1428 spin_lock(&fmp->lock);
1429 fmeter_update(fmp);
1430 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1431 spin_unlock(&fmp->lock);
1432 }
1433
1434 /* Process any previous ticks, then return current value. */
1435 static int fmeter_getrate(struct fmeter *fmp)
1436 {
1437 int val;
1438
1439 spin_lock(&fmp->lock);
1440 fmeter_update(fmp);
1441 val = fmp->val;
1442 spin_unlock(&fmp->lock);
1443 return val;
1444 }
1445
1446 static struct cpuset *cpuset_attach_old_cs;
1447
1448 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1449 static int cpuset_can_attach(struct cgroup_taskset *tset)
1450 {
1451 struct cgroup_subsys_state *css;
1452 struct cpuset *cs;
1453 struct task_struct *task;
1454 int ret;
1455
1456 /* used later by cpuset_attach() */
1457 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1458 cs = css_cs(css);
1459
1460 mutex_lock(&cpuset_mutex);
1461
1462 /* allow moving tasks into an empty cpuset if on default hierarchy */
1463 ret = -ENOSPC;
1464 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1465 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1466 goto out_unlock;
1467
1468 cgroup_taskset_for_each(task, css, tset) {
1469 ret = task_can_attach(task, cs->cpus_allowed);
1470 if (ret)
1471 goto out_unlock;
1472 ret = security_task_setscheduler(task);
1473 if (ret)
1474 goto out_unlock;
1475 }
1476
1477 /*
1478 * Mark attach is in progress. This makes validate_change() fail
1479 * changes which zero cpus/mems_allowed.
1480 */
1481 cs->attach_in_progress++;
1482 ret = 0;
1483 out_unlock:
1484 mutex_unlock(&cpuset_mutex);
1485 return ret;
1486 }
1487
1488 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1489 {
1490 struct cgroup_subsys_state *css;
1491 struct cpuset *cs;
1492
1493 cgroup_taskset_first(tset, &css);
1494 cs = css_cs(css);
1495
1496 mutex_lock(&cpuset_mutex);
1497 css_cs(css)->attach_in_progress--;
1498 mutex_unlock(&cpuset_mutex);
1499 }
1500
1501 /*
1502 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1503 * but we can't allocate it dynamically there. Define it global and
1504 * allocate from cpuset_init().
1505 */
1506 static cpumask_var_t cpus_attach;
1507
1508 static void cpuset_attach(struct cgroup_taskset *tset)
1509 {
1510 /* static buf protected by cpuset_mutex */
1511 static nodemask_t cpuset_attach_nodemask_to;
1512 struct task_struct *task;
1513 struct task_struct *leader;
1514 struct cgroup_subsys_state *css;
1515 struct cpuset *cs;
1516 struct cpuset *oldcs = cpuset_attach_old_cs;
1517
1518 cgroup_taskset_first(tset, &css);
1519 cs = css_cs(css);
1520
1521 mutex_lock(&cpuset_mutex);
1522
1523 /* prepare for attach */
1524 if (cs == &top_cpuset)
1525 cpumask_copy(cpus_attach, cpu_possible_mask);
1526 else
1527 guarantee_online_cpus(cs, cpus_attach);
1528
1529 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1530
1531 cgroup_taskset_for_each(task, css, tset) {
1532 /*
1533 * can_attach beforehand should guarantee that this doesn't
1534 * fail. TODO: have a better way to handle failure here
1535 */
1536 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1537
1538 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1539 cpuset_update_task_spread_flag(cs, task);
1540 }
1541
1542 /*
1543 * Change mm for all threadgroup leaders. This is expensive and may
1544 * sleep and should be moved outside migration path proper.
1545 */
1546 cpuset_attach_nodemask_to = cs->effective_mems;
1547 cgroup_taskset_for_each_leader(leader, css, tset) {
1548 struct mm_struct *mm = get_task_mm(leader);
1549
1550 if (mm) {
1551 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1552
1553 /*
1554 * old_mems_allowed is the same with mems_allowed
1555 * here, except if this task is being moved
1556 * automatically due to hotplug. In that case
1557 * @mems_allowed has been updated and is empty, so
1558 * @old_mems_allowed is the right nodesets that we
1559 * migrate mm from.
1560 */
1561 if (is_memory_migrate(cs))
1562 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1563 &cpuset_attach_nodemask_to);
1564 else
1565 mmput(mm);
1566 }
1567 }
1568
1569 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1570
1571 cs->attach_in_progress--;
1572 if (!cs->attach_in_progress)
1573 wake_up(&cpuset_attach_wq);
1574
1575 mutex_unlock(&cpuset_mutex);
1576 }
1577
1578 /* The various types of files and directories in a cpuset file system */
1579
1580 typedef enum {
1581 FILE_MEMORY_MIGRATE,
1582 FILE_CPULIST,
1583 FILE_MEMLIST,
1584 FILE_EFFECTIVE_CPULIST,
1585 FILE_EFFECTIVE_MEMLIST,
1586 FILE_CPU_EXCLUSIVE,
1587 FILE_MEM_EXCLUSIVE,
1588 FILE_MEM_HARDWALL,
1589 FILE_SCHED_LOAD_BALANCE,
1590 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1591 FILE_MEMORY_PRESSURE_ENABLED,
1592 FILE_MEMORY_PRESSURE,
1593 FILE_SPREAD_PAGE,
1594 FILE_SPREAD_SLAB,
1595 } cpuset_filetype_t;
1596
1597 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1598 u64 val)
1599 {
1600 struct cpuset *cs = css_cs(css);
1601 cpuset_filetype_t type = cft->private;
1602 int retval = 0;
1603
1604 mutex_lock(&cpuset_mutex);
1605 if (!is_cpuset_online(cs)) {
1606 retval = -ENODEV;
1607 goto out_unlock;
1608 }
1609
1610 switch (type) {
1611 case FILE_CPU_EXCLUSIVE:
1612 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1613 break;
1614 case FILE_MEM_EXCLUSIVE:
1615 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1616 break;
1617 case FILE_MEM_HARDWALL:
1618 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1619 break;
1620 case FILE_SCHED_LOAD_BALANCE:
1621 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1622 break;
1623 case FILE_MEMORY_MIGRATE:
1624 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1625 break;
1626 case FILE_MEMORY_PRESSURE_ENABLED:
1627 cpuset_memory_pressure_enabled = !!val;
1628 break;
1629 case FILE_SPREAD_PAGE:
1630 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1631 break;
1632 case FILE_SPREAD_SLAB:
1633 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1634 break;
1635 default:
1636 retval = -EINVAL;
1637 break;
1638 }
1639 out_unlock:
1640 mutex_unlock(&cpuset_mutex);
1641 return retval;
1642 }
1643
1644 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1645 s64 val)
1646 {
1647 struct cpuset *cs = css_cs(css);
1648 cpuset_filetype_t type = cft->private;
1649 int retval = -ENODEV;
1650
1651 mutex_lock(&cpuset_mutex);
1652 if (!is_cpuset_online(cs))
1653 goto out_unlock;
1654
1655 switch (type) {
1656 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1657 retval = update_relax_domain_level(cs, val);
1658 break;
1659 default:
1660 retval = -EINVAL;
1661 break;
1662 }
1663 out_unlock:
1664 mutex_unlock(&cpuset_mutex);
1665 return retval;
1666 }
1667
1668 /*
1669 * Common handling for a write to a "cpus" or "mems" file.
1670 */
1671 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1672 char *buf, size_t nbytes, loff_t off)
1673 {
1674 struct cpuset *cs = css_cs(of_css(of));
1675 struct cpuset *trialcs;
1676 int retval = -ENODEV;
1677
1678 buf = strstrip(buf);
1679
1680 /*
1681 * CPU or memory hotunplug may leave @cs w/o any execution
1682 * resources, in which case the hotplug code asynchronously updates
1683 * configuration and transfers all tasks to the nearest ancestor
1684 * which can execute.
1685 *
1686 * As writes to "cpus" or "mems" may restore @cs's execution
1687 * resources, wait for the previously scheduled operations before
1688 * proceeding, so that we don't end up keep removing tasks added
1689 * after execution capability is restored.
1690 *
1691 * cpuset_hotplug_work calls back into cgroup core via
1692 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1693 * operation like this one can lead to a deadlock through kernfs
1694 * active_ref protection. Let's break the protection. Losing the
1695 * protection is okay as we check whether @cs is online after
1696 * grabbing cpuset_mutex anyway. This only happens on the legacy
1697 * hierarchies.
1698 */
1699 css_get(&cs->css);
1700 kernfs_break_active_protection(of->kn);
1701 flush_work(&cpuset_hotplug_work);
1702
1703 mutex_lock(&cpuset_mutex);
1704 if (!is_cpuset_online(cs))
1705 goto out_unlock;
1706
1707 trialcs = alloc_trial_cpuset(cs);
1708 if (!trialcs) {
1709 retval = -ENOMEM;
1710 goto out_unlock;
1711 }
1712
1713 switch (of_cft(of)->private) {
1714 case FILE_CPULIST:
1715 retval = update_cpumask(cs, trialcs, buf);
1716 break;
1717 case FILE_MEMLIST:
1718 retval = update_nodemask(cs, trialcs, buf);
1719 break;
1720 default:
1721 retval = -EINVAL;
1722 break;
1723 }
1724
1725 free_trial_cpuset(trialcs);
1726 out_unlock:
1727 mutex_unlock(&cpuset_mutex);
1728 kernfs_unbreak_active_protection(of->kn);
1729 css_put(&cs->css);
1730 flush_workqueue(cpuset_migrate_mm_wq);
1731 return retval ?: nbytes;
1732 }
1733
1734 /*
1735 * These ascii lists should be read in a single call, by using a user
1736 * buffer large enough to hold the entire map. If read in smaller
1737 * chunks, there is no guarantee of atomicity. Since the display format
1738 * used, list of ranges of sequential numbers, is variable length,
1739 * and since these maps can change value dynamically, one could read
1740 * gibberish by doing partial reads while a list was changing.
1741 */
1742 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1743 {
1744 struct cpuset *cs = css_cs(seq_css(sf));
1745 cpuset_filetype_t type = seq_cft(sf)->private;
1746 int ret = 0;
1747
1748 spin_lock_irq(&callback_lock);
1749
1750 switch (type) {
1751 case FILE_CPULIST:
1752 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1753 break;
1754 case FILE_MEMLIST:
1755 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1756 break;
1757 case FILE_EFFECTIVE_CPULIST:
1758 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1759 break;
1760 case FILE_EFFECTIVE_MEMLIST:
1761 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1762 break;
1763 default:
1764 ret = -EINVAL;
1765 }
1766
1767 spin_unlock_irq(&callback_lock);
1768 return ret;
1769 }
1770
1771 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1772 {
1773 struct cpuset *cs = css_cs(css);
1774 cpuset_filetype_t type = cft->private;
1775 switch (type) {
1776 case FILE_CPU_EXCLUSIVE:
1777 return is_cpu_exclusive(cs);
1778 case FILE_MEM_EXCLUSIVE:
1779 return is_mem_exclusive(cs);
1780 case FILE_MEM_HARDWALL:
1781 return is_mem_hardwall(cs);
1782 case FILE_SCHED_LOAD_BALANCE:
1783 return is_sched_load_balance(cs);
1784 case FILE_MEMORY_MIGRATE:
1785 return is_memory_migrate(cs);
1786 case FILE_MEMORY_PRESSURE_ENABLED:
1787 return cpuset_memory_pressure_enabled;
1788 case FILE_MEMORY_PRESSURE:
1789 return fmeter_getrate(&cs->fmeter);
1790 case FILE_SPREAD_PAGE:
1791 return is_spread_page(cs);
1792 case FILE_SPREAD_SLAB:
1793 return is_spread_slab(cs);
1794 default:
1795 BUG();
1796 }
1797
1798 /* Unreachable but makes gcc happy */
1799 return 0;
1800 }
1801
1802 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1803 {
1804 struct cpuset *cs = css_cs(css);
1805 cpuset_filetype_t type = cft->private;
1806 switch (type) {
1807 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1808 return cs->relax_domain_level;
1809 default:
1810 BUG();
1811 }
1812
1813 /* Unrechable but makes gcc happy */
1814 return 0;
1815 }
1816
1817
1818 /*
1819 * for the common functions, 'private' gives the type of file
1820 */
1821
1822 static struct cftype files[] = {
1823 {
1824 .name = "cpus",
1825 .seq_show = cpuset_common_seq_show,
1826 .write = cpuset_write_resmask,
1827 .max_write_len = (100U + 6 * NR_CPUS),
1828 .private = FILE_CPULIST,
1829 },
1830
1831 {
1832 .name = "mems",
1833 .seq_show = cpuset_common_seq_show,
1834 .write = cpuset_write_resmask,
1835 .max_write_len = (100U + 6 * MAX_NUMNODES),
1836 .private = FILE_MEMLIST,
1837 },
1838
1839 {
1840 .name = "effective_cpus",
1841 .seq_show = cpuset_common_seq_show,
1842 .private = FILE_EFFECTIVE_CPULIST,
1843 },
1844
1845 {
1846 .name = "effective_mems",
1847 .seq_show = cpuset_common_seq_show,
1848 .private = FILE_EFFECTIVE_MEMLIST,
1849 },
1850
1851 {
1852 .name = "cpu_exclusive",
1853 .read_u64 = cpuset_read_u64,
1854 .write_u64 = cpuset_write_u64,
1855 .private = FILE_CPU_EXCLUSIVE,
1856 },
1857
1858 {
1859 .name = "mem_exclusive",
1860 .read_u64 = cpuset_read_u64,
1861 .write_u64 = cpuset_write_u64,
1862 .private = FILE_MEM_EXCLUSIVE,
1863 },
1864
1865 {
1866 .name = "mem_hardwall",
1867 .read_u64 = cpuset_read_u64,
1868 .write_u64 = cpuset_write_u64,
1869 .private = FILE_MEM_HARDWALL,
1870 },
1871
1872 {
1873 .name = "sched_load_balance",
1874 .read_u64 = cpuset_read_u64,
1875 .write_u64 = cpuset_write_u64,
1876 .private = FILE_SCHED_LOAD_BALANCE,
1877 },
1878
1879 {
1880 .name = "sched_relax_domain_level",
1881 .read_s64 = cpuset_read_s64,
1882 .write_s64 = cpuset_write_s64,
1883 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1884 },
1885
1886 {
1887 .name = "memory_migrate",
1888 .read_u64 = cpuset_read_u64,
1889 .write_u64 = cpuset_write_u64,
1890 .private = FILE_MEMORY_MIGRATE,
1891 },
1892
1893 {
1894 .name = "memory_pressure",
1895 .read_u64 = cpuset_read_u64,
1896 },
1897
1898 {
1899 .name = "memory_spread_page",
1900 .read_u64 = cpuset_read_u64,
1901 .write_u64 = cpuset_write_u64,
1902 .private = FILE_SPREAD_PAGE,
1903 },
1904
1905 {
1906 .name = "memory_spread_slab",
1907 .read_u64 = cpuset_read_u64,
1908 .write_u64 = cpuset_write_u64,
1909 .private = FILE_SPREAD_SLAB,
1910 },
1911
1912 {
1913 .name = "memory_pressure_enabled",
1914 .flags = CFTYPE_ONLY_ON_ROOT,
1915 .read_u64 = cpuset_read_u64,
1916 .write_u64 = cpuset_write_u64,
1917 .private = FILE_MEMORY_PRESSURE_ENABLED,
1918 },
1919
1920 { } /* terminate */
1921 };
1922
1923 /*
1924 * cpuset_css_alloc - allocate a cpuset css
1925 * cgrp: control group that the new cpuset will be part of
1926 */
1927
1928 static struct cgroup_subsys_state *
1929 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1930 {
1931 struct cpuset *cs;
1932
1933 if (!parent_css)
1934 return &top_cpuset.css;
1935
1936 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1937 if (!cs)
1938 return ERR_PTR(-ENOMEM);
1939 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1940 goto free_cs;
1941 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1942 goto free_cpus;
1943
1944 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1945 cpumask_clear(cs->cpus_allowed);
1946 nodes_clear(cs->mems_allowed);
1947 cpumask_clear(cs->effective_cpus);
1948 nodes_clear(cs->effective_mems);
1949 fmeter_init(&cs->fmeter);
1950 cs->relax_domain_level = -1;
1951
1952 return &cs->css;
1953
1954 free_cpus:
1955 free_cpumask_var(cs->cpus_allowed);
1956 free_cs:
1957 kfree(cs);
1958 return ERR_PTR(-ENOMEM);
1959 }
1960
1961 static int cpuset_css_online(struct cgroup_subsys_state *css)
1962 {
1963 struct cpuset *cs = css_cs(css);
1964 struct cpuset *parent = parent_cs(cs);
1965 struct cpuset *tmp_cs;
1966 struct cgroup_subsys_state *pos_css;
1967
1968 if (!parent)
1969 return 0;
1970
1971 mutex_lock(&cpuset_mutex);
1972
1973 set_bit(CS_ONLINE, &cs->flags);
1974 if (is_spread_page(parent))
1975 set_bit(CS_SPREAD_PAGE, &cs->flags);
1976 if (is_spread_slab(parent))
1977 set_bit(CS_SPREAD_SLAB, &cs->flags);
1978
1979 cpuset_inc();
1980
1981 spin_lock_irq(&callback_lock);
1982 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1983 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1984 cs->effective_mems = parent->effective_mems;
1985 }
1986 spin_unlock_irq(&callback_lock);
1987
1988 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1989 goto out_unlock;
1990
1991 /*
1992 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1993 * set. This flag handling is implemented in cgroup core for
1994 * histrical reasons - the flag may be specified during mount.
1995 *
1996 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1997 * refuse to clone the configuration - thereby refusing the task to
1998 * be entered, and as a result refusing the sys_unshare() or
1999 * clone() which initiated it. If this becomes a problem for some
2000 * users who wish to allow that scenario, then this could be
2001 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2002 * (and likewise for mems) to the new cgroup.
2003 */
2004 rcu_read_lock();
2005 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2006 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2007 rcu_read_unlock();
2008 goto out_unlock;
2009 }
2010 }
2011 rcu_read_unlock();
2012
2013 spin_lock_irq(&callback_lock);
2014 cs->mems_allowed = parent->mems_allowed;
2015 cs->effective_mems = parent->mems_allowed;
2016 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2017 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2018 spin_unlock_irq(&callback_lock);
2019 out_unlock:
2020 mutex_unlock(&cpuset_mutex);
2021 return 0;
2022 }
2023
2024 /*
2025 * If the cpuset being removed has its flag 'sched_load_balance'
2026 * enabled, then simulate turning sched_load_balance off, which
2027 * will call rebuild_sched_domains_locked().
2028 */
2029
2030 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2031 {
2032 struct cpuset *cs = css_cs(css);
2033
2034 mutex_lock(&cpuset_mutex);
2035
2036 if (is_sched_load_balance(cs))
2037 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2038
2039 cpuset_dec();
2040 clear_bit(CS_ONLINE, &cs->flags);
2041
2042 mutex_unlock(&cpuset_mutex);
2043 }
2044
2045 static void cpuset_css_free(struct cgroup_subsys_state *css)
2046 {
2047 struct cpuset *cs = css_cs(css);
2048
2049 free_cpumask_var(cs->effective_cpus);
2050 free_cpumask_var(cs->cpus_allowed);
2051 kfree(cs);
2052 }
2053
2054 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2055 {
2056 mutex_lock(&cpuset_mutex);
2057 spin_lock_irq(&callback_lock);
2058
2059 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2060 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2061 top_cpuset.mems_allowed = node_possible_map;
2062 } else {
2063 cpumask_copy(top_cpuset.cpus_allowed,
2064 top_cpuset.effective_cpus);
2065 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2066 }
2067
2068 spin_unlock_irq(&callback_lock);
2069 mutex_unlock(&cpuset_mutex);
2070 }
2071
2072 /*
2073 * Make sure the new task conform to the current state of its parent,
2074 * which could have been changed by cpuset just after it inherits the
2075 * state from the parent and before it sits on the cgroup's task list.
2076 */
2077 void cpuset_fork(struct task_struct *task)
2078 {
2079 if (task_css_is_root(task, cpuset_cgrp_id))
2080 return;
2081
2082 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2083 task->mems_allowed = current->mems_allowed;
2084 }
2085
2086 struct cgroup_subsys cpuset_cgrp_subsys = {
2087 .css_alloc = cpuset_css_alloc,
2088 .css_online = cpuset_css_online,
2089 .css_offline = cpuset_css_offline,
2090 .css_free = cpuset_css_free,
2091 .can_attach = cpuset_can_attach,
2092 .cancel_attach = cpuset_cancel_attach,
2093 .attach = cpuset_attach,
2094 .post_attach = cpuset_post_attach,
2095 .bind = cpuset_bind,
2096 .fork = cpuset_fork,
2097 .legacy_cftypes = files,
2098 .early_init = true,
2099 };
2100
2101 /**
2102 * cpuset_init - initialize cpusets at system boot
2103 *
2104 * Description: Initialize top_cpuset and the cpuset internal file system,
2105 **/
2106
2107 int __init cpuset_init(void)
2108 {
2109 int err = 0;
2110
2111 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2112 BUG();
2113 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2114 BUG();
2115
2116 cpumask_setall(top_cpuset.cpus_allowed);
2117 nodes_setall(top_cpuset.mems_allowed);
2118 cpumask_setall(top_cpuset.effective_cpus);
2119 nodes_setall(top_cpuset.effective_mems);
2120
2121 fmeter_init(&top_cpuset.fmeter);
2122 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2123 top_cpuset.relax_domain_level = -1;
2124
2125 err = register_filesystem(&cpuset_fs_type);
2126 if (err < 0)
2127 return err;
2128
2129 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2130 BUG();
2131
2132 return 0;
2133 }
2134
2135 /*
2136 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2137 * or memory nodes, we need to walk over the cpuset hierarchy,
2138 * removing that CPU or node from all cpusets. If this removes the
2139 * last CPU or node from a cpuset, then move the tasks in the empty
2140 * cpuset to its next-highest non-empty parent.
2141 */
2142 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2143 {
2144 struct cpuset *parent;
2145
2146 /*
2147 * Find its next-highest non-empty parent, (top cpuset
2148 * has online cpus, so can't be empty).
2149 */
2150 parent = parent_cs(cs);
2151 while (cpumask_empty(parent->cpus_allowed) ||
2152 nodes_empty(parent->mems_allowed))
2153 parent = parent_cs(parent);
2154
2155 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2156 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2157 pr_cont_cgroup_name(cs->css.cgroup);
2158 pr_cont("\n");
2159 }
2160 }
2161
2162 static void
2163 hotplug_update_tasks_legacy(struct cpuset *cs,
2164 struct cpumask *new_cpus, nodemask_t *new_mems,
2165 bool cpus_updated, bool mems_updated)
2166 {
2167 bool is_empty;
2168
2169 spin_lock_irq(&callback_lock);
2170 cpumask_copy(cs->cpus_allowed, new_cpus);
2171 cpumask_copy(cs->effective_cpus, new_cpus);
2172 cs->mems_allowed = *new_mems;
2173 cs->effective_mems = *new_mems;
2174 spin_unlock_irq(&callback_lock);
2175
2176 /*
2177 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2178 * as the tasks will be migratecd to an ancestor.
2179 */
2180 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2181 update_tasks_cpumask(cs);
2182 if (mems_updated && !nodes_empty(cs->mems_allowed))
2183 update_tasks_nodemask(cs);
2184
2185 is_empty = cpumask_empty(cs->cpus_allowed) ||
2186 nodes_empty(cs->mems_allowed);
2187
2188 mutex_unlock(&cpuset_mutex);
2189
2190 /*
2191 * Move tasks to the nearest ancestor with execution resources,
2192 * This is full cgroup operation which will also call back into
2193 * cpuset. Should be done outside any lock.
2194 */
2195 if (is_empty)
2196 remove_tasks_in_empty_cpuset(cs);
2197
2198 mutex_lock(&cpuset_mutex);
2199 }
2200
2201 static void
2202 hotplug_update_tasks(struct cpuset *cs,
2203 struct cpumask *new_cpus, nodemask_t *new_mems,
2204 bool cpus_updated, bool mems_updated)
2205 {
2206 if (cpumask_empty(new_cpus))
2207 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2208 if (nodes_empty(*new_mems))
2209 *new_mems = parent_cs(cs)->effective_mems;
2210
2211 spin_lock_irq(&callback_lock);
2212 cpumask_copy(cs->effective_cpus, new_cpus);
2213 cs->effective_mems = *new_mems;
2214 spin_unlock_irq(&callback_lock);
2215
2216 if (cpus_updated)
2217 update_tasks_cpumask(cs);
2218 if (mems_updated)
2219 update_tasks_nodemask(cs);
2220 }
2221
2222 /**
2223 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2224 * @cs: cpuset in interest
2225 *
2226 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2227 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2228 * all its tasks are moved to the nearest ancestor with both resources.
2229 */
2230 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2231 {
2232 static cpumask_t new_cpus;
2233 static nodemask_t new_mems;
2234 bool cpus_updated;
2235 bool mems_updated;
2236 retry:
2237 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2238
2239 mutex_lock(&cpuset_mutex);
2240
2241 /*
2242 * We have raced with task attaching. We wait until attaching
2243 * is finished, so we won't attach a task to an empty cpuset.
2244 */
2245 if (cs->attach_in_progress) {
2246 mutex_unlock(&cpuset_mutex);
2247 goto retry;
2248 }
2249
2250 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2251 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2252
2253 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2254 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2255
2256 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2257 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2258 cpus_updated, mems_updated);
2259 else
2260 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2261 cpus_updated, mems_updated);
2262
2263 mutex_unlock(&cpuset_mutex);
2264 }
2265
2266 /**
2267 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2268 *
2269 * This function is called after either CPU or memory configuration has
2270 * changed and updates cpuset accordingly. The top_cpuset is always
2271 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2272 * order to make cpusets transparent (of no affect) on systems that are
2273 * actively using CPU hotplug but making no active use of cpusets.
2274 *
2275 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2276 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2277 * all descendants.
2278 *
2279 * Note that CPU offlining during suspend is ignored. We don't modify
2280 * cpusets across suspend/resume cycles at all.
2281 */
2282 static void cpuset_hotplug_workfn(struct work_struct *work)
2283 {
2284 static cpumask_t new_cpus;
2285 static nodemask_t new_mems;
2286 bool cpus_updated, mems_updated;
2287 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2288
2289 mutex_lock(&cpuset_mutex);
2290
2291 /* fetch the available cpus/mems and find out which changed how */
2292 cpumask_copy(&new_cpus, cpu_active_mask);
2293 new_mems = node_states[N_MEMORY];
2294
2295 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2296 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2297
2298 /* synchronize cpus_allowed to cpu_active_mask */
2299 if (cpus_updated) {
2300 spin_lock_irq(&callback_lock);
2301 if (!on_dfl)
2302 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2303 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2304 spin_unlock_irq(&callback_lock);
2305 /* we don't mess with cpumasks of tasks in top_cpuset */
2306 }
2307
2308 /* synchronize mems_allowed to N_MEMORY */
2309 if (mems_updated) {
2310 spin_lock_irq(&callback_lock);
2311 if (!on_dfl)
2312 top_cpuset.mems_allowed = new_mems;
2313 top_cpuset.effective_mems = new_mems;
2314 spin_unlock_irq(&callback_lock);
2315 update_tasks_nodemask(&top_cpuset);
2316 }
2317
2318 mutex_unlock(&cpuset_mutex);
2319
2320 /* if cpus or mems changed, we need to propagate to descendants */
2321 if (cpus_updated || mems_updated) {
2322 struct cpuset *cs;
2323 struct cgroup_subsys_state *pos_css;
2324
2325 rcu_read_lock();
2326 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2327 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2328 continue;
2329 rcu_read_unlock();
2330
2331 cpuset_hotplug_update_tasks(cs);
2332
2333 rcu_read_lock();
2334 css_put(&cs->css);
2335 }
2336 rcu_read_unlock();
2337 }
2338
2339 /* rebuild sched domains if cpus_allowed has changed */
2340 if (cpus_updated)
2341 rebuild_sched_domains();
2342 }
2343
2344 void cpuset_update_active_cpus(bool cpu_online)
2345 {
2346 /*
2347 * We're inside cpu hotplug critical region which usually nests
2348 * inside cgroup synchronization. Bounce actual hotplug processing
2349 * to a work item to avoid reverse locking order.
2350 *
2351 * We still need to do partition_sched_domains() synchronously;
2352 * otherwise, the scheduler will get confused and put tasks to the
2353 * dead CPU. Fall back to the default single domain.
2354 * cpuset_hotplug_workfn() will rebuild it as necessary.
2355 */
2356 partition_sched_domains(1, NULL, NULL);
2357 schedule_work(&cpuset_hotplug_work);
2358 }
2359
2360 /*
2361 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2362 * Call this routine anytime after node_states[N_MEMORY] changes.
2363 * See cpuset_update_active_cpus() for CPU hotplug handling.
2364 */
2365 static int cpuset_track_online_nodes(struct notifier_block *self,
2366 unsigned long action, void *arg)
2367 {
2368 schedule_work(&cpuset_hotplug_work);
2369 return NOTIFY_OK;
2370 }
2371
2372 static struct notifier_block cpuset_track_online_nodes_nb = {
2373 .notifier_call = cpuset_track_online_nodes,
2374 .priority = 10, /* ??! */
2375 };
2376
2377 /**
2378 * cpuset_init_smp - initialize cpus_allowed
2379 *
2380 * Description: Finish top cpuset after cpu, node maps are initialized
2381 */
2382 void __init cpuset_init_smp(void)
2383 {
2384 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2385 top_cpuset.mems_allowed = node_states[N_MEMORY];
2386 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2387
2388 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2389 top_cpuset.effective_mems = node_states[N_MEMORY];
2390
2391 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2392
2393 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2394 BUG_ON(!cpuset_migrate_mm_wq);
2395 }
2396
2397 /**
2398 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2399 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2400 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2401 *
2402 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2403 * attached to the specified @tsk. Guaranteed to return some non-empty
2404 * subset of cpu_online_mask, even if this means going outside the
2405 * tasks cpuset.
2406 **/
2407
2408 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2409 {
2410 unsigned long flags;
2411
2412 spin_lock_irqsave(&callback_lock, flags);
2413 rcu_read_lock();
2414 guarantee_online_cpus(task_cs(tsk), pmask);
2415 rcu_read_unlock();
2416 spin_unlock_irqrestore(&callback_lock, flags);
2417 }
2418
2419 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2420 {
2421 rcu_read_lock();
2422 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2423 rcu_read_unlock();
2424
2425 /*
2426 * We own tsk->cpus_allowed, nobody can change it under us.
2427 *
2428 * But we used cs && cs->cpus_allowed lockless and thus can
2429 * race with cgroup_attach_task() or update_cpumask() and get
2430 * the wrong tsk->cpus_allowed. However, both cases imply the
2431 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2432 * which takes task_rq_lock().
2433 *
2434 * If we are called after it dropped the lock we must see all
2435 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2436 * set any mask even if it is not right from task_cs() pov,
2437 * the pending set_cpus_allowed_ptr() will fix things.
2438 *
2439 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2440 * if required.
2441 */
2442 }
2443
2444 void __init cpuset_init_current_mems_allowed(void)
2445 {
2446 nodes_setall(current->mems_allowed);
2447 }
2448
2449 /**
2450 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2451 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2452 *
2453 * Description: Returns the nodemask_t mems_allowed of the cpuset
2454 * attached to the specified @tsk. Guaranteed to return some non-empty
2455 * subset of node_states[N_MEMORY], even if this means going outside the
2456 * tasks cpuset.
2457 **/
2458
2459 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2460 {
2461 nodemask_t mask;
2462 unsigned long flags;
2463
2464 spin_lock_irqsave(&callback_lock, flags);
2465 rcu_read_lock();
2466 guarantee_online_mems(task_cs(tsk), &mask);
2467 rcu_read_unlock();
2468 spin_unlock_irqrestore(&callback_lock, flags);
2469
2470 return mask;
2471 }
2472
2473 /**
2474 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2475 * @nodemask: the nodemask to be checked
2476 *
2477 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2478 */
2479 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2480 {
2481 return nodes_intersects(*nodemask, current->mems_allowed);
2482 }
2483
2484 /*
2485 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2486 * mem_hardwall ancestor to the specified cpuset. Call holding
2487 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2488 * (an unusual configuration), then returns the root cpuset.
2489 */
2490 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2491 {
2492 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2493 cs = parent_cs(cs);
2494 return cs;
2495 }
2496
2497 /**
2498 * cpuset_node_allowed - Can we allocate on a memory node?
2499 * @node: is this an allowed node?
2500 * @gfp_mask: memory allocation flags
2501 *
2502 * If we're in interrupt, yes, we can always allocate. If @node is set in
2503 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2504 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2505 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2506 * Otherwise, no.
2507 *
2508 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2509 * and do not allow allocations outside the current tasks cpuset
2510 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2511 * GFP_KERNEL allocations are not so marked, so can escape to the
2512 * nearest enclosing hardwalled ancestor cpuset.
2513 *
2514 * Scanning up parent cpusets requires callback_lock. The
2515 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2516 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2517 * current tasks mems_allowed came up empty on the first pass over
2518 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2519 * cpuset are short of memory, might require taking the callback_lock.
2520 *
2521 * The first call here from mm/page_alloc:get_page_from_freelist()
2522 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2523 * so no allocation on a node outside the cpuset is allowed (unless
2524 * in interrupt, of course).
2525 *
2526 * The second pass through get_page_from_freelist() doesn't even call
2527 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2528 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2529 * in alloc_flags. That logic and the checks below have the combined
2530 * affect that:
2531 * in_interrupt - any node ok (current task context irrelevant)
2532 * GFP_ATOMIC - any node ok
2533 * TIF_MEMDIE - any node ok
2534 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2535 * GFP_USER - only nodes in current tasks mems allowed ok.
2536 */
2537 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2538 {
2539 struct cpuset *cs; /* current cpuset ancestors */
2540 int allowed; /* is allocation in zone z allowed? */
2541 unsigned long flags;
2542
2543 if (in_interrupt())
2544 return true;
2545 if (node_isset(node, current->mems_allowed))
2546 return true;
2547 /*
2548 * Allow tasks that have access to memory reserves because they have
2549 * been OOM killed to get memory anywhere.
2550 */
2551 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2552 return true;
2553 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2554 return false;
2555
2556 if (current->flags & PF_EXITING) /* Let dying task have memory */
2557 return true;
2558
2559 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2560 spin_lock_irqsave(&callback_lock, flags);
2561
2562 rcu_read_lock();
2563 cs = nearest_hardwall_ancestor(task_cs(current));
2564 allowed = node_isset(node, cs->mems_allowed);
2565 rcu_read_unlock();
2566
2567 spin_unlock_irqrestore(&callback_lock, flags);
2568 return allowed;
2569 }
2570
2571 /**
2572 * cpuset_mem_spread_node() - On which node to begin search for a file page
2573 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2574 *
2575 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2576 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2577 * and if the memory allocation used cpuset_mem_spread_node()
2578 * to determine on which node to start looking, as it will for
2579 * certain page cache or slab cache pages such as used for file
2580 * system buffers and inode caches, then instead of starting on the
2581 * local node to look for a free page, rather spread the starting
2582 * node around the tasks mems_allowed nodes.
2583 *
2584 * We don't have to worry about the returned node being offline
2585 * because "it can't happen", and even if it did, it would be ok.
2586 *
2587 * The routines calling guarantee_online_mems() are careful to
2588 * only set nodes in task->mems_allowed that are online. So it
2589 * should not be possible for the following code to return an
2590 * offline node. But if it did, that would be ok, as this routine
2591 * is not returning the node where the allocation must be, only
2592 * the node where the search should start. The zonelist passed to
2593 * __alloc_pages() will include all nodes. If the slab allocator
2594 * is passed an offline node, it will fall back to the local node.
2595 * See kmem_cache_alloc_node().
2596 */
2597
2598 static int cpuset_spread_node(int *rotor)
2599 {
2600 return *rotor = next_node_in(*rotor, current->mems_allowed);
2601 }
2602
2603 int cpuset_mem_spread_node(void)
2604 {
2605 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2606 current->cpuset_mem_spread_rotor =
2607 node_random(&current->mems_allowed);
2608
2609 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2610 }
2611
2612 int cpuset_slab_spread_node(void)
2613 {
2614 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2615 current->cpuset_slab_spread_rotor =
2616 node_random(&current->mems_allowed);
2617
2618 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2619 }
2620
2621 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2622
2623 /**
2624 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2625 * @tsk1: pointer to task_struct of some task.
2626 * @tsk2: pointer to task_struct of some other task.
2627 *
2628 * Description: Return true if @tsk1's mems_allowed intersects the
2629 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2630 * one of the task's memory usage might impact the memory available
2631 * to the other.
2632 **/
2633
2634 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2635 const struct task_struct *tsk2)
2636 {
2637 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2638 }
2639
2640 /**
2641 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2642 *
2643 * Description: Prints current's name, cpuset name, and cached copy of its
2644 * mems_allowed to the kernel log.
2645 */
2646 void cpuset_print_current_mems_allowed(void)
2647 {
2648 struct cgroup *cgrp;
2649
2650 rcu_read_lock();
2651
2652 cgrp = task_cs(current)->css.cgroup;
2653 pr_info("%s cpuset=", current->comm);
2654 pr_cont_cgroup_name(cgrp);
2655 pr_cont(" mems_allowed=%*pbl\n",
2656 nodemask_pr_args(&current->mems_allowed));
2657
2658 rcu_read_unlock();
2659 }
2660
2661 /*
2662 * Collection of memory_pressure is suppressed unless
2663 * this flag is enabled by writing "1" to the special
2664 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2665 */
2666
2667 int cpuset_memory_pressure_enabled __read_mostly;
2668
2669 /**
2670 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2671 *
2672 * Keep a running average of the rate of synchronous (direct)
2673 * page reclaim efforts initiated by tasks in each cpuset.
2674 *
2675 * This represents the rate at which some task in the cpuset
2676 * ran low on memory on all nodes it was allowed to use, and
2677 * had to enter the kernels page reclaim code in an effort to
2678 * create more free memory by tossing clean pages or swapping
2679 * or writing dirty pages.
2680 *
2681 * Display to user space in the per-cpuset read-only file
2682 * "memory_pressure". Value displayed is an integer
2683 * representing the recent rate of entry into the synchronous
2684 * (direct) page reclaim by any task attached to the cpuset.
2685 **/
2686
2687 void __cpuset_memory_pressure_bump(void)
2688 {
2689 rcu_read_lock();
2690 fmeter_markevent(&task_cs(current)->fmeter);
2691 rcu_read_unlock();
2692 }
2693
2694 #ifdef CONFIG_PROC_PID_CPUSET
2695 /*
2696 * proc_cpuset_show()
2697 * - Print tasks cpuset path into seq_file.
2698 * - Used for /proc/<pid>/cpuset.
2699 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2700 * doesn't really matter if tsk->cpuset changes after we read it,
2701 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2702 * anyway.
2703 */
2704 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2705 struct pid *pid, struct task_struct *tsk)
2706 {
2707 char *buf, *p;
2708 struct cgroup_subsys_state *css;
2709 int retval;
2710
2711 retval = -ENOMEM;
2712 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2713 if (!buf)
2714 goto out;
2715
2716 retval = -ENAMETOOLONG;
2717 css = task_get_css(tsk, cpuset_cgrp_id);
2718 p = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2719 current->nsproxy->cgroup_ns);
2720 css_put(css);
2721 if (!p)
2722 goto out_free;
2723 seq_puts(m, p);
2724 seq_putc(m, '\n');
2725 retval = 0;
2726 out_free:
2727 kfree(buf);
2728 out:
2729 return retval;
2730 }
2731 #endif /* CONFIG_PROC_PID_CPUSET */
2732
2733 /* Display task mems_allowed in /proc/<pid>/status file. */
2734 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2735 {
2736 seq_printf(m, "Mems_allowed:\t%*pb\n",
2737 nodemask_pr_args(&task->mems_allowed));
2738 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2739 nodemask_pr_args(&task->mems_allowed));
2740 }
This page took 0.08684 seconds and 5 git commands to generate.